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ABSTRACT
In this paper we address the problem of growing leakage vari-
ability through effective dual-threshold voltage assignment.
We propose a probabilistic dynamic programming-based method
to assign dual-threshold voltages such that the overall ex-
pected leakage is minimized under a given probability of vi-
olating the timing constraint (timing yield). The key charac-
teristics of our strategy are two pruning criteria that stochastically
identify pareto-optimal solutions and prune the sub-optimal
ones. Compared to other variability-driven dual-threshold
voltage assignment schemes, the main advantages of our ap-
proach are 1) considering correlations due to common sources
of variation, 2) providing controllable runtime, which in one
of the proposed strategies is comparable to the determinis-
tic algorithm, and 3) performing optimization based on all
the signal paths simultaneously, as opposed to one path at a
time. Experimental results indicate that the proposed proba-
bilistic scheme is significantly better than a comparable de-
terministic dual-threshold voltage assignment, both in terms
of expected leakage and the probability of violating the timing
constraint.

Categories and Subject Descriptors
B.6.2 [LOGIC DESIGN]: Design Aids—Automatic syn-
thesis, optimizati on

General Terms
Algorithms, Performance, Design, Theory

Keywords
Leakage, Process Variations

1. INTRODUCTION
Continuous shrinking of device feature sizes has enabled

scaling of the voltage, resulting in massive reduction in dy-
namic power. The reduction in supply voltage must be ac-
companied with a reduction in threshold voltage in order to
address adverse effects on delay. This threshold reduction
results in an exponential increase in the leakage power.

The current state of research has proposed many strate-
gies for reducing leakage. Having multiple thresholds on
chip is one of the most important among them.
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The approach in [8], [12] (and many others) suggest as-
signing the gates on critical paths to low threshold and
assigning the ones in non-critical paths to high-threshold
(dual-Vth technology).

A major issue in leakage optimization is due to the vari-
ations caused by the manufacturing process. Fabrication
variability occurs in different device parameters such as the
effective channel length, oxide thickness, and doping profile.
Although the scope of variation on these parameters might
be small, however a large variation will be caused in leakage
current due to its exponential dependence on parameters
such as the the effective channel length. It has been shown
that a 12.5% variation in the effective channel length can
cause a 30% leakage variation in a pFET and 400% leakage
variation for a netlist of a few thousand gates [11]. Such a
degree of variation has to be considered while doing leakage
optimization. Variability makes leakage and delay of the
circuit behave as random variables.

In this paper we investigate the variability-driven leakage
optimization under a timing constraint using the dual-Vth

technology. This problem has been addressed before: The
approach in [2] proposes a sensitivity-based optimization
framework, in which the gates that are highly sensitive are
identified to decide the appropriate threshold assignment.
This is an iterative approach and could have a high execution
time before convergence. The technique in [6], approaches
the leakage optimization problem by addressing individual
paths. However it is based on the simplifying assumption
that all the paths are non-overlapping. The approach in [1]
also optimizes leakage probabilistically but ignores correla-
tions in leakage and delay of gates due to common variation
sources.

We also model leakage and delay of a gate as random
variables. We present a probabilistic dynamic programming-
based strategy for assigning the threshold voltages to the
gates such that the expected value of the leakage is mini-
mized under a given timing constraint violation probability.
At each node a set of pareto-optimal solutions are identi-
fied while considering process variations and the rest are
pruned out. This is based on two proposed pruning criteria.
The total number of pareto-optimal solutions stored at each
node can be controlled. This is used to generate a tradeoff
between runtime and quality of solution. Moreover, our ap-
proach is applied to a Directed Acyclic Graph that might
contain over-lapping paths, while capturing spatial correla-
tions in the delay and leakage random variables.

Experimental results show that our approach results in
significantly better expected leakage and probability of meet-
ing the timing constraint than the traditional deterministic
approach.

The organization of the paper is as follows. Section 2 de-
scribes the deterministic approach. Section 3 describes the
probabilistic problem and the leakage and delay models that
were used under process variations. Section 4 has the prob-
abilistic algorithm details including two proposed pruning
criteria. Section 5 briefly discusses issues with the Directed
Acyclic Graphs. The experimental results are in section 6.
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Figure 1: Solution at a node

2. TRADITIONAL APPROACH

2.1 Problem Definition
Given a gate-level netlist, the dual Vth leakage optimiza-

tion technique decides the threshold voltage of each gate,
out of two possible Vth choices. This allows to minimize
leakage under a given timing constraint.

For each gate, the decided threshold voltage, determines
its subthreshold leakage current and its delay. The sub-
threshold leakage current denoted by Il, is expressed as a
function of Vth by the following equation:

Il = I0e
Vgs−Vth

nVT (1)

Here I0 = µ0Cox(W/L)V 2
T e1.8, where Cox is the gate ox-

ide capacitance, (W/L) is the width to length ratio of the
leaking MOS device, µ0 is the zero bias mobility. In equa-
tion 1, Vgs is the gate to source voltage, VT is the thermal
voltage and n is the sub-threshold swing coefficient.

The delay of a gate denoted by D, is expressed in terms
of its Vth by the following equation:

D ∝ CLVdd

(Vdd − Vth)α
(2)

Here CL is the load capacitance at the gate output and
α is the velocity saturation index which is about 1.3 for the
0.18 µm CMOS technology.

2.2 Deterministic Approach
The given gate-level netlist is described as a Directed

Acyclic Graph (DAG) where each gate is represented as a
node and the nets are represented as directed edges in the
graph that connect any source gate to its fanout(s). A vir-
tual sink node is also added that has incoming edges from
all the primary outputs.

A popular dynamic programming approach to solve the
dual-Vth assignment problem, traverses the nodes in topo-
logical order from the primary inputs to the primary outputs
[12]. Each node ni contains a set of pareto-optimal solu-
tions as it is encountered in the topological traversal. The

jth pareto-optimal solution, denoted by S
(ni)
j , contains the

Vth assignment to all the nodes that are located in the fanin

subtree of ni, including ni itself. In addition, S
(ni)
j contains

the arrival time at the node output denoted by Dni
j , and

the estimated leakage of the node subtree which includes
ni, denoted by Ini

j . Figure 1 illustrates this. During the
topological traversal, for ni, the current encountered node,
the pareto-optimal solution set is determined in the follow-
ing 3 steps: 1) Initially the solutions of the children (fanins)
of the node are combined to generate a new solution set. 2)
This solution set is then combined with the two possibilities
of Vth choices of ni, therefore it’s size is doubled. 3) The
resulting solutions are then compared and the sub-optimal
solutions are pruned out.

In step 1, every solution combination of the children of
ni is considered. For any combination, the arrival time is
computed as the maximum of the arrival times of the node’s
children. The leakage is the summation of the leakage of the
node’s children for that combination. The assigned Vths,
for the gates in the subtree of ni, is the union of the Vth

assignments of all the children’s solutions. This resulting

solution set is denoted by S
(ni)
fanin. Note that the number of

solutions in S
(ni)
fanin is the multiplication of the number of

solutions of the children of ni.

The resulting solution set is combined with the two pos-
sibilities of the Vths of ni in step 2. For each solution

Sj ∈ S
(ni)
fanin, a new solution is generated. For this new solu-

tion, the arrival time is the summation of the arrival time of
Sj and the delay of ni for that Vth, determined by equation
2. The leakage is the summation of the leakage of Sj and ni

for that Vth, determined by equation 1. Finally the union
of the Vths of Sj and the Vth of ni is the Vth assignment for
the nodes in the fanin subtree. Number of solutions at this
point is twice the size of S

(ni)
fanin.

The solution set generated in step 2 is then evaluated and
sub-optimal solutions are pruned out. The number of stored
solutions is set to be proportional to the summation of the
solutions of the node’s children. This is a necessary step to
avoid exponential growth of solution space, and acheive im-
practical runtime. To determine the stored pareto-optimal
solutions, among all solutions that have the same arrival
time, the one with minimum leakage is chosen. This a purely
heuristic.

In the end, in the virtual primary output node, among all
solutions that have an arrival time smaller than the given
timing constraint, the one with minimum leakage is selected.

2.3 Deterministic Approach Under Variabil-
ity

The presented deterministic approach does not account
for the increasingly importance of process variations on leak-
age and delay of the gates. Under such variations, there are
two possible ways in which a traditional approach can be
modified to consider variability: It can estimate the delay
and leakage of each gate with its expected value or its worst
case. Such approximations are either too optimistic or pes-
simistic. It has been shown that estimating all gate delays
by their expected values causes an under-estimation (opti-
mistic scenario) of the arrival time since a stochastic MAX
of two random variables has a higher expected value than
the MAX of their expected values [4]. If the gate delays are
represented by their worst case values, this may cause an
over-estimation of the circuit delay.

In the next section, a variability-aware approach to this
problem is presented which is probabilistic in nature and
does not suffer from the shortcomings of the deterministic
approach. Such a probabilistic approach assumes the delay
and leakage of each gate to be random variables. The opti-
mization is done probabilistically by estimating the arrival
time and leakage as random variables for each solution.

3. PROBABILISTIC APPROACH

3.1 Problem Definition
Given a gate-level netlist, a constraint Tcons for the ar-

rival time at the primary outputs, two choices of threshold
voltages for the gates and Pviol, a maximum allowed timing
violation probability, decide one threshold voltage for each
gate, such that the expected value of the subthreshold leakage
current is minimized while the probability of violating Tcons

is at most Pviol.
This definition, assumes that process variation randomizes

design parameters which in return varies the characteristics
of a gate. Thus the delay and leakage of each gate, and the
output arrival time and overall circuit leakage are also ran-
dom variables. For each solution, the output arrival time
violates the timing constraint Tcons with a certain probabil-
ity expressed as:

∫
∞

Tcons
fT (t)dt, where fT is the probabil-

ity density function of T , the arrival time random variable.
Based on the probabilistic definition, only the solutions that
have an arrival time, which violates T with a probability of
at most Pviol, are of interest. Among these solutions, the
one with minimum expected value of leakage is the best. In
addition to accounting for process variations, such a proba-
bilistic definition provides a risk-management framework for
the designer to decide the amount of risk at his/her discre-
tion.



3.2 Modeling the Distribution of Leakage
In this section a probabilistic model from [10] is reviewed

that estimates the distribution of the leakage of a MOSFET.
The manufacturing process causes variation in many differ-
ent parameters in the system such as the effective channel
length Leff and gate oxide thickness tox. To model the vari-
ation in the subthreshold leakage current, [10] assumes the
variation in the system parameters cause variation in the
Vth of a MOSFET and models this as:

Vth = Vth0 −
∑
∀i

βXi

Xi0 − Xi

Xi0
(3)

In the above equation Vth is a random variable that is
described as a linear function of the Xi random variables.
Here Xi can express any gate parameter such as Leff or tox

that has variation. Vth0 and Xi0 are the expected values of
Vth and Xi respectively. βXi

is a constant for the MOSFET.
With the following assumption, [10] shows that the sub-

threshold leakage current of a MOSFET, initially described
using equation 1, is written as below to consider variability:

Il = Is0
Weff

Leff

e
Vgs−Vth0

nVT
βLeff

Leff0
−Leff

Leff0

∑
∀X βX

X0−X

X0 (4)

Here the Xi are random variables. To ease the use of this
probabilistic model in the dual Vth leakage optimization, one
can write the Taylor series of equation 4:

IX1,X2,... = I(X10, X20, ...) +
∑
∀i

(Xi − Xi0)
dI

dXi

|X10,... + ...

(5)
This is a polynomial representation of equation 4 that allows
easier calculation of the variance or higher order moments.

3.3 Capturing Correlations
In the dual-Vth leakage optimization, while considering

the delay and leakage of all the gates together, it is impor-
tant to take into account the degree of correlation between
the Xi variables. Correlations can arise due the to the spa-
tial location of the gates on the chip. The gates that are
more close to each other, are more probable to have similar
variation in their Xi variables, hence are more correlated.
The expression of equation 5 allows better representation of
these correlations, by introducing common Xi variables for
all the gate leakages.

We are interested to capture spatial correlation due to
variation in Leff . The Leff of a device in gate i is modeled
as:

Leffi
= ai0 +

4∑
j=1

aij × Lj (6)

Here Leffi
is the effective channel length for gate i and

ai0 is the expected value of Leffi
. In this equation, the

four Lj variables are independent and have standard Gaus-
sian distribution (N∼(0,1)). The aij coefficients are pro-
portional to the Manhattan distance of gate i from the
(left/right top/bottom) corners of the chip, assuming the
gates are placed. The aij coefficients reflect the degree of
spatial correlation between different gates, i.e. if two gates
are physically close to each other, their corresponding coef-
ficients will be very similar, thus their Leff variables will be
highly correlated. The aij coefficients are scaled such that
the variance of Leff is matched with statistical data. Figure
2 illustrates this. With this assumption, the Taylor series of
the subthreshold leakage is simplified to:

I(Leffi
) = Is0

Weffi

ai0
e

Vigs−Vith0

nV T (1+
(β − 1)

2ai0

4∑
j=1

aijLj+...)

(7)
The above equation is only specific to Leff variation.

Other variations can be captured similarly. Note that since
the leakage of each gate is represented as this polynomial
expression for variations in Li, the correlations among the
leakage of different gates can be computed and represented
more easily. In the dual Vth leakage optimization problem,
the leakage of each gate is represented in the above forms.

~a4i

Leff_i = u + a1i x L1 + a2i x L2 + a3i x L3 + a4i x L4

~a3i

~a4j

~a3j~a2j
~a2i

~a1i

~a1j

j

i

Figure 2: Capturing spatial correlations

For a set of nodes, the overall leakage can then be ex-
pressed in the same form by adding the leakage expression
of each gate, by summing the corresponding coefficients in
all the expressions. Next a variation-aware delay model will
similarly be extracted.

3.4 Modeling the Delay Distribution of A Gate
Similar to the leakage model of the previous section, a

variation-aware delay model can be extracted from equation
2 for each gate. Different sources of with-in-die variation
such as Leff , Tox, etc. cause variation in the parameters of
equation 2, hence variation in the delay of a gate. For any
of these parameter variations the Taylor series expansion of
a gate’s delay is:

DX1,X2,... = D(X10, X20, ...)+
∑
∀i

(Xi −Xi0)
dD

dXi

|X10,... + ...

(8)Here the Xi variables could be Leff , Tox or any other
parameter that is affected by variation. As an example con-
sider writing the Vth as a linear function of Li variables (to
represent Leff variability). For details see equations 3 and
6. The Taylor series expansion of the delay model of gate i
is simplified to:

Di =
CLVdd

(Vdd − Vith0)α
(1 +

αβ

ai0(Vdd − Vith0)

4∑
j=1

aijLj + ...)

(9)
Note we consider the first-order Taylor series expansion of

Di and ignore higher order terms. This linear form captures
correlations between different gate delays very well. The
presented variation-aware models for leakage and delay of a
gate will be incorporated in the next section in an algorithm
that targets the probabilistic definition of the problem.

4. PROBABILISTIC ALGORITHM
In this section a probabilistic algorithm is presented that

targets the probabilistic definition of the dual Vth leakage
optimization problem. It’s main difference with the pre-
sented deterministic approach is that the delay and leakage
of the gates thus the arrival times are random variables.
These random variables are correlated to each other, since
they have common sources of variation.

4.1 Global Algorithm
The probabilistic algorithm is also a dynamic program-

ming based approach where the nodes are traversed topo-
logically from the primary inputs to the primary outputs.
Each node has a set of pareto-optimal solutions where each
solution Si contains the following three quantities: the sig-
nal arrival time at the node output (denoted by Ti), the Vth

assignment and the expected leakage of the fanin subtree of
the node (denoted by E[Ii]).

During the topological traversal, at a node ni, the follow-
ing three steps are done: 1) Initially the solutions of the
fanins of the node are combined, to generate a new solution

set (S
(ni)
fanin) which contains the random variable for the ar-

rival time at the node input and the expected leakage of the
fanin subtree of the node. 2) This solution set is combined
with the two Vth possibilities of the node to get a new solu-
tion set at the output of the node. 3) Finally probabilistic
pruning is done to store a limited pareto-optimal set of so-
lutions. In step 1, for every combination of the solutions of
the fanins of ni, a specific Vth assignment is determined for
all the nodes in the fanin-subtree of ni.



This Vth assignment results in an expected leakage for
each gate, which can be obtained from the probabilistic
leakage model that was presented in the previous section.
The expected leakage for this solution combination is com-
puted by adding the expected leakage of each gate in the
fanin-subtree of ni. For this solution combination, the cor-
responding arrival time is computed by doing a probabilistic
max operation as explained next.

Assume for a solution combination in a node with two
fanins, the arrival times of the fanins, denoted by Ti and Tj ,
are represented as linear expressions as below:

Ti = ci0 +
∑

l

cilXl Tj = cj0 +
∑

l

cjlXl (10)

In the above equations Xls are the random variables repre-
senting the design parameters that are affected by variation.
The max of these two arrival times is approximated back into
the same linear form as in [4] and [5]:
Max(Ti, Tj) ≃ ck0 + C

∑n

l=1 cklXl. The average (ck0) and
coefficients (ckl) are computed using [3]:

ck0 = ci0φ(α) + cj0φ(−α) + θϕ(α) (11)

ckl = cilφ(α) + cjlφ(−α) (12)

θ2 = c2
i0 + c2

j0 − 2ci0cj0ρ α = (ci0 − cj0)/θ (13)

where ϕ(α) and φ(α) are the probability density function
(pdf) and cumulative distribution function (cdf) respectively
for a standard normal random variable. In equation 13, ρ is
the correlation coefficient between Ti and Tj . The constant
C = σact/σappr is defined such that the variance of the ac-
tual distribution and the approximate distribution match.
The max operation is done on two arrival times at a time.
For a node with more than two fanins, this is done itera-
tively to get the final max result. This procedure is done
for every solution combination of the fanins of the nodes to
complete step 1.

In step 2, the solution set at the input of ni is combined
with the two Vth possibilities of ni. For each possibility,
the expected value of leakage is computed by adding the
expected value of the the leakage of ni with the expected
leakage of the solution at the input of ni. Also for each solu-
tion combination, the delay of ni is expressed as in equation
9. Equation 9 only considers variability in Leff , however
as discussed in section 3.4 the linear delay models can be
obtained similarly for other parameter variation. For a so-
lution combination assume the delay of ni, denoted by Di

and the arrival time at the input of ni, denoted by Tj are
written as in equation 10. The resulting arrival time, Tk is
represented in a linear form as:
Tk = (ci0 + cj0) +

∑n

l=1(cil + cjl)Xl.
By the end of step 2, all solution combinations due to the

fanins of ni and the Vth of ni are generated. At this stage
pruning is done to store a limited number of pareto-optimal
solutions. This is necessary to avoid exponential growth of
the number of solutions and achieve practical run-times. For
each node, the number of stored solutions is proportional to
the summation of the number of solutions of its fanins. This
desired number of solutions is denoted by K through out the
paper. By changing K we can obtain a trade-off between
the quality of solution and run-time. In the next section, we
will explain our pruning criteria when the arrival time and
leakage of each solution is a random variable.

Once the topological traversal is finished, at the virtual
primary output sink, among all the solutions that are meet-
ing the timing constraint T with a probability that is smaller
than Pviol, the one with minimum expected leakage is cho-
sen as the best solution which in return determines the Vth

assignment to all the gates.

4.2 Probabilistic Pruning Criteria
In this section two different probabilistic pruning criteria

are proposed. The objective of pruning is to remove the
sub-optimal solutions from the solution space.

Pruning Criterion 1:
Each solution Si at a node is characterized by two random

variables: the arrival time at the node output denoted by
Ti and the overall leakage of the node fanin subtree denoted
by Ii. In the first pruning criterion, the goal is to identify
and remove suboptimal solutions and therefore be left with
the pareto-optimal ones. Consider two solutions Si and Sj .
Here Sj is an inferior solution if both its leakage and arrival
time are inferior to Si. This is formulated as:

Prob(Ii ≤ Ij&Ti ≤ Tj) = 1 (14)

The above equation says that with probability of 1, Si will
have a smaller arrival time and smaller leakage, thus it
prunes Sj . This pruning criterion is based on computing the
“pruning” probability in the above equation to identify infe-
rior solutions. Initially this probability is computed between
all pairs of solutions. In order to compute this probability,
for each solution Si, the arrival time and leakage are repre-
sented as first-order polynomials as explained in section 3.2.
The overall leakage (Ii) for the fanin subtree of the node is
obtained by summing the linear leakage expressions for each
gate (expressed in equation 5). Two solutions Si = (Ii, Ti)
and Sj = (Ij , Tj) are:

Ii = bi0 +
∑

k

bikXk Ti = ci0 +
∑

k

cikXk

Ij = bj0 +
∑

k

bjkXk Tj = cj0 +
∑

k

cjkXk (15)

Each solution Si is pruned out, as soon as one solution Sj

is found that prunes Si with a probability close to 1. Since
by the end of this procedure it is not guaranteed that K
pareto-optimal solutions are left, next we compare the pair-
wise probabilities among the remaining solutions in another
round, however this time we decrease the pruning proba-
bility from 0.99 to a smaller value (such as 0.60). As soon
as the number of remaining solutions becomes K the pro-
cedure is stopped. Please note that obtaining the pair-wise
probabilities among solutions is done only once and in dif-
ferent rounds only these already-computed probabilities are
compared to prune sub-optimal solutions. In theory, the fol-
lowing procedure can be repeated many rounds, each time
the limit of the pruning probability is decreased to a smaller
value than the previous round until the desired number of
solutions are obtained. However due to run-time concerns, it
is necessary to have a bound on the number of rounds that
the solutions are compared. In our experiments we found
two rounds of comparison with probabilities of 0.99 and 0.6
to be suitable.

The following pruning criterion can identify suboptimal
solutions with very high accuracy, since it takes the arrival
time and leakage of each solution as random variables and
does not solely look at the variance or expected value of each
quantity. However the main challenge here is to compute the
probability in equation 14 which is explained next. For the
two solutions Si and Sj , the pruning probability of equation
14 is: Prob((Ii − Ij) ≤ 0 & (Ti − Tj) ≤ 0), where:

I = Ii − Ij = (bi0 − bj0) +
∑

k

(bik − bjk)Xk

T = Ti − Tj = (ci0 − cj0) +
∑

k

(cik − cjk)Xk (16)

The variables I and T are written as linear combination
of Xk variables which are assumed be standard normally-
distributed (N∼(0,1)), therefore T and I will have a bivari-
ate normal density function which directly falls from the
definition of multivariate normal distribution. The proba-
bility of equation 14 is then simplified to:

P = Prob(I ≤ 0&T ≤ 0) =

∫ 0

−∞

∫ 0

−∞

fI,T (i, t)didt (17)

where fI,T is the joint density function of the bivariate nor-
mal distribution between I and T which is determined by
computing the expected value and variance of these two vari-
ables and also by computing ρ, their correlation coefficient.



For computing the bivariate normal probability integral,
[9] has reviewed many approximation methods. Here we will
be using the standard procedure using tetrachroric series:

P = φI(a)φT (b)+ϕI(a)ϕT (b)

∞∑
k=0

1

(k + 1)!
Hek

(a)Hek
(b)ρk+1

(18)
where ϕI , ϕT are the pdf and φI and φT are cdf of the nor-

mally distributed I and T random variables, and a = −µI

σI
,

b = −µT

σT
. The expression Hek

(x) is the Hermite polynomi-

als given by:

Hek
(x) =

[ k
2
]∑

m=0

k!

m!(k − 2m)!
(−1)m2−mxk−2m (19)

It has been shown that the above polynomial, estimates
the probability P with an accuracy of 1% if expanded until
the 5th order [7]. Therefore, the computation of the double
integral is hugely simplified to computation of a 5th order
polynomial.

This ease of computation of the pruning probabilities among
solutions makes our first pruning criterion to be very exact
and yet within a limited run-time. Please note that the as-
sumption of the linear form for the leakage and arrival time
for a solution which results in their distributions to be nor-
mal is the key reason that allows ease of computation of the
pruning probability. Next we will present a very fast alter-
native pruning criterion.

Pruning Criterion 2:
In this pruning criterion, each solution is characterized

by three fields. For a solution Si, the first two fields are the
expected value and the variance of the arrival time which are
denoted by E[Ti] and V [Ti]. The third field is the expected
value of the leakage of the fanin subtree of the node which is
denoted by E[Ii]. In this pruning criterion all the solutions
are compared based on these three charactering fields.

Initially, all the generated solutions are considered in a 3-
dimensional space as illustrated in figure 3. This 3-dimensional
space has E[Ti], V [Ti] and E[Ii] as its axes. The pareto
optimal solutions are then extracted from this set. Two so-
lutions Si and Sj are pareto-optimal if any of the following
conditions hold:
((V [Ti] > V [Tj ]) and (E[Ii] < E[Ij ])) or
((E[Ii] > E[Ij ]) and (E[Ti] < E[Tj ])) or
((E[Ti] > E[Tj ]) and (V [Ti] < V [Tj ]))
Figure 3(a) illustrates one such pareto-optimal curve.

Several techniques in computational geometry can be used
to generate this pareto-optimal set. The major concern
with such techniques is that the total number of identified
pareto-optimal solutions could be very large and therefore
they would be impractical in our context. As indicated ear-
lier, at each node in the topological traversal, we select K
pareto-optimal solutions. These selected solutions should
best represent the solution space and the actual pareto-
optimal curve at that node. By increasing K we can improve
the quality of the algorithm at the cost of runtime. In our
approach we fixed K to be proportional to the summation
of the solutions of the node’s children.

Inorder to identify the K pareto-optimal solutions, all the
solutions are considered in the 3-dimensional space. The two
axes corresponding to the expected arrival time and variance
of the arrival time are each divided into

√
K uniform units.

These define K regions in the plane that is specified by these
two axes as illustrated in figure 3(b).

Next these K regions are traversed and among all solu-
tions that fall in the same region, the one with minimum
expected value of leakage is chosen. The number of selected
solutions will be at most K. Pareto-optimal solutions are
then selected from these chosen solutions according to the
criterion defined above. This is illustrated in figure 3(b).
The above procedure guarantees uniform sampling of the
desired 3-dimensional tradeoff-curve.
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Figure 3: Solution space in the pruning criterion 2

The advantage of this pruning criterion is that it is very
fast in nature. For each solution, the required three fields
can be obtained very fast. The run-time in this approach is
well comparable to the traditional deterministic approach.
In the next section we will present experimental results to
compare the different presented techniques and pruning cri-
teria.

5. HANDLING OF DAGS
Directed Acyclic Graphs (DAGs) contain nodes with mul-

tiple fanouts whose paths converge later on in the graph.
The nodes where such paths converge are refereed as re-
convergent nodes. In DAGs, there will be shared subtrees
among the fanins of the reconvergent nodes. These shared
subtrees cause the following problem in the dynamic pro-
gramming approach: While merging a combination of so-
lutions of the fanins at a reconvergent node, different Vths
might be assigned to the same node(s) in the shared sub-
tree(s). Different solutions have been proposed to handle
DAG issues. In one approach, the graph is broken into trees
and the problem is solved separately for each tree. The so-
lutions of these trees are then combined.

In another approach, every time a conflict happens in Vth

assignment of a gate, only one Vth for the gate is chosen
for the conflicted solutions. This could either be the higher
or smaller Vth. Every time such an adjustment is done the
incremental computation of the arrival times and leakage
will be incorrect, since the estimated arrival times of the
node fanins and their leakage is based on an un-modified
Vth assignment in their subtrees. Therefore, every time such
a re-assignment is done while merging solutions, the delay
and leakage has to be computed again by doing a timing
analysis for the node’s subtree and adding the leakage of
every gate in the node subtree. This is implemented in our
implemented approaches.

6. EXPERIMENTAL RESULTS
In order to estimate the variation in delay and leakage, we

assume the presence of variability in Leff of a device, where
Leff for each device is described as in equation 6 to capture
spatial correlation for a placed netlist. In order to capture
the spatial correlation among the gate parameters, we placed
the experimental benchmarks using CAPO placement tool
and evaluated the coefficients of the parameters based on the
technique presented in section 3.3. We assumed a variance
of 10% in the Leff for all the gates.

In the deterministic method the delay and leakage of each
gate is estimated with its expected value. This method is
denoted by DetExp. Two probabilistic approaches were also
implemented that only differed in their pruning criterion
which are denoted by Prob1 and Prob2.

1. DetExp: Deterministic using expected value estimates

2. Prob1: Probabilistic using pruning criterion # 1

3. Prob2: Probabilistic using pruning criterion # 2

These methods were tested on a set of MCNC benchmarks,
where for a given timing constraint, in the deterministic case
the solution that meets the timing constraint with minimum
leakage (based on the deterministic estimate i.e. expected
value) was chosen.



T Pvio DetExp. Prob#1 Prob#2
E[I] Pv(T ) E[I] Pv(T ) E[I] Pv(T )

C432 33.0 0.20 890 0.14 890 0.14 890 0.14
C499 17.5 0.20 1779 0.15 1176 0.19 1277 0.12
C880 32.0 0.20 1479 0.13 1077 0.19 1117 0.17
C1355 17.0 0.20 2030 0.19 1277 0.19 1327 0.16
C1908 29.0 0.20 1388 0.17 1186 0.18 1186 0.18
C3540 42.0 0.20 2991 0.17 2791 0.19 2791 0.19
C5315 31.0 0.20 4857 0.16 4211 0.16 4261 0.16
alu2 8.0 0.20 977 0.03 982 0.05 931 0.04
alu4 12.0 0.20 2230 0.07 1752 0.07 1752 0.07
too-large 12.0 0.20 1063 0.20 862 0.20 912 0.20

Table 1: Probability of meeting required time constraint at root

DetExp Prob#1 Prob#2
C432 49 331 50
C499 212 1267 257
C880 41 571 52
C1355 212 1401 256
C1908 181 1399 207
C3540 653 2600 708
C5315 1488 4827 1707
alu2 72 1018 94
alu4 279 1808 331
too-large 20 469 21

Table 2: Run-time (in seconds) of different tech-
niques

In the probabilistic methods, among all the solutions that
violate the timing constraint with a probability of at most
Pviol, the one with minimum leakage is chosen. A solution
generated by the deterministic method defines a Vth assign-
ment for all the gates. For this assignment, we did a sta-
tistical timing analysis to obtain the distribution of timing.
We then determined the probability of violating the timing
constraint for the deterministic solution.

Table I compares the final solutions generated by these
methods. Here column 2 is the timing constraint (in nsecs).
For each method, we have reported the expected leakage
(E[I ]) and probability of violating the timing constraint
(Pv(T )). It can be seen that both of the probabilistic meth-
ods consistently resulted in a smaller leakage when com-
pared to the deterministic method. This is since the leakage
and arrival time for each solution are assumed to be random
variables in presence of variability. In addition the probabil-
sitic methods use effective pruning criteria to identify good
solutions at each stage of optimization. When comparing
the two probabilistic methods with each other, in most of
the cases, Prob1 generated a solution with slightly smaller
leakage.

For each method we also looked at the set of pareto-
optimal solutions in the virtual primary output. This is
the set from which the final solution is chosen from. These
pareto-optimal curves are plotted in figure 4 for the C432
and C880 benchmarks. In these curves, the x-axis is the
probability of violating the timing constraint while the y-
axis is the expected leakage. From these curves it can be seen
that for the same probability of timing violation, the deter-
ministic approach always generates a solution with higher
expected leakage. On the other hand, for a fixed expected
leakage, the probabilistic approaches always generated a so-
lution with smaller probability of violating the timing con-
straint.

Finally Table II compares the run-time of the different
methods. It can be seen that the run-time of the second
probabilistic method (Prob2) is well comparable to the de-
terministic method, while the run-time of Prob1 always stands
at a higher rate than the other two methods. While Prob1
and Prob2 generate similar trade-off curves, Prob2 is supe-
rior since pruning is done much faster when compared to
Prob1.

We also implemented a worst-case deterministic estimate
in which the delay and leakage of each gate was estimated
with its worst case value (average + 3σ). However such a
deterministic technique was never able to generate a feasible
solution for our given timing constraints, since it was over-
pessimistic.
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Figure 4: Tradeoff curves of different techniques for
two benchmarks (T=30 nsec) x-axis: Timing viola-
tion probability, y-axis: Expected leakage (pA)

7. CONCLUSION
In this paper we propose a probabilistic dynamic programming-

based approach to the leakage optimization using dual-threshold
technology. Our technique effectively considers correlations,
probabilistically indentifies pareto-optimal solutions, and re-
sults in better expected leakage and probability of satisfying
the timing constraint. Experimental results shows the su-
periority of our approach over determinisitic dual-threshold
schemes.
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