A New Efficient Retiming Algorithm Derived by Formal Manipulation

Hai Zhou
Electrical and Computer Engineering
Northwestern University
Evanston, IL 60208

Abstract

A new efficient algorithm is derived for the minimal period
retiming by formal manipulation. Contrary to all previous
algorithms, which used binary search on a range of candidate
periods to check feasibility, the derived algorithm checks the
optimality of a current period directly. It is much simpler
and more efficient than previous algorithms. Experimental
results showed that it is even faster than ASTRA, an ef-
ficient heuristic algorithm. Since the derived algorithm is
incremental by nature, it also opens the opportunity to be
combined with other optimization techniques.

1 Introduction

Since its creation twenty years ago by Leiserson and Saxe [13],
retiming has firmly established its reputation as one of the
most effective techniques for sequential circuit optimization.
The past twenty years have seen retiming’s steady improve-
ments on performance and continuous expansions into new
areas [14, 18, 16, 20, 21, 5, 15, 17]. Recent progresses on
semiconductor technology saw an increase on the number
of global wires whose delays are longer than one clock pe-
riod [10, 1], and retiming is again a promising technique that
could be leveraged.

In this paper, we solve the retiming problem by algo-
rithm derivation (also known as program derivation) that
was advocated and pioneered by Dijkstra [4] among many
others. We have two purposes in mind when writing this
paper: first, it records a new angle to look at the retiming
and a new algorithm for the minimal period retiming prob-
lem; second, using the retiming as an example, we hope to
bring to the awareness of CAD researchers the advantages
of algorithm derivation. For the second purpose, we also
give a brief introduction to program derivation, and use the
network maximal flow problem to demonstrate the method-
ology and principles.

Given a sequential circuit, the retiming changes the loca-
tions of flip-flops (registers) in the circuit without changing
its function. Its validity is guaranteed by the basic opera-
tion of moving flip-flops from the inputs to the outputs of
a gate, or vice versa. In this paper, we only focus on the
minimal period retiming problem, that is, moving the flip-
flops to minimized the clock period that is decided by the
longest delay between two consecutive flip-flops. Since Leis-
erson and Saxe [13], the minimal period retiming problem
was always solved through a sequence of fixed period retim-
ing problems each of which checks whether a given clock
period is feasible. With a list of candidate clock periods or

an upper-bound and a lower-bound, a binary search is used
to find the smallest feasible period. In cases when the pe-
riods may change continuously, the binary search approach
only gives a fully polynomial-time approximation scheme
(FPTAS) [12], that is, the running time is dependent on the
required precisions.

We did not expect any new result when we set up to de-
rive an algorithm for the minimal period retiming problem.
But the first surprise is the discovery that neither the fixed
period retiming problem nor the binary search comes natu-
rally in the derivation, or we can say that they never come
into the picture during our derivation. The derived algo-
rithm iteratively shortens the longest combinational path in
the circuit, and when that can no longer be done, certifies
that an optimum has been reached. To those who are famil-
iar with Ford and Fulkerson’s maximal flow algorithm [7],
this sounds too familiar: an incremental flow is attempted
over the current flow, and when that is not possible, an op-
timum is declared. This philosophy is quite different from
that of the binary search on fixed period retiming. The main
question answered in each step of the binary search approach
is whether a given clock period is feasible, but the main ques-
tion in each step of our derived algorithm is whether any
smaller clock period is achievable. Because of this subtle
difference, the optimality of a feasible clock period in the
binary search approach can be established only indirectly,
that is, through the infeasibility of the next smaller period.
However, in the derived algorithm, the optimality of the
current clock period can be certified directly through the
unattainable of any smaller period.

Compared with the binary search approach, the derived
algorithm has many advantages. First, it is very simple.
No upper-bound, lower-bound, or list of candidate periods
needs to be computed. It does not require any special data
structure or subroutine, not even a sorting. Actually, the im-
plementation of the algorithm took us less than two hours—
much less than the time we spent on the data preparation.
Second, the algorithm is also very efficient, in the sense that
all the effects of previous operations are kept. Also, an op-
eration in the algorithm is either pushing down the current
clock period or building up evidences to show that it cannot
be reduced. It is proved that the derived algorithm has poly-
nomial running time in the worst case. However, the worst
case running time should not be our focus, since the run-
ning time discrepancy of an algorithm is usually very large
and any attempt to reduce the discrepancy will usually in-
crease the running time on some instances while reducing
it on others. The derived algorithm will process each in-
stances as efficiently as possible. In the same vein, Shenoy

and Rudall [20] preferred some algorithms with larger worst
case running time because of their practical efficiency. Last,
but not the least, without using binary search, the derived
algorithm is incremental in nature. Because it always keeps
a valid retiming during the execution, it has great potentials
to be combined with other optimization operations, or used
in incremental design methodologies [2].

The rest of the paper is organized as follows. Since we
use the predicate calculus and Dijkstra’s guarded commands
to conduct algorithm derivations, a brief introduction to
them is first given in Section 2. As an example, the al-
gorithm derivations for the maximal flow problem are also
included in the section. In Section 3, a brand new algorithm
in guarded commands is derived for the minimal period re-
timing problem. In Section 5, the derived algorithm for
retiming is translated into a common language where the
nondeterminacies in the guarded commands are explored.
Experimental results comparing the derived algorithm with
other algorithms are given in Section 6. Some conclusions
are drawn at the end.

2 Algorithm derivation in guarded commands

2.1 Guarded commands and predicate calculus

Algorithm derivation (or program derivation) is a formal
method for developing algorithms. Dijkstra [4] is a classical
reference in this area and the guarded commands [3] are
usually used in the program derivation.

The language of the guarded commands mainly has four
kinds of statements: assignment, composition, selection, and
repetition. An assignment statement is of the form

vi,v2,... := E1,E2,...

which concurrently assigns the value of each expression on
the right hand side to the different corresponding variable
on the left hand side. Given two statements S1, S2, a com-
position is the statement S1; S2 that executes S1 followed
by S2.

A guarded command has the following form.

<boolean expression>—<statement>

The statement at the right of the arrow could be a composite
statement. A set of guarded commands can be used to form
a selection statement.

if <guarded command>{[[<guarded command>} fi

When more than one guards in a selection statement are
true, any statement after a true guard may be selected to
execute. This introduces nondeterminacy. When no guard
is true, a selection statement is defined as abort. The other
way to organize guarded commands is by a repetition state-
ment, which is defined as follows.

do <guarded command>{[Kguarded command>} od

Whenever there is any true guard in the repetition, a state-
ment after any true guard may be executed. This is repeated
until all the guards are false. As we can see, nondeterminacy
is also allowed here.

The benefit of guarded commands in algorithm deriva-
tion is the clean formal definition of their semantics [4, 3].
Based on Floyd [6] and Hoare [11], the semantics of a state-
ment S is defined to truthify a predicate R upon a given
predicate P. And this is represented as a Hoare triple:

{r} s {Rr}

The predicate calculus [9] is used to express predicates in
the algorithm derivation. It has the usual syntax of the first
order logic. The only difference is on quantification. The
general form of a quantification over x is exemplified by

(*z,y: R: P),

where x and y are distinct index variables, R is a predicate
that gives the ranges of x and y, and P is an expression on
which % is applied. The universal and existential quantifica-
tions in logic are thus represented as

(Vx :: P(z)) or (Az :: P(z)),

(3z :: P(z)) or (Vz :: P(z)),

respectively. Besides logic quantifications, other quantifica-
tions such as a summation can also be represented similarly.
For example, a summation can be put as y .., ai in the
traditional representation. However, it is not clear from the
representation which identifier, i or n, is the variable. But
when the summation is given as (+i: 0 < i <n:a}), it is
very clear that i is the index variable and n is the parameter.

A problem can be formally specified by the predicate
that the variables must satisfy when the program termi-
nates. This predicate is usually called the post-condition of
the program. The algorithm derivation is a goal-driven ac-
tivity that studies the post-condition and finds a sequence
of statements to fulfill it. Besides the program, the interme-
diate predicates between statements will also be decided in
the derivation. Therefore, the proof of the correctness of a
algorithm is developed hand-in-hand with the program.

It should be noted that any non-trivial algorithm must
involve with at least one repetitive statement—otherwise the
processing length of the algorithm will not be longer than the
program length and thus cannot do too much. Therefore, a
critical task in the algorithm derivation is to partition the
post-condition and to decide which part should be kept as
an invariant and which part should be fulfilled through the
repetition. This will become clear in the actual derivation.

2.2 Derivation for maximal flow

Given a flow network—that is a directed graph G = (V| E)
where each e € E has a capacity c.e € R™ and two special
nodes s,t € V, the maximal flow problem asks for a flow
from s to ¢ that is maximal. It is a well-known problem
and has many applications. Ford and Fulkerson [7] were
the first to give an algorithm for it. But new efficient algo-
rithms based on the “push-relabel” approach were not dis-
covered until 1988 [8]. To demonstrate the general principle
of algorithm derivation, we will derive these two different
algorithms with the same methodology.

A flow is defined as a labeling of the edges f : F — R
that satisfies the following two conditions.

PO(f) : (Ve:e€e E:0< fe<ce)
P1(f) : Mv:veV —={st}: f(—,v) = f(v,—))

where

f(_vv) (+U’: (u7’U) 6E:f(u,v))7
flo,—) = (+w: (v,w) € E: f(v,w)).

The value of a flow f is defined as the sum of flows out of s,

that is
|f‘ = f(S, _)

A maximal flow f is a flow that has the maximal value, that
is, it must satisfy the following condition.

P2: (V' PO(f) APL() I < IFD)

Among the three conditions, P2 is the most complex one.
Different treatments of it lead to different algorithms.

2.2.1 -P2 as loop condition

Based on the principle of using the easily satisfied conditions
as invariant, we select PO and P1 to be invariant, since a
simple initialization of

f :=0;

will truthify them. In order to use —P2 as the loop condi-
tion, we need a witness for it. The negation of P2 is

@f" PO(f) A PLS) < |1 > |£1)-

Since both f and f’ satisfy P1, their difference f' — f also
satisfies P1. However, the difference may not satisfy PO.
But the following result can be proved.

Lemma 1
(Vf' :PO(f): (Ve:e€ E:—fe<(f —fle<(c— f)e))

Therefore, if =P2(f), we must have at least one path P(f)
from s to t such that any forward edge e on P has c.e > f.e
and any backward edge el on P has f.el > 0. Using (3P(f))
as the loop condition, we can have the following algorithm
for the maximal flow problem.

f :=0;
{POAP1}
do

(FP(£)) — {(3P(£))APOAP1}
(e:e€P(f):f.e:=f.e+|P(£)|) {POAP1}
od
{POAP1AP2}
where |P(f)] = (mine : e € P(f) : c.e — f.e) min(mine :
—e € P(f) : f.e). Recall that this is Ford-Fulkerson’s algo-

rithm.

2.2.2 P2 as invariant

The same heuristic may select P2 as invariant, since another
simple assignment

f :=0;
(v:(s,v)EE:f(s,v):= c(s,V))

will truthify PO A P2. Therefore —P1 will be used as the
loop condition. For any node v € V — {s,t}, we define

X(U) = f(—,’l)) _f(vv_)'

With the given initialization, the following predicate is true
and we also plan to maintain it as an invariant.

10: (Vv:veV —{st}: X(v) >0)

Therefore, X (v) > 0 is a witness of =P1. Thus, our algo-
rithm will have the following structure.

£,X := 0,0;
(v: (s,v)EE: f(s,v),X.v := c(s,v),X.v+tc(s,v));
do
X(v)>0 — S;
od

It is obvious that S should falsify X (v) > 0 but maintain P0
and P2. That is, it should balance the flows to and from v
under the condition of PO and P2. There two operations to
balance the flows on v: pushing a flow through forward edge
(v,w) such that f(v,w) < ¢(v,w); pushing a flow through
backward edge (u,v) such that f(u,v) > 0. It seems that the
first operations should be selected first since the second is a
cancellation of previous operations. However, in the worst
case, both operations are necessary to balance the flows on
v. But then it may run into the trap of pushing flows back
and forth over an edge. Furthermore, we should push a flow
back on an edge (s,v) only when we know that P2 could be
maintained. Both problems indicate that our original plan,
that is, falsifying X (v) > 0 in one step, is too ambitious.

The possible trap of pushing flows back and forth urges
us to introduce an order on the nodes and to only push flows
according to the order. Also, X (v) > 0 should be falsified
gradually: if there are accommodating neighbors of lower
order, flows will be pushed out; otherwise, the order of v will
be increased. The condition P2 will finally be truthified if
the order of s is fixed, since in the worst case all flows can
be returned to s. The revised algorithm is given as follows,
where h : V — N is the order of the nodes.

f,X,h := 0,0,0;

(v: (s,v)€EE: f(s,v),X.v := c(s,v),X.v+tc(s,v));

h.s := x;

do

X.v>OAf (v,w)<c(v,w)Ah.w<h.v —

f(v,w):=min(c(v,w),f(v,w)+X(v))

| X.v>OAf(w,v)>0Ah.w<h.v —
f(w,v) :=max(0,f (w,v)-X(v))

 X.vWwOA(Vw:f(v,w)<c(v,w)VE(w,v)>0:h.w>h.v) —
h.v:=h.v+1

od

In order to decide what value x should be, we need to estab-
lish the relation between each edge accommodating a flow
and the orders of its two end nodes. It can be shown that
the following predicate is an invariant.

I1: (Vu,v : f(u,v) < c.(u,v) : hau < ho+1)
V(Vu, v : f.(u,v) >0:ho < hu+1)

Since h.t = 0 will not be changed, with I'1 as an invariant, we
can see that a node u # s does not have an augmenting path
to t if h.u > |V| — 1. Therefore, we can select © = |V| — 2.
With the shorthand

I=POAP2ANIOANIL

the complete algorithm is given as follows.

£,X,h := 0,0,0;
(v: (s,v)EE: f(s,v),X.v := c(s,v),X.v+c(s,Vv));
h.s := |V]|-2;
{1}
do
X.v>OAf (v,w)<c(v,w)Ah.w<h.v —
{INguard} f(v,w):=min(c(v,w),f(v,w)+X.v) {I}
| X.v>OAf(w,v)>0Ah.w<h.v —
{IN guard} f(w,v):=max(0,f(w,v)-X.v) {I}
 X.vWwOA(Vw:f(v,w)<c(v,w)VE(w,v)>0:h.w>h.v) —
{Inguard} h.v := h.v+1; {I}
od
{IN(VWv:veg{s,t}:X.v<0)}
Using 11, we can prove that (Vu:u € V : h.au < 2|V|—4).
This guarantees the termination of the algorithm. Notice
that this is Goldberg’s “push-relabel” algorithm.

3 A new algorithm for retiming

Circuit retiming is perhaps the most effective structural op-
timization technique for sequential circuits. It moves the
registers within a circuit without changing its function. The
minimal period retiming problem needs to minimize the
longest delay between any two consecutive registers, which
decides the clock period.

The problem can be formally described as follows. Given
a directed graph G = (V, E) representing a circuit—each node
v € V represents a gate and each edge e € FE represents a
signal passing from one gate to another—with gate delays
d:V — RT and register numbers w : E — N, it asks for
a relocation of registers w’ : E — N such that the maximal
delay between two consecutive registers is minimized.

To guarantee that the new registers are actually a relo-
cation of the old ones, a label r : V' — Z is used to represent
how many registers are moved from the outgoing edges to
the incoming edges of each node. Using this notation, the
new number of registers on an edge (u,v) can be computed
as w'(u,v) = w(u,v) + r.v — r.u. Furthermore, to avoid ex-
plicitly enumerating the paths, we introduce another label
t:V — R* to represent the output arrival time of a gate,
that is, the maximal delay of the gate from any preceding
register. Based on the notations, the validity of a retiming
(r,t) is defined by the following conditions.

PO(r) : (V(u,v) € E s w(u,v) + r.v —rau > 0)
P1(t) : (MveVito>do)
P2(r,t) :

We use a predicate P to denote the conjunction of the above
conditions:

P(r,t) 2 PO(r) A P1(t) A P2(r, 1)

The optimality of a retiming (r,t) is given by the following
condition.

P3: (vr',t' : P(r',t') : max .t < max.t')

where
max .t £ (maxv:v € V : t.w).

Since we only talk about a valid retiming (7/,t') in the se-
quel, to simplify the presentation, we often omit the range
condition P(r’,t'); the meaning will be clear from the con-
text.

The condition PO states that a valid retiming should have
non-negative number of registers on any edge. The condi-
tions P1 and P2 defines a lower bound on the arrival time ¢,
that is, the arrival time of a gate is at least the summation
of the gate delay and the arrival time of its fanins. The con-
dition P3 states that among all valid retimings-those satisfy
PO, P1, and P2-, this current (r,t) has a minimal max .t.

Similar to the conditions of the maximal flow problem,
P3 gives the optimality condition and is the most complex
one. Based on the same heuristic, we consider a simple
initialization as follows.

r,t:=0,d;
do
(u,v)€EATr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v:=t.utd.v
od

This initialization will truthify PO, P1, and P2. To use ~P3
as a loop condition, we need to establish a witness for it. If

VM(u,v) € E:rau—ro=w(u,v): tw—tu>dv)

—P3, that is, we have another valid retiming (r',t') such
that max.t > max.t’, then (Vv : t.v = max.t : '.v < tw).
One property we know for these nodes is

(WVo:tw<to: Fu:tu=du:ru—rov>r.u—r1rw0),

which means that if the arrival time of v is smaller in another
retiming (r',t'), then there must be a node u such that r’
has more registers between u and v. In fact, one such a u
is the starting node of the longest combinational path to v
that gives the delay of t.v. It should be noted that it is
not the absolute values of r but their differences that are
relevant in the retiming. If (r,¢) is a solution to a retiming
problem, then (r+c,t), where ¢ € Z is an arbitrary constant,
is also a solution. Therefore, we can move r “closer” to 7’
by allocating more registers between u and v, that is, by
either decreasing r.u or increasing r.v. We know that v
can be easily identified by t.v = max.t. In order to find
u, we will keep yet another label p : V — V such that
p.v is the starting node of the longest combinational path
to v for any v € V. No matter whether r.v or r.p.v is
selected to change, the amount of change should be only 1
since we do not want to over-adjust r. It means that, after
the adjustment, we still have r.v — r.p.v < r'.v — 7’.p.v, or
equivalently r.v — r’.v < r.p.v — r’.p.v. Assume we increase
r.v. The arrival time ¢t.v can be immediately reduced to d.v.
This operation is given by the following guarded command.

(Idr’,t’::max.t’<max.t)At.v=max.t —
r.v,t.v,p.v:= r.v+l,d.v,v

Since registers are moved in the above operation, the
condition P2 may be violated. To restore it, we may execute
the same repetition statement as in the initialization after
each operation, as in the following form.

(Ir’,t’::max.t’<max.t)At.v=max.t —
r.v,t.v,p.v:= r.v+l,d.v,v;
do
(u,v)€EAr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.u+td.v,p.u
od

However, this kind of programming will aggressively update
t after each adjustment of r, and its only purpose is to
keep P2 invariant when r is changed. Alternatively, we can
weaken the invariant to be maintained, and allow P2 to be
violated temporally and restored later. This can be done by
putting the two guarded command within the same repeti-
tion statement; it increases the flexibility in their execution
orders.

(Ir’,t’::max.t’<max.t)At.v=max.t —
r.v,t.v,p.v:= r.v+l,d.v,v
] (u,v)EEAT.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.u+td.v,p.u

The execution of the second guarded command will in-
crease t. If we use maxT to represent the max .t before we
adjust r, very likely, such ¢ increases may cause t.y > maxT
for some y € V. Similarly, based on the assumption (3r',¢" ::
max .t < maxT), we must have r.y — r.p.y < .y — r’.p.y.
Therefore r.y should also be increased. This can be included
in the above commands through a simple modification.

(Jr’,t’::max.t’<maxT) At.v>maxT —
r.v,t.v,p.v:= r.v+l,d.v,v
] (u,v)EEAT.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.u+d.v,p.u

The difference between the two cases of increasing r is that
in the first case we have t.v = max .t but in the second case
it may not be true. With t.v = max.t, there is no edge
(v, z) such that r.v — r.x = w(v, x), and thus the execution
of r.v :=r.v+ 1 cannot destroy P0. Without it, that is not
guaranteed. Similar to our handling of P2, we can either
maintain PO through a repetitive updating of r after each
operation or allow it to be violated temporally and restored
later. We select the second option since it renders more flex-
ibility. It gives us one more guarded command in addition
to the above two.

(Ir’,t’::max.t’<maxT) At.v>maxT —
r.v,t.v,p.v:= r.v+l,d.v,v
| (u,v)EEAr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v:=t.u+d.v,p.u
l (u,v)EEATr.u-r.v>ulu,v) —
r.v,t.v,p.v:=r.u-w(u,v),t.utd.v,p.u
The condition —P3, that is (37, :: maz.t’ < maxT),
guarantees that the above iterative operations to push down
t.v > maxT will terminate within finite steps. This comes
from the fact that each time after r.v for any v € V is in-
creased, it is guaranteed that there exists a uw € V' such that
ra—r.o > r.u—r v, or equivalently rou—1r".u > roo—1r 0.
Therefore (maxv : v € V : r.v — r’.v) cannot be increased
during the operations. When the iterations terminate, we
will have a valid retiming (r,t) such that max.t < maxT.
Therefore, we can reset the maxT and start the process
again. Once again, we introduce a guarded command paral-
lel to the above three instead of introducing hierarchy. The
algorithm currently has the following scheme.

r,t,p,maxT := 0,d,1,0;
do
(u,v)€EAr.u-r.v=w(u,v)At.v-t.u<d.v —

t.v,p.v := t.utd.v,p.u
| maxT<t.v — maxT:=t.v
od
{P(r,t) Amax.t=maxT}
do

(Jr’,t’::max.t’<maxT) At.v>maxT —

r.v,t.v,p.v:= r.v+l,d.v,v
] (u,v)EEAT.u-r.v>w(u,v)At.v<t.u+d.v —

t.v,p.v := t.utd.v,p.u
[(u,v)€EEATr.u-r.v>w(u,v) —

r.v,t.v,p.v:=r.u-w(u,v),t.utd.v,p.u
[P(r,t)Amax.t<maxT — maxT:=max.t
od
{P(r,t) Amax.t=maxTA(Vr’,t’::max.t’ >maxT)}
The invariant of the second repetitive statement is now very
weak—perhaps only includes P1; the post-condition comes
from the negation of the guards.

The remaining task to complete the algorithm is the cal-
culation of the predicate (Ir’, ¢ :: max.t’ < maxT). We al-
ready know that if it is true then (maxv:v € V : rv—r'.v)
cannot be increased. This implies that there is at least
a node v such that r.v does not change. We use a label
m : V' — V for each node v to point to the “safe-guard” node
p.v when r.v is increased. Since r.v — r.p.v + w(p.v,v) =0
before the increase (there is no register between p.v and v),
we know that

Mv:mweV:irv—rmuo<1)

is an invariant, which means that r.v is at most one larger
than r.m.v. The condition (Ir’,¢ :: max.t’ < maxT) guar-
antees the predicate

Vo:muw €€V irmu—r'muv>rv—rio),

which ensures that the label m will not form any cycle. This
means that m will form a forest where the roots have r =0
and a child can have a r at most one larger than that of
its parent. Therefore, if (Ir',¢' :: max.t’ < maxT), then,
for any 0 < ¢ < |V, there must be at least ¢ nodes whose
r are smaller than i. A violation of any of these conditions
presents an evidence for (Vr',t' :: maz.t’ > maxT)-that is,
maxTT is optimal. Therefore, we can simply extend the above
scheme with the m pointers and monitor these optimality
evidences—that is, (Jv = r.v > |V =1)V (Vv :: o > 0) or m
forms a cycle.

The monotonic decrease of maxT implies a monotonic
strengthening of the predicate (Ir',t' :: max.t’ < maxT).
In other words, we have

maxTi > maxTs =
((3r',¢ :: max .t’ < maxTs) = (I, ' : max.t’ < maxTy)).

It shows that the operations done under a larger maxT; is
conservative and still valid under a smaller maxTs, and the
conditions given by (3r',t' :: max.t’ < maxT;) are still true
if (3r',t" :: max.t’ < maxTs). Therefore, we do not need
to reset any of r or m after each decrease of maxT. This
gives the beauty of the algorithm: it constructively pushes
down max.t, and at the same time prepares evidences to
show that max .t is optimal.

Based on the discussion, the complete algorithm is given
as follows.

r,t,p,m,maxT,cycle:=0,d,1,0,0,0;
do
(u,v)€EAr.u-r.v=w(u,v)At.v-t.u<d.v —
t.v,p.v := t.utd.v,p.u
| maxT<t.v — maxT:=t.v
od
{P(r,t) Amax.t=maxT}
do
—cycleAt.v>maxT —
if
m.v#0 — cycle:=(m forms a cycle)
[m.v=0 — skip
fi;
r.v,t.v,m.v,p.v := r.v+l,d.v,p.v,v
] (u,v)EEAT.u-r.v=w(u,v)At.v<t.u+d.v —
t.v,p.v:=t.u+td.v,p.u
[(u,v)€EEAT.u-r.v>w(u,v) —
r.v,t.v,m.v,p.v:=r.u-w(u,v),t.u+td.v,u,p.u
[P(zr,t)Amax.t<maxT — maxT:=max.t
od
{(3r,t: max.t=maxT)A(Vr’,t’::max.t’ >maxT)}

The correctness of the algorithm is readily provable by
using the predicate annotations in the program. It should
be noted that, since we start to change r before we know
(37, ¢ :: max.t’ < maxT), the post-condition only states
that maxT is the optimal period, but not that (r,t) is an
optimal retiming. However, an optimal retiming can be eas-
ily computed if we store the feasible r before trying to push
the current maxT down. In the post-condition, the predi-
cate (Ir,t :: max .t = maxT) is an invariant of the loop and
the predicate (Vr’,t' :: max.t' > maxT) is implied by cycle
which comes from the negation of all guards in the loop.
The termination is guaranteed by the monotonic increase of
r and the upper bound of |[V| —1 on them. In order to clear
the doubt on the possibility of an inhibitively long running
time when each reduction on maz.t is too small, a bound
on the worst case running time is given in the following the-
orem.

Theorem 1 The worst case running time of the derived re-
timing algorithm is upper bounded by O(V*E).

Cautions should be used on this bound. First, a program
will usually have great running time variations on different
problem instances. The worst case time may only happen
in a few rare instances, and thus may not be a good indica-
tion of the efficiency on most other instances. Second, even
the worst case happens on most problem instances, a bound
may be loose due to the difficulty to have an accurate anal-
ysis. Since only necessary operations are conducted in each
step of the derived algorithm, it should be efficient in most
instances. This is confirmed by our experiments.

4 Intuition and example

To help the readers to get a better understanding of the de-
rived retiming algorithm, we give an example to show the
intuitive interpretation of the algorithm and why it is effi-
cient in practice. The example is given in Figure 1. The
first graph shows the original circuit; it has five gates with
delays shown in each gate, and registers are shown on the
edges. The steps of the algorithm are shown by the sequence
of graphs following the first one.

maxT=17

maxT=10

maxT=10

Figure 1: The algorithm applied on an example.

On the original circuit, the algorithm first calculates the
arrival time of each gate, which is shown beside each gate.
Since the gate vs has the largest arrival time, 17, the maxT is
set to 17. Then any node whose arrival time is at least maxT
will have its r incremented. In our case we have r(vs) = 1,
which means a register is moved from the output of vs to its
inputs. This increment will be accompanied by setting the
m pointer m(vs) = vz (because vs is the starting point of
the longest path), which is represented by a dotted edge in
the second graph. The arrival time t(vs) is also updated to
7. And the update is propagated to make ¢(vi) = 10. Now
since max .t is pushed down to 10, we reset maxT to 10 and
start another iteration.

Since now there are two nodes vy and v4 whose arrival
time is at least maxT, any of them could be picked up for
operation. Assume that v; is selected. The update is shown
in the third graph, where we have r(v1) = 1, m(v1) = vs,
and t(v1) = 3. The arrival time propagation will set t(vs) =
6, t(va) = 13, and t(vs) = 10. Now we have t(vs) = 10 and
t(va) = 13 which are at least maxT (that is 10). Any of
them can be selected for operation. If vs is selected, then
r(vs) = 2 and m(vs) = v1, as shown in the last graph.
Therefore, a cycle is formed by m between vi and vs. It
is an evidence that there does not exist a retiming with a
period smaller than maxT = 10. Therefore maxT = 10 is
the optimal period and it is realized in the second graph.

A few interesting things can be noticed from the exam-
ple. The first is the dances of the m pointers accompanying
the r increases. Each time when a node has its r increased,
its m pointer dances (being created or changed). Before the
optimal period is reached, the m pointers can only form a
forest. It is also true that an m pointer can only point to
a node whose r is at most one smaller. In the last step
of the example, when 7(vs) becomes 2, it can only point
to v1 which is the only node with nonzero r. The other
thing is that the operations for finding an evidence of op-
timality are the same as those for improving the solution.
The first step in the example reduces the period, while the
next two steps discover an optimality evidence. But they
have the same operations. Also, the operations that reduce
the period usually take shorter time than those that build
up evidences, since the former cannot go through a cycle.
On this aspect, this derived retiming algorithm is also sim-
ilar to Ford-Fulkerson’s maximal flow algorithm: finding an
augmenting path is much faster than discovering its non-
existence. This also explains why the derived algorithm is
more efficient in practice: improvement iterations are very
fast and only the last iteration that establishes the optimal-
ity takes longer time.

5 Implementation

The advantages of the guarded commands include simplic-
ity, symmetry, and intrinsic nondeterminacy. They are of
great help in algorithm derivations and correctness proofs.
However, to implement the derived algorithm, it needs to
be translated into a common programming language such
as the C language. We should emphasize that the transla-
tion is straight-forward and there is no hiding trick. The
translation of the retiming algorithm is presented here for
two purposes. First, it may help those who are not familiar
with the guarded commands to understand the new retim-
ing algorithm. Second, it demonstrates how the nondeter-
minacy in guarded commands can be further explored for
the benefit of program performance.

The four kinds of statements in the guarded commands

all have directly corresponding constructs in any common
programming language such as C. The assignment and com-
position statements are the same as in C, with the exception
that a concurrent assignment may be implemented by mul-
tiple sequential assignments in C. The selection statement
corresponds to the if statement in C, and the repetition
statement to the while statement. However, nondetermi-
nacy is intended to be allowed in the guarded commands.
When more than one guards in a selection or repetition
statement are true, any one of the statements guarded by
them may be executed. With nondeterminacy, the algo-
rithm design only makes necessary decisions that guarantee
the correctness. An algorithm with nondeterminacy in the
guarded commands actually represents a set of determin-
istic algorithms, and performance considerations could be
used to make further decisions when it is translated into a
deterministic one.

In the new retiming algorithm derived in the previous
section, there are two kinds of nondeterminacy: multiple
guards could be true in each of the two repetition state-
ments; multiple instances (vertices or edges) may satisfy one
given guard. The important fact is that the algorithm is al-
ways correct no matter what execution order is used. To
avoid searching all vertices or edges for instances satisfying
the guards, a queue @ is used in the implementation for
book-keeping. Assuming there are n gates in the circuit, ar-
rays d and w are used for gate delays and edge weights (the
numbers of registers). Similarly the variables r,t,p,m in
the derived algorithm are implemented as arrays. Based on
the discussion, the C program pseudo-code of the retiming
algorithm is given as follows.

for (i=0; i<mn; i++) {
r[i] = 0; t[i] = d[i]; pl[i]l = i; m[i] = -1;

for ((i,j)€E)
if (wlil[j] == 0 && t[jI<t[il+d[j1) {
t[j] = t[i1+d[j]1; p[j] = plil;
Q= a+{i};

while (Q!'=0) {
i = dequeue(Q);
for ((i,j)€E)
if (wlil[j] == 0 && t[jI<t[il+d[j1) {
t[j] = t[il+d[j]; pl[j] = plil; Q = Q+{j};

if (maxT<t[i]) maxT = t[i];

while (count < n) {
for (i=0; i<n-1; i++)
if (t[i] == maxT) Q = Q+{i};
while (count < n && Q!=0) {
i = dequeue(Q);
if (t[i] >= maxT) {
if (m[i] '= -1) {
count = 0; j = m[i];
while (count <n && j !'= i && m[j] !'= -1) {
j = m[jl; count ++;

if (m[j] '= -1) {
count = n; break;
}
r[i] ++; t[i] = d[i]; m[i] = p[il; p[i] = i;

for ((i,j)€E)
if (rlil-r[jl==wlil[1] && t[jl<t[i]+d[j1) {

t[j] = t[i1+d[j]1; p[j] = plil; Q = Q+{j};
} else if (r[il-r[j] > wlil[j]) {

rljl = rlil-wlil [31; ¢03] = ¢[i] + dljl;

pljl = plil; m[j] = i; Q = Q+{j};

if (count<n) {
maxT = 0;
for (i=0; i<n; i++)
if (t[i]>maxT) maxT = t[i];

The first for statement corresponds to the variable ini-
tialization in the derived algorithm. The second for state-
ment and the first while statement correspond to the first
repetition statement, which is used to compute ¢t and max .t.
The second while statement implements the second repeti-
tion statement in the derived algorithm. Since the last guard
in the statement is mutually exclusive from other guards, we
implement the first three guarded commands by the inner
while statement and the last guarded command by the if
statement after it. Since the processing of the first guarded
command may change the second or the third guard value, it
is executed first in the if (t[i]>=maxT) statement. Because
of these, the statement r[j] = r[i]l-w[i] [j] may have an
increase larger than 1, which speeds up the convergence. We
implement a cycle checking along m by simply counting and
searching for the starting vertex i. Other alternatives are
also possible.

Since the order of getting vertices from @ is not defined,
there is still some flexibility in the C program. If @ is im-
plemented as a stack—that is, first-in-last-out (FILO), the
updates will be conducted in a depth-first fashion; if @ is im-
plemented as a first-in-first-out (FIFO) queue, the updates
will be conducted in a breadth-first fashion. Our experi-
ments showed that the depth-first update is a little better
on performance.

6 Experimental results

We implemented the derived retiming algorithm very easily
according to the code in the previous section. We also got
the minimal period retiming code ASTRA [19] from Prof.
Sapatnekar. The parser and data preparation (e.g. changing
registers into edge weights and adding a host node connect-
ing POs and PIs) in ASTRA are also used with the derived
retiming program. It should be noted that ASTRA used the
equivalence between retiming and clock skew optimization
to first do a continuous retiming and then locally move regis-
ters to minimize skews [19]. Therefore, it is a heuristic algo-
rithm and may not give the optimal period if no clock skew
is allowed. All the test cases in the ISCAS89 benchmarks are
tested both on the derived algorithm and the ASTRA run-
ning on a Sun Ultra 10 machine. Since there is no gate delay
information on those benchmarks, the ASTRA is set to gen-
erate gate delays between 1 and 100. Reported in Table 1
are results for large test cases. For each test cases, it reports
its name, number of gates, the original period and the opti-
mal period (from the derived algorithm). The running time
of the derived algorithm (column “time”) and that of the
ASTRA (column “astra”) are reported for comparison. For
almost all cases, the derived algorithm outperforms the AS-
TRA. For larger circuits and larger difference between the
original and optimal periods, the difference is even bigger.
The result is striking since we are comparing an exact al-
gorithm with a heuristic algorithm. Since the ASTRA only

reported the achieved clock period with clock skews but not
the amount of required skews, we cannot measure how far
away its results are from the optimal.

Table 1: Experimental Results

name #gates || clock period | time(s) || astra(s)
before | after
s1423 490 166 127 0.02 0.04
51494 558 89 88 0.02 0.01
$9234 2027 89 81 0.12 0.19
§9234.1 2027 89 81 0.16 0.20
513207 2573 143 82 0.12 0.49
515850 3448 186 7 0.36 0.57
$35932 12204 109 100 0.28 0.86
s38417 8709 110 56 0.58 1.46
s38584 11448 191 163 0.41 1.12
s38584.1 | 11448 191 183 0.48 1.26

7 Conclusions

A new efficient algorithm for the minimal period retiming
is presented in this paper. Contrary to all previous algo-
rithms which used binary search to check the feasibility of
a range of clock periods, the new algorithm directly checks
the optimality of the current feasible period, and can thus
either push down the period or certify the optimality. The
advantages of the algorithm include its simplicity, efficiency,
and being incremental. Experimental results shows that the
algorithm is faster even than the best heuristic for the same
problem.

Besides the algorithm, the paper also presents the algo-
rithm design methodology by which the algorithm is discov-
ered: program derivation. Our experiences so far with this
method are positive and, through this new retiming algo-
rithm, we hope to increase the awareness of CAD researchers
on this method.

References

[1] P. Cocchini. Concurrent flip-flop and repeater insertion
for high performance integrated circuits. In Proc. Intl.
Conf. on Computer-Aided Design, 2002.

[2] Jason Cong, Olivier Coudert, and Majid Sarrafzadeh.
Incremental CAD. In Proc. Intl. Conf. on Computer-
Aided Design, 2000.

[3] E. W. Dijkstra. Guarded commands, nondeterminacy,
and the formal derivation of programs. Communica-
tions of the ACM, 8:453-457, 1975.

[4] E. W. Dijkstra. A Discipline of Programming. Prentice-
Hall, Englewood Cliffs, NJ, 1976.

[5] G. Even, 1. Y. Spillinger, and L. Stok. Retiming Revis-
ited and Reversed. IEEE Transactions on Computer-
Aided Design of Integrated Clircuits, 15(3):348-357,
March 1996.

[6] R. W. Floyd. Assigning meanings to program. In Proc.
Amer. Math. Soc. Symposia in Applied Mathematics,
volume 19, pages 19-31, 1967.

[7] J. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton University Press, 1962.

[8] A. V. Goldberg and R. E. Tarjan. A new approach
to the maximum flow problem. Journal of the ACM,
35:921-940, 1988.

[9] David Gries and Fred B. Schneider. A Logical Approach
to Discrete Math. Springer-Verlag New York, Inc., 1993.

[10] S. Hassoun and C. J. Alpert. Optimal path routing in
single and multiple clock domain systems. In Proc. Intl.
Conf. on Computer-Aided Design, 2002.

[11] C. A. R. Hoare. An axiomatic basis for computing pro-
gramming. Communications of the ACM, 12(10):576—
580, October 1969.

[12] Alexander T. Ishii, Charles E. Leiserson, and Marios C.
Papaefthymiou. Optimizing two-phase, level-clocked
circuitry. Journal of the ACM, 44(1):148-199, January
1997.

[13] C.E. Leiserson and J. B. Saxe. Optimizing Synchronous
Systems. Journal of VLSI and Computer Systems,
1(1):41-67, Spring 1983.

[14] B. Lockyear and C. Ebeling. Optimal retiming of level-
clocked circuits using symmetric clock schedules. In
IEEE Transactions on Computer Aided Design, vol-
ume 13, pages 1097-1109, September 1994.

[15] N. Maheshwari and S. S. Sapatnekar. Optimizing large
multi-phase level-clocked circuits. IEEE Transactions
on Computer Aided Design, 18(9):1249-1264, Septem-
ber 1999.

[16] S. Malik, K. J. Singh, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Performance optimization
of piplelined circuits using peripheral retiming and
resynthesis. [EEFE Transactions on Computer Aided
Design, 12(5):568-578, May 1993.

[17] P. Pan, A. K. Karandikar, and C. L. Liu. Optimal
clock period clustering for sequential circuits with re-
timing. IEFEFE Transactions on Computer Aided Design,
17(6):489-498, June 1998.

[18] M. C. Papaefthymiou and K. H. Randall. Tim: A tim-
ing package for two-phase, level-clocked circuitry. In
Proc. of the Design Automation Conf., pages 497-502,
Dallas, June 1993.

[19] S. S. Sapatnekar and R. B Deokar. Utilizing the
retiming-skew equivalence in a practical algorithm for
retiming large circuits. [EFFEE Transactions on Com-
puter Aided Design, 15(10):1237-1248, October 1996.

[20] N. Shenoy and R. Rudell. Efficient implementation of
retiming. In Proc. Intl. Conf. on Computer-Aided De-
stgn, pages 226-233, 1994.

[21] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton.
The Validity of Retiming Sequential Circuits. In Proc.
of the Design Automation Conf., pages 316-321, San
Francisco, CA, June 1995.

