
Improved Algorithms for Link-Based Non-Tree Clock
Networks for Skew Variability Reduction ∗

Anand Rajaram
Dept. of ECE, University of
Texas, Austin, TX 78712.

Dallas DSP Design, Texas
Instruments, Dallas, TX 75243

anandr@mail.utexas.edu

David Z. Pan
Dept. of ECE, University of

Texas, Austin, TX 78712

dpan@ece.utexas.edu

Jiang Hu
Dept. of EE, Texas A&M

University, College Station, TX
77843

jianghu@ee.tamu.edu

ABSTRACT
In the nanometer VLSI technology, the variation effects like
manufacturing variation, power supply noise, temperature
etc. become very significant. As one of the most vital nets in
any synchronous VLSI chip, the Clock Distribution Network
(CDN) is especially sensitive to these variations. Recently
proposed link-based non-tree [1] addresses this problem by
constructing a non-tree that is significantly more tolerant to
variations when compared to a clock tree. Although the two
algorithms proposed in [1] are effective in reducing the skew
variability, they have a few drawbacks including high com-
plexity, lengthy links and uneven link distribution across the
clock network. In this paper, we propose two new algorithms
that can overcome these disadvantages. The effectiveness of
the proposed algorithms has been validated using HSPICE
based Monte Carlo simulations. Experimental results show
that the new algorithms are able to achieve the same or
better skew reduction with an average of 5% wire length
increase when compared to the 15% wire length increase of
the existing algorithms in [1]. Moreover, the new algorithms
scale extremely well to big clock networks, i.e., the bigger
the clock network, the less overall link cost (less than 2% for
the biggest benchmark we have).

Categories and Subject Descriptors
B.7.2 [INTEGRATED CIRCUITS]: Design Aids

General Terms
Algorithms, Performance

Keywords
VLSI CAD, Physical Design, Clock Network, Non-tree Clocks

∗This work is partially supported by IBM Faculty Award
and SRC under contract 2004-TJ-1205.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’05, April 3–6, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

1. INTRODUCTION
As the VLSI feature size shrinks into the sub-100 nm

dimensions, previously negligible variation effects start to
drastically affect circuit performance and yield. Effects such
as process [2], temperature and power supply voltage [3]
variations are becoming more significant as we move from
one technology node to the next. Since the CDN is among
the largest nets in a chip and at the same time it is the
most frequently switching net, any unwanted variation in
the clock skew might have catastrophic effect on both en-
ergy efficiency and power/ground noise [4]. To address this
problem, several solutions like variation aware clock tree
routing [5], buffer/wire sizing [6, 7], non-tree clock distri-
bution have been proposed. The non-tree routing is usually
the most effective among these methods because of the exis-
tence of multiple paths from clock source to the sinks, which
makes the delays in the sinks correlated, resulting in reduced
skew variation.

Figure 1: Non-tree clock networks: (a) one dimen-
sional; (b) leaf level mesh.

Several types of non-tree CND methodologies have been
proposed in literature [1, 8–12]. These non-tree CDNs can
be broadly classified as 1-dimensional [8,9] or 2-dimensional
structures [10–12]. In a 1-dimensional approach, several
clock sinks are usually attached to a single (usually thick)
piece of interconnect. This interconnect will be driven at
multiple points from a binary tree and so the skew between
any two points on it will be small. As a result, the skew
between any two sinks attached to this interconnect will
also be small. An example of 1-dimensional non-tree clock
network is given in Figure 1(a). Variations of this approach
have been used in [8] and in [9] employed in PentiumTM −4
microprocessor. A key limitation of the 1-dimensional struc-
ture is that it does not handle the skew variation between
different 1-dimensional regions.

55

The 2-dimensional non-tree structure is also called mesh.
Depending of the location of the mesh w.r.t. the clock source
and sinks, it can be further classified as a leaf level (mesh
close to clock sinks) or top level (mesh close to the clock
source) or a multi-level mesh (several meshes at different
levels). In the leaf level mesh approach [10, 11], a metal
wire mesh is overlaid on the entire chip area and driven at
multiple points directly from clock source [10] or through a
routing tree [11]. All the clock sinks are connected to the
nearest point on the mesh. This is illustrated in Figure 1(b).
The other types of clock meshes are the top level mesh ap-
proach [12], and the multi-level mesh approach [13]. The
main difference between these methods and the leaf level
mesh is the number and location(s) of the mesh(es). As
a result, the wire length consumption and skew reduction
also varies accordingly. Even though clock mesh has been
shown to be highly effective for skew suppression in micro-
processors, it consumes enormous wire resources and power.
As a result, the use of clock mesh is restricted to high-end
products only.
Recently, a link-based non-tree algorithm has been pro-

posed in [1] in which cross links are added in an existing
clock tree. By suitably choosing the correct locations of
the links, it was shown that significant reduction in skew
variability can be achieved with very small increase in wire
length when compared to the original clock tree. An exam-
ple of link-based non-tree is shown in Figure 2. The vital
aspect of the link-based methodology is to determine the
proper location of the cross links, for which two algorithms
were proposed in [1]. While both algorithms are highly ef-
fective, they suffer from several drawbacks. Some of these
are: high complexity, lengthy links that might cause routing
problems and uneven distribution of links across all regions
of the clock tree that might limit skew variability reduction.
In this paper, we introduce better algorithms in which

the above drawbacks have been addressed. We validate the
effectiveness of the new algorithms using HSPICE based
Monte Carlo simulations. Experimental results show that
the new algorithms are able to achieve the same or better
skew reduction with an average of 5% wire length increase
when compared to the 15% wire length increase of the ex-
isting algorithms.

2. REVIEW OF LINK INSERTION BASED
NON-TREE CLOCK NETWORKS

In this section, we will review the link-based non-tree
proposed in [1]. First, we will review the effect of link-
insertion on delay/skew in a general RC network. Then
we will overview the different scenarios that might result
because of link insertion. Throughout this paper, Elmore
delay model is employed due to its high fidelity [14] and
ease of computation. However, HSPICE based Monte Carlo
simulations are used for final result validation unlike [1].

2.1 Effect of Link Insertion on Delay In RC
Network

An iterative method for calculating Elmore delay for any
non-tree RC network has been proposed in [15]. In this
approach, the non-tree RC network is represented by a graph
G = (V,E) with the node set V composed of the source,
sinks and Steiner nodes and the edges E composed of all
the interconnects. The graph is divided into two parts: a

spanning tree T = (V,ET) and a set of link edges EL such
that E = ET ∪ EL. The final delay of node i is computed
by first calculating the Elmore delay of the spanning tree
T = (V,ET) and then incrementally adding the links and
updating the delays. For example, for the RC network of
Figure 2, the solid lines are the edges of ET and the dotted
lines are the edges of EL.

Figure 2: An example of cross link based non-tree.

From [1], we can get the effect of inserting a single cross
link between node u ∈ V and node w ∈ V . If the link has a
wire resistance of Rl and wire capacitance of Cl, the effect of
inserting this link into the RC network can be decomposed
to inserting a resistor of Rl between u and w and adding a
capacitor of Cl

2
at node u and w. Since the addition of link

capacitance does not change the network topology, its effect
on delay can be easily estimated. If the Elmore delay from
the source to any sink i is ti before the link insertion, the
delay t̃i after adding the link capacitors only is given by:

t̃i = ti +
Cl

2
(Ri,u +Ri,w) (1)

where Ri,j for nodes i and j is the transfer resistance be-
tween the nodes, which is equal to the voltage at node i
when 1A current is injected into node j and all other node
capacitors are zero [16]. The impact of the link resistance
Rl on delay can be obtained by using the technique of Chan
and Karplus in [15]. According to [15], the final delay at
node i after considering the resistor Rl of the link is given
as:

t̂i = t̃i − t̃u − t̃w
Rl + ru − rw

ri (2)

where ri,ru and rw are equal to the Elmore delay at i, u and
w when Cu = 1, Cw = −1 and the other node capacitance
are zero. Thus, using (1) and (2), we can easily estimate the
effect of inserting a link on delay at any node in a general
RC network.

2.2 Effect of Link Insertion on Skew
Variability

The effect of inserting a link on skew between any two
arbitrary points has been analyzed in detail in [1]. In this
section, we will review some of their important conclusions
for the sake of clarity.

2.2.1 Skew Variability Between Link Endpoints
If a link is inserted between nodes u and w, then according

to [1], the skew between u and w after link insertion is given
by:

q̂u,w =
Rl

Rl + ru − rw
(qu,w +

Cl

2
(Ru,u −Rw,w)) (3)

56

where, qu,w = tu − tw is the original skew between nodes
u and w, q̂u,w the final skew after the link insertion, Cl the
link capacitance, Rl the link resistance, Ru,u and Rw,w the
transfer resistances of nodes u and w. Since the effect of
capacitance can be easily estimated and removed [1], equa-
tion (3) gets reduced to:

q̂u,w =
Rl

Rl + ru − rw
qu,w (4)

Thus, from equation (4), we can see that the final skew is
a scaled value of the original skew with the scaling factor of

Rl
Rl+ru−rw

. It has been proved in [1] that the scaling factor

is always less than 1, thereby proving that the skew between
nodes u and w is always reduced as a result of link insertion.
It has also been proved in [1] that inserting a link as close to
sink nodes as possible is better in terms of skew variability
reduction. For example, in Figure 2, when we want to reduce
the skew between nodes r and b, then it is better for the link
to be as close to the nodes r and b as possible.

2.2.2 Skew Variability Between Arbitrary Nodes
The effect of inserting a link between nodes w and u on

skew between any two arbitrary nodes i and j is given in [1]
as:

q̂i,j = qi,j − ri − rj

Rl + ru − rw
qu,w (5)

Consider a clock tree T = (V,ET) as shown in Figure 2
with ET being the solid lines. Let Ti denote the subtree
rooted at node i . The node u is in a subtree Tf ⊂ T and
the node w is in another subtree Tg ⊂ T . The root node of
Tf and Tg are the two child nodes of the node p. Node p is
called the Nearest Common Ancestor (NCA) for the nodes
u and w. According to [1], when a link is inserted between
the nodes u and w the following three scenarios can arise:
Scenario 1: One of i and j is in subtree Tf and the other

is in subtree Tg, for example, i ∈ Tf and j ∈ Tg. In this case,
the link addition introduces a correlation between the delays
of nodes i and j, which results in reduced skew variability.
Scenario 2: Both i and j are in the same subtree Tf

or Tg. In this scenario, the skew variability might increase.
Since i and j are in the same subtree, their skew variation
in original tree is usually not that considerable.
Scenario 3: One of i and j is in the subnetwork Tp rooted

at the NCA node p for nodes u and w and the other node is
disjoint with Tp. For example, i is in Tp like b and j is not
in Tp like d in Figure 2. In this case, there is no predictable
correlation between the delays of nodes i and j and so the
skew might or might not get reduced.
Therefore, any link insertion scheme must be such that it

increases the number of occurrences of scenario 1 while the
number of occurrences of scenarios 2 and 3 must be reduced.

2.3 Link Insertion Algorithm Overview
The approach taken in [1] towards building a non-tree

clock distribution network is an incremental approach. The
different steps in the approach are explained below.

1. Obtain initial clock tree from any of the available clock
tree routing algorithms in the literature like [17,18,20].

2. Given the clock tree, select node pairs where cross links
are to be inserted. The node-pairs must be selected in
such a way that the scenario 1 discussed in Section
2.2.2 is maximized and scenarios 2 and 3 minimized.
This will make sure that the cross-link addition reduces
the skew variability.

3. Since the addition of link capacitance might change
the original skew of the clock tree, we need to tune the
nodes of the clock tree such that the original skew is
not altered. This can be done by considering only the
effect of link capacitance on the link end points and
tuning the nodes in a bottom-up fashion similar to the
method in [19] so as to obtain the original skew after
the addition of link capacitance.

4. Finally, the links are added to the selected node pairs.
Since the effect of link capacitance has been already
removed by bottom-up tuning, only the effect of link
resistances will be present, which will reduce the skew
variability.

In the above procedure, step 2 is the key step and has
a tremendous influence on the quality of the final non tree
since selecting the wrong node pairs might result in worse
skew variability. The requirements of a good node pair se-
lection algorithm are:

• The algorithm must efficiently distribute the links across
all the sections of the clock network. If an algorithm
fails to achieve this, it might lead to high skew for the
sinks in the region where links are not added.

• It must have a very low complexity in terms of the
number of links added. The increase in runtime with
increase in the number of links must be less.

• It must make sure that very lengthy links are avoided
and the total wire length is reduced.

• The algorithm should be capable of handling asym-
metric clock trees as well.

Two algorithms have been proposed in [1] for node pair
selection. They are “Rule based” link pair selection algo-
rithm and “min-matching based” node pair selection algo-
rithm. Though both algorithms are able to reduce the skew
variability significantly when compared to the original clock
tree with little wire consumption, they do not satisfy some
of the above mentioned requirements. In this paper, we
propose two new algorithms, “Rule Delta” algorithm and
“MST with Rule Based Deletion” algorithm, in which the
drawbacks of the existing algorithms are addressed. We will
discuss these algorithms in the next two sections.

3. RULE-DELTA ALGORITHM
The rule-delta algorithm is an improvement of the rule

based node pair selection algorithm proposed in [1]. First,
we will discuss the merits and demerits of the rule based
algorithm of [1] and then introduce the rule-delta algorithm.

3.1 Merits and Demerits of the Rule-based
Node-pair Selection Algorithm of [1]

The rule based approach of [1] is derived directly from
the equation (3). In this method, three rules are defined for
node pairs selection, which are given below:
α rule: The α value of any link is defined as α = Rl

Rloop
≤

αmax, where Rloop = Rl + ru − rw is the total resistance
along the loop of p ❀ u ❀ w ❀ p. The lower the value of
α, the lower the scaling of the original skew and the better
the link for skew reduction.
β rule: The β value of any line is defined as β = |Cl

2
(Ru,u−

Rw,w)| ≤ βmax. The β value determines the extra skew

57

introduced into the original clock tree due to the link ca-
pacitance. The lower the value of β, the lesser the tuning
required in the original tree.
γ rule: The γ rule is intended to make sure that the links

added does not worsen the skew variation between any two
pairs in the clock network significantly. The NCA node for
a sink pair has certain depth in the original tree. For the
example in Figure 2, the NCA p of r and b has depth 2. We
call this depth as the level of the node pair and denote it
using γ of the link pair.
In this method, any link that has α, β, γ values less than

the maximum value set by the user will be added to the
tree. The lesser the value of α, β and γ, the better the
effectiveness of the link in skew variation reduction [1]. But
choosing too low values for these variables will result in very
less number of links, thereby reducing the effectiveness of
link insertion.

3.1.1 Merits
The rule based algorithm has the main advantage that

the physical characteristics of the links to be inserted are
considered before inserting the link in the clock network.
Moreover, the runtime does not increase drastically as the
number of links to be inserted and the clock tree size in-
creases. Since a lengthy link will usually have high values
of α and β, shorter links will be preferred. Shorter links
will be much better in terms of the routability of the final
non-tree. Also, when dealing with non-symmetric clock net-
works, the method will still work because the rules used does
not assume any symmetry in the clock network.

3.1.2 Demerits
The rule based technique does not have any explicit con-

trol over the distribution of the links across the clock net-
work. Generally speaking, we would like the links to be
distributed across all the regions of the clock network so
that the skew variation of all subtrees in the clock network
is reduced. In the case of rule-based method, there is a pos-
sibility that the links are added only between a few subtrees
thereby not controlling the skew variation in other subtrees.
For example, in Figure 3, there are four different subtrees
represented by A,B, C and D. It may happen that all the
links might get added between the subtrees B and C only,
leaving the skew between subtrees A and D completely un-
controlled. This situation can be avoided by making sure
that links get added uniformly across all regions of the clock
network.

Figure 3: An example in which the rule based algo-
rithm in [1] might fail.

3.2 Details of Rule Delta Algorithm
The key drawback of the rule-based algorithm is that it

cannot guarantee a good distribution of links across all sub-
trees of the clock network. To overcome this drawback, we
propose a new rule called δ rule in addition to the original
α, β and γ rules. The δ rule is explained below.
δ rule: Let δ be a valid node level (level = depth of the

node) from the clock source. According to the δ rule, no
two links should have the same pair of ancestors at the δ
level from the clock source. When this condition is added
to the above rule-based link addition, we can control the
distribution of the links among the different sub-trees of the
clock tree. For example, in Figure 3, the problem that we
would like to avoid is the crowding of the links between
the subtrees B and C which leaves the subtrees A and D
unconnected. When we apply the δ rule here with the value
of δ = 2, then no more than one link will be inserted between
the subtrees B and C.
An important fact to be noted regarding the δ rule is that

the value of δ must be higher when compared to the γ value
used. Otherwise, the number of links added will be signifi-
cantly reduced, thereby reducing the effectiveness of the link
insertion. When the value of δ is increased, more links will
be added because of the increase in the number of permit-
ted ancestor node-pairs for link insertion. This will allow
the addition of sufficient number of links in a way that they
get distributed across all sections of the clock network.

The advantages of Rule-Delta method are listed below:

• The ‘rule-delta’ algorithm can make sure that the links
do not get crowded in the same regions of the clock
network. By choosing a proper selection of the α, β,
γ, and δ values, we can make sure that sufficient num-
ber of links get added across all sections of the clock
network.

• Since the algorithm just performs a sweep for the dif-
ferent possible links based on the rule values, it is very
efficient in terms of the run time.

• The effectiveness of each link is assessed by the rules
before adding it. As a result, the situation of addition
of lengthy links cannot happen in practice. This is
because the lengthy links will have a very high value
of both α and β, which can be removed by using the
appropriate bounds for the values of α and β.

• Since the rules are independent of the structure of the
initial clock tree, it can handle even highly unbalanced
clock trees.

Thus the rule-delta algorithm has all the required features
of a good algorithm that we have listed in Section 2.3.

4. MST BASED LINK INSERTION ALGO-
RITHM WITH RULE BASED DELETION

The MST based node pair selection algorithm is an al-
ternative graph theoretical approach to the min-matching
based node pair selection algorithm proposed in [1]. First,
we will discuss the merits and demerits of the min-matching
algorithm of [1] and then introduce the MST based algo-
rithm.

58

4.1 Merits and Demerits of the Min-matching
Based Node-pair Selection Algorithm

The min-matching based link insertion algorithm of [1]
uses the bipartite min-matching algorithm for selecting the
node pairs for link insertion. The main idea of this method
is to divide the clock network into several regions and mak-
ing sure that links are added to every region. This is done
by dividing the clock network into two subtrees - the left
subtree and the right subtree. Each subtree is further di-
vided into k sub-subtrees. The clock network is represented
by a bipartite graph with the two main subtrees as the two
sides and the sub-subtrees on either side as the nodes of the
bipartite graph with total of 2k nodes. The edge weight of
the bipartite graph between two nodes is fixed as the min-
imum rectilinear distance between any two pairs of sinks
of those sub-subtrees. For example, in Figure 4, the edge
weight between nodes 2 and b is the shortest rectilinear dis-
tance between any two pairs of sinks of the sub-subtrees 2
and b. Solving the min-matching of this bipartite graph will
give us k links with minimum total wire length. This will
also make sure that every sub-subtree in the clock network
is linked to another by a cross link. This idea is illustrated
in Figure 4.

Figure 4: A bipartite graph model for selecting node
pairs between two subtrees. Each subtree is fur-
ther divided into a number of sub-subtrees for link
insertion. An edge weight between two nodes is
the shortest rectilinear distance between leaf(sink)
nodes of two sub-subtrees.

4.1.1 Merits
The key advantage of the min-matching algorithm is that

it guarantees even distribution of links across the clock net-
work. As a result, this method out-performs the rule-based
method in skew variation reduction. Also, because of the
min-matching nature of the algorithm, it generally gives
lesser total wire length when compared to the rule-based
method.

4.1.2 Demerits
The complexity of the min-matching algorithm in terms

of the number of nodes in bipartite graph (number of links
added) is O(n3). This is a major disadvantage because the
runtime will drastically increase as the size of the clock net-
work increases. Also, since min-matching does not control
the length of individual links, there is high possibility of
adding lengthy links. This will make the chip difficult to
route. For example, in Figure 4, the links between the nodes
6 and a and nodes 1 and e may be very long. The main rea-

son for lengthy links is that the min-matching algorithm
allows a given subtree to be connected to exactly one sub-
tree only. This problem will get worse as the number of
links that we want to add increases. Thus, this method will
hit a brick-wall in terms of the number of links that can be
inserted at a particular level.
Another disadvantage in having lengthy links is that any

problem in even one of the links will drastically affect the
effectiveness of the non-tree for skew variability reduction.
Possible situations in which this can happen are manufac-
turing defects in the links and unroutability of a link because
of the initial clock tree routing. In such cases, having sev-
eral small links is better than a few lengthy links. Another
demerit of the min-matching algorithm is that it inherently
assumes a reasonable amount of symmetry in the structure
of the clock tree. Otherwise, it might not be very effective
in reducing the skew variation. For example, when there
are two subtrees on one side of the bipartite graph and five
on the other side, then the min-matching algorithm will re-
sult in only two links, thereby leaving some of the subtrees
without any cross links.

4.2 Details of the MST Based Link Insertion
Algorithm

As pointed out in section 4.1, one of the key demerits of
the min-matching algorithm is the addition of lengthy links.
One way to avoid adding lengthy links is to allow a given
node to be connected to more than one node on the opposite
side of the bipartite graph. Also, not more than one link
should be allowed between any given pair of nodes to avoid
crowding of links. When these two conditions are satisfied,
it is likely that the selected links will not be too lengthy
and at the same time, all the sub-subtrees are linked. This
is illustrated in Figure 5 in which there are no extremely
lengthy links, unlike in Figure 4.

Figure 5: An example of a new approach that might
be better than the min-matching based link inser-
tion.

To satisfy both these conditions, we propose to construct
a MST in the complete bipartite graph. As in [1], the edge
weight between any two nodes in the bipartite graph is given
as the minimum rectilinear distance between any two pairs
of sinks of those two sub-subtrees in the clock network. Con-
structing a MST from a complete bipartite graph will invari-
ably allow multiple links for a few nodes in the graph. It will
also avoid crowding pf links between any two nodes. One
possible problem that we might encounter in constructing a
complete MST is that the total wire length might become
very high. To solve this problem, we selectively remove links

59

from the selected MST edges based on values of the rules of α
and β used in the rule based node pair selection algorithms.
Now, we will consider the complete flow of the MST-

based link insertion algorithm. From the conclusions in Sec-
tion 2.2.2, we know that we need to avoid scenario 3 so as
to reduce the skew variability. Scenario 3 can be avoided
by choosing node pairs between left child subtree and right
child subtree of a node of depth 1 from the clock source.
For example, in Figure 2, the links between subtree Tp and
subtree Td of depth 1 can avoid scenario 3, since there is
no sinks outside of Th. Node pairs for these links can be
characterized by the depth of their NCA node h, which can
be called γ level as in [1]. Therefore, node pairs with γ = 1
must be present to effectively reduce the skew variability.
The links inserted between subtrees Td and Tp will im-

prove skew variability between most sink pairs of those sub-
trees according to analysis of scenario 1. However, these
links might worsen the skew variability between sinks pairs
within Td or Tp as discussed in scenario 2. This might harm
the over all skew variability. This situation can be avoided
by inserting links between sub-subtrees within subtree Td or
Tp. In other words, node pairs of γ = 2 need to be con-
sidered for link insertion. This procedure can be repeated
recursively till γ is sufficiently large. The subtrees that cor-
respond to large γ are mostly small and usually the skew
variability inside is negligible. The main algorithm descrip-
tion on this recursive procedure is given in Figure 6.

Procedure: Select Node Pairs(Tv)
Input: Subtree Tv rooted at node v
Output: Node pair set P
1. l← left child node of v
2. r ← right child node of v
3. P ← Pair Between Trees(Tl, Tr)
4. If Depth(v) ==Max Depth, return P
5. P ← P ∪ SelectNodePairs(Tl)
6. P ← P ∪ Select Node Pairs(Tr)
7. Return P

Figure 6: The top-level algorithm of selecting node
pairs for link insertion.

The most important of all the steps in the algorithm in
Figure 6 is step 3 in which the node pairs are selected be-
tween the two given subtrees. This step is illustrated in
Figure 7.

Subroutine: Pair Between Trees(Tl, Tr)
Input: Two subtrees Tl and Tr

Output: Node pair set P
A. Decompose Tl into sub-subtrees Sl = {Tl1, Tl2....Tlk}
B. Decompose Tr into sub-subtrees Sr = {Tr1, Tr2....Trk}
C. For every pair (Tli, Trj) between Sl and Sr

D. Weight(Tli, Trj) = Min distance between leaf
pairs in Tli and Trj

E. Find the MST of the complete bipartite graph
between Sl and Sr.

F. Selectively remove the edges that have α and β
values higher than the set limits of αmax and βmax

G. P ← Selected links of MST.
H. Return P

Figure 7: MST based algorithm of selecting node
pairs for link insertion.

The advantages of MST based link pair selection method
are:

• Since the MST based method divides the clock network
into subtrees, it can guarantee a good distribution of
links across all the regions of the clock network.

• The overall complexity of the algorithm is O(nlogn) in
terms of number of nodes and in terms of the number
of links to be inserted. This is considerably better
than the O(n3) complexity of the min-matching based
algorithm.

• Since multiple links are allowed to be connected to
a given node in the bipartite graph, the chances of
adding a lengthy link is greatly reduced when com-
pared to the min-matching algorithm.

• The MST based algorithm will work better than the
min-matching based algorithm in the case of an un-
balanced clock tree. This is because, when the two
sides of the bipartite graph have unequal number of
nodes, then some nodes will not be linked while us-
ing the min-matching algorithm. But in the case of
the MST algorithm, all the nodes are guaranteed to
be connected to at least one node on the opposite side
of the bipartite graph.

• The use of rule based deletion makes sure that the
physical characteristics of the links are taken into ac-
count before the addition of the link. This will make
sure that bad links do not get added to the clock net-
work. We can also effectively control the total wire
length consumption by carefully selecting the values
of αmax and βmax values for rule based deletion.

Thus we see that the MST algorithm with rule based dele-
tion has all the required features of a good algorithm that
we have listed in Section 2.3.

5. EXPERIMENTAL RESULTS
To facilitate the comparison between the proposed algo-

rithms and the algorithms of [1], we made sure that our ex-
perimental setup is identical to that of [1], i.e., r1-r5 bench-
marks obtained from GSRC Bookshelf [21]. The variation
factors considered in our experiments are also identical to [1]
namely, the clock driver resistance, wire width and the load
capacitance of all sinks. The driver resistance, wire width
and the sink capacitance have ±15% variation following a
normal distribution. Unlike [1] in which only Elmore delay
model was used for validation, we also use HSPICE based
Monte Carlo simulations for validating our results. For all
the clock networks, a Monte Carlo simulation of 1000 trials
is performed using both HSPICE and Elmore delay model.
We obtain the maximum skew variation in both Elmore de-
lay model (MSV-E) and in HSPICE (MSV-S). Similarly, we
obtain the standard deviation values of skew variations for
both Elmore delay model (SD-E) and HSPICE(SD-S). These
values, along with values of wire length and runtime are
compared among clock trees, clock meshes, tree+links with
algorithms of [1] and trees+links with our proposed algo-
rithms. The size of benchmark circuits, skew variations and
wire length of clock trees are given in Table 1.
Table 2 shows the comparison of five different non-tree

structures and algorithms to reduce such clock skew vari-
ations. They are Mesh-S (sparse mesh), Mesh-D (dense
mesh), Link-M (min-matching based link insertion), all from
[1], as well as our two new algorithms Link-RD (rule-delta

60

Table 1: Maximum skew variation (MSV), standard deviation (SD) and total wire length of trees. The CPU
time is the time for generating the tree using BST [20] code.

Testcase # sinks MSV-E MSV-S SD-E SD-S wirelen CPU(s)
r1 267 265 131 42 31 1320665 1
r2 598 759 406 112 79 2602908 3
r3 862 934 457 166 109 3388951 4
r4 1903 2321 1390 317 380 6828510 12
r5 3101 5792 3270 1150 798 10242660 18

algorithm) and Link-MST (MST based algorithm). It has
been shown in [1] that the min-matching algorithm always
performs better than the rule-based algorithm. So, we com-
pare our results with the min-matching based link insertion
from [1] only. The results of the meshes are also provided to
make the comparison complete. All the values of MSV-E,
MSV-S, SD-E, SD-S and wire length are reported as ratio
with respect to the results of the clock trees.
The results for the Link-M method in Table 2 are the

best results of the min-matching algorithm in terms of skew
variability reduction, which we obtained from the algorithms
of [1]1. The Link-RD rows gives the results for the “rule-
delta” link insertion method for each testcase. The values
of the parameters α, β , γ and δ are chosen empirically so
as to obtain minimum skew variability. The values of α, β ,
γ and δ for the testcase r1 are 0.1, 21, 3 and 4 respectively.
For all other test cases, namely r2 to r5, the values of α, β ,
γ and δ are 0.06, 100, 3, 5 respectively. The Link-MST rows
give the results of the “MST based link insertion” algorithm.
As discussed in Section 4.2, we perform selective deletion of
links from MST using the values of parameters α = 0.1 and
β = 100 for all the clock networks. All the delay values
shown are in pico-seconds. The last but one column gives
the Average Link Size (ALS) for all the three link insertion
schemes.
The important observations from Table 2 are as follows:

• The new algorithms, Link-RD and Link-MST are al-
ways able to achieve comparable or better skew vari-
ability reduction when compared to the min-matching
algorithm of [1] with significantly lower wire length for
link insertion. In all test cases, the average wire length
increase for the new algorithms was 5%, compared to
the 15% cost increase of the min-matching algorithm
of [1]. This can be observed from the ’wirelen’ column.

• The decrease in the link-cost becomes more significant
as the size of the clock network increases. For the
test cases of r1 to r5, the wire length costs due to link
insertion in our new algorithms (Link-RD and Link-
MST) are reduced from around 7-8% to only 1.2% as
the number of clock sinks increases from 267 to 3101.
However, the previous best algorithm Link-M [1] has
a 15% increase. This is mainly because of a drastic
reduction in the average link length in the new algo-
rithms. This in turn allows us to insert more links in
the clock network, thereby reducing the skew variabil-
ity more.

• The average length of link for each of the three link
insertion methods is given in the right most column.

1In [1], the Link-M insertion algorithm was run on a given
small number of links, but better MSV and SD may be ob-
tained using the Link-M method if more links are allowed
with more wire length penalty.

In the case of the min-matching method, for bigger
clock networks (r4, r5), the average size of the links
becomes significantly higher when compared to the
smaller clock networks(r1−r3). But in the case of the
rule-delta algorithm and the MST based algorithm,
there is no such significant increase in the average link
size. Even in the case of smaller clock networks, the
average link length for the proposed algorithms has
significantly lower values when compared to the min-
matching algorithm.

Run Time Comparison: The binary executable used
in [1] was used for comparing the run time of our algorithms
with that of the min-matching algorithm in [1]. In order
to determine how the run time of different algorithms scale
with the number of links inserted, we varied the number of
links inserted at the highest level (the links with γ = 1)
for each algorithm. Please note that a fair comparison of
run time can be done only by comparing link insertion at
a given level for all the algorithms. Figure 8 shows the run
time values of different algorithms as a function of number
of links inserted at the highest level. From Figure 8 we can
clearly see that the run time of the min-matching algorithm
increases drastically after a point when compared to the
other two algorithms. Note that the non-trees of Table 2 are
not restricted to a single γ level, unlike in this experiment.

Figure 8: Runtime comparison between the different
link insertion methods as a function of number of
links inserted at γ = 1 level.

6. CONCLUSIONS
We have proposed two new efficient algorithms to over-

come some of the drawbacks of the existing algorithms of [1].
The effectiveness of the proposed algorithms has been val-
idated using HSPICE based Monte Carlo simulations. Ex-
perimental results show that the new algorithms are able
to achieve the same or better skew reduction with an aver-
age of 5% wire length increase when compared to the 15%
wire length increase of the existing algorithms. The results

61

Table 2: Skew variations and wire length in term of tree results. Size of a tree+link network is the number
of links. Size of a mesh is #rows×#columns.

Testcase Method size MSV-E MSV-S SD-E SD-S wirelen ALS CPU(s)
r1 Mesh-S 11 × 11 0.92 0.36 0.82 0.06 1.850 N.A 0.045

Mesh-D 21 × 21 0.72 0.25 0.62 0.04 2.510 N.A 0.045
Link-M 22 0.08 0.14 0.10 0.15 1.155 9004 0.069
Link-RD 22 0.09 0.18 0.10 0.15 1.0781 4688 0.007

Link-MST 24 0.068 0.13 0.09 0.14 1.075 4127 0.047
r2 Mesh-S 15 × 15 0.80 0.58 0.80 0.05 1.76 N.A 0.046

Mesh-D 29 × 29 0.59 0.15 0.47 0.03 2.430 N.A 0.046
Link-M 48 0.10 0.15 0.12 0.20 1.153 8296 0.095
Link-RD 40 0.07 0.12 0.07 0.11 1.070 4555 0.032

Link-MST 21 0.07 0.15 0.10 0.16 1.046 5701 0.075
r3 Mesh-S 19 × 21 0.24 0.20 0.35 0.02 1.760 N.A 0.046

Mesh-D 35 × 37 0.14 0.12 0.19 0.01 2.50 N.A 0.046
Link-M 64 0.09 0.16 0.11 0.19 1.144 7625 0.021
Link-RD 51 0.08 0.15 0.10 0.12 1.06 3987 0.067

Link-MST 41 0.08 0.18 0.08 0.13 1.053 4380 0.017
r4 Mesh-S 27 × 29 0.23 0.11 0.34 0.01 1.710 N.A 0.048

Mesh-D 55 × 57 0.09 0.09 0.18 0.01 2.330 N.A 0.048
Link-M 40 0.06 0.11 0.11 0.10 1.154 26289 0.860
Link-RD 71 0.06 0.13 0.08 0.10 1.048 4616 0.411

Link-MST 62 0.07 0.12 0.10 0.10 1.045 4956 0.79
r5 Mesh-S 37 × 39 0.08 0.07 0.10 0.01 1.640 N.A 0.051

Mesh-D 75 × 77 0.03 0.06 0.06 0.04 2.330 N.A 0.051
Link-M 72 0.05 0.09 0.05 0.08 1.157 22334 3.050
Link-RD 66 0.05 0.08 0.05 0.08 1.012 1862 1.945

Link-MST 94 0.05 0.09 0.05 0.08 1.016 1743 2.91

also show that the links added by the proposed algorithms
are considerably shorter on the average, thereby making the
non-tree more routable than the results of the existing al-
gorithms. The new algorithms are particularly attractive
as they scale extremely well to big clock networks, i.e., the
bigger the clock network, the less overall link cost (less than
2% for the biggest benchmark we have).

7. REFERENCES
[1] A. Rajaram, J. Hu, and R. Mahapatra. “Reducing clock skew

variability via cross links,” in Proceedings of the ACM/IEEE
DAC, San Diego, CA, June 2004, pages 18–23.

[2] S. R. Nassif, “Modeling and analysis of manufacturing
variations,” in Proceedings of the IEEE CICC, San Diego, CA,
May 2001, pp. 223–228.

[3] R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser, “Clock
skew verification in the presence of IR-drop in the power
distribution network,” in IEEE Transactions on CAD, vol.19,
no.6, pp.635–644, June 2000.

[4] W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao, “Power supply
noise suppression via clock skew scheduling,” in Proceedings of
the IEEE ISQED, San Jose, CA, March 2002, pp. 355–360.

[5] B. Lu, J. Hu, G. Ellis, H. Su, “Process variation aware clock
tree routing,” in Proceedings of the ISPD, Monterey, CA, April
2003, pp. 174–181.

[6] J. Chung and C.K. Cheng, “Optimal Buffered Clock Tree
Synthesis,” in IEEE ASIC conference, Austin, TX, Sept. 1994,
pp. 130–133.

[7] S. Pullela, N. Menezes, and L. T. Pillage, “Reliable non-zero
skew clock trees using wire width optimization,” in Proceedings
of the ACM/IEEE DAC, Dallas, TX, June 1993, pp. 165–170.

[8] S. Lin and C. K. Wong, “Process-variation-tolerant clock skew
minimization,” in Proceedings of the IEEE/ACM ICCAD, San
Jose, CA, November 1994, pp. 284–288.

[9] N. A. Kurd, J. S. Barkatullah, R. O. Dizon, T. D. Fletcher, and
P. D. Madland, “A multigigahertz clocking scheme for the
Pentium 4 microprocessor,” in IEEE Journal of SSC, vol.36,
no.11, pp. 1647–1653, November 2001.

[10] M. P. Desai, R. Cvijetic, and J. Jensen, “Sizing of clock
distribution networks for high performance CPU chips,” in
Proceedings of the ACM/IEEE DAC, Las Vegas, NV, June
1996, pp. 389–394.

[11] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese,
K. F. Eng, K. A. Jenkins, D. H. Allen, M. J. Rohn, M. P.
Quaranta, D. W. Boerstler, C. J. Alpert, C. A. Carter, R. N.
Bailey, J. G. Petrovick, B. L. Krauter, and B. D. McCredie, “A
clock distribution network for microprocessors,” IEEE Journal
of SSC, vol.36, no.5, pp. 792–799, May 2001.

[12] H. Su and S. S. Sapatnekar, “Hybrid structured clock network
construction,” in Proceedings of the IEEE/ACM ICCAD, San
Jose, CA, November 2001, pp. 333–336.

[13] M. Mori, H. Chen, B. Yao and C.-K. Cheng, “A multilevel
network approach for clock skew minimization with process
variations,” in Proceeding of the Conference on ASP-DAC,
Yokohama, Japan, January 2004, pp. 263268.

[14] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins,
“Near-optimal critical sink routing tree constructions,” in
IEEE Transactions on CAD, vol.14, no.12, pp. 1417–1436,
December 1995.

[15] P. K. Chan and K. Karplus, “Computing signal delay in
general RC networks by tree/link partitioning,” in IEEE
Transactions on CAD, vol.9, no.8, pp. 898–902, August 1990.

[16] T. Xue and E. S. Kuh. “Post routing performance optimization
via multi-link insertion and non-uniform wiresizing,” in
Proceedings of the IEEE/ACM ICCAD, San Jose, CA,
November 1995, pp. 575–580.

[17] C.-W. A. Tsao and C.-K. Koh, “UST/DME: a clock tree router
for general skew constraints,” in Proceedings of the
IEEE/ACM ICCAD, San Jose, CA, November 2000, pp.
400–405.

[18] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B.
Kahng. “Zero skew clock routing with minimum wirelength,” in
IEEE Transactions on CS-ADSP, vol.39, no.11, pp.799–814,
November 1992.

[19] R.-S. Tsay, “Exact zero skew,” in Proceedings of the
IEEE/ACM ICCAD, Santa Clara, CA, November 1991, pp.
336–339.

[20] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao.
“Bounded-skew clock and Steiner routing,” in ACM
Transactions on DAES, 3(3):341–388, July 1998.

[21] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/

62

	Main Page
	ISPD'05
	Front Matter
	Table of Contents
	Author Index

