
Clustering and Load Balancing for Buffered Clock Tree Synthesis*

Ashish D. Mehta, Yao-Ping Chen†, Noel Menezes, D.F. Wong†, and Lawrence T. Pileggi
Department of Electrical and Computer Engineering

†Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1084

 Abstract

Buffers in clock trees introduce two additional sources
of skew: The first source of skew is the effect of process
variations on buffer delays. The second source of skew is
the imbalance in buffer loading. We propose a buffered
clock tree synthesis methodology whereby we first apply a
clustering algorithm to obtain clusters of approximately
equal capacitance loading. We drive each of these clusters
with identical buffers. A sensitivity based approach is then
used for equalizing the Elmore delay from the buffer output
to all of the clock nodes. The skew due to load imbalance is
minimized concurrently by matching a higher-order model
of the load by wire sizing and wire lengthening. We demon-
strate how this algorithm can be used recursively to gener-
ate low-skew buffered clock trees.

1 Introduction

Clocks constitute some of the most important sig-
nals on a chip. With increasing clock frequency it is crucial
to maintain sharp clock edges and control skew within tol-
erable limits. Moreover, given the current thrust in low
power design, it is important to distribute the clock signal
with minimum power consumption since it is the most
active signal on the chip [1]. In [2] it was shown that sig-
nificant savings in power can be made by selectively wid-
ening wires and inserting buffers in clock trees. The
overall power can further be reduced by clock gating –
“disconnecting” the clock to sections of logic that are inac-
tive – which would not be possible in unbuffered trees.
Also, it is well known that maintaining sharp signal edges
requires intermediate buffers for signal regeneration.
While buffer insertion offers these advantages, it is also a
source of clock skew due to load mismatch and process-
induced skew due to parameter variations. The skew due to
process parameter variations can be limited by using iden-
tical buffers at a level. This makes the design as process

* This work was supported in part by the Semiconductor Research Cor-
poration under contract 95-DJ-343, the National Science Foundation
under contract MIP-9157263, and IBM Corporation.

insensitive as possible, but further requires that buffers at
the same level of the clock tree drive identical loads. Thus
it is imperative to apply a clustering algorithm as a prepro-
cessing step to the routing and synthesis steps so that buff-
ers at the same level drive nearly identical loads.

In this paper we first describe a clustering algorithm to
obtain clusters of nearly identical loading. We then drive
each of these clusters with identical buffers. Since the
Elmore delay [3, 4] has been shown to be a good measure
of the signal delay for skew reduction purposes [5], we
equalize the Elmore delay from the buffer output to all the
clock nodes. More importantly, we concurrently design the
interconnect so that drivers at the same level are loaded by
the samenth-order impedance, thus minimizing the skew
due to load imbalance.

2 Clock Skew Due to Load Mismatch

Consider a typical clock tree structure, as shown
in Figure 1. In order to reduce skew we would attempt to
equalize the signal delay from the main driver A to all of
the clock nodes driven by buffers B and C. Traditional
design automation algorithms approach this problem by
first equalizing the Elmore delay from A to node 1 and
from A to node 3. In [6] and [7] it was suggested that at a

level of the tree buffers should be identical, hence buffers
B and C are sized equally. The Elmore delay from nodes 2
and 4 to all the clock nodes in the nets driven by buffers B
and C respectively are then equalized. The remaining part

B

C

1 2

3 4

A

Figure 1: A typical buffered clock tree structure.

Clock

net driven
 by B

net driven
 by C

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

of the problem requires that the delays across buffers B
and C be equalized. Since buffers B and C are identical, it
is necessary that the load driven by them also be identical,
as the delay through a gate is a function of its output load-
ing. Current clock tree synthesis algorithms equalize the
buffer delay through buffers B and C by either matching
the total capacitive load at the driver output [8], or, even
better, the effective capacitance seen by the driver [6].

There are two major problems associated with
approaches that fail to consider the load imbalance, or
consider it only in terms of a simplistic model. The first is
that neither the total capacitance nor the effective capaci-
tance are completely accurate models of the load. With
scaling there is an increase in the interconnect resistance
and a decrease in the gate output impedance. Also the
interconnect lengths generally do not scale due to
increased chip density. Thus, overall we see an increase in
the interconnect resistance. This increased interconnect
resistance shields some of the capacitance from the driver
making the total capacitance a pessimistic approximation
of the load [9]. In [10] it was shown that aπ-model of the
load, which can be synthesized from the first three
moments of the driving-point admittance, accurately cap-
tures the resistance shielding effect of the interconnect.
(We note that the total capacitance is thefirst moment of

Skew at clock
nodes

1

2

3

4

5

0

(b)

“Zero” skew at
clock nodes

1

2

3

4

5

0

(a)

0 1 2 3 4

0 1 2 3 4

t (ns)

V (V)

V (V)

t (ns)

Figure 2: Response at two clock nodes after
matching a) the total capacitance load, b) the
π-model of the load.

the driving-point admittance.) Higher-order models of the
load are synthesized with similar ease using even more
moments. In this paper we match theπ-model of the load
by matching the first three moments of the driving-point
admittance to eliminate the skew due to load imbalance.

As an illustrative example, we powered two
clock subnets in a configuration similar to that in Figure 1:
one with 15 clock nodes forming a total capacitance of
4.69 pF was driven by buffer B, and another with 20 clock
nodes with a total capacitance of 4.5 pF was driven by
buffer C. We equalized the Elmore delay from the driver
outputs of B and C to all of the associated clock nodes. We
then obtained signal transition curves at two clock nodes,
one of which was driven by B and the other by C. The
curves in Figure 2a were obtained when we equalized the
Elmore delays while simultaneously balancing the total
capacitance of the two subnets. In Figure 2b, we show
responses at the same clock nodes when we balanced the
Elmore delays and the first three moments of the driving-
point admittance at the driver outputs of B and C. It is
apparent that substantial skew can result by using the total
capacitance load model.It is also clear that this load-
imbalance skew can be practically eliminated by matching
the first several moments of the driving-point admittance.

As mentioned previously, the total net capaci-
tance represents the first moment of the driving-point
admittance. Hence, matching the total capacitances of the
nets driven by identical buffers at the same level is an
important, if not complete, step in matching the driving-
point admittances. Referring to the clock tree structure of
Figure 1, if the total capacitive load, that is, the first driv-
ing-point admittance moment, seen by driver B was much
larger than the total capacitive load seen by driver C, then
there would be no choice but to add extra capacitance to
the net driven by driver B in order to match the first
moments of the respective driving-point admittances. This
would be at the expense of extra power dissipation and a
degradation in the signal edge rate at the buffer output.
This is the second major problem associated with current
clock tree synthesis algorithms. The above example
clearly shows the need to apply a clustering algorithm as a
preprocessing step to the routing and the synthesis phases.
The objective of the clustering is to partition the clock
nodes into clusters of nearly equal capacitive loading with
the interconnect capacitance of the cluster taken into
account. Thus our clock tree synthesis algorithm is divided
into two steps. The first is the clustering and routing phase
which attempts to equalize the load driven by buffers at
the same level, and generates an initial route for the clock
nodes. The second step is the synthesis step, in which the
we adjust the wire widths and the wire lengths to match
the Elmore delays at the clock nodes, and the first three
moments of the driving-point admittance at the buffer out-
puts for all buffers at the same level. In the following sec-
tions we describe our clustering and synthesis algorithms.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

3 Clustering and Routing of Clock Trees for
Load Balancing

We have developed a clustering algorithm that
can be used at different levels of a clock tree. At the bot-
tom level, the algorithm clusters clock pins, while at the
middle levels of the clock tree, it clusters clock buffers.
The input of the algorithm is a set of clock pins or clock
buffers with associated locations and input capacitances
and the number of required clusters,K. The task is to parti-
tion the input set intoK clusters such that all of them have
approximately the same load, and then route theK sets of
clock pins or buffers independently. To simplify the expla-
nation, we will discuss the algorithm only in terms of
clock pins. However, nothing precludes these pins as rep-
resenting a set of clock buffers.

We route each cluster using one of the best avail-
able clock algorithms [11] which generates a zero-skew
clock tree under the Elmore delay model while minimiz-
ing the total wire length. In [11], it was shown that the
clock routing algorithm generates a clock tree with wire
length of the order of , whereD is thediameter
of the input set which is defined as the Manhattan distance
between the two farthest points in the set. This order is the
best possible, since the minimum Steiner tree has the same
order of wire length. Suppose a cluster consists ofN clock
pins. Letci denote the load of clock pini. The total load of
each cluster, , can be measured by a cost
function

(1)

where and are the weights of the two terms, and is
as defined above. Theclock pin clustering problem can
now be described as follows:

Given a set of clock pins (buffers), partition them
into K clusters, such that the sum of the cost func-
tions of all clusters is minimized, and the ratio of
the largest cost function to the smallest cost func-
tion is less than a given real bound , where

.

This problem is difficult as shown by the following
lemma. (All proofs have been omitted for brevity.)

Lemma 1. The clock pin clustering problem is NP hard.

3.1 Clock pin clustering by slicing structures

The clustering problem as formulated above is
unnecessarily difficult for our application. For our prob-
lem, it is essential that the routing trees formed by each
cluster do not overlap with one another, so that we have
some control of routing congestion. Therefore, we con-

O ND()

Pj 1 j K≤ ≤()

C Pj() α ci
i 1=

N

∑ β ND+=

α β D

B
B 1.0≥

sider solving the clustering problem by partitioning the
chip area. One way of partitioning is to cover the chip area
by mutually disjoint rectangles as shown in Figure 3a. In

many situations, a partition can be represented by aslicing
structure [12]. For example, the partition in Figure 3a is
represented by the slicing structure shown in Figure 3b,
which is similar to the slicing floorplan of [12]. Starting
with the rectangle corresponding to the whole chip, we
recursively cut a rectangle into smaller rectangles by verti-
cal or horizontal cut lines. The slicing structure enables us
to apply the dynamic programming technique [13]. The
algorithm for partitioning clock pins subject to the slicing
structure constraint is presented in Fig. 4.

3.2 Algorithm description

Algorithm 1 in Figure 4 is a recursive procedure
that does clustering at any level of the slicing structure in
terms of four input parameters. Line 1 checks whether the
given clustering problem has been solved. A problem can
be identified byR andK, which means that the pins con-
tained by rectangleR are to be partitioned intoK clusters.
We store the solved problems in a hash table with hash key
K and the bottom left and top right corners ofR. If the
problem has been solved, it simply returns the list of possi-
ble clustering solutions associated with it (Line 2). On the
other hand, if the problem has not been solved, it checks
whether it is the base case (K = 1). If so, it calculates the
cost of the cluster using equation (1). Otherwise, it consid-
ers all possible bipartitions generated by either vertical
cuts or horizontal cuts under allk1 and K - k1 combina-
tions. For each bipartition, it recursively calls itself twice.
After the two recursive calls return, it merges the two
resultant lists and appends to its own listL. It discards all
unbalanced solutions and keeps the balanced ones. An ele-
ment of the list corresponds to a set ofK clusters. It has
three fields, which are the average cost of each cluster in
the cluster set, the largest cost of all clusters in the set, and
the smallest cost of all clusters in the set. The second and
third fields are used for determining whether a combined
cluster set at the next higher level is balanced (Line 16). In
addition, for each element ofL, we store the necessary

Figure 3: Clock pin clustering by a a) non-slicing
structure, b) slicing structure.

(a) (b)

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

information for determining its two children, though it is
not shown in Algorithm 1.

 The first field, which is the average cost of each
cluster in a cluster set, is computed by the sum of the costs
of all clusters divided by the number of clusters. We use it
to denote theclustering cost of a clustering solution. When
Algorithm 1 is done, we choose the element inL whose
clustering cost is the smallest. This element and all of its
descendents form a binary tree representing the slicing
structure. By a depth-first traversal, we can find all leaf
elements. The set of all leaf elements is the best clustering
solution of the clock pin set .

Lemma 2.Algorithm 1 exactly computes the list of all
balanced clustering solutions, each of which corresponds
to a slicing structure.

Since the size of the listL grows exponentially,
the time and space complexity of Algorithm 1 is not poly-
nomial. We discretize the three fields of each list element.
Let be the range of the values for the
three fields, wherecmin and cmax are the minimum and

Algorithm 1: Clustering-By-Slicing (S, R, K, B).

Input: 1. A setS of N clock pins (buffers),
2. The rectangleR containingS,
3. The number of desired clustersK,
4. The balance bound .

Output: A list L of balanced clustering solutions such that
L = {(Average, Largest, Smallest) | Largest/Smallest

 B}.

Begin.
1. if (R, K) is already processed
2. return the list associated with (R, K);
3. else
4. L = φ;
5. if K = 1 returnL = {(cost(S), cost(S), cost(S))};
6. else for cut-line = {“vertical”, “horizontal”} do
7. for k1 = 1 toK - 1 do
8. Compute all bipartitionsP = {((R1, k1), (R2, K - k1)) |
9. ;
10. for each ((R1, k1), (R2, K - k1)) in P do
11. Compute clock pin setS1(S2) contained byR1(R2);
12. L1 = Clustering-By-Slicing (S1, R1, k1, B);
13. L2 = Clustering-By-Slicing(S2, R2, K – k1, B);
14. for each (t1, l1, s1) in L1 do
15. for each (t2, l2, s2) in L2 do
16. if
17. ;
18. Append (Ave, max(l1, l2), min(s1, s2)) to L;
19. returnL;

End.

Figure 4: Algorithm for clock pin clustering
subject to slicing structure constraints.

B B 1.0≥()

≤

R1 R2∩ ∅=() and R1 R2∪ R=()

max l1 l2,() min s1 s2,()⁄ B≤
Ave t1 k1× t2 K k1–()×+() K⁄=

S

∆c cmin cmax,[]=

maximum possible cost of a single cluster in the given
problem. We partition into M intervals,

, , where
. Given any two elements

and whose corresponding fields all fall into the
same intervals, only the one with the smaller first field
value (clustering cost) is stored.

Theorem 1. Given , there exists a discretization
such that Algorithm 1 runs in polynomial time using poly-
nomial space and , where is the best
clustering cost obtained by the discretized version of
Algorithm 1, and is the optimal clustering cost.

Theorem 1 states that Algorithm 1 after discreti-
zation runs in polynomial time using polynomial space.
Though the worst case complexity of the discretized ver-
sion of Algorithm 1 is a high-degree polynomial, the aver-
age running time and required space should be far less
than those of the worst case. To further speedup the algo-
rithm, we also divide the chip area into small cells such
that the pins in the same cell are always in the same clus-
ter.

4 Clock Subtree Synthesis for Buffered Clock
Trees

The clustering algorithm described above is an
essential first step in equalizing the load seen by the buff-
ers at the same level. Skew reduction and matching of the
input admittances of each cluster at the same level is done
by varying the widths and lengths of the interconnect
branches of each cluster to achieve a uniform target
Elmore delay at all clock nodes and to concurrently equal-
ize the first three moments of the driving-point admittance.

4.1 Problem formulation

Each branch of the clock tree represents a uni-
formly distributed RC line (URC). In our implementation,
we section each URC into equally-sized segments using
the lumping technique described in [14]. For clarity in
exposition, however, in this paper we model each URC
segment by an equivalent lumped L-section. We assume
that branchi connects nodei to its parent node in the tree.
The lumped resistanceRi of each branchi with length li
and widthwi is given byr ili/wi, whereri is the sheet resis-
tance. The lumped capacitanceCi of branch is given by
ciliwi + 2fili, whereci is the capacitance per unit length per
unit width andfi is the fringe capacitance per unit perime-
ter. The leaf nodes have additional load capacitanceCLi.
The set of all branches which lie on the path from a noden
to the root is denoted byP(n) while the set of all descen-
dant nodes of noden and noden itself is denoted byD(n).
Let T denote the set of all branches andL denote the set of

∆c
i δ⋅ cmin+ i 1+() δ⋅ cmin+,[] 0 i M 1–≤ ≤

δ cmax cmin–() M⁄= t l s, ,()
t′ l ′ s′, ,()

ε 0>

CA COPT– ε≤ CA

COPT

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

all leaf nodes. Thejth moment of the voltage response at
nodei is denoted by [18].

With the above definitions the Elmore delay [3]
at a noden in an RC tree is expressed by the following
equation [4]:

. (2)

If Vi(s) is the voltage response at theith node to
an impulse function at the root of the clock subtree, then
the current flowing out of the root of the clock subtree is
given by:

(3)

The driving-point admittance, Y(s) = I(s)/
Vin(s)= I(s) since the input voltage at the root of the tree,
Vin(t), is an impulse function. Therefore, ifmj

Y denotes the
jth moment of the driving-point admittance [10], we have
the following relationship:

(4)

By matching the coefficients of the orders ofs in (4), the
first three moments of the driving-point admittance are
expressed as:

(5)

We synthesize the clock tree interconnect to opti-
mize for area by minimizingΣliwi while trying to equalize
the Elmore delay at the clock nodes and match the first
three driving-point admittance moments at the buffer out-
puts. Thus, for a buffer and its associated net, our problem
can be stated formally as follows:

(6)

In the above equations,Td, , , are the target
Elmore delay at the clock nodes and the target first three

mj
i

m1
n r i

l i
wi
----- cj l jwj 2fj l j CLj+ +()

j D i()∈
∑

i P n()∈
∑=

I s() s
i T∈
∑ ci l iwi 2fi l i CLi+ +() Vi s() .⋅=

m0
Y

m1
Y
s …+ + s ci l iwi 2fi l i CLi+ +() m0

i …+ 
 

i T∈
∑=

m1
Y

ci l iwi 2fi l i CLi+ +() m0
i
,

i T∈
∑=

m2
Y

ci l iwi 2fi l i CLi+ +() m1
i
,

i T∈
∑=

m3
Y

ci l iwi 2fi l i CLi+ +() m2
i
.

i T∈
∑=

minimize area l iwi
i T∈
∑=

subject tom1
i

Td, i L ,∈=

m1
Y m̂1

Y, m2
Y m̂2

Y, m3
Y m̂3

Y,===

wi wi wi , i T,∈≤ ≤

l i l i l i≤ ≤ , i T.∈

m̂0
Y m̂1

Y m̂2
Y

moments of the driving-point admittance respectively. We
also place minimum and maximum wire width and wire
length constraints on all wires. Alternatively, we may also
want to minimize the clock tree interconnect (CV2) power
dissipation subject to the same constraints.

4.2 Wire sizing using sequential quadratic
programming (SQP)

We apply sequential quadratic programming
(SQP) [15], one of the most common approaches to non-
linear optimization, to the optimization problem defined in
(6). At each iteration, a QP subproblem is constructed
from a quadratic approximation of the non-linear objective
function and the linearization of the constraints about the
solution from the previous iteration. The solution of the
QP subproblem which is determined by any general-pur-
pose QP-solver is then used as the initial solution for the
next iteration. Furthermore, due to the success of SQP,
several commercial as well as academic SQP implementa-
tions, for example, [17], are readily available.

SQP, like most gradient-based optimization tech-
niques, can be speeded up significantly by efficient com-
putation of the sensitivities of the objective function as
well as the constraints. Since the objective function in our
case can be expressed analytically the main bottleneck is
the computation of the sensitivities of the constraints of
(6) which are related to the moments of the RC tree. We
apply the moment sensitivity computation algorithm
described in [19], which applies path-traversing tech-
niques to RC trees, for efficient sensitivity computation.

4.3 Selecting target driving-point admittance
moments

For selecting appropriate target moments for the
driving-point admittance, we first minimize the area of
each cluster subject to Elmore delay constraints only.
Hence, we equalize the Elmore delay at all the clock nodes
for all the clusters while simultaneously ensuring that min-
imum wiring capacitance is added to each of the clusters.
Since the Elmore delay at all the clock nodes in each of the
clusters have been equalized with minimum wiring capac-
itance for each of the clusters, it is necessary to choose the
target first moment of the driving-point admittance to be
the largest total capacitance of all clusters. The same argu-
ment holds for the second and the third moment of the
driving-point admittance. In the various examples that we
have run, we have found that generally the cluster with the
largest first moment of driving-point admittance is also the
cluster which has the largest second and third moment of
the driving-point admittance. A flow for the wire sizing
and clustering steps is presented in Figure 5.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

4.4 Recursive clock tree generation

The synthesis approach described above can be
applied recursively to generate a zero skew clock tree.
Consider Figure 6 where the clock pins are indicated by
crosses. In order to generate a zero skew clock tree, we
first cluster the clock nodes into clusters of nearly equal
capacitive loading using Algorithm 1. Each of these clus-
ters is then driven by identical buffers. We then equalize
the Elmore delay from the buffer outputs to all the clock
nodes associated with it, and concurrently match theπ-
model of the load at the buffer output using the approach
described in Figure 5. For the next level of clustering, the
coordinates of the buffers become the coordinates of the
clock nodes, and the loading at these nodes is equal to the
buffer input capacitance. Thus we generate another level
of the clock tree.

Given the co-ordinates of the clock nodes
and their associated capacitances, cluster
them into K clusters as shown in Algo-
rithm 1.

Compute the target Elmore delay and the
target driving-point admittance moments
for each cluster using the technique
described in Section 4.3.

Apply SQP to (6) using the technique of
[19] to calculate the Elmore delay sensi-
tivities and the driving-point admittance
moment sensitivities .

Figure 5: Algorithm 2: Wire sizing and
lengthening to match the Elmore delays and
theπ-model of the load.

Figure 6: Recursive clock tree generation: buffer
input capacitances and locations used as input
for next level of clustering.

5 Results

We have applied the above clustering and synthe-
sis algorithm to the benchmark examples of [5]. We first
applied our clustering algorithm, then drove the clusters
with identical buffers. We equalized the Elmore delays and
driving-point admittances within clusters. The number of
clusters was based on the maximum allowable clock pin
load in a cluster. Process parameters for our experiments
are based on the 0.8µm MOSIS process.

Results are shown in Table 1 for the benchmark
circuits of [5]. The clustered circuits were simulated with
HSPICE to measure the skew. The third column in Table 1
shows the number of clusters for each of the examples
while the last column displays the values for the maximum
skew at the 50% time-point between the clock nodes of
each clusters.

We also applied our clustering algorithm to recur-
sively generate low-skew clock trees as described in Sec-
tion 4.4. The resultant trees were simulated using HSPICE
with active elements used for the clock tree driver and
buffers. The results are shown in Table 2.

In Figure 7 the waveforms for the two clock
nodes of example r4 of Table 2 which cause the maximum
skew are shown. It is apparent that the waveforms at these
two clock nodes are well matched throughout the signal

Example
No. of
pins

No. of
clusters

Total int.
cap. (pF)

Max. skew
(ps)

r1 267 8 11.38 4.28

r2 598 30 46.28 6.04

r3 862 30 70.72 18.18

r4 1903 50 143.85 9.58

r5 3101 90 182.67 19.4

Table 1. Total interconnect capacitance and maximum
skew between clock nodes within clusters calculated
using HSPICE.

Example
No. of
pins

No. of
buffers

Total int.
cap. (pF)

Max. skew
(ps)

r1 267 8 13.03 6.6

r2 598 30 51.33 20.0

r3 862 30 75.82 33.0

r4 1903 50 153.68 39.8

r5 3101 90 198.23 47.4

Table 2. Total interconnect capacitance and the maximum
skew between clock nodes of the complete buffered
clock tree calculated using HSPICE.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

transition.

6 Conclusion

Buffered clock trees are often desirable, but
added at the expense of complicating the clock design. In
this paper, skew due to buffer mismatch is minimized by
first clustering the clock nodes so that identical buffers can
be used at a level, and balancing the higher-order loads of
the clusters so that load dependent buffer delays are
matched. Interconnect delays within clusters are concur-
rently balanced too, thereby generating a low-skew buff-
ered clock tree design.

While the two techniques we have presented are
most effective when used concurrently, they are com-
pletely independent of each other. The clustering tech-
nique can be used to generate clusters of equal capacitive
loading for any clock tree synthesis methodology. Simi-
larly, the delay- and admittance-matching wire sizing tech-
nique can be used for constructing any buffered clock tree
that uses equally-sized buffers at the same level.

References

[1] D. W. Dobberpuhl et al., “A 200 MHz dual issue
CMOS microprocessor,”IEEE Journal of Solid
State Circuits, vol. 27, pp. 1555-1567, Nov. 1992.

[2] S. Pullela, N. Menezes and L. T. Pillage, “Low
power IC clock tree design,”Proc. Custom
Integrated Circuits Conf., pp. 263-266, May 1995.

[3] W. C. Elmore, “The transient response of damped
linear networks with particular regard to wideband
amplifiers,” Journal of Applied Physics, vol. 19, no.
1, 1948.

[4] P. Penfield and J. Rubinstein, “Signal delay in RC
tree networks,” IEEE Trans. Computer-Aided
Design, vol. CAD-2, pp. 202-211, July 1983.

0 2 4 6 8 10

1

2

3

4

5

Figure 7: Waveforms at clock nodes which cause
maximum skew for the complete buffered
clock tree of example r4 [5] from HSPICE
with active driver and buffer elements.

t (ns)

V (V) Maximum skew
for example r4

[5] R.-S. Tsay, “An exact zero-skew algorithm,”IEEE
Trans. Computer-Aided Design., vol. 12, pp. 242-
249, Feb. 1993.

[6] S. Pullela, N. Menezes, J. Omar and L. T. Pillage,
“Skew and delay optimization for reliable buffered
clock trees,”Proc. IEEE Intl. Conf. on Computer-
Aided Design, pp. 556-562, Nov. 1993.

[7] J. Chung and C. K. Cheng, “Skew sensitivity
minimization of buffered clock trees,”Proc. IEEE
Intl. Conf. on Computer-Aided Design, pp. 280-
283, Nov. 1994.

[8] F. Minami and M. Takano, “Clock tree synthesis
based on RC delay balancing,”Proc. IEEE Custom
Integrated Circuits Conf.,May 1992.

[9] J. Qian, S. Pullela and L. T. Pillage, “Modeling the
effective capacitancefor the RC interconnect of
CMOS gates,” IEEE Trans. Computer-Aided
Design., vol. 13, no. 12, pp. 1526-1535, Dec. 1994.

[10] P. R. O’Brien. and T. L. Savarino, “Modeling the
driving-point characteristic of resistive interconnect
for accurate delay estimation,”Proc. IEEE Intl.
Conf. on Computer-Aided Design, Nov. 1989.

[11] M. Edahiro, “Clustering-based optimization
algorithm in zero-skew routings,’’Proc. ACM/
IEEE Design Automation Conference, pp. 612-616,
June 1993.

[12] D.F. Wong and C.L. Liu, “A new algorithm for
floorplan design,’’Proc. 23rd Design Automation
Conference, pp. 101-107, June 1986.

[13] T.H. Cormen, C.E. Leiserson, and R.L. Rivest,
Introduction to Algorithms, The MIT Press, 1991.

[14] N. Gopal, D. P. Neikirk, and L. T. Pillage,
“Evaluating RC interconnect using moment-
matching approximations,”Proc. IEEE Intl. Conf.
on Computer-Aided Design,pp. 74-77, Nov. 1991.

[15] P. E. Gill, W. Murray, and M. H. Wright,Practical
Optimization,Academic Press, 1981.

[16] Q. Zhu, W. W.-M. Dai, and J. G. Xi, “Optimal
sizing of high-speed clock networks based on
distributed RC and lossy transmission line models,”
pp. 628-633,Proc. International Conference on
Computer Aided Design,Nov. 1993.

[17] K. Schittkowski, “NLPQL: A FORTRAN
subroutine solving constrained nonlinear
programming problems,”Annals of Operation
Research,vol. 5, pp. 485-500, 1985/86.

[18] L. T. Pillage and R. A. Rohrer, “Asymptotic
waveform evaluation for timing analysis,”IEEE
Trans. Computer-Aided Design, vol. 9, no. 4, pp.
352-366, April 1990.

[19] N. Menezes, S. Pullela, and L.T. Pileggi, “A
sequential quadratic programming approach to gate
and wire sizing,” Proc. IEEE Intl. Conf. on
Computer-Aided Design, pp. 144-151, Nov. 1995.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

