
Buffered Clock Tree for High Quality IC Design

Rishi Chaturvedi and Jiang Hu
Department of Electrical Engineering

Texas A&M University, College Station, TX 77843
{rishi, jianghu}@ee.tamu.edu

Abstract

In ultra-deep submicron VLSI designs, clock network
layout plays an increasingly important role on determin-
ing circuit quality indicated by timing, power consumption,
cost, power supply noise and tolerance to process varia-
tions. In this paper, a clock tree routing algorithm is pro-
posed to achieve any prescribed non-zero skews which are
useful in reducing clock cycle time [1], suppressing power
supply noise [2] and improving tolerance to process varia-
tions [3]. The interactions among skew targets, sink loca-
tion proximities and capacitive load balance are analyzed.
Based on this analysis, a maximum delay-target ordering
merging scheme is suggested to minimize wire and buffer
area which imply cost, power consumption and vulnerabil-
ity to process variations. During the clock routing, buffers
are inserted simultaneously to facilitate a proper skew rate
level and reduce wire snaking. The proposed algorithm is
simple and fast for practical applications. Experimental re-
sults on benchmark circuits show that the proposed algo-
rithm can reduce the total wire and buffer capacitance by
60% over an extension of existing zero skew routing method.

1 Introduction
The quality of a synchronous digital integrated circuit

heavily depends on clock network design, especially un-
der current ultra-deep submicron technology. First, the
clock signal determines the pace of data transfer and op-
eration frequency [1]. Second, the clock network is one of
the largest nets and one of the most frequently switching
nets at the same time, thus it has a paramount influence on
power efficiency of the circuit. Third, due to its large size,
the switching of clock signal may draw huge current from
power/ground network and incur power supply noise. Last
but not least, clock signal is vulnerable to process varia-
tions [4, 5] and the induced clock signal variation may in
term affect circuit design and timing. Therefore, it is vitally
important to have a clock layout algorithm addressing these
concerns for a high quality integrated circuit design.

A clock network design usually starts with specifying
delay-targets from the driver to each sink which is either
a flip-flop or a latch. Since clock skew is often more impor-
tant than delay itself, this specifying process is often called
skew scheduling [1]. It was observed long time ago that cer-
tain prescribed non-zero skew could be utilized to improve
clock frequency [1, 6]. In this scenario, a skew refers to the
delay difference between a certain clock sink pair. In ad-
dition to timing improvement, prescribed skews help to re-
duce simultaneous signal switching and power supply noise
[2]. Moreover, tolerance to process variations can be im-
proved by setting each skew value close to the center of its
permissible range [3]. Therefore, prescribed non-zero skew
is a very promising approach to improve circuit timing,
power supply noise and reliability. Consequently, a clock
routing method for prescribed non-zero skew is strongly
needed. A prescribed skew routing algorithm should mini-
mize wirelength and buffer area as well, since a small clock
network size implies less cost, less power consumption and
less vulnerability to process variations.

A common structure for clock network is a routing tree
where the clock driver is the root node and the clock sinks
are the leaf nodes. Without loss of generality, we can con-
ceive the clock tree routing as a process that recursively
merges a set of subtrees in a bottom-up fashion. Initially,
each clock sink is a subtree and then the subtrees are merged
in pairs. A pair of subtrees is merged to form a new sub-
tree whose root is the merging node. This procedure pro-
ceeds till there is only one subtree left and this single sub-
tree is connected to the driver directly. There are two ma-
jor decision-makings in this clock tree routing process: (i)
merging scheme that tells which subtrees should be merged
together; (ii) layout embedding that decides locations for the
merging nodes. The merging scheme can be extracted out
and performed in advance to construct an abstract tree. The
internal nodes in the abstract tree correspond to the merging
nodes without specifying locations. Abstract tree construc-
tion and layout embedding can be performed either sepa-
rately or in an integrated manner. Examples of abstract tree
and embedding are shown in Figure 1.

0-7695-2093-6/04 $20.00 2004 IEEE

v5

v7

v9
v9

v6 v4

(a)

v7

v5 v6

v4v3v1 v2

v6

v0

v1

v8

v1

v1

v6

(b)

v3

v8

v0

v4

(d)

v2

v2

v3
v0

(c)

v4v3

v0

v2

Figure 1. When delay-targets for four sinks t4 > t3 >>
t2 > t1, traditional merging scheme may result in abstract
tree in (a) and embedding in (b) with wire snakings. A dif-
ferent abstract tree in (c) and its layout embedding in (d)
may yield less wirelength.

Most of previous works on clock network design attempt
to obtain zero skew, because the skew is a lower bound
for clock period time [6]. In this scenario, a more pre-
cise definition of skew is the maximum delay difference
among all clock sinks. Early zero skew routing works in-
clude H-tree [6], top-down recursive partitioning [7] and
bottom-up recursive matching method [8]. However, these
methods emphasize on load balancing without evaluating
actual delay. In [9], Tsay introduced an Elmore delay based
layout embedding technique that can achieve exact zero
skew for any given abstract tree. In order to further re-
duce wirelength, the DME (Deferred Merge Embedding)
algorithm was developed in [10] according to the observa-
tion that there are multiple locations for a merging node to
satisfy skew specifications. Instead of committing a merg-
ing node to particular location immediately, DME identi-
fies and maintains merging segment for each merging node
in a bottom-up tree traversal. After merging segments for
all merging nodes are found, a top-down tree traversal is
conducted to choose one location on each merging segment
such that the total wirelength is minimized. Both Tsay’s
embedding and DME embedding technique can be applied
to achieve any non-zero skew as well.

For merging schemes, a widely accepted conclusion is
that a subtree should be merged with its nearest neighbor-
ing subtree to save wirelength. For early VLSI technolo-
gies, interconnect delay is dominated by capacitive load,
thus many previous merging schemes [7, 8, 10] sought for

a balanced abstract tree to facilitate zero skew. However,
Edahiro noted in [12] that sometimes an unbalanced ab-
stract tree might yield less wirelength even for zero skew
clock routing. This is due to the fact that distributed wire
RC delay started to dominate and merely balancing capac-
itive load is not adequate. In [12], the merging selection
is integrated with DME embedding. At each step, Edahiro
chose a subset (generally less than a half) of subtrees to be
merged in pairs compared to choosing all subtrees in other
works. The work of [12] reported one of the best wirelength
results for zero skew routing.

In contrast to numerous works on zero skew clock rout-
ing, there are very few works reported on prescribed non-
zero skew routing despite its great importance. Perhaps
this is due to the misconception that existing zero skew
routing techniques can be applied to non-zero skew di-
rectly. Indeed, the layout embedding techniques originally
designed for zero skew [9, 10] can be adopted directly to
achieve non-zero skews. However, zero skew driven merg-
ing schemes do not necessarily work well for non-zero skew
clock routing. In fact, we discover that huge wirelength
is generated through traditional merging scheme in which
only subtree spatial proximity is considered while delay-
target differences are ignored. This is especially true when
the differences among delay-targets are large so that a lot
of wire snakings [9] are incurred. The example in Fig-
ure 1 illustrates that different merging schemes (abstract
trees) may provide different wirelength for non-zero skew
clock routing. A few works [13,14] integrate skew schedul-
ing with clock routing to exploit the useful skews. Start-
ing with a zero skew routing tree, the work of [14] per-
forms merging segment perturbation and gate sizing to min-
imize power consumption subject to setup-time and hold-
time constraints for a fixed clock period time. In [13], an in-
cremental scheduling algorithm is proposed and combined
with the DME embedding for a given abstract tree. How-
ever, skew scheduling is often carried out individually ahead
of clock routing in practical design flows.

Since a clock network is normally very large, buffers are
often employed to ensure an acceptable slew rate. Many
previous works [15–18] place buffers of the same size at
nodes of the same level in the clock tree for two reasons:
(1) zero skew routing generally results in a balanced tree;
(2) this level by level buffering scheme can reduce the ef-
fect of inter-die process variations. However, this strategy is
not applicable for non-zero skew routing which may gener-
ate unbalanced trees. Further, the increasingly significant
intra-die process variations [19] request for a more gen-
eral variation tolerance technique such as non-zero skew
scheduling [3]. A buffered clock tree algorithm for pre-
scribed skews is proposed in [20]. However, this method
restricts that the prescribed skew can take only a few dis-
crete values.

2

0-7695-2093-6/04 $20.00 2004 IEEE

The goal of this work is to develop a clock routing al-
gorithm that facilitates a high performance, low power, low
noise and variation tolerant clock network. We analyzed
the interactions among skew targets, sink location proxim-
ities and capacitive load balance in clock routing. Accord-
ing to this analysis, a maximum delay-target based merg-
ing scheme is proposed. This merging scheme is integrated
with buffer insertion and DME embedding to achieve any
continuous prescribed skews. The total capacitance of wire
and buffers is minimized to restrict cost, power consump-
tion and vulnerability to process variations. Buffer inser-
tion plays two roles here: (1) enforce a maximum load con-
straint to ensure signal slew rate; (2) reduce wire snaking
by balancing delay targets. The proposed buffered clock
routing method is simple and fast for practical applications.
We compared our routing method with extension to tradi-
tional zero skew clock routing method [12] on benchmark
circuits. The experimental results show that our method
can meet non-zero skew specifications and load capacitance
constraint with 60% less wire and buffer capacitance.

2 Preliminary
Same as other clock routing works, we adopt the El-

more delay model for delay computation. The wire cost and
buffer cost are expressed through their capacitance. The to-
tal wire and buffer capacitance is also an indication of the
dynamic power consumption. The problem we will solve is
formally stated as follows.
Prescribed Skew Buffered Clock Routing Problem:
Given a set of clock sinks V = {v1, v2, ...vn}, load capac-
itance Ci for each sink vi ∈ V , skew specifications qi,j for
every pair of sinks vi, vj ∈ V , a buffer type b, find a buffered
Steiner tree with clock sinks as leaf nodes such that the total
buffer and wire capacitance is minimized, the skew specifi-
cation qi,j = di − dj is satisfied for root-to-sink delay di

and dj of any sink pair vi, vj ∈ V and the maximum load
constraint Cmax is met for every buffer and the driver.

The minimum required number of skew specifications
for n nodes is n − 1. The other specifications can be de-
rived from the n−1 specifications. If more than n−1 skew
specifications are there, it must be ensured that they are co-
herent with each other. The skew specifications can also be
expressed through root-to-sink delay-target ti for each sink
vi ∈ V , as long as qi,j = ti − tj∀vi, vj ∈ V is satisfied. In
reality, it does not matter whether or not the delay di of sink
vi in a clock tree is equal to its delay-target ti. The skew
specifications can be satisfied whenever we can find a sin-
gle constant C such that ti = di + C is true for every sink
vi ∈ V . The concept of delay-target is employed for the
convenience of computation and description. The zero skew
requirement can be obtained by letting t1 = t2 = ... = tn.

Now we generalize the concept of delay-target to include
subtrees. Let Ti denote a subtree rooted at node vi. This

kvivjv

(a) (b)

vj vi vk

Figure 2. Examples of merging subtrees without wire
snaking in (a) and with wire snaking when delay-target tj at
vj is significantly greater than delay-target tk at vk in (b).

subtree can be characterized by delay-target ti and down-
stream capacitance Ci at its root vi. If vi is a sink node,
its delay-target ti is given. If vi is a merging node, its
delay-target ti can be computed recursively as follows. If
we merge subtree Tj and Tk at merging node vi as shown
in Figure 2(a), let the wirelength from vi to vj and vk be li,j
and li,k, respectively. The delay from vi to vj and vk are:

di,j =
1
2
rcl2i,j + rli,jCj (1)

di,k =
1
2
rcl2i,k + rli,kCk

where r and c are wire resistance and capacitance per unit
length, respectively. In order to meet skew specifications,
these delays have to satisfy the following equality:

di,j − di,k = tj − tk (2)
Then the delay-target ti can be obtained by rearranging the
above equality as

ti = tj − di,j = tk − di,k (3)
Since the delay-targets are propagated bottom-up based on
the above equation, the skew specifications can be enforced
by only considering Equation (2) without checking delays
at sink/leaf nodes. The downstream capacitance Ci can be
obtained directly as Ci = Cj + Ck + cli,j + cli,k.

The minimum feasible wirelength for the merging is the
Manhattan distance lj,k between vj and vk. The wirelength
from vi to vj and vk need to satisfy lj,k = li,j + li,k. When
there is great difference between delay-targets, for example,
when tj is much greater than tk, we have to let li,k = 0 and
let li,j > lj,k to ensure that the constraint of Equation (2)
is met. The actual wirelength of li,j can be obtained by
solving the following equation.

1
2
rcl2i,j + rli,jCj = tj − tk (4)

The method of using wirelength greater than lj,k is called
wire snaking [9] which is demonstrated in Figure 2(b).

A given buffer type b is characterized by it input capaci-
tance Cb, intrinsic delay tb and output resistance Rb. When
a buffer is inserted at a node vi, then the delay target at vi is
reduced by tb +RbCi and the downstream capacitance at vi

becomes Cb. Even though a single buffer type is considered
in this work, our method can be extended to handle multiple
buffer types.

3

0-7695-2093-6/04 $20.00 2004 IEEE

3 Algorithm

The top-level framework of our algorithm is similar to
Edahiro’s NS algorithm [12], however, we propose a merg-
ing scheme and a buffering method that are designed par-
ticularly for prescribed non-zero skew clock routing. This
merging scheme is also integrated with DME embedding as
in [12].

3.1 The Merging Scheme

Most of previous merging schemes [8, 12] choose the
subtree pair with the minimum distance between their roots
and merge them first. Their attentions are only at subtree
spatial proximities, since delay-targets are identical for all
sinks in zero skew routing. It is shown in the previous sec-
tion that great difference between delay-targets may cause
wire snakings, thus traditional merging schemes tend to re-
sult in excessive wirelength because of their neglection of
the delay-target differences. We demonstrate this problem
through the example in Figure 1. Assume that the given
delay-targets are quite different from each other and they
follow the inequality t1 < t2 << t3 < t4, especially t3
and t4 are much greater than t1 and t2. We merge T1 with
T2 first, since their distance is the smallest among all sink
pairs. Because t2 is significantly greater than t1, it is quite
likely that a wire snaking occurs when we merge T1 with T2

at node v5 as shown in Figure 1(b). Similarly, T3 is merged
with T4 at node v6. Since t3 and t4 are much greater than
t1 and t2, it is quite possible that t6 is much greater than t5
and another wire snaking results from merging subtree T5

with T6 at node v7.
Since wire snaking is more likely to happen when the dif-

ference of delay-targets between two subtrees is large, it can
be reduced if we choose a merging order that can reduce the
delay-target differences among all subtrees. According to
Equation (3), the delay-target of the newly created subtree
is always smaller than the delay-targets of the two subtrees
it is merged from. Thus, if we choose to merge the sub-
tree with the maximum delay-target first, the overall delay-
target differences among subtrees will be reduced. We can
analogize the set of subtrees as a group of runners. We let
the runner lagging behind run first so that he/she is closer
to runners ahead of him/her. According to Equation (1),
if Cj is much greater than Ck, it is easier to achieve great
di,j−di,k without wire snaking. When the maximum delay-
target subtree is merged first, the newly created subtree from
this merging has not only a smaller delay-target but also a
greater load capacitance that makes the matching to other
small delay-target subtrees easier. Therefore, the maximum
delay-target ordered merging can reduce the chance of wire
snaking by decreasing delay-target imbalance and increas-
ing load imbalance that is coherent with the delay-target im-
balance.

Procedure: FindSubtreesToBeMerged(T)
Input: A set of subtrees T
Output: Two subtrees to be merged
1. Ti ← subtree with the maximum delay-target in T
2. minCost←∞
3. For each subtree Tj ∈ T \Ti

4. cost← merging cost between Ti and Tj

5. If cost < minCost
6. minCost← cost, Tk ← Tj

7. Return Ti and Tk

Figure 3. Algorithm of the merging selection scheme.

We further illustrate the advantage of this maximum
delay-target ordered merging through the example in Fig-
ure 1. In Figure 1(d), we first merge T3 with T4 to ob-
tain subtree T6 rooted at v6, as v4 has the maximum delay-
target. Since t4 and t3 are much greater than t2 and t1, it
is very likely that t6 is still greater than t1 and t2. Next,
we merge T6 with T2 at node v8 and denote this merging
as T6 + T2 � v8. We can compare this merging with
T6+T5 � v7 in Figure 1(b), since both mergings start from
v6. On one hand, there is less imbalance on delay-targets
for merging T6 + T2 � v8 since t6 − t2 < t6 − t5. On
the other hand, as C2 < C5, the merging T6 + T2 � v8 has
greater imbalance on load capacitance which makes it easier
to achieve imbalanced delay-targets without wire snaking.
If we compare the merging T1 + T8 � v9 in Figure 1(d)
and the merging T1 +T2 � v5 in Figure 1(b), same conclu-
sion can be obtained. Therefore, the maximum delay-target
first merging indeed reduces the chance of wire snaking.

Besides the maximum delay-target criterion, there is an-
other major difference between our merging scheme and
previous works. Previous works such as [12] evaluate ev-
ery pair of subtrees and choose a pair according to the min-
imum distance criterion. Our maximum delay-target crite-
rion only selects a single subtree instead of a pair at once,
and we will apply another criterion to choose another sub-
tree (we call it companion subtree) to be merged with the
maximum delay-target subtree. If we pick the subtree which
is closest to the maximum delay-target tree as a companion,
then the neglection on the delay-target difference between
them may again result in wire snakings. If we pick the sub-
tree with the closest delay-target, these two subtrees may be
far apart from each other and the merging may cause large
wirelength too. Therefore, a subtree needs to be merged
to another subtree that is not only nearby but also with
similar delay-target. In other words, we need to play in a
three-dimensional space of (x, y, delay target). We intro-
duce a merging cost to include the concern on distance and
delay-targets in a unified form. This merging cost is simply
the wirelength needed for the merging to satisfy the delay-
target constraint (2). Therefore, the merging cost is same as
the Manhattan distance between the roots of two subtrees

4

0-7695-2093-6/04 $20.00 2004 IEEE

if there is no wire snaking. Otherwise, the merging cost is
obtained through solving Equation(4) to include the extra
wirelength due to wire snaking. Therefore we choose the
companion subtree, which will lead to the minimum merg-
ing cost.

The algorithm description for this merging scheme is
given in Figure 3. In fact, the proposed merging scheme
is effective on reducing wirelength for zero skew routing as
well. Even though every sink initially has the same delay-
target in zero skew routing, delay-targets of the subtrees af-
ter merging are quite likely to be different from each other.
If we treat the post-merging subtrees as pseudo sinks, the re-
maining clock routing task is equivalent to a non-zero skew
clock routing. The effect of our merging scheme depends
on how large the delay-target differences are. The larger
the delay-target difference, the more effective our merging
scheme is.

3.2 Buffer Insertion
Buffers are inserted during the process of merging sub-

trees to accomplish two objectives: (1) enforcing a load ca-
pacitance constraint; and (2) reducing wire snakings. The
load capacitance constraint Cmax specifies the maximum
load capacitance which a buffer/driver can drive. Since
the output slew rate of a buffer/driver is mainly determined
by its load capacitance [21], restraining the load capaci-
tance can virtually keep a signal slew rate at proper level.
The load capacitance constraint can be satisfied through ei-
ther dynamic programming style algorithms [18, 22] or a
greedy approach [20]. In a dynamic programming algo-
rithm, since a set of candidate solutions are maintained, any
candidate solution with violation on the constraint can be
simply pruned out. Aimed to a fast and practical solution,
this work adopts the greedy approach as in [20].

kvjvj
vi vk

vi

x

(a) (b)

v

Figure 4. Buffer insertion to reduce wire snaking. Delay
target tj > tk.

Sometimes a buffer may be inserted to reduce wire
snaking. A buffer is inserted only if the extra wire capac-
itance due to the wire snaking is greater than the input ca-
pacitance Cb of the buffer. A remarkable wire snaking often
happens when there is great imbalance between the delay-
targets of the two subtrees to be merged. The delay-target tj
for subtree Tj can be reduced by RbCj + tb through adding
buffer at root vj . Please note this conclusion is contrary
to the case in signal routing where buffers are usually em-
ployed to reduce delay [6]. For the example in Figure 4,

since tj > tk, a buffer is inserted to drive the branch with
Tj as in Figure 4(b).

Next, the buffer location needs to be decided in addition
to the merging node vi location. The work of [20] would
simply fix the buffer location at the root vj . In contrast, we
do not restrict the buffer location at vj so that a larger so-
lution space can be explored. In order to avoid solving two
separate location variables simultaneously, we let the buffer
and the merging node vi be at a same location. This sim-
plification does not sacrifice any solution space for a reason
that is illustrated by the example in Figure 4(b). In Fig-
ure 4(b), the maximum delay dmax between vi and vj oc-
curs when both the buffer and the merging node vi are at the
location of vk, i.e., x = lj,k. Similarly, the minimum delay
dmin between vi and vj occurs when the buffer and vi are
at the location of vj , i.e., x = 0. By moving the buffer
and vi together between vj and vk (varying x in [0, lj,k]),
any value in [dmin, dmax] can be obtained for the delay be-
tween vi and vj . The value of x is decided according to
skew specifications.

The buffer insertion for wire snaking reduction may in-
troduce inaccuracy to the merging cost in searching the
companion subtree, since the merging cost does not count
the buffer insertion effect. However, this inaccuracy is lim-
ited because the neglected snaking cost reduction is offset
by the extra buffer cost. On the other hand, neglecting the
buffer effect makes the merging scheme faster.

3.3 Complexity
When integrated with the DME embedding as in [12], the

merging will be performed n − 1 times for n clock sinks.
The complexity of merging selection is O(n) due to the loop
of line 3-6 in Figure 3. For each merging, the computation
of buffer location and merging node location takes constant
time. Thus, the overall complexity of our buffered clock
routing algorithm is O(n2).

4 Experiment
We implemented the proposed buffered clock tree

algorithm in C and experiments are performed on a PC
with 1.7GHz Pentium 4 microprocessor and 512Mb
memory. The benchmark circuits are prim1, prim2 and
r1-r5 downloaded from the GSRC Bookshelf (http :
//vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/).
The delay-targets are generated through running the
BST [11] code with a global skew bound of 100ps and
taking the non-zero skew results. The BST code is also
downloaded from the GSRC Bookshelf. For comparison,
the NS(Nearest-neighbor Selection) algorithm proposed
in [12] is extended for non-zero skew targets and combined
with the same buffering scheme as ours.

The experimental results are shown in Table 1. Since
both algorithms deliver the same prescribed non-zero

5

0-7695-2093-6/04 $20.00 2004 IEEE

Table 1. Comparison of our buffered clock tree routing and an extension to the NS algorithm [12].
Testcase #sinks Algorithm Wirelength #bufs Wire cap + Buf cap(pF) CPU(sec)
prim1 269 NS+ 718533 59 20.8 1

Ours 181982 34 5.7 1
prim2 603 NS+ 2030400 139 58.1 11

Ours 480017 73 14.7 1
r1 267 NS+ 2917614 49 59.5 1

Ours 1293616 13 26.2 1
r2 598 NS+ 5881313 93 119.8 13

Ours 2541324 25 51.4 1
r3 862 NS+ 7287088 112 148.4 42

Ours 3265058 28 66.0 1
r4 1903 NS+ 16276930 474 331.1 474

Ours 6659865 62 134.6 3
r5 3101 NS+ 24933092 1968 507.7 1968

Ours 9860004 99 199.5 10
Overall improvement 59.6% 69.0% 60.0% 99.3%

skews, we only report the resource consumptions including
total wirelength, the number of buffers inserted and the to-
tal wire and buffer capacitance. The overall improvements
are listed in the last row. For all three resource consumption
metrics, our algorithm results in huge improvement. The
CPU time are shown in the rightmost column of Table 1.
Note that our buffered clock routing is not only effective
but also fast for practical applications.

5 Conclusion

Even though traditional zero skew routing methods can
be applied to achieve non-zero skews, they may bring huge
wire and buffer area overhead as the difference among sink
delay-targets are ignored in their merging schemes. We pro-
pose a buffered clock routing algorithm based on the max-
imum delay-target ordering merging. Experimental results
on benchmark circuits show that our buffered clock routing
algorithm is effective on minimizing wire and buffer area
for non-zero skew specifications. More accurate delay mod-
els will be employed for prescribed skew routing in future
work.

References
[1] J. P. Fishburn. Clock skew optimization. IEEE Transactions on Com-

puters, C-39:945–951, July 1990.
[2] W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao. Power supply noise

suppression via clock skew scheduling. In Proc. ISQED, pages 355–
360, 2002.

[3] I. S. Kourtev and E. G. Friedman. Clock skew scheduling for im-
proved reliability via quadratic programming. In Proc. ICCAD, pages
239–243, 1999.

[4] Y. Liu, S. R. Nassif, L. T. Pileggi, and A. J. Strojwas. Impact of inter-
connect variations on the clock skew of a gigahertz microprocessor.
In Proc. DAC, pages 168–171, 2000.

[5] S. Zanella, A. Nardi, A. Neviani, M. Quarantelli, S. Saxena, and
C. Guardiani. Analysis of the impact of process variations on

clock skew. IEEE Transactions on Semiconductor Manufacturing,
13(4):401–407, November 2000.

[6] H. B. Bakoglu. Circuits, interconnections and packaging for VLSI.
Addison-Wesley, Reading, MA, 1990.

[7] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh. Clock routing for
high-performance ICs. In Proc. DAC, pages 573–579, 1990.

[8] A. B. Kahng, J. Cong, and G. Robins. High-performance clock rout-
ing based on recursive geometric matching. In Proc. DAC, pages
322–327, 1991.

[9] R.-S. Tsay. Exact zero skew. In Proc. ICCAD, pages 336–339, 1991.
[10] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B. Kahng.

Zero skew clock routing with minimum wirelength. IEEE Transac-
tions on Circuits and Systems - Analog and Digital Signal Process-
ing, 39(11):799–814, November 1992.

[11] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. Bounded-skew
clock and Steiner routing. ACM Transactions on Design Automation
of Electronic Systems, 3(3):341–388, July 1998.

[12] M. Edahiro. A clustering-based optimization algorithm in zero-skew
routings. In Proc. DAC, pages 612–616, 1993.

[13] C.-W. A. Tsao and C.-K. Koh. UST/DME: a clock tree router for
general skew constraints. In Proc. ICCAD, pages 400–405, 2000.

[14] J. G. Xi and W. W.-M. Dai. Useful-skew clock routing with gate
sizing for low power design. Journal of VLSI Signal Processing,
16(2/3):163–179, Jun./Jul. 1997.

[15] S. Pullela, N. Menezes, J. Omar, and L. T. Pillage. Skew and delay
optimization for reliable buffered clock trees. In Proc. ICCAD, pages
556–562, 1993.

[16] J. G. Xi and W. W.-M. Dai. Buffer insertion and sizing under process
variations for low power clock distribution. In Proc. DAC, pages
491–496, 1995.

[17] A. Vittal and M. Marek-Sadowska. Power optimal buffered clock
tree design. In Proc. DAC, pages 230–236, 1996.

[18] I-M. Liu, T.-L. Chou, A. Aziz, and D. F. Wong. Zero-skew clock tree
construction by simultaneous routing, wire sizing and buffer inser-
tion. In Proc. ISPD, pages 33–38, 2000.

[19] S. R. Nassif. Modeling and analysis of manufacturing variations. In
Proc. CICC, pages 223–228, 2001.

[20] A. Takahashi, K. Inoue, and Y. Kajitani. Clock-tree routing realizing
a clock-schedule for semi-synchronous circuits. In Proc. ICCAD,
pages 260–265, 1997.

[21] C.-K. Cheng, J. Lillis, S. Lin, and N. Chang. Interconnect analysis
and synthesis. Wiley Interscience, New York, NY, 2000.

[22] J. Chung and C.-K. Cheng. Skew sensitivity minimization of
buffered clock tree. In Proc. ICCAD, pages 280–283, 1994.

6

0-7695-2093-6/04 $20.00 2004 IEEE

	Main Page
	ISQED'04
	Front Matter
	Table of Contents
	Author Index

