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Abstract

Designing high-performance very large-scale integration(VLSI) chips has become more challenging

than ever due to nanometer effects and accelerating time-to-market cycles. Due to the interconnect delay

dominance, a small routing change in the design can increasecoupling capacitances on its neighboring

paths and significantly increase their path delays. This cancause new timing violations and result in

design iterations. While timing convergence is getting harder and harder to achieve, the accelerating

time-to-market cycles further aggravate the problem. Process variations result in interconnect variations,

threshold voltage variations, leakage power variations, etc. These effects not only generate reliability

issues but also make the circuit performance deviate from the design specification and cause timing yield

losses. Due to the increasing process variations in nanometer technologies, timing yield has become an

important design concern because it directly affects the manufacturing cost.

Clock designs have significant impacts on both timing convergence and timing yield. A carefully de-

signed clock distribution network can reducedesign-inheritedclock skews, the discrepancies between

designer intended clock skews and achieved clock skews under perfect process conditions. This can im-

prove circuit performance and timing convergence. A clock distribution network can also be optimized

to reduceprocess-inducedclock skews, such that the circuit would require less timingmargin to tolerate

process related timing variations. This will also improve timing convergence and timing yield.Clock
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scheduling, the process of assigning the clock arrival times to sequential elements, can greatly improve

the timing yield of the manufactured chips by taking into account process-induced path delay and clock

skew uncertainties.

This dissertation provides a comprehensive study on four clock design techniques: 1) clock tree opti-

mization, 2) clock scheduling, 3) clock tree topology optimization, and 4) post-silicon clock tuning. The

integration of these techniques offerS the maximum benefit on timing convergence and timing yield im-

provements. A zero-skew clock tree optimization algorithmfor clock delay and power optimization is

proposed. The optimized clock trees are zero-skew, or free from design-inherited clock skews, and their

process-induced clock skews are reduced by clock delay minimization. A false-path-aware statistical

timing analysis method using a novel implicit true path enumeration algorithm is proposed. A statistical-

timing-driven clock scheduling algorithm then utilizes the statistical timing information for timing yield

improvement. False-path-aware gate-sizing methods are also investigated to preserve more timing mar-

gin for clock scheduling. A partition-based clock tree topology optimization algorithm that considers

the circuit connectivity and timing information is proposed. The clock trees based on the new topologies

require less timing margin for process-induced clock skews, which makes the timing convergence easier

to achieve. Timing yield can be further improved if clock arrival timing assignment can be performed for

each manufactured chip separately. This can be achieved by using a post-silicon-tunable clock tree. Two

post-silicon-tunable clock tree synthesis algorithms areproposed to reduce the hardware cost to realize

post-silicon clock tuning.
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Chapter 1

Introduction

1.1 Motivation

In nanometer technologies, timing convergence and timing yield are two of the most critical design is-

sues. Due to the high device density and complicated physical design effects, a small change in the design

for timing fixes can cause new timing violations and result indesign iterations. With the accelerating

time-to-market cycles, timing convergence has become the main focus in the design flow. Processes in

nanometer technologies are difficult to control. Process variations cause timing variations in manufac-

tured chips, causing failures and chips not meeting the performance guaranteed by design specifications.

Because of the high design and manufacturing costs, a small percentage of the timing yield loss can turn

the design from a money-spinner into a profit-loser. Therefore, it is paramount to address the timing

convergence and timing yield issues.

Timing convergence and timing yield issues have been aggravated by the following four factors: 1)

technology scaling, 2) process variations, 3) deep pipelining, and 4) ever increasing clock frequency. The
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reasonings are elaborated as follows:

1. As the feature size continues to shrink, gate delays also decrease substantially. However, inter-

connect delays do not scale as well as gate delays and have become the dominant delay compo-

nent [1, 2]. Since a design change for a path usually involveschange of routings1, which in turn

affects the parasitic couplings, it can easily cause delay changes on other paths, generating new

timing violations and resulting in design iterations. Copper interconnects with sub-100nm widths

suffer resistivity increase due to electron-scattering effects [3,4], which increase the RC intercon-

nect delay even further. It is expected that timing convergence in nanometer technologies will be

increasingly more difficult to achieve.

2. Process variations are getting difficult to control due tothe limits of physics. For example, a gate

oxide in 90nm technologies is only a few atoms thick2 and a variation as small as a single atom can

amount to a change in thickness of several percents and thus the delay of the transistor. According

to the 2003 ITRS Roadmap [5], lithography needs to achieve a3σ gate critical-dimension (CD)

variation less than1.8nm for≥ 50nm technologies by 2009. However, there is no known solution

to-date. The increasing process-related timing uncertainties need to be accounted for by reserving

more timing margins, which slows down timing convergence. Cutting back timing margins to

satisfy time-to-market results in low timing yield designs.

1Inserting a buffer on a long wire usually cause routing detours because available white spaces for the buffer may not be

directly under the wire. Even pure gate sizing can cause routing changes because the pin locations of gates with different drive

strength can be different.

2The equivalent oxide thickness (EOT) of thehp90 technology node is1.2nm [5]. It is about four atom layers if thermal

silicon dioxide (SiO2, k = 3.9) is used, and about seven atom layers if silicon nitride (Si3N4, k = 7) is used.
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3. To allow fine-grained circuit partitioning for performance improvement, high-performance designs

such as microprocessors have been increasing their pipeline stages. As a result, the average num-

ber of gate levels between a pair of sequential elements decreases. With fewer gate levels, the

combinational path delay uncertainties increase substantially relative to the path delays [6]. For

example, let the gate delays be independent Gaussian distributions(µ, σ), the delay distribution

of a path withN gates is(Nµ,
√

Nσ). Therefore, the ratio of path delay uncertainty versus path

delay is proportional to 1√
N

, which increases asN decreases. This further aggravates the timing

variation problem.

4. Design iterations and timing yield loss can be avoided if there are sufficient timing margins to

tolerate timing variations. Nevertheless, the increasingdemand for high clock frequency leaves

the designers with less timing margins.

From the above observations, a comprehensive solution to reducing timing uncertainties and better uti-

lizing timing margins is in urgent need.

While clock delays increase as the total number of sequential elements increase, combinational path

delays are decreasing due to deep pipelining. Therefore, the ratio of clock delay versus combinational

path delay keeps increasing. As a consequence, a significantportion of the timing margins is consumed

by process-induced clock skews. By optimizing the clock distribution networks, the process-induced

clock skews and the demand for timing margins can be reduced.Timing yield is highly correlated to the

distribution of timing margins. If all the paths in a circuitexcept one have sufficient timing margins, the

timing yield can still be very low. Therefore, carefully managing timing margins through assigning the

clock arrival times to sequential elements can greatly improve the timing yield. In the next section, the

related clock design researches that address the timing convergence and timing yield issues are reviewed.
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1.2 Literature Review

1.2.1 Clock Tree Optimization

Clock tree is the most commonly used structure for clock distribution networks. Although clock meshes

or clock grids are used in some microprocessor designs [7–10], they are less preferred due to the high

routing cost and clock power. The recently announced Intel dual-core Itaniumr processor has re-adopted

clock tree because of the power consideration [11].

A clock tree is synthesized from the positions and capacitance loads of the clock sinks. The first step

is topology generation through partitioning the clock sinks. It is then followed by routing and optimiza-

tion steps. Tsay [12] proposes a zero-skew clock routing algorithm for a given clock tree topology. For a

wire connecting two clock sinks, the algorithm finds the tapping point on the wire that has the same clock

delay to both clock sinks. The tapping point becomes a new clock sink and the algorithm repeats in a

bottom-up fashion until it reaches the clock root. The totalwire length of the final clock tree is dependent

on the clock tree topology and the routing of each wire that connects two clock sinks. Chao et al. [13]

propose a balanced-bipartition (BB) algorithm that generates the clock tree topology and the Deferred-

Merge-Embedding (DME) algorithm that determines the routing of each wire. The combined BB+DME

algorithm achieves a 10% average wire length savings comparing to [12]. In [14,15], the DME algorithm

is extended to handle bounded-skew and useful-skew constraints. The objective of these works aims at

minimizing the total wire length of a clock tree, which in turn minimizes the power consumption.

Despite the power advantage of clock trees over clock grids,clock trees are more susceptible to

process variations than clock grids. However, process-induced clock skews are not known until the clock

tree implementation is done. To reduce the susceptibility of a clock tree to process variations, a metric

to predict process-induced clock skews is needed. Empirically, it is observed that process-induced clock
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skews can reach 10% of the clock delay [16]. Therefore, minimizing clock delays can reduce process-

induced clock skews.

Interconnect delay optimization techniques, which include buffer insertion, buffer sizing and wire

sizing, are applicable to clock delay optimizations. The difference between synthesizing a signal net and

a clock tree is that for a signal net, the design objective is to minimize the maximum delay from the

signal source to any of its signal receivers, whereas a clocksignal needs to be distributed to each clock

sink at the prescribed time.

Two excellent surveys of interconnect optimization techniques are available in [1, 2]. A significant

amount of works are based on dynamic programming. Van Ginneken [17] proposes a dynamic program-

ming algorithm to solve the buffer placement problem. Givena distributed RC-tree, a buffer library, and

the legal buffer positions, the problem aims at finding the buffering option that minimizes the maximum

delay from the root of the RC-tree to any of its leaf nodes. In [18], discrete wire sizing for general routing

trees is assumed and a bottom-up dynamic programming approach is used to propagate the optimal wire

sizing options toward the root node. Designers can then choose an option by making a tradeoff between

delay and power consumption. In [19,20], bottom-up dynamicprogramming algorithms are extended to

consider simultaneous buffer insertion and wire sizing techniques. The DME algorithm for zero-skew

clock routing is also a dynamic programming algorithm, in which candidate zero-skew tapping points

are stored as merging segments. Extended works [21–23] allow a zero-skew clock tree to achieve better

clock delay and power by buffer insertion and wire sizing.

In [24], a sensitivity-based iterative algorithm performswire sizing one segment at a time and about

1.5X to 3X improvements on minimum delay are observed. In [25–27], the simultaneous buffer insertion,

buffer sizing and wire sizing problems are formulated as optimization problems, in which the maximum
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delay of each sink node is constrained. Iterative and Lagrangian Relaxation methods are then used to

solve the problems. In [28], iterative algorithms are used to reduce clock delay and clock skew through

wire sizing based on sensitivity information. Zeng et al. [29] propose a three-stage optimization algo-

rithm, i.e., buffer insertion, delay optimization and skewoptimization, to minimize the delay and skew

of a clock tree. Compared with the initial unbuffered clock trees, a maximum of 27X delay improve-

ment is achieved by buffer insertion and sizing. Chen et al. [30] formulate the clock delay/power/area

minimization problem for buffered clock trees as a geometric programming problem and solve it using

Lagrangian Relaxation methods.

The existing clock tree optimization works, either dynamic-programming-based or mathematical-

programming-based, either only utilize one or two available optimization techniques, i.e., buffer inser-

tion, buffer sizing and wire sizing, or consider them in separate stages. This limits the full advantage

of the available techniques. There is a need to develop an optimization algorithm that considers buffer

insertion, buffer sizing and wire sizing simultaneously.

1.2.2 Clock Scheduling

In a zero-skew design, the clock period is determined by the longest path delay of the circuit. To increase

the operation frequency, several techniques such as circuit retiming and pipelining are usually adopted to

balance path delays at different parts of the circuit [31,32]. Since path delays usually cannot be perfectly

balanced, clock scheduling is applied to further optimize the clock period [33–40].

As shown in [33], the timing constraints for flip-flop-based circuits are linear constraints and the

clock period optimization problem can be solved by linear programming solvers. Deokar et al. [34]

use a graph-theoretic approach to solve the optimization problem. First, the timing graph of a circuit is
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constructed and the timing constraints are modeled as the parametric edge costs, which change according

to the clock period. A clock period is feasible if the timing graph contains no negative cost cycle. The

optimal clock period can be obtained through a binary searchbetween[0,Dmax], whereDmax is the

maximum combinational path delay, by applying the Bellman-Ford algorithm [41, 42] on the timing

graph. An alternative is to solve the parametric shortest path problem by a path-pivoting algorithm [43].

The optimal clock period and the clock schedule found by solving the linear program is not directly

applicable to real designs since there are some paths with zero slack3. To make the design more robust,

a slightly larger clock period than the optimal value is chosen and the slacks on every path are then opti-

mized by clock scheduling, introducing useful clock skews to the sequential elements. Neves et al. [35]

and Kourtev et al. [36] formulate the clock skew optimization problem as a least square error problem

where the error is defined as the difference between the skew and the middle point of the permissible

range. Albrecht et al. [39] adopt the minimum balance algorithm [43] to distribute the timing margins

so that it yields alexicographically maximumslack vector when the slacks are sorted in nondecreas-

ing order. However, these approaches do not take into consideration the statistical behavior of process

variations and also their results are not verified with any timing yield model.

It is observed that many structural paths in a circuit are functionally un-sensitizable paths, or false

paths [44–47]. Traditionally, the clock scheduling algorithms obtain the longest and shortest path delays

by using static timing analysis tools that usually do not consider false paths. If all the structural longest

(shortest) paths between some pairs of sequential elementsare false paths, the clock schedule obtained

based on this pessimistic expectation of path delays will besub-optimal. Furthermore, false paths can

affect the statistical path delay distributions significantly [48], thus affecting the decision for slack allo-

3Slack and timing margin are interchangeable.
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cation. Therefore, it is necessary to perform false-path-aware statistical timing analysis as the first step

of clock scheduling. Although statistical timing analysistechniques have been studied for more than a

decade [49,50], only a few works take false paths into consideration [48,51] and they are not suitable for

clock scheduling applications. There is a need to develop anefficient false-path-aware statistical timing

analysis algorithm and a statistical-timing-driven clockscheduling algorithm.

1.2.3 Clock Tree Topology Optimization

Traditional clock tree topology generation algorithms aimat finding a clock tree topology such that

zero-skew can be achieved with minimum wire length. Kahng etal. [52] and Edahiro [53] propose

clustering-based algorithms that pair up clock sinks recursively to form the clock tree topology. In both

works nearest-neighbor matching heuristics are used for clustering. Chao et al. [13] propose a balanced-

bipartition (BB) algorithm that generates a balanced clocktree topology through recursive bipartitioning

the set of clock sinks into balanced subsets. Chou and Cheng [54] use simulated annealing to explore

different clock tree topologies and select the topology with the best cost; the weighted sum of wire length

and clock delay. These works do not consider the effects of clock buffers.

Ellis et al. [55] propose a simulated-annealing-based clock tree topology selection algorithm. For

local clock distribution, clock sinks are clustered based on the near neighbor information obtained from

a Delaunay triangulation of the clock sinks. Simulated annealing is used to find the clustering that

minimizes the wire length. For global clock distribution, the binary clock tree topology is perturbed and

a new topology is accepted or rejected based on the annealingtemperature and the figure of merit from a

fast buffer insertion and wire sizing heuristic.

Liu et al. [56] point out that the interconnect variation effect on clock skews cannot be captured by
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Figure 1.1: Two clock tree topologies for the same set of clock sinks.

worst/best case corner point methods because it is dependent on the physical design of the clock tree.

Since clock trees are interconnect-dominated circuit structures, process-induced clock skews caused by

interconnect variations are significant. It is observed that the maximum process-induced clock skew of a

clock tree is positively correlated to its clock delay. Previous works on clock delay minimization reduce

the maximum process-induced clock skew using combinationsof routing, buffer insertion, buffer sizing

and wire sizing techniques. Although these works reduce themaximum process-induced clock skew,

they do not necessarily minimize the total clock skew uncertainty on timing-critical paths and the total

slack requirement of a design. This is because these works all start from a given clock tree topology that

is generated without considering the locations of timing-critical paths.

Figure 1.1 shows two clock trees for the same set of clock sinks from two different clock tree topolo-

gies. The arc in Figure 1.1 indicates the most timing-critical path of the circuit. Although the two clock

trees have the same maximum process-induced clock skew (assuming clock trees are symmetric and
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process variations are uniform), the clock tree in Figure 1.1(a) requires more timing margin to achieve

timing convergence because the long non-common clock distribution path can cause a large process-

induced clock skew on the already timingly critical path. Hence the clock tree topology in Figure 1.1(b)

is preferred.

One of the methods to reduce the variation impacts to clock islink insertion after clock tree construc-

tion [57]. By connecting two nodes in a clock tree with an additional wire, the process-induced clock

skew between them may be reduced. However, this method stillrelies on a good clock tree topology

as a good topology can reduce the number of required links. Velenis et al. [58, 59] propose a greedy

clustering-based algorithm to reduce process-induced clock skews on timing-critical paths. The algo-

rithm creates the clock tree topology by first clustering thesource and target clock sinks of the most

timing-critical path together, then clustering the two clock sinks of the second most timing-critical paths,

and so on so forth. However, the clustering-based algorithmlacks the global view and has practical

limitations. For example, the algorithm will cluster the two clock sinks of the most timing-critical path

together even if the two clock sinks are located at the opposite corners of the chip.

To reduce the timing margin requirement and improve the timing convergence, a clock tree topology

optimization algorithm that takes timing information as well as physical location of the clock sinks needs

to be developed.

1.2.4 Post-Silicon Clock Tuning

Process related timing variation is a serious problem in nanometer designs. Simulation results based on

a 180nm technology show that gate CD variation can result in path delay and clock skew variations as

high as 16% and 8% of the clock period [60]. Existing design methodologies that guarantee a satisfactory
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timing yield by reserving more timing margins for larger timing uncertainties will become impractical

in new technologies due to performance and time-to-market requirements. However, insufficient timing

margins can cause significant timing yield losses. Althoughtiming yield loss isrecoverableby reducing

the sensitivity of the circuit to process variations, the growing intensity of process variations in nanometer

technologies, stringent time-to-market requirements, and limits on non-recurring-engineering (NRE) cost

have made it difficult to add timing yield as part of the designobjectives during circuit optimization

steps. It is favorable to have generic design-for-yield techniques that can be applied to different designs

and have the least impact on the current design flow.

Rajaram et al. [57] propose to reduce clock skew uncertainties by insertingcross linksin a given

clock tree. However, this technique cannot take path delay uncertainties into account. Another promising

design-for-yield technique is to use post-silicon-tunable (PST) clock trees [9, 11, 61–65]. By inserting

tunable clock buffers into the clock tree, slacks can be redistributed among adjacent timing paths and

timing failures may be corrected throughpost-silicon clock tuning.

As shown in Figure 1.2, the clock distribution network of Intel’s recently announced dual-core

Itaniumr processor uses two levels of PST clock buffers to counter clock skews caused by process

variations and improve the timing yield [11]. The tunable second level clock buffers (SLCBs) at the

terminals of L1 route can be dynamically adjusted by on-chipclock phase detection hardware to cancel

clock skew variations. They can also be programmed from the test access port (TAP) for timing opti-

mization. There is also a second level of PST clock buffers atevery terminal of the L2 route. This level

consists∼ 15K clock vernier devices (CVDs) for clock fine-tuning through scan.

Takahashi et al. [64] propose a post-silicon clock timing adjustment method that adjusts the clock

arrival times to compensate for path delay variations. The idea is similar to that in [9,11,61–63], except
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Figure 1.2: Clock distribution network of a dual-core Intelr Itaniumr processor (Source: Intel).

that the authors propose to put PST clock buffers at the clockinput pins of selected sequential elements or

design modules instead of a brute-force design method that inserts a PST clock buffer for each sequential

element or at every clock tree terminals at certain levels.

Post-silicon clock tuning not only improves the timing yield but also reduces clock power by avoiding

the use of grid-based clock distribution networks. However, there is no systematic way to construct a

PST clock tree thatprovides the maximum tuning capability for timing yield improvements with minimum

hardware cost. Therefore, the hardware overhead has limited the use of PSTclock trees in high end

microprocessors. To make PST clock tree an attractive design-for-yield choice, it is essential to develop

PST clock tree synthesis algorithms for hardware cost reduction.
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1.3 Organization of the Dissertation

This dissertation provides new solutions to the timing convergence and timing yield issues through ad-

vancements on four clock design techniques: clock tree optimization, clock scheduling, clock tree topol-

ogy optimization and post-silicon clock tuning. First, improvements are proposed on current clock design

flows by considering timing uncertainties in the early design stage. Studies on post-silicon clock tuning,

an emerging technique to tackle timing convergence and timing yield issues, are then presented.

Chapter 2 begins with clock tree optimization, the core of current clock design flows. A novel zero-

skew clock tree optimization algorithm [66,67] for clock delay minimization is proposed. The optimized

clock trees are free from design-inherited clock skews and allow faster timing convergence due to the

reduced process-induced clock skews.

The clock arrival time constraints are generated by clock scheduling. Although clock scheduling has

been well-studied in the context of performance improvement, little research has been done on applying

clock scheduling for timing yield improvement. Chapter 3 presents a new clock scheduling scheme

that combines a novel false-path-aware statistical timinganalysis method with a fast clock scheduling

algorithm [68, 69]. A false-path-aware gate-sizing method, which preserves more timing margins for

clock scheduling, is also investigated [70]. The new clock scheduling scheme achieves significantly

better timing yields through better timing margin utilization.

Clock tree optimization algorithms usually start from a given clock tree topology. Therefore, timing

convergence is affected by the choice of clock tree topology. In Chapter 4, a new clock tree topology

optimization algorithm is proposed. The new algorithm takes into consideration both the estimations

of path delay and clock skew uncertainties, and sequential element locations. The clock trees based on

the optimized clock tree topologies require significantly less timing margins to tolerate process related
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timing variations, which speeds up the timing convergence.

The current correct-by-construction clock design philosophy will eventually make the design process

both difficult and overlong in nanometer technologies due tothe increasing timing uncertainties. The PST

clock tree, a clock structure that can adapt itself in response to timing variations, is a versatile solution

to the timing challenges in new technologies. In Chapter 5, two PST clock tree synthesis algorithms are

proposed. The algorithms insert PST clock buffers only at the critical locations in a clock tree and greatly

reduce the hardware cost compared to current design methods.

Figure 1.3 demonstrates the integration of proposed clock design techniques in this dissertation.

Chapter 6 summarizes the contributions of the dissertationand presents future research directions.
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Figure 1.3: The integration of proposed clock design techniques.
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Chapter 2

Zero-Skew Clock Tree Optimization

Clock delay and clock power are two of the most important clock tree optimization objectives. It is

observed in [16] that process-induced clock skews can reach10% of the clock delay. By reducing the

clock delay, process-induced clock skews in the manufactured chips can also be minimized. Clock trees

can easily consume over30% of the total power due to their high switching activities [8,63]. Therefore, it

is also very important to reduce the total capacitance of a clock tree in order to control the chip power. The

techniques for clock delay and power minimization include buffer insertion, buffer sizing and wire sizing.

In this chapter, a novel zero-skew clock tree optimization algorithm that applies all three techniques

simultaneously is proposed. The algorithm is based on a two-phase optimization framework adopted by

van Ginneken’s algorithm [17]. First, the delay and power models and van Ginneken’s algorithm are

reviewed. A novel design space representation approach is presented and illustrated with a simplified

clock tree optimization problem considering only wire sizing. Details on extending the algorithm for

simultaneous buffer insertion, buffer sizing and wire sizing are then presented. Finally, the effectiveness

of the algorithm is demonstrated by the experimental results.
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2.1 Preliminaries

2.1.1 Delay and Power Models

Interconnect delay and buffer delay are the two delay components in a clock tree. Interconnects and

buffers are modeled with the resistance-capacitance (RC) model and their delays with the Elmore delay

model [71]. A clock tree with a given routing rooted at nodev is denoted byTv. For a wire with lengthl

and widthw, the wire resistance islr0

w
and the wire capacitance islc0w, wherer0 andc0 are the resistance

and capacitance of a1µm2 wire. The wire capacitance is modeled as two equal capacitors attached to

both ends of the wire. For a buffer with gate widthwb, the gate capacitance at its input iswbcb and its

effective output resistance isrb

wb
, wherecb andrb are the unit-width gate capacitance and resistance. The

buffer is modeled as a ramp voltage source with an intrinsic delay oftc.

The clock tree power consumption is generally modeled asP = fCV 2 + Ps + Pl, wheref is

the switching frequency,V is the voltage swing,C is the sum of all interconnect capacitance, buffer

gate capacitance, and sink loads.Ps accounts for the buffer short-circuit power andPl accounts for the

leakage power. It is observed thatPs is less than 10% in proper designs [72–74]. Leakage power is a

growing component in nanometer designs and consumes about 50% of the total chip power in 65nm

technologies [75]. Leakage power reduction is usually doneby system-wide techniques such as using

high-k dielectric for gate oxide, multiple-threshold CMOS, sleeptransistor insertion, etc. [76]. Moreover,

the switching factor of the clock tree is much higher than therest of the chip, makingPl overP in a clock

tree much smaller than 50%. Therefore, the switching powerP = fCV 2 alone is a reasonable estimate

of the total clock tree power.
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2.1.2 Van Ginneken’s Algorithm

Van Ginneken’s algorithm is proposed to solve the buffer placement problem. Given a distributed RC-

tree, a buffer library, and a set of legal buffer positions, the goal is to find a buffered RC-tree that min-

imizes the maximum delay from the root node to all leaf nodes.The algorithm consists of a bottom-up

and a top-down phase. During the bottom-up phase, the combinations of total downstream capacitance

(cv) and longest delay (Dv) from the root (v) of a tree branch to its leaf nodes are recorded in 2-tuples,

(cv , Dv). When two branches merge together, the cross-products of the 2-tuple sets from both sides

are generated. The total downstream capacitance in a new 2-tuple is the sum of the capacitances from

both branches. The longest delay is the maximum delay of bothbranches. For each delay value, only

the tuple that has the smallest capacitance value is kept. For a buffer library withB buffer types, there

areB buffering options at each legal buffer position. Each option is represented by a 3-tuple, (b, Cb,

Dv + Rb × cv), in which Rb is the buffer resistance andCb is the input capacitance of a typeb buffer.

For each buffer type, (cv , Dv) is chosen such thatDv + Rb × cv yields the smallest delay. Non-buffered

options are represented by (φ, cv , Dv).

Figure 2.1 shows the bottom-up phase of van Ginneken’s algorithm. To simplify the example, it is

assumed that there is only one buffer type and legal buffer positions are right before the branching points

of the tree. All values are equal to one unless otherwise noted. Figure 2.2 shows the top-down phase of

van Ginneken’s algorithm.

There are two major limitations of van Ginneken’s algorithmwhen applied to clock tree optimiza-

tions. First, the algorithm only minimizes the maximum clock delay and it may result in large clock

skews. Second, if the van Ginneken’s algorithm is modified such that clock skews are propagated along

with clock delays, multiple buffered options for each buffer type need to be kept at each legal buffer
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Figure 2.1: The bottom-up phase of van Ginneken’s algorithm.
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Figure 2.2: The top-down phase of van Ginneken’s algorithm.
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Figure 2.3: The design space concept.

position. This will result in combinatorial explosion.

2.2 Zero-Skew Clock Tree Optimization with Wire Sizing

2.2.1 Design Space Concept

Figure 2.3(a) shows a small clock tree with three wire segments. Assuming the range of wire width is

(wm, wM ), the design space of the clock tree is a cube as shown in Figure2.3(b). It is clear that not

every point in the design space is a zero-skew solution. If the two branches connecting to the clock

sinks have equal length and the two clock sinks have equal capacitance, the zero-skew solution space is

a square region as shown in Figure 2.3(c). The set of wire widths, (w1, w2, w3), that yields the lowest

clock power is(wm, wm, wm) since it gives the lowest wire capacitance over the entire zero-skew design

space. However, it is not easy to see which wire sizing gives the lowest clock delay. For a clock tree with

n wire segments, the design space is a hypercube in ann-dimensional space.
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Figure 2.4: The DC regions of the subtrees in a clock treeTv.

2.2.2 The DC Region Approach

In the Elmore delay model each subtree is characterized by the total downstream capacitance at its root

node. For a zero-skew clock treeTv, each set of wire widths, or anembedding, determines a pair of clock

delay and capacitance values (dv, cv). The whole zero-skew design space ofTv can be represented by

theDC regionΩv on theDC plane, an X-Y plane where the coordinates of the Y-axis and the X-axis are

the clock delay and capacitance values. Figure 2.4 shows theDC regions ofTv, Tvl
, andTvr considering

only wire sizing. The DC region of a level-1 node such asΩvl
is a curve and the DC regions of higher

level nodes have complex shapes. The minimum delay and minimum power achievable by wire sizing

can be observed from the DC regions. The Y-coordinate of the bottom-most point in a DC region is the

minimum delay and the X-coordinate of the left-most point ina DC region is the minimum power.
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Figure 2.5: Illustration of the embedding selection steps.

A clock tree is composed of twobranches. The left branch ofTv is enclosed in the dashed circle in

Figure 2.4 and is denoted asT+
vl

. The DC region ofT+
vl

, a branch DC region, is denoted asΩ+
vl

and it

can be obtained by applying a transformation onΩvl
. The zero-skew constraint requires the delays along

both branches to be the same, thusΩv can be obtained by an equi-delay merge operation onΩ+
vl

andΩ+
vr

.

Therefore, the DC region of a clock tree can be constructed ina bottom-up fashion recursively with two

major steps. First, the branch DC regions are obtained by transforming the DC regions of the left and

right subtrees. Second, the DC region is obtained by mergingthe branch DC regions.

Generating embeddings from the DC regions is an inverse process. The process is illustrated in

Figure 2.5. First the target clock delay and capacitance,dt andct, are chosen from the DC region of

the root node of the clock tree. The capacitance is then splitinto two branches. The DC regions of the

left and right subtrees are scanned and feasible target clock delays and capacitances of the subtrees are
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Figure 2.6: Characterize a buffered clock treeTv with three parameters.

selected. From the selected points in the branch DC regions and the subtree DC regions, the wire widths

above the subtrees can be determined.

The use of DC regions avoids the need of directly handling high dimensional design spaces. By

propagating DC regions, all zero-skew solutions are preserved. Since DC regions have irregular shapes,

they are stored as a set of horizontal segments.

2.3 Simultaneous Buffer Insertion, Buffer Sizing and Wire Sizing

2.3.1 DC Regions of Buffered Clock Trees

A buffered clock treeTv can be characterized by the three parameters as shown in Figure 2.6. The first

two parameters,dv andcv , are the clock delay and the capacitance seen at the root nodev. The total

switching capacitance ofTv is the sum ofcv andcsv, the capacitance shielded fromv by the buffers.



24

Thus the zero-skew design space can be represented with a three-dimensional DC region, where the

coordinates of the Z-axis, X-axis, and Y-axis are the clock delay, capacitance seen at the root node, and

the shielded capacitance. The major steps for handling three-dimensional DC regions are highlighted in

the following sections.

2.3.2 Branch DC Regions and Projected Scan-Line Sampling

When there is no buffer inserted above the root of the subtree, only the effects of wire sizing from the

wire segment connecting the root of the branch to the root of the subtree need to be considered. To

capture the irregular shape of a branch DC region, sampling on wire-width is applied and the intersection

of the branch DC region and a set of clock delay scan-lines areobtained. The branch DC region can then

be represented by a set of horizontal segments. Since the branch DC region is the projection of a zero-

skew design space, the project-sample-scan procedure is referred to asprojected scan-line sampling. The

transformation is defined by the following equations obtained directly from the Elmore delay model.

Wire Sizing Transformation:

d+
v = dv +

lvr0

we(v)

(

lvwe(v)c0

2
+ cv

)

(2.1)

c+
v = cv + lvwe(v)c0, (2.2)

∀ (dv , cv) ∈ Ωv.

The edge connectingv to its parent node isev and the length ofev is lv. The wire-width ofev is

we(v) andwm ≤ we(v) ≤ wM . Since wire sizing does not affectcsv, c+
sv = csv and a three-dimensional

sampled branch DC region can be obtained by projected scan-line sampling. It is denoted by

Ω+
v = Wv(Ωv).
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If a buffer is inserted above a subtree, the effects of both wire sizing and buffer sizing need to be

considered. Therefore, the transformation is defined by different equations.

Buffer Insertion Transformation:

d+
v = dv + tc +

l2vr0c0

2
+

lvr0cbwb(v)

we(v)
+

rbcv

wb(v)
(2.3)

c+
v = cbwb(v) + lvwe(v)c0, (2.4)

c+
sv = csv + cv , (2.5)

∀ (dv, cv , csv) ∈ Ωv.

Equation (2.3) defines the difference of clock delays between a branch and its subtree, which is

composed of the buffer intrinsic delay, the delay caused by wire and buffer capacitance, and the buffer

delay by driving the shielded capacitance. The width of the buffer abovev is wb(v). Equations (2.4)

(2.5) define the change of the capacitance seen from the root and the shielded capacitance of a branch.

Samplings are applied on buffer-width and shielded capacitance, and projected scan-line sampling is

used to obtain the sampled DC regions with a set of horizontalsegments along the X-axis. It is denoted

by

Ω+
v = Bv(Ωv).

The equi-delay merge takes one segment from each sampled branch DC region with the same clock

delay and generate a new segment wherecv = cvl
+ cvr andcsv = c+

svl
+ c+

svr
. The merge operator is

denoted asf and the merge operation is written as

Ωv ← Ω+
vl

f Ω+
vr

.

Figure 2.7 shows the steps of projected scan-line sampling and equi-delay merge in obtaining the sampled

DC region of an unbuffered two-level clock tree.
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Figure 2.7: Obtain the sampled DC region of an unbufferd two-level clock tree.

2.3.3 Inverter Insertion

In practice, inverter insertion uses lesser area and is preferred over buffer insertion. However, inserting

an inverter causes a 180 degree phase shift on the clock phase. The clock phase issue is easily accom-

modated by keeping two DC regions and branch DC regions at each nodev, where

Ωv = Ωvp ∪ Ωvn,

Ω+
v = Ω+

vp ∪ Ω+
vn.

From this point on in this dissertation the term buffer refers to inverter. Figure 2.8 shows the steps of

projected scan-line sampling in obtaining the sampled branch DC region from the sampled DC region.

The complete bottom-up DC region construction algorithm ispresented in Figure 2.9.
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Figure 2.8: Obtain the sampled branch DC region of a bufferedbranch. Only the curves withwb = wbm

are shown.

Procedure: ConstructDC(Tv)

Input: a clock treeTv with given routing rooted at nodev

Output: DC regions and branch DC regions ofTv

if v is a leaf nodethen1

Ωvp ← (dv , cv, 0),Ωvn ← φ2

else3

call ConstructDC(Tvl
)4

call ConstructDC(Tvr )5

Ω+
vlp
←Wvl

(Ωvlp) ∪ Bvl
(Ωvln)6

Ω+
vln
←Wvl

(Ωvln) ∪ Bvl
(Ωvlp)7

Ω+
vrp ←Wvr(Ωvrp) ∪ Bvr(Ωvrn)8

Ω+
vrn ←Wvr(Ωvrn) ∪ Bvr(Ωvrp)9

Ωv ← (Ω+
vlp

f Ω+
vrp) ∪ (Ω+

vln
f Ω+

vrn)10

end11

Figure 2.9: The bottom-up DC region construction algorithm.
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2.3.4 Complexity

Let the number of nodes in a clock tree ben, the numbers of clock delay scan-line for a sampled DC

region bep, and the numbers of samples taken on buffer width and shielded capacitance beq, andr. A

sampled DC region is represented byr groups of horizontal segments lying on X-Z planes, with each

group containingp segments. To generate a branch DC region,q · r curves are generated from each

segment, and each of thep ·q ·r2 curves is used to intersect withp scan-lines. Thus the complexity of the

algorithm isO(np2qr2) and memory usage isO(npr). Note that there can be more than one segment on

a clock delay scan-line. However, the gaps between the segments tend to be filled-up quickly as the DC

regions are propagated upward toward the root node. For example, multiple segments can overlap and

become a single segment either when the sampled branch DC regions are created or the sampled branch

DC regions are merged by thef operator. In practice, the number of segments on a scan-lineis always

less than four and this factor is excluded from the complexity analyses.

While the approaches basing on van Ginneken’s algorithm suffer from exponential growth on the

size of the solution set, the proposed algorithm only takes polynomial runtime and memory usage. This

advantage comes from the projected scan-line sampling. Since each line segment captures an infinite

number of solutions, the proposed algorithm encodes more information with the same amount of memory

and results in a better runtime and memory usage.

2.3.5 Slew-Rate Control and Useful-Skew

One of the purposes of buffer insertion is to adjust the clockslew-rate. If the load capacitance of a

buffer is too large, the output signal has a slow rise and falltime, which in turn increases the short-circuit

power of its downstream buffers. One way to control the slew-rate is to limit the load capacitance to a
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certain value. This constraint is accounted for in the proposed algorithm by limitingcv in the bottom-up

phase and discarding long slew-rate designs. In the bottom-up phase, the DC regions can become large

because of the embeddings with excessive buffers, which have large clock delay and total capacitances.

By setting upper limits ondv and(csv + cv), those ill-buffered embeddings are excluded from the DC

regions.

Recently, useful-skew [77] concepts have been widely proposed to speed up timing convergence

and compensate for timing uncertainties in physical layouts. The proposed algorithm accommodates

DC region generation for a useful-skew design space by assigning useful-skew values todv at each

leaf node. Furthermore, in low-power designs not requiringhigh clock frequencies, DC regions can be

generated for a bounded-skew design space to allow more aggressive power optimizations. In this case,

the skew-bounds are assigned todv. ThusΩv of a leaf node becomes a vertical segment, of which the

Z-coordinates of the end points are the maximum and minimum acceptable clock arrival times and the

X-coordinate is the sink capacitance.

2.3.6 Embedding Selection

The top-down embedding selection algorithm is illustratedby the following five steps:

1. If nodev is the root, select desired(d̂v , ĉv, ĉsv) ∈ Ωv.

2. With (d̂v, ĉv , ĉsv) ∈ Ωv, determine(d̂v , ĉ
+
vl

, ĉ+
svl

) ∈ Ω+
vl

and(d̂v , ĉ
+
vr

, ĉ+
svr

) ∈ Ω+
vr

by breakingĉv

andĉsv into ĉ+
vl

, ĉ+
vr

, andĉ+
svl

, ĉ+
svr

such that̂cv = ĉ+
vl

+ ĉ+
vr

, ĉsv = ĉ+
svl

+ ĉ+
svr

.

3. With (d̂v, ĉ
+
vl

, ĉ+
svl

) ∈ Ω+
vl

, find (d̂v , ĉvl
, ĉsvl

) ∈ Ωvl
such that either (2.1)-(2.2) or (2.3)-(2.5) are

satisfied.

• To satisfy (2.1)-(2.2),bvl
= φ, ĉsvl

= ĉ+
svl

, andwe(vl) is determined bŷcvl
.
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• To satisfy (2.3)-(2.5),̂cvl
= ĉ+

svl
− ĉsvl

, andwb(vl), we(vl) are determined by(d̂vl
, ĉvl

, ĉsvl
).

4. Repeat Step 3 for(d̂v, ĉ
+
vr

, ĉ+
svr

) ∈ Ω+
vr

.

5. Repeat the complete process atvl andvr.

To highlight the purpose of each step, Step 1 determines the target clock delay, capacitance seen at the

root node, and shielded capacitance, Step 2 splits the capacitance budgets to two branchesT+
vl andT+

vr,

and Step 3 determines buffer widths forbv and wire widths forev.

2.4 Experimental Results

The proposed algorithm is implemented in C++ and run on a 1GB 1.2GHz Pentium IV PC. The bench-

marksr1-r5 are taken from [12]. All simulations user0 = 0.03Ω, c0 = 2 × 10−16F , wm = 0.3µm,

wM = 3µm. The parameters of the buffers arecb = 40fF , rb = 100Ω, tc = 30ps, wbm = 1, wbM = 10,

and the channel length equals0.3µm. The initial routings are generated by the BB+DME [13] algorithm.

The sampling resolution is set top = q = r = 64.

2.4.1 Delay and Power Minimization

Table 2.1 shows the minimum delay and minimum power solutions captured by projected scan-line

sampling. The delays shown are the Elmore delays multipliedby ln2. The ’Load’ columns show the

total clock tree capacitances, including wire, buffer, andclock sink capacitances. The delay gains are

the initial delays divided by the optimized delays and the load gains are the load reductions divided

by the initial loads. With simultaneous buffer insertion, buffer sizing and wire sizing, the minimum

power embeddings consume23% ∼ 34% less power and the delay improves2X ∼ 24X over their

initial routings. Minimum delay solutions have more than 2Xspeedup compared with minimum power
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Initial(w = 1µm) ConstructDC (wm = 0.3µm, wM = 3µm, wbm = 1, wbM = 10, p = q = r = 64)

Input Delay Load Minimum delay solution Minimum power solution CPU

(ns) (pF) Delay Gain Load Gain Buffers Delay Gain Load Gain Buffers (min.)

r1(267) 1.097 45.2 0.145 7.57 36.6 19.0% 34 0.500 2.20 29.8 34.1% 25 1.4

r2(598) 3.210 93.6 0.218 14.72 78.9 15.7% 61 0.818 3.93 65.0 30.6% 67 3.2

r3(862) 4.590 126.7 0.236 19.43 107.9 14.8% 106 0.563 8.15 84.6 33.2% 64 3.6

r4(1903) 13.184 266.2 0.454 29.02 198.6 25.4% 116 1.199 10.99 189.5 28.8% 115 10.5

r5(3101) 24.883 413.0 0.545 45.65 331.5 19.8% 384 0.999 24.90 317.6 23.2% 280 16.1

Table 2.1: Clock delay and power consumption before and after optimization.

solutions. The power difference between minimum delay and minimum power solutions decreases with

larger circuits and drops to5% in r5. Compared with the results using only wire sizing, which achieves

an average of 3.3X delay reduction with21.6% more power (with1µm ≤ w ≤ 4µm) [66], simultaneous

buffer insertion, buffer sizing and wire sizing is not only much more efficient in reducing clock delay but

also more power efficient. Figure 2.10 shows the DC region ofr5.

2.4.2 Robustness to Process Variations

Figure 2.11(a) shows the clock delay and power trade-off curves ofr1-r5. The power differences be-

tween minimum delay and minimum power embeddings are relatively small compared with their clock

delay differences. Figure 2.11(b) shows the worst-case process-induced clock skews of the minimum

delay and minimum power embeddings ofr1-r5 with four systematic process variation models. In these

models, cross-chip feature-size variation increases linearly from 0µm to 0.05µm affecting wire-widths,

buffer-widths, and buffer channel-lengths. The four process variation models are: top-to-bottom, bottom-

to-top, left-to-right, and right-to-left. Not surprisingly, process-induced clock skew is highly correlated

to clock delay and Figure 2.11(a) is a good approximation forprocess-induced clock skew and power

trade-offs. For low-power applications, clock delay and robustness to process variation can be traded for

clock power by choosing minimum power embeddings. For high-performance designs, minimum delay
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Figure 2.10: The sampled DC region ofr5. The circles indicate the minimum delay and minimum power
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Discretization-induced clock skew(ps) Process-induced clock skew(ps)

Input ∆W = 0.05µm ∆W = 0.10µm ∆W = 0.15µm ∆Wmax = 0.05µm

r1(267) 1.81 4.63 3.99 8.87

r2(598) 2.14 7.40 6.01 13.23

r3(862) 2.76 6.39 9.88 19.42

r4(1903) 9.36 18.88 29.41 37.88

r5(3101) 9.66 21.94 35.03 40.84

Table 2.2: Comparison between discretization-induced clock skew and process-induced clock skew.

embeddings are in general preferable for their higher process variation tolerance and near-optimal power

consumption.

2.4.3 Discrete Sizing

In industrial applications wire and buffer widths usually take discrete values. The buffer and wire widths

generated by the proposed algorithm can be discretized to comply with layout restrictions. After dis-

cretization the embeddings are no longer zero-skew. Nevertheless, discretization introduces random

variations to the clock tree and their effects tend to canceleach other out. Process variation is usually

systematic and affects buffer channel-widths as well. Thusdiscretization-induced clock skew is much

less significant than process-induced clock skew and near-zero-skew can still be achieved using the pro-

posed algorithm with an additional discretization step.

Table 2.2 shows the discretization-induced clock skews andprocess-induced clock skews of mini-

mum delay embeddings from Table 2.1. Upon discretization, all wire and buffer widths are rounded to

the nearest multiples of unit widths∆W . Results show that discretization-induced clock skew is within

tolerable range and the proposed algorithm is suitable for industrial applications.
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Figure 2.12: The relative distances from minimum delays to optimal delays. (a) In wire sizing prob-
lems. (b) In simultaneous buffer insertion, buffer sizing and wire sizing problems. Optimal delays are
approximated by nonlinear curve fitting.

2.4.4 Optimality and Runtime

Theoretically, the proposed algorithm requires infinite samples in order for the minimum delay solutions

to converge to optimal delay. Since the runtime complexity is polynomial, the convergence rate affects

the scalability of the algorithm. Figure 2.12 shows the relative distances from minimum delays to optimal

delays in which optimal delays are approximated by nonlinear curve fitting. The results show that it takes

reasonable samples in finding good solutions. If the number of samples is fixed, the runtime is linear

with respect to the size of the clock tree. Thus the algorithmscales well for large clock trees.
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Chapter 3

Statistical-Timing-Driven Clock

Scheduling

Timing yield can be improved by better timing margin utilization. The timing margin of a combinational

path is defined by its path delay and the clock arrival times ofits source and destination sequential

elements. Therefore, clock scheduling can be used to improve the timing yield. In the first section, the

clock scheduling problem and its use for improving the timing yield is reviewed. In the second section, a

novel false-path-aware statistical timing analysis method is proposed to provide the information for clock

scheduling. In the third section, statistical timing information is combined with a parametric shortest path

algorithm to obtain the clock schedule that maximizes the timing yield efficiently. In the last section, a

false-path-aware gate sizing method, which preserves moretiming margin than traditional gate sizing

algorithms with little or negligible area penalty, is proposed. Significant timing yield improvements are

achieved (> 20%) on many of the benchmark circuits due to the extra timing margins and better timing

margin utilization.
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3.1 Preliminaries

A sequential circuit can be represented by a directedcircuit graphG = (V,E). A vertexv ∈ V represents

a latch or a flip-flop and an edgeeij = (i, j) ∈ E indicates that there is at least one combinational

path from vertexi to vertexj. A path p is a sequence of vertices< v0, v1, . . . , vk > in G such that

(vi, vi+1) ∈ E for i = 0 . . . k − 1 and |p| is the number of edges in the path. Acyclec is a path with

v0 = vk that contains at least one edge. A circuit graph may not be connected if the circuit contains

independent sub-circuits. Without loss of generalityG is assumed connected,|V | = n, and|E| = m in

this chapter.

3.1.1 Clock Period Optimization

Figure 3.1(a) shows an example circuit with three flip-flops.The maximum and minimum path delays

betweenFFi andFFj areDij anddij , respectively. LetCP be the clock period, andT j
setup andT

j
hold

be the setup and hold time ofFFj . The clock arrival time toFFi is Ti and the clock skew betweenFFi

andFFj is αij = Ti − Tj . By absorbing theFF delays (C to Q delay,TCQ) as part of the path delays,

the hold time and setup time constraints can be written as:

αij ≥ T
j
hold − dij . (3.1)

αij ≤ CP −Dij − T
j
setup. (3.2)

There are also two sets of constraints stemming from the clock skew definitionαij = Ti − Tj . For each

flip-flop pair, there could be more than one path in between. The path constraintsrequire the sum of the

clock skews for these paths to be a constant. Thecycle constraintsrequire the sum of the clock skews

of all cycles to be zero. For a cycle< 1, 2, 3, 1 >, the cycle constraint equalsα12 + α23 + α31 = 0.

Although a circuit graph can have an exponentially growing number of path and cycle constraints as the
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circuit size increases, many of the constraints are linearly dependent. These constraints can be rewritten

as

[BαBαBα III]









αbαbαb

αcαcαc









= 0, (3.3)

whereBαBαBα is a(m− n + 1) × (n − 1) matrix,III is a(m− n + 1) × (m− n + 1) identity matrix,αbαbαb is

a (n − 1) × 1 column vector corresponding to a maximum independent set ofskew variables, andαcαcαc is

a (m− n + 1)× 1 column vector corresponding to the rest of the skew variables. The(n− 1) elements

of αbαbαb can be found by applying any spanning tree algorithm from anyvertexv to the (undirected version

of the) circuit graph. Afterαbαbαb is determined, each row ofBαBαBα associated withαxy ∈ αcαcαc can be obtained

by taking the difference of the path costs fromv to x and fromv to y.

Theclock period optimization problemcan be formulated as follows:

Minimize CP

s.t. T
j
hold − dij ≤ αij ≤ CP −Dij − T

j
setup

[BαBαBα III]









αbαbαb

αcαcαc









= 0.

The constraints can be extracted from the circuit structureand the optimal clock period can be obtained

by linear programming solvers as done in [33]. Since the circuit graph is usually available, the problem

can also be solved using a graph-theoretical approach without the the constraint extraction step. In

[34], a timing graphG(CP ) is created by replacing the hold time constraint ofαij with anh-edgewith

cost−(T j
hold − dij) from FFi to FFj , and by replacing the setup time constraint ofαij with an s-

edgewith cost(CP − Dij − T
j
setup) from FFj to FFi. Figure 3.1(b) shows the timing graph of the

circuit in Figure 3.1(a) with zeroThold andTsetup. Clock periodCP is feasible ifG(CP ) contains no
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Figure 3.1: Illustration of timing graph. (a) An example circuit. (b) The timing graph.

negative cost cycle. Therefore, the optimal clock period can be obtained through a binary search between

[0,max(Dij) + T
j
setup] by applying the Bellman-Ford algorithm onG(CP ). An alternative is to solve

the parametric shortest path problem by a path-pivoting algorithm [43]. In Figure 3.1(b), the optimal

clock period is3 and the threes-edgesform a zero-cost cycle.

3.1.2 Clock Skew Optimization

The optimal clock period and the clock schedule found in the previous section will result in low timing

yield designs since many skew values are on their upper or lower bounds and have zero slack. Let the

feasible skew region(FSR) ofαij be [T j
hold − dij, CP − Dij − T

j
setup]. It is evident that the choice of

clock period only affects the right boundary of the region. Figure 3.2(a) shows the FSRs of the clock
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Figure 3.2: The impact of timing uncertainty on clock periodoptimization.

skew variables in Figure 3.1. Let the initial clock periodCP = 5. The FSRs ofα12 andα23 are[−2, 3]

and [−3, 2] while the FSR ofα31 is [−1.5, 1]. When the clock period is reduced, the right boundaries

of the FSRs ofα12, α23, andα31 move to the left while the left boundary of−α12 − α23 moves to the

right. Due to the cycle-constraintα31 = −α12 − α23, the FSR ofα31 has to overlap with the range of

−α12−α23 to yield a solution. Therefore, the optimal clock periodCP ′ is 3 (2 time units less thanCP )

and the clock skew schedule(α12, α23, α31) = (1, 0,−1) indicated by the dashed lines has zero slack.

Assuming the maximum timing variations of the minimum and maximum path delays are both one

time unit. A simple way to guarantee the clock schedule will have slacks at least as large as the maximum

timing variations is to pre-allocate a timing margin of one time unit at both ends of the FSRs and then

perform clock period optimization. As shown in Figure 3.2(b), one of the feasible clock skew schedules
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(α12, α23, α31) = (0, 0.5,−0.5) is indicated by the dashed lines and the optimal clock periodCP ′ is

4.5 (0.5 time unit less thanCP ). The slacks on(e12, e23, e31) are (2, 1, 1). This approach increases

the optimal clock period by an amount no less than the pre-allocated timing margin (1.5X in the above

example). It is not desirable to allocate a timing margin equals to the maximum timing variation since

(i) the actual timing uncertainty cannot be accurately obtained, (ii) the maximum timing variation is too

pessimistic, and (iii) the ratio of clock period increase versus the amount of pre-allocated timing margin

can be large. In practice the clock period is usually determined by product requirement and a good clock

schedule that maximize the timing yield needs to be determined.

A simple observation suggests that the skew values should bechosen as close to the middle points

of their FSRs to maximize the slacks. Neves et al. [35] formulate the clock skew optimization problem

as a least square error problem where the error is defined as the difference between the skew and the

middle point of its FSR. However, the formulation may reducethe slacks of some skew values to zero to

minimize the total error. Therefore, the resulting clock schedule may not be optimal in terms of timing

yield. Albrecht et al. [39] adopt the minimum balance algorithm [43] to maximize the slacks of all skew

values iteratively. In each iteration aslack optimization problemthat maximizes the minimum slack is

solved by a parametric shortest path algorithm. The critical cycle that has the minimum average slack is

contracted into a single vertex and the process repeats until all skew values are assigned. This algorithm

ensures the slacks along the timing-critical cycle are the same. However, it does not consider the path

delay differences between the edges of the cycle. Thisslack-balancingclock scheduling algorithm is the

most plausible method in the existing literature.
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3.2 False-Path-Aware Statistical Timing Analysis

In nanometer designs, statistical timing analysis on path delays is a critical tool used to measuring the

growing impacts of process variations. There are two major approaches to obtain path delay distributions.

On one hand, a block-based algorithm performs timing analysis by propagating the delay distributions

of intermediate nodes to the output in a breadth-first manner. Although the runtime of block-based

algorithms is linear to the circuit size, special treatments are required to account for correlations and re-

convergence paths. On the other hand, a path-based algorithm can handle correlations and reconvergence

of paths. However, the number of paths in a circuit can grow exponentially with respect to the circuit

size. Therefore, efficient algorithms are required to select a set of important paths for analysis.

Most of the statistical timing algorithms, either block-based or path-based, do not consider false

paths. In other words, the delay distributions are obtainedassuming all structural paths are sensitizable.

Liou et al. [48] combine a logically true path selection algorithm with a statistical timer for false-path-

aware statistical timing analysis. Runtime is reduced by selecting only the true paths for analysis and

the results are more accurate. The logically true path selection algorithm works fromPO to PI level

by level. New partial paths are created by appending the fan-in gates to the original paths. However, a

new partial path will be created only when it is sensitizableand its expected slack is below a predefined

threshold. The expected slack is estimated by the worst casestatistical timing analysis and is subject to

error. Moreover, the number of true paths the algorithm selects is affected by the threshold value.

For clock scheduling, only the long and the short true paths between pairs of flip-flops are of interest.

An implicit true path enumeration algorithm is developed tofind thek-longest (k-shortest) true paths

efficiently. To find thek-longest paths betweenPI andPO, the expected delay (ED) from each internal

node toPO is first calculated. The algorithm traverses fromPI to PO by selecting the path with the
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Figure 3.3: Implicit enumeration of true paths using dynamic delay path tree.

highestED and the gates on the selected path are added to a dynamic delaypath tree (DPT ). For newly

added gates, necessary assignments and maximum implications are performed using path sensitization

criteria [46] to check their sensitizability. The search continues if sensitization is successful. Otherwise,

theEDs are updated as the algorithm backtracks from the current node of theDPT toPI. The algorithm

resumes whenPO is reached or it backtracks toPI until thek-longest true paths are found. The paths are

then sent to path-based statistical timers, such as [46, 78], for analysis. By taking the negative expected

delay asED, the algorithm finds thek-shortest paths.

Figure 3.3 demonstrates the implicit true path enumerationalgorithm using a dynamic delay path tree.

The numbers on the edges of theDPT are theEDs. The algorithm first searches along< G1, G2 >

and backtracks becauseG2 is not sensitizable. The algorithm continues on< G7, G8, G9 > because it

has the highestED from PI. After the second backtracking the algorithm finds the longest true path



43

< G1, G6, G4 >. The results of maximum implication are stored in theDPT nodes so that they can be

reused when the algorithm backtracks to a previously visited path. Although there are two structurally

longest paths,< G1, G2, G3, G4 > and< G1, G2, G5, G4 >, they are dropped and never explicitly

enumerated as soon as< G1, G2 > is found un-sensitizable.

3.3 Statistical-Timing-Driven Clock Scheduling

3.3.1 Clock Scheduling by the Parametric Shortest Path Algorithm

A clock schedule determined at design time is not always feasible for every manufactured chip sincedij

andDij are random variables. It is important to utilize the statistical timing information ofdij andDij

to find the optimal clock schedule that maximizes the timing yield. Define theslackof eij in a timing

graph assij = αij + w(eij) = Ti + w(eij)− Tj. The total slack on a cyclec =< v1, v2, . . . , vk, v1 > is

s(c) =
∑

eij∈c

sij =
∑

eij∈c

w(eij). (3.4)

This s(c) is a limited resource and the slack of an edge cannot be arbitrarily increased. Therefore, clock

scheduling can be viewed as the process of distributing cycle slacks to edges.

To optimize the timing yield, cycle slacks should be distributed to an edge according to the stan-

dard deviation of its associated path delay. Define thenormalized slackof h-edgeeij as λh(eij) =

Ti+µ(dij )−Tj−T
j
hold

σ(dij ) and that of s-edgeeji asλs(eji) =
CP+Tj−T

j
setup−Ti−µ(Dij)

σ(Dij ) . The hold time and setup

time constraints can be rewritten as:

Ti + µ(dij) ≥ Tj + T
j
hold + σ(dij)λh(eij). (3.5)

Ti + µ(Dij) + σ(Dij)λs(eij) ≤ CP + Tj − T
j
setup. (3.6)

Note in the above the hold time and setup time slacks,λh andλs, are normalized with the path delay
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uncertainties, and these should be maximized to maximize the timing yield. After optimization, paths

with larger path delay uncertainties will obtain larger slacks (σ · λ).

The optimal clock schedule can be obtained by a graph-theoretical algorithm. First, the edge weight

of an h-edgeeij in G(CP ) is replaced by a parametric edge weight ofµ(dij)− T
j
hold − σ(dij)λ and the

edge weight of an s-edgeeji is replace by a parametric edge weight ofCP −µ(Dij)−T
j
setup−σ(Dij)λ.

This step yields aparametric timing graphGCP (λ)1. A clock schedule that does not cause any negative

cycle inGCP (λ̂) guarantees all edges have normalized slacks of at leastλ̂. Theoptimal clock scheduling

problem is to find a clock schedule that maximizesλ given a parametric timing graphGCP (λ).

Held et al. [40] and Albrecht et al. [39] use aparametric shortest pathalgorithm [43] to solve a

special case of the problem whereσ(·) , 1. The parametric shortest path algorithm is adopted and

σ(·) is obtained by statistical timing analysis. To find the optimal clock schedule, the algorithm starts

from a feasible clock scheduleT0 obtained by applying the Bellman-Ford shortest path algorithm on

GCP (λ0), whereλ0 = 0. SinceCP is always chosen to be greater than the optimal clock periodCP ∗,

which is obtained by the methods described in 3.1.1,T0 always exists.Path pivoting[43] is performed

and new pairs of (λk,Tk) are found whereλk ≥ λk−1. When a zero-cost cycle is detected, thecycle

contraction[43] step is performed. The zero-cost cycle corresponds to acycle in the circuit where the

normalized slack on the cycle cannot be increased further. The current clock schedule on the cycle is thus

optimal and the cycle can be contracted and replaced by asuper vertex. The timing constraints between

the rest of the circuit and the vertices on the cycle are updated and imposed to the super vertex. In other

words, the edges from/to the cycle are replaced by new edges from/to the super vertex. Whenσ(·) , 1

multiple edges fromvi to vj can always be collapsed into one edge by discarding non-dominant ones. In

1HereCP is a fixed value. Therefore, it is moved to the superscript.
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the new formulation, multiple edges might need to be kept if their parameter coefficients are different.

The path pivoting and cycle contraction steps are repeated until the parametric timing graph becomes a

single super vertex.

3.3.2 Complexity Analysis

The parametric shortest path algorithm is a graph-theoretical version of the Simplex algorithm [79], in

which a basic feasible solution (Ti) is moved to another basic feasible solution (Ti+1) with increasing

objective (λ) through row pivoting on the Simplex tableau. Young et al. [43] prove that for a graph

with |V | = n and |E| = m, the parametric shortest path algorithm takesO(nm + n2logn) time on

the special case whereσ(·) , 1. Although the worst case running time of the Simplex algorithm is

exponential in some specially synthesized problems, it usually takes much less time for general problems

[80]. Experiments show that the number of iterations required for obtaining the optimal clock schedule

is comparable to the number of iterations used in solving thespecial case. Furthermore, the timing yield

of the optimal clock schedule is significantly increased in many benchmark circuits.

3.3.3 A Statistical Timing Enhanced Yield Model

To estimate the timing yield of a clock schedule, circuit samples need to be generated and setup time and

hold time constraints need to be verified. Although the errorof a Monte Carlo simulation is proportional

to 1√
N

, whereN is the number of samples, and independent of the dimension ofthe sample space, the

time to verify a circuit increases significantly as the circuit size grows. Unlike the Gaussian distribution

which extends to±∞, gate delay usually varies no more than a few standard deviations from its mean

value. Usingextend factorκ such thatκσ is the maximum timing variation of a gate, the Gaussian

distribution outsideµ ± κσ is truncated and the truncated distribution is re-normalize to describe the



46

delay distribution of a gate. The new distribution is thetruncated Gaussiandistribution. Agarwal et

al. [81] propose a statistical timing analysis algorithm which generates the upper bound and the lower

bound of the maximum and minimum path delay distributions. It is proven that for a two-input gate

with the probability density functions of the inputs beingf andg and the cumulative density functions

beingF andG, fG + gF gives a pessimistic estimation of the distribution of the latest input arrival

time. Likewise,f(1 − G) + g(1 − F ) gives an optimistic estimation of the distribution of the earliest

input arrival time. Using this algorithm, the bounds ofDij anddij , Dij anddij , can be obtained from the

distributions. After clock scheduling, the check to verifyif αij is between[T j
hold−dij , CP−Dij−T

j
setup]

for each edge of the timing graph is performed. If the check issatisfied,eij is timingly safe under process

variations andDij anddij do not need to be calculated for each sample. In general, mostof the timing

edges satisfy this condition. Therefore, Monte Carlo simulations only need to be performed for the

combinational paths between a few pair of flip-flops and the simulation time is significantly reduced by

a factor of10X ∼ 1000X depending on the circuit size.

3.3.4 Experimental Results

The experiments are conducted on a Pentium III 1GHz PC. Truncated Gaussian distributions with(µ, σ) =

(1, 0.15) andκ = 3 are used for gate delays and each gate is assumed independent. Path delay uncer-

tainties are approximated by
√

n σ, wheren is the number of gates on a path. To give reasonable

comparisons, the clock periods are chosen so that the timingyields of traditional clock schedules are

between60% to 80%. The clock arrival times of all primary inputs and outputs are assumed the same

and the corresponding vertices are contracted to a single super vertex before clock scheduling. Monte

Carlo simulations are performed and false path informationis used to calculate the timing yields for both

traditional and optimal clock schedules.
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Circuits Total FF pairs d-diff pairs D-diff pairs

b05s 700 6 93

b06 44 0 0

b07s 1155 0 24

b10 165 0 0

b11s 631 23 65

b12 1630 0 3

b13s 393 0 0

Circuits Total FF pairs d-diff pairs D-diff pairs

s1488 266 0 0

s5378 2313 1 0

s9234.1 3260 0 0

s13207.1 4721 0 0

s35932 7595 0 1600

s38417 34351 72 852

s38584.1 20444 12 17

Table 3.1: Structural and true longest/shortest paths.

Traditional clock scheduling Statistical-timing-driven clock scheduling

Circuits CP ∗ CP pivot contract yield CPU pivot contract yield Gain CPU

s1488 16.0 16.62 0 6 72.3% 0.4s 4 6 75.1% 3.9% 0.4s

s5378 21.0 22.50 107 179 63.8% 0.4s 169 179 64.2% 0.6% 0.5s

s9234.1 38.0 40.86 160 210 74.1% 0.7s 167 210 84.2% 13.6% 0.8s

s13207.1 51.0 52.73 276 620 60.2% 1.9s 397 620 60.2% 0.0% 2.0s

s35932 28.0 31.96 1790 1728 64.3% 5.3s 1108 1728 98.7% 53.5% 11.9s

s38417 31.5 34.07 1893 1636 74.0% 66.3s 1641 1636 88.6% 19.7% 79.9s

s38584.1 48.0 50.24 1722 1426 72.8% 7.6s 1699 1426 84.7% 16.3% 9.9s

Table 3.2: Timing yield and runtime comparison between traditional clock scheduling and statistical-
timing-driven clock scheduling.

Table 3.1 shows the structural and true path information onISCAS89benchmark circuits. The names

of the circuits are shown in the first column. The numbers of flip-flop pairs that have combinational paths

in between are shown in the second column. The third column, d-diff, shows the number of flip-flop pairs

that have the shortest true path delays larger than the shortest structural path delays. The forth column,

D-diff, shows the number of flip-flop pairs that have the longest true path delays smaller than the longest

structural path delays. It shows that the longest/shortesttrue path delays are usually the same as the

longest/shortest structural path delays. However, in s35932, more than20% of the flip-flop pairs have

longest true path delays smaller than their longest structural path delays.

Table 3.2 shows the comparison of runtime and timing yield onISCAS89benchmark circuits between

a traditional clock scheduling algorithm with only structural longest/shortest path delay information and
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Figure 3.4: Path delay distributions. (a) By traditional gate sizing. (b) By false-path-aware gate sizing.

the proposed false-path-aware statistical-timing-driven clock scheduling algorithm. The results show that

the proposed clock scheduling scheme takes similar runtimecompared to the traditional clock schedul-

ing scheme. Moreover, the proposed clock scheduling schemeachieves more than10% timing yield

improvements on four of the circuits, and the improvement isas high as53.5% on s35932. Analysis on

the results in Table 3.1 and 3.2 show that the proposed clock scheduling scheme achieves better timing

yields by 1) better timing margin utilization and 2) identifying and making use of the timing margins that

are masked by false paths.

3.4 False-Path-Aware Gate Sizing

The experimental results in the previous section suggest that the timing margins masked by false paths

may be used to improve the timing yield, especially when these false paths are on timing-critical cycles.

However, those timing margins can be wiped out in the gate sizing stage that does not consider false paths.

Figure 3.4(a) shows the path delay distribution for a circuit before and after gate sizing in a conventional

design flow. When the longest true path is shorter than the longest structural path, a traditional gate
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sizing algorithm will size down the gates (or skip repeater insertions) on the true paths to reduce area and

power. This can cause the true path delay distribution to shift to the right. For high-performance designs

this will cause a significant performance degradation and will require serious manual ramifications to fix

the timing problems. However, false-path-aware gate sizing will not increase the longest true path delay

as illustrated in Figure 3.4(b). Thus, costly engineering-change-orders (ECOs) can be prevented.

3.4.1 The False-Path-Aware Gate Sizing Flow

To maximize the timing yield, the clock schedule should be determined based on the statistical timing

information. In particular the slacks should be distributed to each path according to its delay uncertainty.

Since gate sizing changes the path delay distributions, an optimization method for sequential circuits

must perform statistical timing analysis and clock scheduling in each gate sizing iteration for timing

yield estimation. However, false-path-aware statisticaltiming analysis and clock scheduling can be a

bottle neck if used in the inner loop of the optimization.

The design flow proposed in Figure 3.5 breaks the circuit optimization stage into two separate steps.

The differences between the proposed flow and a traditional flow are that the proposed flow uses a false-

path-aware gate sizing algorithm, and the clock schedule isdetermined after gate sizing is completed

thus avoiding costly iterations of the processes. Details of false-path-aware gate sizing is presented in

the next section.

3.4.2 Problem Formulation

A gate sizing formulation based on the work by Chen et al. [27]is shown below. Letdi be the delay

of gatei and assume the gate size is inversely proportional to the gate delay, the false-path-aware gate
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Figure 3.5: The false-path-aware gate sizing flow.

sizing problem can be formulated as follows.

(GS) min.

n
∑

i=1

1

di
(3.7)

s.t.
∑

i∈p

di ≤ A0 ∀p ∈ P − F (3.8)

Li ≤ di ≤ Ui i = 1 . . . n (3.9)

WhereA0 is the target delay,P is a set of all possible paths, andF is a set of all false paths. The

constraint (3.9) limits the lower and upper bound of the gatedelays. By solving the above optimization

problem, the gate delaydi will be increased until it reachesUi, or the delay of some path passing through

gatei reachesA0.

Consider the circuit in Figure 3.6 with two false paths,< 8, 7, 5, 3, 2, 1 > and< 9, 7, 5, 3, 2, 1 >.

Let Li = 1, i = 1 . . . 7, andA0 = 5, a conventional sizing method will assign a delay of 1 to all the
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Figure 3.6: Gate sizing with false paths.

gates on< 7, 5, 3, 2, 1 >. However, if the two false paths are identified, the corresponding path delay

constraints can be removed from (3.8). Note that after removing the constraints on false paths, gate7 can

have a longer delay (smaller gate size) since the path< 7, 5, 1 > is the only sensitizable path through

gate7.

False paths can be identified by checking the sensitization criteria [47]. To verify the sensitizability

of a given path, transitions on the target path are assigned and maximal implication is performed on the

circuit. If the on-path signal has a transition from non-controlling value to controlling value, all the off

path signals (side inputs) for that node must have non-controlling values. If maximal implication of such

assignment has conflicts, the target path is considered as a false path since the on-path signal cannot be

propagated.

3.4.3 Gate Sizing for Sequential Circuits

In a sequential circuit with clock scheduling, the maximum feasible path delay for the paths between a

pair of flip-flops depends on the clock schedule. Moreover, the total number of path delay constraints

for a large sequential circuit can be prohibitive. To address these two issues, two heuristic-based solu-

tions that lead to optimal or near optimal solutions are proposed. The implementation problems and the
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solutions are also discussed.

Pair-wise sizing

A divide-and-conquer heuristic is proposed to applyGS to sequential circuits. First,GS is applied to

each pair of flip-flops separately. For each pair of flip-flops,the fan-out cone of PI and the fan-in cone

of PO are extracted, and only the gates that are in the cone intersection are targeted for sizing. This

approach is desired especially when the timing budget between each pair of flip-flops are different due

to clock scheduling. Since a gate can belong to the cone intersections of multiple flip-flop pairs, more

than one gate delay could be assigned to the same gate. In thiscase, the minimum delay will be assigned

to avoid creating paths with setup time violations. Although this heuristic is sub-optimal, experimental

results show that it still generates relatively good results.

Sizing for K-longest true paths

Experimental results show that most of the benchmark circuits have reasonable number of true paths.

For these circuits,GS can be directly applied for gate sizing. However, some pairsof FFs do have

exponential number of true paths in their cone intersections. In those cases, only thek-longest true paths

are extracted using the implicit true path enumeration algorithm presented in 3.2. Since this does not

guarantee that the setup time constraints for all the true paths will be satisfied, the delays of the longest

true paths after sizing are checked for setup time violations. If any timing violation exists,k is increased

and the circuit is re-sized.

Linearized implementation for gate sizing

Thus, sizing implementation has four levels of computational complexities: 1) determination of false

paths, 2) sizing considering all possible pairs, 3) sizing while meeting constraints for all possible true
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paths, and 4) non-linearity of the optimization problem. While implementing the sizing method, false

paths are identified using the sensitization criteria and maximum implications described in 3.2. All

possible pairs of flip-flops are considered for gate sizing but the value ofk (longest true paths) is limited

to be less than 1000. This value ofk is sufficient to generate feasible sizings for the benchmarkcircuits

and keep the problem size small. Finally, instead of solvingthe non-linear optimization problemGS that

minimizes
∑n

i=1
1
di

, it is converted to linear optimization that maximized the function
∑n

i=1 di. Note

that this change is made only to contain the computational complexity.

3.4.4 Experimental Results

The experiments are conducted on two sequential benchmark suites: ISCAS89andITC99. Timing yields

are obtained by Monte Carlo simulations that consider only true path delays to reflect the true timing

yields. Instead of modeling process variations, such as channel length and threshold voltage variations,

it is assumed that the variation sources all manifest themselves into gate delay variations, and all logic

gates have an initial gate delay as a truncated Gaussian distribution with (µ, σ) = (1, 0.15) andκ = 3.

Path delay uncertainties are approximated by
√

n σ, wheren is the number of gates on a path.

Table 3.3 shows the results using traditional gate sizing followed by Prop clock scheduling, and

using false-path-aware gate sizing andfp-Prop clock scheduling. InProp, the statistical-timing-driven

clock scheduling is performed using structural path delays. In fp-Prop, the statistical-timing-driven clock

scheduling is performed using true path delays. In this table all columns are self explanatory except the

columns marked “Ratio” which provide the ratios of circuit area after gate sizing as compared to the

circuit area before gate sizing. Three major conclusions can be drawn from the experimental results:

1. The proposed design flow achieves significantly higher timing yields (> 20%) than the traditional

flow for five benchmark circuits with less than a5% area overhead.
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Traditional sizing +Prop False-path-aware sizing +fp-Prop

Circuits CP ∗ CP � di Yield � di Ratio Yield � di Ratio

b05s 45.0 45.70 864 31.9% 1209 71.5% 99.9% 1126 76.7%

b06 4.0 4.75 43 55.7% 45 95.6% 55.7% 45 95.6%

b07s 25.0 26.13 362 67.5% 428 84.6% 67.7% 428 84.6%

b10 9.0 9.68 155 62.8% 166 93.4% 62.8% 166 93.4%

b11s 29.0 30.21 437 71.6% 563 77.6% 95.8% 532 82.1%

b12 11.0 11.75 904 65.9% 1011 89.4% 76.2% 1003 90.1%

b13s 8.0 8.42 266 26.9% 299 89.0% 26.9% 299 89.0%

s1488 16.0 16.60 653 51.2% 769 84.9% 51.2% 769 84.9%

s5378 21.0 22.37 2779 42.9% 2844 97.7% 42.9% 2844 97.7%

s9234.1 38.0 39.85 5597 49.3% 6476 86.4% 49.3% 6476 86.4%

s13207.1 51.0 52.61 7951 78.9% 8224 96.7% 78.9% 8224 96.7%

s35932 28.0 31.17 16065 44.0% 19962 80.5% 92.3% 19674 81.7%

s38417 31.5 33.60 22179 55.4% 26214 84.6% 81.1% 26181 84.7%

s38584.1 48.0 49.56 19253 84.9% 20975 91.8% 84.9% 20970 91.8%

Table 3.3: Timing yield and area comparison between traditional and false-path-aware gate sizing flows.

2. Traditional gate sizing has serious (adverse) timing yield impact on the circuits b05s, s35932 and

s38417, due to the reduced timing margins as illustrated in Figure 3.4. The proposed design flow

only has little or no adverse impact on the timing yields of these circuits.

3. For b13s, s1488, s5378 and s9234.1, both the traditional flow and the proposed flow cause sig-

nificant timing yield degradations. This can be improved by performing the gate sizing and clock

scheduling iteratively.
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Chapter 4

Clock Tree Topology Optimization

Reserving slacks for timing uncertainties ensures the correct functionality of manufactured chips. How-

ever, the increasing process-induced timing uncertainties and demand for slacks have made timing con-

vergence difficult to achieve. Through clock tree topology optimization, the clock skew uncertainties on

timing-critical paths are reduced and faster timing convergence is achieved. In this chapter, an enhanced

bipartition algorithm for clock tree topology optimization is proposed. First, the sources of clock skew

uncertainty and calculation of negative slack is discussed. The steps to combine both path timing and

sequential element placement information in apartition graphare then presented. By controlling the

edge weights of the partition graph, the clock sink pairs with tight timing constraints will be clustered

together. With the reduction of clock skew uncertainties ontiming-critical paths, the algorithm recovers

the slacks reserved for clock skew uncertainties and reduces the total negative slack of a design. Finally,

the experimental results show that the algorithm significantly reduces the total negative slack and speeds

up the timing convergence of a design. For ISCAS89 benchmarkcircuits, the algorithm achieves up to a

67% total negative slack reduction compared to a traditional balanced bipartition algorithm.
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4.1 Preliminaries

Clock distribution networks and logic designs are usually done in separate steps; separate slack require-

ments are imposed for path delay uncertainty and clock skew uncertainty. Therefore, the hold time and

setup time constraints are as follows:

αij + µ(dij) ≥ T
j
hold + κ[σ(αij) + σ(dij)], (4.1)

CP − µ(Dij)− αij ≥ T
j
setup + κ[σ(αij) + σ(Dij)]. (4.2)

The termsκ[σ(αij) + σ(dij)] andκ[σ(αij) + σ(Dij)] in (4.1) and (4.2) are the hold time and setup

time slack requirements, which depend on the choice ofκ. Due to the growing design size, a6σ slack,

or κ = 6, is required for each timing constraint to guarantee a reasonable timing yield. However, the

soaring clock frequency (decreasingCP ) and increasing process variations (increasingσ(·)) have made

the timing constraints (4.1) (4.2) difficult to satisfy.

When the hold time slacksh
ij = αij + µ(dij)− T

j
hold or the setup time slackss

ij = CP − µ(Dij)−

αij − T
j
setup of αij is smaller than its slack requirement, the difference needsto be counted toward the

total negative slack(TNS). TNS indicates the aggregated design effort that needs to be doneto achieve

timing convergence. Note that in Chapter 3, clock scheduling generates a clock schedule that maximizes

the normalized slacks of each path. The clock schedule needsto be checked against (4.1) (4.2) to measure

negative slacks and verify timing convergence.

TheTNS of a design can be reduced by minimizing the clock skew uncertainties on the paths with

negative slack. This can be done by improving the clock tree topology generation process. LetPi and

Pj be the clock distribution paths ofFFi andFFj . Velenis et al. [58, 59] observe that thecommon part

of Pi andPj , or P com
ij , do not contribute to the clock skew uncertainty ofαij. As shown in Figure 4.1,
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Figure 4.1: Clock skew uncertainty and clock distribution paths.

reducing the non-common part ofPi andPj , Pi − P com
ij andPj − P com

ij , is likely to reduceσ(αij). In

light of the observation, a greedy algorithm that clusters source and target clock sinks of timing-critical

paths is proposed to reduce the total clock skew uncertaintyand total slack requirement of a design.

However, the greedy approach that only takes timing information into consideration might generate an

unbalanced clock tree topology. It can also result in an increase on total wire length of the clock tree,

which inadvertently increases the total clock skew uncertainty andTNS.

4.2 Topology Design Objectives

The principle for reducing the clock skew uncertainty on a timing-critical path is to reduce the non-

common part of the clock distribution paths to its source andtarget clock sinks. However, the total

clock skew uncertainty as well as total clock power may increase if non-common clock distribution path

reduction is not conducted carefully. Figure 4.2(a) shows the partitioning of eight clock sinks using a

traditional balanced bipartition algorithm. The top two paths with the largest path delay uncertainty are

shown by the two solid arcs in Figure 4.2(b). The three dashedarcs show the paths with slightly smaller
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Figure 4.2: Total clock skew uncertainty increases due to non-common clock distribution path reduction.

path delay uncertainties. In Figure 4.2(b),FF2 and FF3 are moved to the left and right partitions

to reduce the clock skew uncertainties on the two most timing-critical paths. However, this results in

an increase on clock skew uncertainties ofα31, α35, andα37. As a result, the partitioning in Figure

4.2(b) may result in a largerTNS than that from the partitioning in Figure 4.2(a). Therefore, bipartition

objectives should include the followings.

• Balanced loading

Balanced loading ensures that no excessive snaking or buffering is required to balance the clock

delays of both partitions. This not only prevents unnecessary increase on clock power but also

reduces the clock delay of the final clock tree, which prevents an increase on total clock skew

uncertainty.

• Small extra wire length

The minimum achievable clock delay is likely to increase when the total wire length of a clock

tree is increased by a large amount. Therefore, bipartitioning should not cause an excessive wire

length increase.
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• Short non-common clock distribution paths

The clock skew uncertainty between a pair of clock sinks is likely to decrease if the non-common

clock distribution paths to both clock sinks are short. Therefore, clock sinks of timing-critical

paths should be partitioned into different groups as late aspossible.

4.3 Partition-Based Clock Tree Topology Optimization

An enhanced recursive bipartition algorithm that generates binary clock tree topologies is proposed to

overcome the drawbacks of greedy clustering-based algorithms. The algorithm can easily be extended

to generatek-ary tree topologies by replacing bipartition withk-way partition. In each recursion step,

multiplepartition graphs are created from the given clock sinks and their timing constraints. A min-cut

algorithm is then used to bipartition the graphs into balanced sub-graphs. The partitioning that has the

minimum partition cost is then selected. Figure 4.3 shows the steps for determining the best partitioning

in each iteration. Each step is explained in detail in the following sections.

4.3.1 Reference Set

A common technique for partitioning a set of nodes into multiple partitions is to first find thereference

setof each partition [13, 82]. A reference set is a set of nodes that will most likely fall into the same

partition. For example, two clock sinks that are far apart are likely to belong to different partitions.

Therefore, a pair of reference sets, each containing one of the two clock sinks, is a common starting

point for bipartitioning. The remaining clock sinks can then be partitioned based on which reference set

they are closer to. The drawback of this approach is that the partitioning is easily biased by the positions

of the two chosen clock sinks.

Chao et al. [13] observe that the clock sinks that fall on the boundingoctagonare usually partitioned
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Figure 4.3: The steps in each bipartition iteration.

into two groups with consecutive elements. LetS be the set of clock sinks to be partitioned andOct(S)

be the set of clock sinks that are on the bounding octagon. There are|Oct(S)| ways to create a pair of

reference sets withb12 |Oct(S)|c andb12 (|Oct(S)|+1)c clock sinks when|Oct(S)| is an odd number and

|Oct(S)|
2 ways when|Oct(S)| is an even number. In Figure 4.4, the bounding octagon of the eight clock

sinks is shown by the dashed lines. There are five clock sinks on the bounding octagon and one of the five

reference set pairs is shown by the black and white clock sinks. Since each reference set usually contains

more than one clock sink, the position of a clock sink will be less likely to bias the final partitioning. The

enhanced bipartition algorithm adopts this reference set selection method.
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Figure 4.4: Illustration of reference set, bounding octagon, attractors and attraction edges.

There can be a large number of clock sinks lying on one of the the bounding octagon edges. For

example, many clock sinks may be placed on one edge of the chip. In this case, only the first and the last

clock sinks on this edge are included inOct(S). This heuristic avoids creating a pair of reference sets

that are dis-proportional in their diameters.

4.3.2 Attractor and Attraction Weight

To ensure that the clock sinks in a reference set are grouped together, two artificialattractors, A1 and

A2, are introduced into the partition graph for reference setsREF1 andREF2; anattraction edgewith

an infinite attraction weight from each reference set element to its attractor is then added. For each of

the remaining clock sinks, two attraction edges, one to eachattractor, are added. The attraction weight
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is calculated based on thedistance metricfrom the clock sink to the reference set of the attractor. The

distance metric needs to reflect the wire length increase when the clock sink is grouped with the reference

set. Chao et al. [13] use

dist(p,Ak) = min
r∈REFk

dist(p, r) + max
r∈REFk

dist(p, r) (4.3)

to measure the distance between clock sinkp and attractorAk, wheredist(p, r) is the Manhattan distance

between clock sinksp andr. The enhanced bipartition algorithm adopts the same distance metric.

When dist(p,A1) < dist(p,A2), groupingp to REF2 (cutting edge(p,A1) instead of(p,A2))

results in an increase of∼ dist(p,A2)− dist(p,A1) to the total wire length. Therefore, one can assign

dist(p,A2)−dist(p,A1)
2 and dist(p,A1)−dist(p,A2)

2 as the attraction weights of edges(p,A1) and(p,A2). Since

many partitioning packages require non-negative edge weights, dist(p,A1)+dist(p,A2)
2 is added to both

attraction weights. This is equivalent to usingdist(p,A2) anddist(p,A1) as the attraction weights for

edges(p,A1) and(p,A2). Figure 4.4 shows the reference sets, attractors, and attraction edges of eight

clock sinks.

Setting the attraction weight to infinity for edges from reference set elements to their attractors can

cause unsatisfactory results. This is because timing constraints are not taken into account whenOct(S)

is divided into two reference sets. Therefore, assigning aninfinite edge weight hinders the optimization

opportunites on these edges. A simple heuristic resolves the issue: all the clock sinks use the same

attraction weight function (4.3).

Instead of assigning clock sinks to reference sets greedily, based solely on the distance measure, the

distance information is kept in the edge weights of the partition graph. This enables wire length and

timing constraints to be considered simultaneously as described in the next section.
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4.3.3 Clustering Weight

The most important improvement of the enhanced bipartitionalgorithm over previous algorithms is that

both clock sink positions and timing constraints are considered during partitioning. This is achieved by

introducing aclustering edgebetween the two clock sinks of a timing path. Controlling theclustering

weight determines when the two clock sinks are partitioned into different groups, which controls the

TNS.

The negative slack of a path is determined by its path delay and clock skew uncertainties. Since

clock skew uncertainty is not available during the topologyoptimization phase, an estimation method is

developed as follows.

Let thediameterof S be the maximum distance of two clock sinks inS, or

Dia(S) = max
p,q∈S

dist(p, q). (4.4)

Figure 4.5 showsDia(S) versus the maximum clock skew uncertainty (κσ(αij)) within S, where eachS

is extracted from the subtrees of a zero-skew buffered clocktree ofs35932. The clock skew uncertainty

is approximated by a30% clock delay of the non-common clock distribution path. The figure leads to

the following two conclusions:

1. The maximum clock skew uncertainty among the sinks of a clock subtree increases roughly lin-

early as the diameter of the clock subtree increases.

2. For two sets of clock sinks with the same diameter, the difference of their maximum clock skew

uncertainties is within a certain range.

The second conclusion is contributed to by the following sources.
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Figure 4.5: Diameter ofS versus maximum clock skew uncertainty ins35932.

• The clock sink density is not uniform across the chip. Two clock subtrees with the same diameter

may contain different numbers of clock sinks and have different clock delays.

• Different buffer insertion, buffer sizing and wire sizing on the two clock subtrees may generate

different clock delays even if the two clock subtrees have the same topology.

Accounting for clock sink density and clock tree optimization effects on clock skew uncertainties during

clock tree topology optimization is not practical. However, a clock skew uncertainty estimation method

can be derived from Figure 4.5.

Theworst clock skew uncertaintyof S is estimated as follows.

ω(S) = ω0 + χDia(S). (4.5)
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Thebest-effort clock skew uncertaintybetween clock sinksi andj is estimated as follows.

βij = max{0, χ[dist(i, j) − L0]}. (4.6)

The parametersω0, L0 andχ depend on the clock sink density of the chip as well as interconnect and

clock buffer parameters. They can be obtained by analyzing azero-skew clock tree generated by zero-

skew buffered clock tree optimization algorithms as illustrated in Figure 4.5. In short,ω(S) andβij are

the pessimistic and optimistic estimations ofκσ(αij).

Let theequivalent hold time slackof αij be

uh
ij = max(sh

ij, βij + κσ(dij)), (4.7)

and theequivalent setup time slackof sij be

us
ij = max(ss

ij, βij + κσ(Dij)). (4.8)

If sh
ij < uh

ij, a negative hold time slack of at leastuh
ij − sh

ij is unavoidable; a path with a hold time

slack ofsh
ij should be treated the same as a path with a hold time slack ofuh

ij. Since the worst clock

skew uncertainty ofS may occur on any pair of clock sinks amongS (recall the example in Figure

1.1), themaximum amount of negative slack that may be avoidedby not partitioning a clustering edge

is [ω(S) + κσ(dij)] − uh
ij for the hold time constraint and[ω(S) + κσ(Dij)] − us

ij for the setup time

constraint. Thus, the clustering weight functions for holdtime and setup time constraints are defined as

follows:

W h
ij = max

{

0,
Dia(S)

M
×

ω(S) + κσ(dij)− uh
ij

ω(S)

}

, (4.9)

W s
ij = max

{

0,
Dia(S)

M
×

ω(S) + κσ(Dij)− us
ij

ω(S)

}

. (4.10)
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Figure 4.6: A complete partition graph with attraction edges and clustering edges.

To account for both hold time and setup time constraints, theclustering weight is defined as the average

of W h
ij andW s

ij . It is also possible to put more weight onW h
ij or W s

ij to target specifically on negative

hold time slack or negative setup time slack reduction.

Multiplying the potential negative slack savings byDia(S)
ω(S) scales the clustering weights to have the

same unit as attraction weights. The relative importance oftiming constraints (clustering weights) over

wire length (attraction weights) is then controlled byM . The optimalM depends on how muchTNS the

design has and the amount of wire length increase designers are willing to tolerate. It can be determined

empirically by running the enhanced bipartition algorithmrepeatedly with an increasingM .

4.3.4 Min-Cut Bipartition

The set of clock sinksS, two attractors, attraction edges, and clustering edges form a partition graph.

The complete partition graph of the example circuit in Figure 4.2(b) is shown in Figure 4.6. The topol-

ogy optimization problem becomes a sequence of standard min-cut problems on partition graphs. The
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balanced loading objective is handled by assigning vertex weights according to clock sink capacitances

(attractors have zero vertex weight) and enforcing a cut-ratio close to one. An efficient and publicly

available partition tool, METIS [83], is used to find the cut line for a partition graph. The complete clock

tree topology is obtained by recursive bipartitioning.

4.4 Experimental Results

The enhanced bipartition algorithm is implemented in C++ and executed on a 1.7GHz 512MB Pentium-

M laptop computer. The ISCAS89 benchmark circuits are synthesized by SIS [84] with a 180nm cell

library and placed by Dragon [85]. The clock tree topologiesfrom both the enhanced bipartition al-

gorithm and a traditional balanced bipartition algorithm [13] are taken as the inputs of the Deferred

Merge Embedding (DME) algorithm [13] and unbuffered zero-skew clock trees are generated. The clock

trees are then optimized for minimum clock delay using the zero-skew buffered clock tree optimiza-

tion algorithm from Chapter 2. For path timing analysis, an independent Gaussian distribution with

(µ, σ) = (50ps, 10ps) is used for all gate delays. A6σ slack requirement is imposed for path delay

uncertainty and clock skew uncertainty. For example, the slack requirement for a path withn gates is

6
√

nσ. The6σ slack requirement for clock skew uncertainty is approximated by a30% clock delay of

the non-common clock distribution path.

4.4.1 Comparison and Analysis

Table 4.1 shows the analysis results of the clock trees usingthe traditional balanced bipartition algorithm.

The analysis is done using the method described in 4.3.3 and the parametersω0, L0 andχ are used to

guide the enhanced bipartition algorithm. It is found thatM = 10 gives good results without introduc-

ing too much extra wire length. Ins1488 ands9234.1, theTNS is contributed by only a few timing
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Circuit # FF Wire Length Delay Cap. TNS # violations ω0 L0 χ

(mm) (ns) (pF ) (ns) (hold/setup) (ps) (µm) (ps/µm)

s1488 33 6.383 0.073 1.603 0.182 0/10 0 500 0.033

s5378 263 37.627 0.218 10.680 3.491 18/80 10 500 0.036

s9234.1 286 47.636 0.291 12.195 5.571 0/64 10 550 0.044

s13207.1 852 120.267 0.436 33.213 8.944 84/117 10 700 0.041

s35932 2083 371.426 0.872 103.382 598.378 2931/1981 20 800 0.034

s38584.1 1768 322.541 0.872 84.230 106.571 675/1018 20 900 0.045

Table 4.1: Analysis results of the clock trees using the traditional balanced bipartition algorithm.

Circuit W.L. Chg. Delay Chg. Cap. Chg. TNS Chg. # violations CPU

(mm) (ns) (pF ) (ns) (hold/setup) (s)

s1488 6.996 9.6% 0.073 0.0% 1.681 4.9% 0.182 0.0% 0/10 4s

s5378 40.175 6.8% 0.218 0.0% 11.498 7.7% 3.297 -5.6% 17/78 31s

s9234.1 49.538 4.0% 0.218 -25.0% 13.528 10.9% 4.346 -22.0% 0/52 42s

s13207.1 126.386 5.1% 0.436 0.0% 34.066 2.6% 7.675 -14.2% 89/105 118s

s35932 385.711 3.8% 0.872 0.0% 100.777 -2.5% 572.904 -4.3% 2717/1717 295s

s38584.1 352.745 9.4% 0.727 -16.7% 93.715 11.3% 34.957 -67.2% 533/208 255s

Table 4.2: Experimental results of the enhanced bipartition algorithm.

violations. Moreover, several circuits have a predominantnumber of hold time or setup time violations.

As shown in Table 4.2, the enhanced bipartition algorithm achievesTNS reductions up to67.2%

with less than an11.3% increase in wire length and clock power. In general, both theTNS and the

number of timing violations are reduced after optimization; the algorithm does not replace a large timing

violation with multiple small timing violations. The decomposition of theTNS is shown in Figure 4.7,

in which theTNS from the traditional algorithm is normalized to one. Although the algorithm increases

wire length and switching capacitance, this does not necessarily increase the clock delay. In fact, better

clock delays are achieved ons9234.1 ands38584.1. However, wire length increase usually results in

clock power increase.

Figure 4.8 shows the clock trees ofs13207.1 generated by the traditional and enhanced bipartition

algorithms. It can be seen that the local clock tree structures generated by the enhanced bipartition algo-
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Figure 4.7:TNS improvement analysis.

rithm are slightly different from those generated by the traditional method. For example, the enhanced

bipartition algorithm sometimes generates unbalanced partitions to reduce clock skew uncertainty. To

balance the clock load, wire snakings (shown as dark segments) are required. Although this increases

the total wire length and clock power, the percentage ofTNS reduction exceeds that of wire length and

clock power increase in four of the six circuits.

Analysis on partitioning results shows that METIS sometimes does not produce good partitionings.

In other words, clock sinks may be grouped to wrong partitions and cause unnecessary wire length

increases. It is expected that furtherTNS improvements can be achieved by using more sophisticated

partition algorithms such as MLPart [86].
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(a) Traditional Bipartition (b) Enhanced Bipartition

Figure 4.8: The clock trees ofs13207.1 using traditional and enhanced bipartition algorithms.

4.4.2 Runtime

Although min-cut problems are NP-Complete problems, they are usually solved very efficiently with

near-optimal partition costs. In the experiments, each partition graph is first written to a file and then read

by METIS. METIS then writes the partitioning result to another file, which is then read back into the

main program. Even with the high disk I/O overhead, the runtime of the enhanced bipartition algorithm

is still less than five minutes for the largest benchmark circuit. This runtime is much smaller than the

runtime for the subsequent clock tree optimization step. Therefore, the enhanced bipartition algorithm

scales well for large problems.
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Chapter 5

Post-Silicon Clock Tuning

The current correct-by-construction design principle tackles timing issues by reserving more slacks for

larger timing uncertainties. This approach has limited thedesign productivity due to the growing timing

uncertainties in nanometer technologies. An alternative to maximize the timing yield without slowing

down the timing convergence is to perform timing adjustments for the chips that do not pass the test.

This can be realized by a PST clock tree. A PST clock tree contains programmable clock buffers that

allow clock tuning for timing corrections in the post-silicon stage. Existing design approaches for PST

clock tree synthesis usually insert a PST clock buffer for each flip-flop or put PST clock buffers in

an entire level of a clock tree. This can cause significant over-design and lead to a long tuning time.

In this chapter, a bottom-up algorithm is used to identify candidate PST clock buffer locations. Two

optimization algorithms are proposed to insert PST clock buffers at both internal and leaf nodes of a

clock tree. The algorithms are driven by statistical timinganalysis to reduce the hardware cost of a PST

clock tree. Experimental results on ISCAS89 benchmark circuits show that the algorithms achieve up to

a 90% area or a 90% number of PST clock buffer reductions compared to existing design methods.
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Figure 5.1: Hardware cost reduction through statistical timing analysis.

5.1 Introduction

Post-silicon clock tuning not only improves the timing yield but also reduces clock power by avoiding

using grid-based clock distribution networks. However, a brute-force design method that inserts a PST

clock buffer for each flip-flop or at each clock tree terminal uses a significant amount of the chip area.

There is no systematic way in the literature to construct a PST clock tree thatprovides the maximum

tuning capability for timing yield improvements with minimum hardware cost.

Statistical timing analysis is a powerful tool to predict the performance of manufactured chips during

design time. A PST clock tree synthesis flow can take the information from statistical timing analysis

and reduces the hardware cost of PST clock trees. As illustrated in Figure 5.1, by analyzing the effect of

process variations on timing, PST clock buffers can be inserted selectively only at the critical locations

in a clock tree. This can greatly reduce the hardware cost of aPST clock tree.

In this chapter, the effect of PST clock buffers on timing yield is studied and two optimization al-
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Figure 5.2: PST clock tree synthesis flow.

gorithms for reducing the area or number of PST clock buffersare proposed. Compared with existing

design methods, the proposed algorithms achieve up to a 90% hardware cost reduction. Figure 5.2 shows

the steps of the proposed PST clock tree synthesis flow.

The rest of this chapter is organized as follows: in 5.2, two PST clock tree synthesis formulations,

PST-A and PST-N, are defined based on two hardware cost metrics. Section 5.3 provides a timing yield

model for sequential circuits using statistical timing analysis and Monte Carlo integration. The effect of

PST clock buffers on timing yield is analyzed and a timing yield model in the presence of PST clock

buffers is developed in 5.4. An iterative linesearch algorithm utilizing a fast gradient approximation

algorithm is proposed in 5.5 to solve PST-A. A batch selection algorithm is proposed in 5.6 to solve

PST-N. Experimental results on the effectiveness of the proposed algorithms are demonstrated in 5.7.
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5.2 Problem Formulation

The tuning capability of a PST clock tree is dependent on the number of PST clock buffers and their

tunable range. To achieve the maximum timing yield improvement, a brute-force method may insert

PST clock buffers at every terminal of the clock tree and design the PST clock buffer to have a large

tunable range. However, this method would increase the design’s hardware costs significantly.

To optimize the hardware cost of a PST clock tree, it is essential to choose a cost metric that reflects

the actual silicon cost. There are several PST clock buffer designs that achieve variable clock delay with

very different circuit design techniques. A common PST clock buffer design consists of two inverters

with a bank of passive loads in between [9, 68]. Each passive load can be connected or disconnected

to the inverter by programming the control bit of its pass gate. This type of PST clock buffer relies on

RC delay to control the clock delay. To achieve a large tunable range, a large passive load is required.

Since on-chip capacitors require a large area in a digital VLSI process, the appropriate cost metric for

this type of PST clock buffer is the area required to implement the passive loads, which is proportional

to the required tunable range of the buffer. Another PST clock buffer design achieves variable delay by

changing the driving strength of a buffer. This is either done through controlling the bias voltage of the

driver with a digital-analog-converter [64] or introducing contention to the driver [11]. For this type of

design, the hardware cost is insensitive to the tunable range and can be treated as a constant. Therefore,

the appropriate cost metric for this type of design is the total number of PST clock buffers in the clock

tree. Both metrics,total tunable rangeandtotal number of PST clock buffers, for the hardware cost are

adopted and two PST clock tree synthesis problems are definedas follows.

Problem PST-A: (To minimize total tunable range)

Given a circuit and its buffered clock tree, determine the required tunable range of each clock buffer such
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that the total tunable range is minimized and the target timing yield is achieved.

Problem PST-N: (To minimize the number of PST clock buffers)

Given a circuit and its buffered clock tree, select a minimumsubset of clock buffers such that the target

timing yield is achieved when the selected clock buffers areconverted to PST clock buffers.

The PST-A and PST-N problems require very different optimization approaches but are driven by the

same timing yield model. In the following sections, timing yield models for circuits with and without

PST clock buffers are studied. Two optimization algorithmsare then proposed to solve the PST-A and

PST-N problems.

5.3 Timing Yield Model

5.3.1 Timing Constraints and Slack Vector

A sequential circuit is represented by its circuit graphG = (B,V,E), whereB is the set of clock buffers,

V is the set of flip-flops, andE is the set of timing arcs whereeij indicates that there are combinational

paths betweeni andj. The clock skew betweeni andj is defined asαij = Ti−Tj, whereTi is the clock

arrival time ati. The maximum and minimum path delays fromi to j are denotedDij anddij .

A circuit needs to satisfy hold time and setup time constraints:

αij + dij ≥ T
j
hold, (5.1)

αij + Dij ≤ CP − T
j
setup, (5.2)

whereT
j
hold andT

j
setup are the hold time and setup time of flip-flopj andCP is the clock period. Define

the hold time slack of (5.1) assh
ij = αij + dij − T

j
hold and the setup time slack asss

ij = CP − Dij −

αij − T
j
setup and collect all the slack variables as anR2|E|×1 slack vectors. A circuit satisfies all the
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timing constraints if

s ∈ C0, (5.3)

C0 = {w | wi ≥ 0, i = 1 . . . 2|E|}.

In other words, a circuit is free from timing failures if its slack vector is in thefeasible regionC0, which

is the non-negative orthant.

Recent statistical timing analysis research has shown thata delay variabled can be represented in a

compact and accuratecanonical delay model[87–89]:

d = µd + [βd,1βd,2 . . . βd,l]

























f1

f2

...

fl

























= µd + βdf , (5.4)

whereµd is the mean value ofd, f1 . . . fl are global and local variation sources andΣf is their co-

variance matrix. The variation sources can be correlated oruncorrelated Gaussian random variables,

andβd,1 . . . βd,l are the sensitivities ofd to the variation sources. Therefore, the slack vector can be

represented as

s = µs + Af , (5.5)

whereA is theR2|E|×l sensitivity matrix ofs. The covariance ofsi andsj can be computed by1

cov(si, sj) = E
[

(si − µsi
)(sj − µsj

)T
]

= aiE
[

f fT
]

aj
T

= aiΣfaj
T , (5.6)

1The subscripts ofsi andsj are their indices in the slack vectors.
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whereai is thei-th row ofA. Therefore, the covariance matrix ofs is

Σs = AΣfA
T , (5.7)

and the slack vector can be represented by a multivariate Gaussian distribution

s ∼ N (µs,Σs) . (5.8)

5.3.2 Slack Filtering

The dimension ofs is 2|E|, which can be very large for large circuits. However, many ofthe timing

paths have abundant slack and do not contribute to the timingyield loss. Therefore, it is desirable to filter

out non-critical slack variables to reduce the dimension ofthe slack vector. A slack filtering criteria is as

follows:

µsi

σsi

≥ p. (5.9)

For si satisfying (5.9), thei-th rows ofs, µs, Σs, as well as thei-th column ofΣs, are deleted. This

brings down the dimension of the slack vector to a manageablesizen. Alternatively,n can be controlled

by selecting a threshold valuep.

5.3.3 Timing Yield Estimation

Thenominaltiming yield of the circuit is

Y0 = P (s ∈ C0)

=

∫

· · ·
∫

C0

jpdf(s1, s2, . . . , sn)ds1ds2 . . . dsn, (5.10)

wherejpdf(s) is the joint probability density function ofs. Since the slack variables are correlated,

it is difficult to perform multi-dimensional integration analytically to obtain the timing yield. Instead,
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Monte Carlo integration, which is an efficient method to calculate high dimensional integrals, is used to

obtain timing yield estimations. First,N slack vector samples are generated according toµs andΣs. The

nominal timing yield is then estimated by

Y0
∼= N0

N
, (5.11)

whereN0 is the number of samples that falls inC0.

From a statistical point of view,µs determines the center of the slack samples andΣs determines the

distribution of the slack samples around the center. Applying eigenvalue decomposition onΣs gives the

following equation:

Σs = WDW T ,W T W = I. (5.12)

Generating slack vector samples according tojpdf(s) involves two steps. First, samples ofx, a vector

composed of independent standard normal distributions, are generated. A linear transformation is then

applied to each sample according to the following equation:

z = µs + W
√

Dx. (5.13)

It is easy to verify thatz follows jpdf(s) as follows.

E[z] = µs + W
√

DE[x] = µs.

E[(z −E[z])(z − E[z])T ] = E[W
√

DxxT
√

D
T
W T ]

= W
√

DE[xxT ]
√

D
T
W T

= WDW T = Σs.

Figure 5.3 illustrates the process to generate slack vectorsamples withµs =









3

6









and Σs =
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Figure 5.3: Generation of slack vector samples for timing yield estimation.
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. Checking to determine whether a samples falls in C0 is straight-forward. It is sufficient to

ensure that every element ins is non-negative. It is worth noting that there are other highdimensional

integration methods, such as theparallelepiped, ellipsoid, or binding probabilitymethods, for timing

yield estimation [90]. However, these methods have their restrictions and Monte Carlo integration is a

competitive method even without slack filtering.

5.4 Timing Yield with PST Clock Buffers

PST clock buffers can be used to redistribute path slacks among adjacent timing paths and possibly to

correct timing violations. The effect of PST clock buffers on timing yield is studied and a timing yield

model in the presence of PST clock buffers is developed. The optimal timing yield that can be achieved

through post-silicon clock tuning can be estimated efficiently using the derived model.
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Figure 5.4: Effect of changingbuf1 delay on the slack vector.

5.4.1 PST Clock Buffer and Slack Vector

Figure 5.4 shows a circuit with five timing-critical paths. Whenbuf1 is converted to a PST clock buffer,

the hold time and setup time slacks of paths1 and2 can be changed by adjusting the delay ofbuf1. Let

s1 ∼ s5 be the hold time slacks ands6 ∼ s10 be the setup time slacks of paths1 ∼ 5. The slack vector

after a change oft1 on thebuf1 delay,s(t1) = s + k1t1, is shown in Figure 5.4. Likewise, the slack

vector after a change oft2 on buf2 delay,s(t2) = s + k2t2, is shown in Figure 5.5.

Similar analysis shows that the effects of tuning the delaysof internal clock buffers can be represented

by a linear combination of the effects of tuning leaf level clock buffers. As shown in Figure 5.6, the slack

vector after addingt3 to thebuf3 delay,s(t3) = s + k3t3 = s + (k1 + k2)t3, is equivalent to addingt3

to bothbuf1 andbuf2 delays.
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Figure 5.5: Effect of changingbuf2 delay on the slack vector.
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Figure 5.6: Effect of changingbuf3 delay on the slack vector.
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5.4.2 Tuning Vector and Buffer Filtering

Let t be anR|B|×1 vector corresponding to the tuning amount of theB clock buffers, the slack vector

after applyingt is

s(t) = s + Kt, (5.14)

whereK is the tuning matrix. The i-th column vector ofK, ki, is thetuning vectorof the i-th clock

buffer.

After slack filtering, some clock buffers are not connected to timing-critical paths and their corre-

sponding tuning vectors are zero vectors. Moreover, tuningthe delay of a clock buffer may have the

same effect as tuning another clock buffer. Therefore, these clock buffers can be filtered out to reduce

the number of candidate PST clock buffer locations from|B| to m. Figure 5.7 shows a bottom-up algo-

rithm, which produces the reduced tuning matrixK and the corresponding candidate PST clock buffers

U . The algorithm propagates tuning vectors upward toward theroot node and filters out the buffers with

zero or duplicate tuning vectors. Figure 5.8 illustrates the result of the algorithm on an example circuit.

5.4.3 Parameterized and Optimal Timing Yield

With post-silicon clock tuning, a circuit is considered functional if there exists a delay configurationt

that can bring its slack vector to the feasible regionC0. An alternative view is to regard the effect of

post-silicon clock tuning as an enlargement on the feasibleregion. Letri be the tunable range of the

i-th candidate clock buffer, theparameterizedtiming yield that can be achieved given the tunable range
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Procedure: SelectCandidate

Input: Circuit graphG(V,E,B), slack vectors

Output: Tuning matrixK, candidate buffersU

Number clock buffers inreversetopological order1

m = 0, K ← φ, U ← φ2

for i = 1 . . . |B| do3

if bufi is a leaf bufferthen4

vi
j =















0 , whenbufi is not connected tosj

+1 , whenbufi drives the source (target) of hold-time (setup-time) slacksj

−1 , whenbufi drives the target (source) of hold-time (setup-time) slacksj5

if vi 6= 0 then6

m = m + 1, K ← [K|vi], U ← U ∪ {bufi}7

end8

else9

vi =
∑

b∈Child(i)

vb

10

if vi 6= 0 andvi 6= vb, ∀b ∈ Child(i) then11

m = m + 1, K ← [K|vi], U ← U ∪ {bufi}12

end13

end14

end15

Figure 5.7: Algorithm to select candidate PST clock buffer locations and generate tuning matrix.
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Figure 5.8: Candidate PST clock buffer locations identifiedby SelectCandidate.



84

vectorr is:

Y(r) = P (s ∈ C(r)), (5.15)

C(r) =































w | w = y −Kt,

yi ≥ 0, i = 1 . . . n

rj ≥ tj ≥ −rj, j = 1 . . . m































= {w | w � −Kt, r � t � −r} ,

where� and� are element-wise inequalities. Note that the model (5.15) is applicable whetherr is a

continuous vector or a discrete vector. Therefore, the sameparameterized timing yield model can be

used both for PST-A and PST-N.

To check if a slack vector samples is in the feasible regionC(r), one needs to solve the linear

feasibility problem:

(FP) min 0 (5.16)

s.t. −Kt � s,

r � t � −r,

and check to see if (5.16) is feasible. CLP, a high quality Simplex [79] solver of the COIN-OR project

[91], is used to solve the feasibility problem for each slackvector sample and get the parameterized

timing yield estimation. Note that although the parameterized timing yield is more costly to obtain than

the nominal timing yield, the runtime to solve 100,000 instances of the feasibility problem (5.16) with

n ∼ 1000 andm ∼ 2000 is still less than an hour on a 1.7GHz Pentium-M PC. This is dueto the high

efficiency of the Simplex algorithm [80].

Theoptimaltiming yield can be approximated by assuming all candidate clock buffers have a(+∞,−∞)
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tunable range, or

Y∗ = P (s ∈ C∗), (5.17)

C∗ = {w | w � −Kt, t ∈ Rm} .

Since there is a diminishing-marginal-return effect between the hardware cost and the timing yield, it is

reasonable to set a target timing yield belowY∗. For the following discussions, the target timing yield is

set asYt = Y0 + 0.9× (Y∗ − Y0).

5.5 Total Tunable Range Minimization

In this section, the PST-A problem is cast into a nonlinear optimization problem. Asimultaneous pertur-

bation (SP) [92, 93] algorithm is adopted to significantly reduce the time for gradient approximation of

the timing yield function using only two Monte Carlo integrations. An iterative SP linesearch algorithm

is proposed to solve PST-A efficiently.

5.5.1 Nonlinear Optimization Formulation

The PST-A problem is formulated as a nonlinear optimizationproblem with simple bound constraints as

below:

(NLP) max Lγ(r) = Y(r)− γ
∑

i=1...m

ri (5.18)

s.t. ri ≥ 0, i = 1 . . . m.

By choosing a positivepenalty parameterγ, the tunable ranges of the candidate buffers that do not

contribute to the timing yield improvement are ‘squeezed’ toward zero. This formulation is similar to

a typical penalty-function-based optimization that minimizes the total tunable range and a penalty term
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on the timing yield violation. However, it will become clearthat this formulation provides benefits on

selectingγ and allows the optimization to be started from a feasible solution.

TheNLP problem can be solved using linesearch algorithms. Linesearch algorithms require gradi-

ent information of the objective function. Since the analytic formula ofY(r) is not available, the gradi-

ent ofY(r) needs to be approximated using onlyY(r) evaluations. A common gradient approximation

method isfinite difference(FD). A linesearch algorithm using one-sided finite difference approximation

follows

rk+1 = rk + ckĝγ(rk), (5.19)

ĝγ(rk) =

















Y(rk+bke
1)−Y(rk)

bk
− γ

...

Y(rk+bke
m)−Y(rk)

bk
− γ

















, (5.20)

whereck is the step size andbk is the perturbation size of iterationk. ĝγ(rk) is the gradient approximation

of Lγ(r) at rk, andei is a unit vector with1 on thei-th element. Therefore, in each step it takesm

parameterized timing yield evaluations to obtain a gradient approximation. This is too computationally

expensive.

5.5.2 Simultaneous Perturbation

Recent studies have shown that it is possible to use only two function evaluations to approximate the

gradient by taking a random perturbation vector∆k [92,93]. The gradient approximation with SP is

ĝγ(rk) =
Y(rk + bk∆k)− Y(rk)

bk

















1
∆k,1

...

1
∆k,m

















− γ1. (5.21)
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Figure 5.9: Illustration of the convergence of SP and FD linesearch (Source: Spall 1998).

There are a few conditions that must be met in order to guarantee the convergence of a linesearch algo-

rithm using SP. The most important ones are thatbk andck need to go to 0 at appropriate rates and∆k,i

are independent and symmetrically distributed withE[∆k,i] = 0 andE[|∆k,i|−1] < ∞. A common

choice of the perturbation vector∆k is the symmetric Bernoulli±1 distribution. It has been shown that

under mild conditions, the number of measurements ofY(r) by a linesearch algorithm using SP can

approach 1
m

of that from a linesearch algorithm using FD while achievingthe same asymptotic mean

squared error of the solution. The intuition behind SP is that the gradient approximation in (5.21) is an

unbiasedapproximation and it contains as much information as that from a finite difference approxima-

tion. Figure 5.9 illustrates the convergence of linesearchalgorithms with SP and FD.
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5.5.3 Iterative SP Linesearch

An iterative SP linesearch algorithm is proposed in Figure 5.10 to solve the PST-A problem. The al-

gorithm starts from an initial solutionrinit, which has a sufficiently large parameterized timing yield

(Y(rinit) > Yt). For example, a sufficiently largeq can be selected such thatrinit = q1 satisfies this con-

dition. At the beginning of the optimization, the parameters for SP gradient approximation (b, η, c, C, π)

are initialized according to the guidelines given in [93]. The convergence rate of the outer iterative loop

(line 4-19) are set asχ = 2, θ = 0.9 andε = 0.001.

In the first iteration, the penalty parameterγ is chosen according to the equation in (line 3) to ensure

that the timing yield after the first iteration is still larger thanYt. In the following iterations, the penalty

parameterγ is gradually increased and the step and perturbation sizes are reduced (line 18). Within each

iteration, an SP linesearch is used to find the optimal solution of theNLP problem (line 5-13). The

latest intermediate solution that satisfies the target yield is recorded iñr (line 14-16). There are two

legalization steps in the algorithm (line 9, 11). The gradient approximation given by (5.21) can generate

unrealistically large gradients due to a small perturbation step∆k,i in the denominator caused by the

legalization step (line 9). This problem is resolved by choosing 1
max(0.5,|∆k,i|) instead of 1

∆k,i
as the

perturbation step size in (5.21). Truncation on the perturbation step can introduce noise to the gradient

approximation. The noise has a greater impact to the convergence of the algorithm if it occurs at the

beginning of the linesearch iteration when the step size is large. Therefore, choosingrinit instead of the

origin as the starting point can reduce the noise effect.

The runtime of the algorithm is dominated by the number ofY(r) evaluations, which is the same

as the number of SP linesearch steps (line 6-13). The iterative SP linesearch loop can be terminated

early when a certain number ofY(r) evaluations is used. For large problems, the proposed iterative SP
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Procedure: IterativeSPLinesearch

Input: Y(r), Yt, initial solutionrinit

Output: Final tunable rangẽr

Initialize b, η, c, C, π, ε, χ, θ1

r̃ = rprev = rinit2

γ = Y(rinit)−Yt

|rinit|3

repeat4

/* maximize Lγ(r) using SP linesearch */

k = 1, rk = rprev5

repeat6

bk = b
kη , ck = c

(C+k)π7

∆k ← ±1 symmetric Bernoulli random vector8

∆k = max(∆k,
−rk

bk
) // legalization9

Approximateĝγ(rk) by (5.21)10

rk+1 = max(0, rk + ckĝγ(rk)) // legalization11

k = k + 112

until |Lγ(rk)− Lγ(rk−1)| < ε13

if Y(rk) > Yt then14

r̃ = rk15

end16

rprev = rk17

/* update step size (b, c) and penalty weight γ */

γ = χγ, b = θb, c = θc18

until Y(rk) < Yt19

Figure 5.10: Algorithm for total tunable range minimization using iterative SP linesearch.
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linesearch algorithm can take less thanm steps to find a tunable range vector, less than the time for a

traditional FD linesearch to take the very first step.

5.6 Reduction of PST Clock Buffers

In this section, a greedy algorithm for solving the PST-N problem is analyzed. A batch selection algo-

rithm is proposed to speed up the optimization.

5.6.1 A Greedy Algorithm

In the PST-N problem, only the number of PST clock buffers used in a PST clock tree is of interest.

A digital-to-analog converter controlled PST clock bufferwith ∼ 700ps tunable range in a0.18µm

technology is reported in [64]. This tunable range is sufficient to counter process-induced path delay and

clock skew variations. Therefore, a PST clock buffer is assumed to have an infinite tunable range in the

PST-N problem. Under this assumption, a PST clock tree can berepresented by aselection vectorrsel,

where the tunable rangersel,i is∞ if buffer i is a PST clock buffer, and 0 if bufferi is a regular clock

buffer. However, to find a selection vector with a minimum number of non-zero elements (PST clock

buffers) that satisfies the target timing yield is a combinatorial optimization problem.

A common approach for combinatorial optimizations is a greedy method. Figure 5.11 shows a greedy

algorithm for finding a selection vector. The algorithm starts with an empty selection vector and adds a

PST clock buffer in each iteration until the target timing yield is achieved. In each iteration, it checks

the potential timing yield improvement of every unselectedbuffer and chooses the one that gives the

maximum improvement. The major issue of the greedy algorithm is that it requiresm+(m−M+1)
2 ×M

parameterized timing yield evaluations, whereM is the number of non-zero elements inrsel. This is
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Procedure: Greedy

Input: Timing yield modelY(r), target yieldYt

Output: Selection vectorrsel

r = 0, Ycur = Y01

repeat2

b = 03

for j = 1 . . . mdo4

if rj = 0 then5

rj =∞6

if Y(r) > Ycur then7

Ycur = Y(r), b = j8

end9

rj = 010

end11

end12

rb =∞13

until Ycur > Yt14

rsel = r15

Figure 5.11: Algorithm for greedy selection of PST clock buffers.

unacceptable for large problems wherem andM are both large. An algorithm that generates a good

selection vector using∼ m parameterized timing yield evaluations needs to be developed.

5.6.2 Batch Selection Algorithm

A batch selection algorithm is proposed in Figure 5.12 to overcome the runtime issue of the greedy

algorithm. Instead of selecting one buffer at a time, all theunselected buffers are scanned and a buffer is

selected immediately if it provides a timing yield improvement greater than a threshold valueYth (line

6-7). The threshold value is decreased exponentially (line13) and the selection only takes a few iterations

to complete.
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Procedure: BatchSelection

Input: Timing yield modelY(r), target yieldYt

Output: Selection vectorrsel

r = 0, Ycur = Y0, Yth = 0.1× (Y∗ − Y0)1

repeat2

for j = 1 . . . m do3

if rj = 0 then4

rj =∞5

if Y(r) > Ycur + Yth then6

Ycur = Y(r)7

else8

rj = 09

end10

end11

end12

Yth = 0.5× Yth13

until Ycur > Yt14

rsel = r15

Figure 5.12: Algorithm for batch PST clock buffer selection.

The number ofY(r) evaluations required by the batch selection algorithm isωm, whereω is the

number of iterations (line 2-14) to achieve the target timing yield. Since the threshold for buffer selection

Yth decreases exponentially,ω is usually a small constant. Therefore, the overall runtimeof the algorithm

is M
ω

times faster than the greedy algorithm.

5.7 Experimental Results

The algorithms are implemented in C++ and tested on a 1.7GHz Pentium-M computer. ISCAS89 bench-

mark circuits are synthesized and placed using SIS [84] and Dragon [85] to generate realistic flip-flop
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placements. In practice, a timing-critical path is usuallyconnected to other timing-critical paths and

they usually form cycles2. The iterative clock scheduling algorithm presented in Chapter 3 is applied to

identify timing-critical cycles. The clock period is chosen such that the most timing-critical path has a

3σ slack. The first500 ∼ 2000 timing-critical paths are selected to build a parameterized timing yield

model for each circuit as discussed in Section 5.4. In the parameterized timing yield model, all the slack

variables are divided by their standard deviations. Therefore, the parameterized timing yield model is a

unit-less model.

For each circuit, an H-tree is generated and a clock buffer isplaced at every branching point and

terminal of the H-tree. For S9234.1, an eight-level H-tree is generated (256 terminals). For the rest of

the circuits, ten-level H-trees are generated (1024 terminals). Only PST clock buffers are shown in the

subsequent figures.

For PST-A, the iterative SP linesearch algorithm (IterSP) is compared to a regular design method

(Regular) that inserts identical PST clock buffers to all terminals of the clock tree. For PST-N, the batch

selection algorithm (Batch) is compared to the greedy algorithm (Greedy) and a levelized design method

(Levelized), which represents a current PST clock tree design strategythat inserts PST clock buffers in

an entire level of the clock tree.

5.7.1 Nominal and Optimal Timing Yield

Table 5.1 shows the parameters of the timing yield models as well as the nominal and optimal timing

yields of each circuit. The number of timing-critical pathsincluded in the timing yield model is in the

second column. The third column shows the number of clock tree terminals. The fourth column shows

2Otherwise, a timing-critical path can be eliminated by introducing useful-skew to its source or target flip-flop.
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Circuit # Paths(n) # Terminal # PST Candidate (m) Y0(%) Y∗(%) Yt(%) Y∗ − Y0(%)

S9234.1 500 256 149(75) 92.15 97.48 96.94 5.33

S13207.1 500 1024 417(210) 94.56 99.44 98.95 4.88

S15850.1 1000 1024 641(321) 92.69 99.97 99.24 5.28

S35932 1000 1024 541(271) 54.93 99.99 95.49 45.06

S38584.1 2000 1024 1591(796) 86.69 99.44 98.17 12.75

Table 5.1: Timing yield models of the ISCAS89 benchmark circuits.

the number of candidate PST clock buffers selected by the buffer filtering algorithm presented in Section

5.4.1. The number in the parenthesis is the number of candidate PST clock buffers at the leaf level of an

H-Tree. Each timing yield is obtained by Monte Carlo integration with 100,000 samples. The nominal,

optimal and target timing yields of each circuit are listed in columns five through seven. As shown in the

last column, post-silicon clock tuning provides significant timing yield improvements (5%∼ 45%).

5.7.2 Total Tunable Range Improvement

Table 5.2 shows the comparison of the total tunable range achieved byIterSPandRegular. In Regular,

it is assumed that identical PST clock buffers are placed only at the terminals of a clock tree. A binary

search is used to find the minimum tunable range that achievesYt to within a±10−3 resolution. The

tunable range is then multiplied by the number of leaf candidate PST clock buffers.

As shown in Table 5.2,IterSPachieves> 65% total tunable range reduction compared toRegular.

One of the reasons for the significant improvement is thatIterSPassigns a tunable range to a clock buffer

no larger than what is required. This greatly reduces over design. The other contributor to the large

improvement is thatIterSP distributes the total tunable range among all candidate PSTclock buffers

located at different levels of the clock tree.
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Circuit Regular IterSP

# Candidate T.T.R. (σ) CPU # Candidate T.T.R. (σ) Reduction Steps #Y(t) eval. CPU

S9234.1 75 24.94 1.9m 149 8.51 65.9% 52 208 1.1h

S13207.1 210 68.60 2.8m 417 11.33 83.5% 63 252 3.4h

S15850.1 321 104.85 7.5m 641 10.09 90.4% 107 428 6.5h

S35932 271 101.23 42.2m 541 1.90 97.4% 73 292 44.3h

S38584.1 796 238.26 36.7m 1591 17.19 92.8% 189 756 30.8h

Table 5.2: Comparison on total tunable range (T.T.R.) between a regular design method and the iterative
SP linesearch algorithm.

Figure 5.13 shows the intermediate tunable range vectorrk of S9234.1 in thek-th SP linesearch

step. As shown in the figure, the gradient approximations provided by SP efficiently guide the linesearch

algorithm to reduce the total tunable range in only a small number of steps. Inr52, the tunable ranges

of about half of the 149 buffers are reduced almost to zero. This is because there are only 75 linearly

independent tuning vectors among the 149 candidate buffers.

Averaging four gradient approximations for each SP linesearch step provides a better convergence

rate without sacrificing too much runtime. On average,IterSP uses∼ m parameterized timing yield

estimations.

Although IterSPis able to obtain a good tunable range vector using only∼ m parameterized timing

yield estimations, it is still too slow for large problems such as S35932.IterSPhas an extremely long

runtime on S35932 because of its low nominal timing yield. Asa result,∼ 45K instances of a1000×541

linear feasibility problem need to be solved in each parameterized timing yield evaluation. For large

problems, it is necessary to select a small subset of candidate PST clock buffers and reduce the problem

size before applyingIterSP. The batch selection algorithm is a good candidate for this goal.
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Figure 5.13: The tunable range vector of S9234.1 during iterative SP linesearch.

5.7.3 PST Clock Buffer Count Reduction

Table 5.3 shows the number of PST clock buffers and the runtime necessary to achieve the target timing

yield by Levelized, GreedyandBatch. To reduce the number of required PST clock buffers,Levelized

inserts PST clock buffers at a level as close to the root node of the clock tree as possible provided the

target timing yield is satisfied.

The number of PST clock buffers required to achieve the target timing yield does not necessarily

depend on the size of the circuit or the number of timing-critical paths included in the timing yield

model. For example, S35932 only needs three PST clock buffers to achieve the target timing yield.

Figure 5.14 shows the PST clock tree and the distribution of timing-critical paths of S35932. It is clear

that either the source or the target flip-flops of most of the timing-critical paths are driven by one of the

three clock buffers.

In general,Levelizeduses PST clock buffers four times more thanGreedyandBatchbecauseLev-
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Circuit # Candidate # PST clock buffers CPU Time

Buffers Levelized Greedy Reduction Batch Reduction Levelized Greedy Batch

S9234.1 149(75) 32 8 75% 10 69% 1.7m 16.9m 4.6m

S13207.1 417(210) 256 16 94% 18 93% 1.9m 35.8m 6.8m

S15850.1 641(321) 128 17 87% 21 84% 13.2m 1.4h 21.6m

S35932 541(271) 16 3 81% 3 81% 1.5h 14.7h 3.1h

S38584.1 1591(796) 512 - - 162 68% 14.3m > 2 day 8.9h

Table 5.3: Comparison on number of PST clock buffers and runtime among three design methods.

Figure 5.14: The PST clock tree of S35932. The triangles and light gray lines indicate PST clock buffer
locations and timing-critical paths.
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(a) Greedy (b) Batch

Figure 5.15: PST clock trees of S9234.1 generated byGreedyandBatch.

elizedonly inserts one level of PST clock buffers in a clock tree. Onthe contrary,GreedyandBatchcan

utilize hierarchical tuningto reduce the number of PST clock buffers. Figure 5.15 shows the PST clock

trees of S9234.1 generated byGreedyandBatch. On the lower left corner of the clock trees, both algo-

rithms generate PST clock trees with three levels of PST clock buffers. A PST clock buffer close to the

clock root node can affect many timing paths simultaneously, while a PST clock buffer close to clock sink

nodes can adjust the timing of specific timing paths.By allowing multiple levels of PST clock buffers, the

number of PST clock buffers can be reduced by exploring the correlation between timing-critical paths.

The comparison of the number of PST clock buffers used byGreedyandBatchshow thatBatchhas

comparable solution quality toGreedy. Moreover,Batchprovides∼ 4X speedup on average. Therefore,

Batchis a preferred algorithm for solving large PST-N problems.



99

Chapter 6

Future Works

This dissertation has provided a clock design flow that dealswith timing uncertainty by enhancing ex-

isting clock design steps and using post-silicon clock tuning. Although new algorithms for reducing

hardware cost of PST clock trees have been presented, further research on the following topics is still

required to improve the maturity of post-silicon clock tuning.

6.1 PST Clock Tree Optimization

The PST clock tree synthesis method proposed in Chapter 5 constructs a PST clock tree by replac-

ing regular clock buffers with PST clock buffers after clocktree optimization. This method requires

engineering-change-orders (ECOs) to compensate extra insertion delay caused by PST clock buffers. It

is desirable to insert PST clock buffers during the clock tree optimization step to avoid ECOs. To achieve

this goal, a clock tree optimization algorithm needs to be able to determine when a PST clock buffer

should be used during optimization. This requires a fast timing yield estimation method and a clock tree

optimization algorithm that considers timing yield and hardware cost besides clock delay and skew.
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6.2 Post-Silicon Clock Tuning through Selective Path Delay Testing

Currently, there are two approaches for post-silicon clocktuning. The first approach is to determine a

delay configuration through silicon debugging. The delay configuration is then applied to all manufac-

tured chips. This requires expensive hardware and softwaresupport as well as knowledge of the process.

Moreover, this approach works well only when systematic variations predominate random variations.

The second approach is to use genetic algorithms to automatically generate a good delay configura-

tion [64, 65]. These algorithms first generate a set of randomdelay configurations. For each delay

configuration, several sets of test vectors are applied to a chip and a fitness score is assigned based on

how many tests the chip passes. This approach may require a long test application time to evolve a good

delay configuration.

Post-silicon clock tuning is a clock scheduling process anda good delay configuration can be com-

puted mathematically if path delays are known. Path delays in a manufactured chip can be measured

indirectly by applying path delay testing vectors. Figure 6.1 demonstrates the principle for measuring

path delays using path delay testing. Letx1 ∼ x3 be the clock arrival times ofFF1 ∼ FF3 that can

be adjusted by tuning PST clock buffers. Assume that the ranges of the clock arrival times are between

one and eight. To measure the longest path delay fromFF2 to FF3, one can configure the clock arrival

timesx2 andx3, apply test vectors to excite the longest path, scan out the result ofFF3 and compare it

with the correct result. The pass and fail information contain the path delay information and can be used

to derive the constraint betweenx2 andx3.

A chip may contain millions ofFF pairs. Although paths having sufficient slack can be excluded

from the test, a significant number of timing critical paths still need to be tested. Since each test re-

quires scanning-in and scanning-out test vectors multipletimes, the runtime for post-silicon clock tuning
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Figure 6.1: Measuring path delay by path delay testing.
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Figure 6.2: Reducing the number of test application by usingcorrelation.

through path delay testing can be prohibitive. To address the runtime issue, one can utilize path delay

correlation to reduce the number of test applications. As shown in Figure 6.2, there are two timing crit-

ical paths fromFF1 to FF3 and fromFF2 to FF3. Since the two paths share a long common path,d2

can be estimated byd1 with high confidence. Therefore, the post-silicon clock tuning problem becomes

an optimization problem that maximizes the confidence of thedelay map with minimum test application

time.
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