
750 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

[15] S. S. Leung and M. A. Shanblatt, ASIC System Design With VHDL: A
Paradigm. Norwell, MA: Kluwer, 1990.

[16] E. Yeo, S. Augsburger, W. Rhett Davis, and B. Nikolie, “500 Mb/s soft-
output Viterbi decoder,” in Proc. 28th Eur. Solid-State Circuits Conf.,
Florence, Italy, Sep. 24–26, 2002, pp. 523–526.

[17] V. S. Gierenz, O. Weiss, T. G. Noll, I. Carew, J. Ashley, and R. Karabed,
“A 550 Mb/s radix-4 bit-level pipelined 16-state 0.25- m CMOS
Viterbi decoder,” in Proc. IEEE Int. Conf. Application-Specific Systems,
Architectures, and Processors (ASAP’00), Boston, MA, Jul. 10–12,
2000, pp. 195–201.

[18] D. E. Hocevar and A. Gatherer, “Achieving flexibility in a Viterbi de-
coder DSP coprocessor,” in Proc. Vehicular Technology Conference, vol.
5, Boston, MA, Sep. 24–28, 2000, pp. 2257–2264.

[19] G. Kang and P. Zhang, “The implementation of Viterbi decoder on
TMS320C6201 DSP in W-CDMS systems,” in Proc. Int. Conf. Com-
munication Technology, vol. 2, Beijing, China, Aug. 21–25, 2000, pp.
1693–1696.

An Efficient Merging Scheme for Prescribed
Skew Clock Routing

Rishi Chaturvedi and Jiang Hu

Abstract—In ultra-deep submicron very large-scale integration (VLSI)
designs, clock network layout plays an increasingly important role on de-
termining circuit quality indicated by timing, power consumption, cost,
power-supply noise, and tolerance to process variations. In this brief, a new
merging scheme is proposed for prescribed nonzero skew routings which
are useful in reducing clock cycle time, suppressing power-supply noise,
and improving tolerance to process variations. This technique is simple
and easy to implement for practical applications. Experimental results on
benchmark circuits with both buffered and unbuffered routings exhibit
large improvement on wirelength and buffer cost compared with other ex-
isting works.

Index Terms—Clocks, design automation, very large-scale integration.

I. INTRODUCTION

In synchronous very large-scale integration (VLSI) circuits, since
the pace of almost every data transfer is coordinated by clock signals,
the quality of clock networks has a vital influence to the circuit timing
performance. Moreover, as the clock network is perhaps the largest in-
terconnect net, a clock network with excessive wirelength may lead to
severe problems on power consumption, power/ground supply noise,
process variations, and thermal issues. Thus, a clock networkwith elab-
orated timing characteristics and minimal wirelength is crucial for ultra
deep submicron VLSI designs.

It was observed a long time ago that certain prescribed nonzero skew
could be utilized to improve clock frequency [1]. In this scenario, a
skew refers to the delay difference between a certain clock sink pair.
In addition to timing improvement, prescribed skews help to reduce
simultaneous signal switching and power-supply noise [2]. Moreover,
tolerance to process variations can be improved by setting each skew

Manuscript received August 12, 2004; revised October 14, 2004. This work
is supported in part by Semiconductor Research Corporation under Contract
2004-TJ-1205.

R. Chaturvedi is with the Analog Devices Inc., Wilmington, MA 01887 USA.
J. Hu is with the Department of Electrical Engineering, Texas A&M Univer-

sity, TX 77843 USA (e-mail: jianghu@ee.tamu.edu).
Digital Object Identifier 10.1109/TVLSI.2005.848821

Fig. 1. Clock network in a hierarchical/SoC design.

value close to the center of its permissible range [3]. Consequently, a
clock routing method for prescribed nonzero skew is strongly needed.
In hierarchical/system-on-chip (SoC) designs, even if only zero skew
is sought, the prescribed skew routing technique is useful. In this sce-
nario, the entire clock network can be divided into two levels as shown
in Fig. 1: 1) local clock networks within each block (IP core/macro)
and 2) the chip level global clock network that connects the subroots
of the local networks and sinks outside of any blocks. In practice, the
global network and each local network are usually designed separately
and the subroot-sink delay in one local network is quite likely to be dif-
ferent from that in another local network. Thus, the global clock net-
work needs to be constructed according to nonzero skew specifications.
Clock tree routing is usually a process that recursivelymerges a set of

subtrees, which are clock sinks initially, in a bottom-up fashion. A pair
of subtrees is merged to form a new subtree whose root is the merging
node. This procedure proceeds till there is only one subtree left. There
are two major decision makings in this clock tree routing process: 1)
merging scheme that tells which subtrees should be merged together
and 2) layout embedding that decides locations for the merging nodes.
The merging scheme can be extracted out and performed in advance to
construct an abstract tree.
Most previous works on clock-network design attempt to obtain zero

skew, because the skew is a lower bound for clock period time. In [4],
Tsay introduced an Elmore-delay-based layout embedding technique
that can achieve exact zero skew for any given abstract tree. In order
to further reduce wirelength, the deferred merge embedding (DME)
algorithm was developed in [5]. Instead of committing a merging node
to particular location immediately, DME maintains merging segment
for each merging node and defers the decision on the exact merging
location later when it is clear how to minimize wirelength. The DME
embedding is extended to handle bounded skew clock routing in [6].
Since the skew in [6] can be any value within a global upperbound, it is
quite different from the local-pair-wise prescribed skews discussed in
[2], [3]. In [7], a nearest neighbor based merging selection is integrated
with DME embedding.
In contrast to numerous works on zero skew clock routing, there are

very few works reported on prescribed nonzero skew routing despite its
great importance. Perhaps this is due to the misconception that existing
zero skew routing techniques can be applied to nonzero skew directly.
Indeed, the layout embedding techniques originally designed for zero
skew [4], [5] can be adopted directly to achieve nonzero skews. How-
ever, zero skew driven merging schemes do not necessarily work well
for nonzero skew clock routing. In fact, we discover that huge wire-
length is generated through traditional merging schemes. This is espe-
cially true when the differences among delay-targets are large so that a
lot of wire snakings [4] are incurred. The example in Fig. 2 illustrates

1063-8210/$20.00 © 2005 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005 751

Fig. 2. When delay targets for four sinks , traditional
merging scheme may result in an abstract tree in (a) and embedding in (b) with
wire snakings. A different abstract tree in (c) and its layout embedding in (d)
may yield less wirelength.

that different merging schemes may provide different wirelength for
nonzero skew clock routing.

In [8], an incremental scheduling algorithm is proposed and
combined with the DME embedding for a certain abstract tree. In
an early work [9] of prescribed skew routing, the nearest neighbor
based merging scheme of [7] is extended to a merging based on
minimum merging cost which includes wire detours due to delay
target imbalance. Recently, a clock network synthesis method [10] is
developed such that clock signal delay to each clock sink is bounded
by distinctive lower and upper limit.

The goal of this work is to develop a merging scheme for prescribed
skew routing with minimum wirelength. We analyzed the interactions
among skew targets, sink location proximities and capacitive load
balance in clock routing. According to this analysis, we propose a
maximum delay-target-based merging scheme which is integrated with
the DME embedding to achieve general prescribed skews. The total
wirelength is minimized to restrict cost and power consumption. The
proposed technique is simple and fast for practical applications. Even
though the work of [8] is also aimed to achieve general skew targets, it
emphasizes more on incremental scheduling while our contribution is
mostly on the merging scheme. The twoworks are suitable for different
methodology flows. We compared our method with other existing
methods [7], [9] on benchmark circuits. The experimental results show
that our method can lead to significant wirelength reduction.

II. PRELIMINARY

Same as other clock routingworks, we adopt the Elmore delaymodel
for delay computation in this brief. A merging scheme only decides a
merging order and can be applied with any delay models. The problem
we will solve is formally stated as follows.

Minimum Cost Prescribed Skew Clock Routing Problem: Given
a set of clock sinks V = fv1; v2; . . . vng, load capacitanceCi for each
sink vi 2 V , skew specifications qi;j for every pair of sinks vi, vj 2 V ,
find a rooted Steiner tree with clock sinks as leaf nodes such that the
total wirelength is minimized and the skew specification qi;j = di�dj
is satisfied for root-to-sink delay di and dj of any sink pair vi, vj 2 V .

The minimum required number of skew specifications for n nodes is
n�1. The others can be derived from then�1 specifications. The skew

Fig. 3. Examples of merging subtrees without wire snaking in (a) and with
wire snaking when delay target at is significantly greater than delay target

at in (b).

specifications can also be expressed through root-to-sink delay-target ti
for each sink vi 2 V , as long as qi;j = ti� tj8vi, vj 2 V is satisfied.
The skew specifications can be satisfied whenever we can find a single
constant C such that ti = di + C is true for every sink vi 2 V .
Now we generalize the concept of a delay target to include subtrees.

Let Ti denote a subtree rooted at node vi. This subtree can be character-
ized by delay-target ti and downstream capacitance Ci at its root vi. If
vi is a sink, its delay target ti is given. If vi is a merging node, its delay
target ti can be computed recursively as follows. If we merge subtree
Tj and Tk at merging node vi as shown in Fig. 3(a), let the wirelength
from vi to vj and vk be li;j and li;k , respectively. The delay from vi to
vj and vk are

di;j =
1

2
rcl

2

i;j + rli;jCj

di;k =
1

2
rcl

2

i;k + rli;kCk (1)

where r and c are wire resistance and capacitance per unit length, re-
spectively. In order to meet skew specifications, these delays have to
satisfy the following equality:

di;j � di;k = tj � tk: (2)

Then, the delay target ti can be obtained by rearranging the above
equality as

ti = tj � di;j = tk � di;k: (3)

Since the delay targets are propagated bottom-up based on the above
equation, the skew specifications can be enforced by only considering
(2) without checking delays at sink nodes.
The minimum feasible wirelength for the merging is the Manhattan

distance lj;k between vj and vk .When there is great difference between
delay targets, for example, when tj is much greater than tk , we have
to let li;k = 0 and let li;j > lj;k. The actual wirelength of li;j can be
obtained by solving the following:

1

2
rcl

2

i;j + rli;jCj = tj � tk: (4)

The method of using a wirelength greater than lj;k is called wire
snaking [4] which is demonstrated in Fig. 3(b).
Since the top-level framework of our prescribed skew clock routing

method is very similar to Edahiro’s zero skew routing algorithm in
[7], we briefly review the basic version of Edahiro’s algorithm which
is called nearest-neighbor selection (NS) algorithm. The first phase is
a bottom-up recursive subtree merging process, which constructs the
abstract tree and finds the merging segments [5] for each merging node.
In each step, only one pair of subtrees (initially clock sinks), which have
the minimum distance between their roots, is selected to be merged.
The nearest neighbor is found using Delaunay triangulation. After a
merging, the two subtrees are replaced by the newly created subtree.
This process is repeated recursively till there is only one subtree left.
The second phase is a top-down tree traversal that identifies one location
on each merging segment such that the total wirelength is minimized.
This phase is the same as the top-down phase in DME algorithm [5]. In
the same paper [7], Edahiro also presented a clustering based speed-up
version of the NS algorithm which is notated as CL (clustering based).

752 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

Fig. 4. Algorithm of the merging selection scheme.

III. ALGORITHM

A. Merging Scheme

It is shown in the previous section that great difference between delay
targets may cause wire snakings, thus traditional merging schemes tend
to result in excessive wirelength because of their neglection of the
delay-target differences. We demonstrate this problem through the ex-
ample in Fig. 2. Assume that the given delay targets are quite different
from each other and they follow the inequality t1 < t2 � t3 < t4, es-
pecially t3 and t4 aremuch greater than t1 and t2.WemergeT1 with T2
first, since their distance is the smallest among all sink pairs. Because
t2 is significantly greater than t1, it is quite likely that a wire snaking
occurs when we merge T1 with T2 at node v5 as shown in Fig. 2(b).
Similarly, T3 is merged with T4 at node v6. Since t3 and t4 are much
greater than t1 and t2, it is quite possible that t6 is much greater than
t5 and another wire snaking results from merging subtree T5 with T6
at node v7.

Since wire snaking is more likely to happen when the difference of
delay targets between two subtrees is large, it can be reduced if we
choose a merging order that can reduce the delay-target differences
among all subtrees. According to (3), the delay target of the newly
created subtree is always smaller than the delay targets of the two
subtrees it is merged from. Thus, if we choose to merge the subtree
with themaximumdelay target first, the overall delay-target differences
among subtrees will be reduced. According to (1), ifCj is much greater
than Ck , it is easier to achieve great di;j � di;k without wire snaking.
When the maximum delay-target subtree is merged first, the newly cre-
ated subtree from this merging has not only a smaller delay target but
also a greater load capacitance that makes the matching to other small
delay-target subtrees easier.

We further illustrate the advantage of this maximum delay-target
ordered merging through the example in Fig. 2. In Fig. 2(d), we first
merge T3 with T4 to obtain subtree T6 rooted at v6, as T4 has the max-
imum delay target. Since t4 and t3 are much greater than t2 and t1, it is
very likely that t6 is still greater than t1 and t2. Next, we merge T6 with
T2 at node v8 and denote this merging as T6+T2 v8. We can com-
pare this merging with T6+T5 v7 in Fig. 2(b), since both mergings
start from v6. On one hand, there is less imbalance on delay targets for
merging T6 + T2 v8 since t6 � t2 < t6 � t5. On the other hand, as
C2 < C5, the merging T6 + T2 v8 has greater imbalance on load
capacitance which makes it easier to achieve imbalanced delay targets
without wire snaking. If we compare the merging T1 + T8 v9 in
Fig. 2(d) and the merging T1+T2 v5 in Fig. 2(b), same conclusion
can be obtained. Therefore, the maximum delay-target first merging in-
deed reduces the chance of wire snaking.

Besides the maximum delay-target criterion, there is another major
difference between our merging scheme and previous works. Previous
works such as [7] evaluate every pair of subtrees and choose a pair ac-
cording to the minimum distance criterion. Our maximum delay-target
criterion only selects a single subtree instead of a pair at once, and

Fig. 5. Buffer insertion along with layout embedding.

we will apply another criterion to choose another subtree (we call it
companion subtree) to be merged with the maximum delay-target sub-
tree. A subtree needs to be merged to another subtree that is not only
nearby but also with similar delay target. We adopt a merging cost to
include the concern on distance and delay targets in a unified form. This
merging cost is simply the wirelength needed for the merging to sat-
isfy the delay-target constraint (2). Therefore, the merging cost is same
as the Manhattan distance between the roots of two subtrees if there
is no wire snaking. Otherwise, the merging cost is obtained through
solving (4) to include the extra wirelength due to wire snaking. Hence,
we choose the companion subtree, which will lead to the minimum
merging cost. In [9], the merging cost is employed as the primary crite-
rion for merging ordering. In contrast, it plays an auxiliary role in our
proposed merging scheme.
The algorithm description for this merging scheme is given in Fig. 4.

In fact, the proposed merging scheme is effective on reducing wire-
length for zero skew routing as well. Even though every sink initially
has the same delay target in zero skew routing, delay targets of the sub-
trees after merging are quite likely to be different from each other. The
effect of our merging scheme depends on how large the delay-target
differences are. The larger the delay-target difference, the more effec-
tive our merging scheme is.

B. Buffered Clock Tree

In clock routing, buffers are usually inserted to ensure desired
signal slew rate. Therefore, we validate our merging scheme in a
context of buffered clock tree. Similar as other existing works [9],
[11], RC switch model is employed for buffers. In a buffered clock
tree, a proper slew rate can be achieved by enforcing a maximum load
capacitance constraint Cmax which a buffer/driver can drive. Since
the output slew rate of a buffer/driver is mainly determined by its
load capacitance, restraining the load capacitance can virtually keep a
signal slew rate at proper level. The load capacitance constraint can be
satisfied through either dynamic programming style algorithms [11]
or a greedy approach [9]. In a dynamic programming algorithm, since
a set of candidate solutions are maintained, any candidate solution
with violation on the constraint can be simply pruned out. Aimed to a
fast and practical solution, this work adopts the greedy approach as in
[9] which inserts buffers whenever downstream load capacitance may
exceed Cmax. The buffer cost is considered together with wire cost in
term of its capacitance.
The buffer location needs to be decided in addition to the merging

node vi location. The work of [9] would simply fix the buffer location
at the root vj . In contrast, we do not restrict the buffer location at vj so
that a larger solution space can be explored. In order to avoid solving
two separate location variables simultaneously, we let the buffer and
the merging node vi be at a same location. This simplification does not
sacrifice any solution space for a reason that is illustrated by the ex-
ample in Fig. 5. In Fig. 5, the maximum delay dmax between vi and
vj occurs when both the buffer and the merging node vi are at the lo-
cation of vk, i.e., x = lj;k . Similarly, the minimum delay dmin be-
tween vi and vj occurs when the buffer and vi are at the location of vj ,
i.e., x = 0. By moving the buffer and vi together between vj and vk
(varying x in [0; lj;k]), any value in [dmin; dmax] can be obtained for
the delay between vi and vj . The value of x is decided according to
skew specifications.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005 753

TABLE I
SKEW TARGET (ps) DISTRIBUTIONS

C. Complexity

When integrated with the DME embedding as in [7], the merging
will be performed n � 1 times for n clock sinks. The complexity of
merging selection is O(n) due to the loop of line 3–6 in Fig. 4. Please
note that line 1 of Fig. 4 takes only O(logn) time assuming that there
are very few sinkswith same delay target in prescribed skew design. For
each merging, the computation of buffer location and merging node lo-
cation takes constant time. Thus, the overall complexity of our buffered
clock routing algorithm is O(n2). When there are a lot of sinks with
same delay target, the minimum merging cost pair needs to be identi-
fied among all the sinks with same delay target to break the tie. In the
worst case as in the zero skew designs, O(n2) time is needed to iden-
tify the minimum merging cost pair.

IV. EXPERIMENT

We implemented the proposed clock tree routing algorithm in
C and experiments are performed on a PC with 1.7-GHz Pen-
tium 4 microprocessor and 512 Mb memory. The benchmark
circuits are r1–r5 downloaded from the GSRC Bookshelf (http://vl-
sicad.ucsd.edu/GSRC/bookshelf/Slots/BST/). The delay targets are
generated through running the BST [6] code with a global skew bound
of 100 ps and taking the nonzero skew results. The BST code is also
downloaded from the GSRC Bookshelf. The skew target distributions
from BST are listed in Table I. Each column indicates a skew range
with respect to the minimum delay target among all sinks. Each entry
shows the number of sinks in a specific skew range.

We compared the following four clock routing algorithms with dif-
ferent merging schemes.

• NS+: The nearest-neighbor selection algorithm in [7] using the
minimum distance merging. The DME is implemented with
trivial extension such that (2) instead of zero skew constraint is
enforced in finding merging segment locations.

• MIC [9]: The minimum merging-cost merging which is very
similar to NS except that the merging selection is based on the
merging cost between two subtrees instead of the distance be-
tween them.

• MAT: Choose themaximum delay-target subtree first and find its
companion subtree that is its nearest neighbor (with minimum
distance).

• MAT-MIC: This is the complete version of our proposed
merging scheme, which is a combination of previous two
techniques. First choose the maximum delay-target subtree and
then find its companion subtree which results in the minimum
merging cost between them.

The experimental results for nonzero skew targets of unbuffered
clock trees are shown in Table II. Since these clock routing algorithms
all deliver the same prescribed nonzero skews, we only report the total
wirelength here. The relative wirelength with respect to MAT-MIC
are also listed. We can see that either the maximum delay target or the
minimum merging-cost technique itself can make significant improve-
ment on wirelength over the naive extension from previous zero skew
routing NS+. Simply extending zero skew routing as NS+ usually
doubles the wirelength compared to our proposed MAT-MIC scheme.

TABLE II
EXPERIMENTAL RESULTS OF NON-ZERO PRESCRIBED SKEW

UNBUFFERED CLOCK ROUTINGS

TABLE III
EXPERIMENTAL RESULTS OF ZERO SKEW UNBUFFERED CLOCK ROUTINGS

The previous work MIC [9] still yields 26%–31% more wirelength
than MAT-MIC. Using MAT alone is not adequate and MAT-MIC
gives the best result. The CPU time for each routing algorithm are
shown in the rightmost column. Note that our merging scheme is not
only effective but also fast for practical applications. In particular, our
method is much faster than that of MIC [9].
Even though our merging scheme is designed primarily for nonzero

skews, we also compared it for zero skew routings with the NS algo-
rithm in [7]. The results are listed in Table III. Since the delay-target
differences among subtrees in zero skew routing are normally not large,
the MIC technique is rarely useful. Therefore, we only report the MAT
results here. The results in Table III show that our merging scheme
can make improvement on wirelength even for zero skew routings even
though the improvement is not as large as in nonzero skew routings.
In zero skew routings and NS+ and MIC for nonzero skew routings,

O(n2) time is needed to find the minimum merging cost pair among
all pairs. In contrast, in MAT and MAT-MIC for nonzero skew rout-
ings, O(logn) time is required for finding the maximum delay target
subtree and O(n) is spent on finding the companion subtree. This ex-
plains the runtime differences in Table II and Table III. Therefore, MAT
can improve runtime for nonzero skew routing in addition to reducing
wirelength.
Our merging scheme is also validated in buffered clock tree routings

with the experimental results shown in Table IV.We report the resource
consumptions including total wirelength, the number of buffers inserted
and the total wire and buffer capacitance. The overall improvements
are listed in the last row. For all three resource consumption metrics,
our algorithm results in large improvement. Since the maximum load
capacitance is restricted in the buffered clock tree, the driver/buffer to
buffer/sink delay is typically less than 175 ps. According to the first

754 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

TABLE IV
EXPERIMENTAL RESULTS OF NON-ZERO PRESCRIBED SKEW BUFFERED

CLOCK ROUTINGS. TOTAL CAPACITANCE INCLUDES WIRE AND

BUFFER CAPACITANCE IN pF. THE CPU TIME IS IN SECONDS

order estimation metric in [1], slew rate for step input is roughly ln 9 �

Elmore delay. Therefore, the slew rate at the sinks for step input is
usually less than 385 ps. Please note that thismetric is a conservative es-
timation. For ramp input with 100 ps slew rate, the slew rate at the sinks
is usually no greater than 400 ps according to the metric developed in
[12]. The CPU time are shown in the rightmost column of Table IV.

V. CONCLUSION

Even though traditional zero skew routing methods can be applied
to achieve nonzero skews, they may bring huge wire and buffer area
overhead as the difference among sink delay targets are ignored in their
merging schemes. We propose a maximum delay-target-based merging
scheme for general prescribed skew routings. Experimental results on
benchmark circuits show that the proposed technique is very effective
and efficient on minimizing clock network size for prescribed skews.

REFERENCES

[1] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI.
Reading, MA: Addison-Wesley, 1990.

[2] W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao, “Power supply noise sup-
pression via clock skew scheduling,” in Proc. IEEE Int. Symp. Quality
Electronic Design, 2002, pp. 355–360.

[3] I. S. Kourtev and E. G. Friedman, “Clock skew scheduling for improved
reliability via quadratic programming,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, 1999, pp. 239–243.

[4] R.-S. Tsay, “Exact zero skew,” in Proc. IEEE/ACM Int. Conf. Computer-
Aided Design, 1991, pp. 336–339.

[5] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B. Kahng, “Zero
skew clock routing with minimum wirelength,” in IEEE Trans. Circuits
Syst. II, Analog Digit. Signal Process., vol. 39, Nov. 1992, pp. 799–814.

[6] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew
clock and Steiner routing,”ACM Trans. Design Automation of Electronic
Systems, vol. 3, no. 3, pp. 341–388, Jul. 1998.

[7] M. Edahiro, “A clustering-based optimization algorithm in zero-skew
routings,” in Proc. ACM/IEEE Design Automation Conf., 1993, pp.
612–616.

[8] C.-W. A. Tsao and C.-K. Koh, “UST/DME: a clock tree router for gen-
eral skew constraints,” in Proc. IEEE/ACM Int. Conf. Computer-Aided
Design, 2000, pp. 400–405.

[9] A. Takahashi, K. Inoue, and Y. Kajitani, “Clock-tree routing realizing a
clock-schedule for semi-synchronous circuits,” in Proc. IEEE/ACM Int.
Conf. Computer-Aided Design, 1997, pp. 260–265.

[10] S. Held, B. Korte, J. Maßberg, M. Ringe, and J. Vygen, “Clock sched-
uling and clock tree construction for high performance ASICs,” in Proc.
IEEE/ACM Int. Conf. Computer-Aided Design, 2003, pp. 232–239.

[11] J. Chung and C.-K. Cheng, “Skew sensitivity minimization of buffered
clock tree,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design,
1994, pp. 280–283.

[12] C. V. Kashyap, C. J. Alpert, F. Liu, and A. Devgan, “Closed-form ex-
pressions for extending step delay and slew metrics to ramp inputs for
RC trees,” IEEE Trans. Computer-Aided Des. Integr. Circuits Syst., vol.
23, no. 4, pp. 509–516, Apr. 2004.

Comparison of High-Performance VLSI Adders in the
Energy-Delay Space

Vojin G. Oklobdzija, Bart R. Zeydel, Hoang Q. Dao, Sanu Mathew,
and Ram Krishnamurthy

Abstract—In this paper, wemotivate the concept of comparing very large
scale integration adders based on their energy-delay characteristics and
present results of our estimation technique. This stems from a need to make
appropriate selection at the beginning of the design process. The estimation
is quick, not requiring extensive simulation or use of computer-aided design
tools, yet sufficiently accurate to provide guidance through various choices
in the design process. We demonstrate the accuracy of the method by ap-
plying it to examples of high-performance 32- and 64-b adders in 100- and
130-nm CMOS technologies.

Index Terms—Adders, digital arithmetic, digital circuits, energy-delay
optimization.

I. INTRODUCTION

In the very large scale integration (VLSI) design process, selection
of the initial topology expected to yield a desired performance in the
allotted power budget is the most important step taken. However, the
exact performance and power will be known only after a time con-
suming design and simulation process is completed. Therefore, the va-
lidity of the initial selection will not be known until late in the design
process. Going back and forth between several choices is often pro-
hibited by design schedule, making it impossible to correct mistakes
committed at the beginning. Therefore an uncertainty always remains
as to whether a higher performance or lower power could have been
achieved using a different topology. This problem is aggravated by a
lack of proper delay and power estimation techniques that are guiding
development of computer arithmetic algorithms. The majority of al-
gorithms used today are based on out-dated methods of counting the
number of logic gates on the critical path, producing inaccurate and
misleading results. The importance of transistor sizing, load effects and
power are not taken into account by most.
Knowles has shown how different adder topologies may influence

fan-out and wiring density, thus, influencing design decisions and
yielding better area/power tradeoffs than known cases [1]. This work
further emphasized the disconnect existing between algorithms and
implementation. In our previous work, the importance of fan-in and
fan-out effects on the critical path was demonstrated [2]. This led to
similar conclusions expressed in the logical effort (LE) method of
Sutherland and Sproull [3] regarding critical-path delay estimation.
This method has been introduced into common practice by Harris [4].
To gain confidence in the method we compared LE delay estimate of
various VLSI adders to simulation results [5] obtained using H-SPICE
[17]. The matching was well under 10% in most cases (Table I).
However, given that delay and energy can be traded against each other,
inclusion of energy in the analysis might have resulted in different
ranking.

Manuscript received July 20, 2004; revised December 6, 2004. This work
was supported in part by the SRC under Research Grant 931.001 and in part by
California MICRO 03-069.

V. G. Oklobdzija, B. R. Zeydel, and H. Q. Dao are with the Advanced Com-
puter Systems Engineering Laboratory (ACSEL), Electrical and Computer En-
gineering Department, University of California, Davis, CA 95616 USA (e-mail:
zeydel@acsel-lab.com).

S. Mathew and R. Krishnamurthy are with theMicroprocessor Research Lab-
oratories, Intel Corporation, Hillsboro, OR 97124 USA.

Digital Object Identifier 10.1109/TVLSI.2005.848819

1063-8210/$20.00 © 2005 IEEE

