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Abstract—In this paper, we investigate reducing the power
consumption of a synchronous digital system by minimizing
the total power consumed by the clock signals. We construct
activity-driven clock trees wherein sections of the clock tree are
turned off by gating the clock signals. Since gating the clock signal
implies that additional control signals and gates are needed, there
exists a tradeoff between the amount of clock tree gating and the
total power consumption of the clock tree. We exploit similarities
in the switching activity of the clocked modules to reduce the
number of clock gates. Assuming a given switching activity of
the modules, we propose three novel activity-driven problems: a
clock tree construction problem, a clock gate insertion problem,
and a zero-skew clock gate insertion problem. The objective of
these problems is to minimize system’s power consumption by
constructing an activity-driven clock tree. We propose an approx-
imation algorithm based on recursive matching to solve the clock
tree construction problem. We also propose an exact algorithm
employing the dynamic programming paradigm to solve the gate
insertion problems. Finally, we present experimental results that
verify the effectiveness of our approach. This paper is a step in
understanding how high-level decisions (e.g., behavioral design)
can affect a low-level design (e.g., clock design).

Index Terms—Activity-driven clock design, algorithms, clock
gating, clock tree, power optimization, zero-skew clock.

I. INTRODUCTION

M ODERN digital systems are designed with a targetclock
period (or clock frequency), which determines the rate

of data processing. A clock network distributes the clock signal
from the clock generator, orsource, to the clock inputs orsinks
of the synchronizing components, ormodules. The clock distri-
bution network consumes large percentage (20%–50%) of the
power consumed by these systems. Therefore, in low-power
synchronous systems, we would like to minimize the total power
consumed by the clock tree subject to performance constraints
on the clock signal, such as the operating frequency and max-
imum clock skew.

The power consumed by complementary metal–oxide–semi-
conductor (CMOS) circuits consists of two components: dy-
namic and static power. The static power is largely determined
by the technology. In this paper, we only consider minimizing
the dynamic power. The dynamic power consumed by a module
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Fig. 1. Gated clock tree, with synchronizing elements A, B and C, sources ,
sinksfs ; s ; s g, clock gatesfv ; v ; v g, control signalsf� ; � ; � g, and
Steiner nodesfv ; v g.

clocked at a frequency is given by , where is the
supply voltage and is the total load capacitance on the cir-
cuit. If a circuit switches times per clock cycle, then its power
consumption is given by , where is called the
circuit activity. To minimize the power consumed by a CMOS
synchronous system, we would in turn like to minimize its total
activity.

In a normal clock tree, the clock signal arrives regularly at all
of the clock sinks, which means . Suppose that we know
the times at which the clocked sinks must be active. We refer to
the set of active/idle times for the module asactivity patterns.
They can be obtained by simulation of the design at the behav-
ioral level. The clock signal must be supplied to the modules
only during their active times. If the clock signal is gated such
that it is only delivered during these times we can reduce the
total power consumed by the clock and by the modules them-
selves. We call a clock tree thus constructed anactivity-driven
clock tree. In this paper, we address the problem of minimizing
the power consumption of a synchronous system by minimizing
its activity through the use of an activity-driven clock tree. Fig. 1
shows an example of gated clock tree.

Work on clock trees has focused on zero- or near zero-skew
routing [4], [6], [13], [21]. In addition to zero skew, further
work concentrates on routing clock trees with minimal total wire
length [3], [7], [8]. The construction of clock trees that minimize
phase delay of the clock signal has been studied in [5] and [9].
Work on buffered clock trees has focused on minimizing the
phase delay of the clock tree [20]. More recently, work in [17]
considers the minimization of skew and delay in the presence of
process variations in buffered clock trees. For a survey on clock
network construction issues, see [2], [10], and [15].
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Fig. 2. HDL description of a DE. DE has been transformed to a CDFG. Each CDFG node is labeled with a letter.

The rest of this paper is organized as follows. In Section II,
we introduce some definitions and terminology. In Section III,
we outline the construction of activity-driven clock tree using
a motivational example. In Section IV, we formulate two
problems: the activity-driven clock tree construction (ADCTC)
problem and the minimum-power activity-driven clock gate
insertion problem. We propose an approximate solution to the
ADCTC problem in Section V. Section VI presents an exact
algorithm that solves the minimum-power activity-driven clock
gate insertion problem. The solution is also extended to handle
gate insertion with zero skew. Section VII shows experimental
results from the proposed algorithms. Finally, we conclude the
paper in Section VIII.

II. TERMINOLOGY

Let a synchronous system be denoted by , where
denotes a set of components (or

modules) and denotes a set of nets
of the system. Aclock net consists of a clock source node

and a set of sinks , where each sink
belongs to a module. For each clock sink, we divide the periods
of activity and inactivity. For each sink, we define theactivity
pattern as a bit pattern

, where a “1” defines an active period, “0” defines an
idle period, and is the total number of periods for the sink. A
clock treeis a rooted tree over with clock source
being the root and being the leaves of the tree. Theinternal
nodes of the clock tree are . An edge

connects a parent node and a child node . We
denote the parent node ofas Parent . We denote the number

of children (or out-degree) of as and the set of children of
as Child . If node lies in the path from node to the

root (leaf), then node is said to lieabove(below) node . A
node is said to be at level lev if there are lev edges on
the path from to the root. The height of a tree is the largest
level of any node of that tree.

III. CLOCK GATING—A MOTIVATIONAL EXAMPLE

In this section, we first show a methodology for obtaining ac-
tivity patterns which are the inputs of theactivity-driven clock
treeproblem. Then, we illustrate the basic idea behind construc-
tion of activity-driven clock trees. Also, we look at the effect of
clock gates on power consumption.

A. Obtaining Activity Patterns

As mentioned in the introduction, we seek to construct clock
trees that can be gated such that the total activity in the tree is
reduced. The first step toward constructing such a clock tree
is to capture activity patterns for the modules from high-level
synthesis. This can be done by the following procedure.

1) Start from a high-level description of the system. Fig. 2
shows an example for a hardware description language
(HDL) of a differential equation (DE) and its compilation
to the representation of control-data flow graph (CDFG).

2) Schedule and allocate a set of modules into a set of control
steps. The result for Fig. 2 is shown in column 2 of Table I.

3) If a module is assigned to a control step, then the module
is active during that control step, otherwise the module is
idle. Column 3 of Table I shows the activity pattern for
each module in Fig. 2
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TABLE I
ALLOCATION AND SCHEDULING OF THEDE EXAMPLE CDFG SHOWN IN FIG. 2

This allocation uses six control steps, four multipliers
(M1, M2, M3, M4), two adders (A1, A2), one subtractor
(S1), and one comparator (C1) for a total of eight mod-
ules.

The above steps work well with digital signal processor cir-
cuits, where the data activity is well known. We assume that the
modules have registers on their inputs that are to be clocked. If
the clock signal is not fed to the inputs of the module’s register,
then the outputs of the register will not change and, thus, the
module will not consume dynamic power. Given the activity pat-
terns the clock construction stage can be executed at two phases
in the design.

1) Before floorplanning/placement of the modules, we seek
to minimize the total activity of the clock tree. We then
add the results of this stage to the placement problem
as follows. Let the graph denote a placement
graph obtained from the circuit . Let the edges
of this graph be weighted, such that the weights denote
priorities in increasing order. Given an activity-driven
clock tree , we use the mapping of the clock
tree sinks to the placement graph vertices. For each
vertex in this mapping, there exists a leaf vertex in the
clock tree. For each pair of leaf vertices in the clock
tree, we add an edge to the graph with a weight
proportional to the length of the simple path between
the vertices. Hence, if the vertices are located nearby in
the tree, the placement algorithm will tend to place them
closely.

2) After floorplanning/placement of the modules is com-
pleted, power consumption can be estimated from the
placement and routing information. The objective of
the clock construction is to come up with a suitable
power tradeoff, taking wiring penalties into account. The
problem of constructing the clock tree at this stage has
been well studied [6], [13], [14].

Fig. 3 illustrates a possible topology of a binary clock tree
with eight sinks that correspond to eight modules in Table I.
Each module is drawn according to its activity pattern. The ac-
tivity patterns and modules are obtained from Table I. The tree
also contains activity patterns of its internal nodes. The activity
pattern of an internal node is calculated byOR-ing (bitwiseOR

operation) the activity patterns of its two children. We observe
that modules connected to the same clock subtree can be driven
by one clock gate. The most effective activity pattern of a clock
gate is one that feeds the clock signal to the modules only when

Fig. 3. DE Example 1. Clock tree circuit for the modules of the DE circuit.
Each module has a fill-pattern, which depends on its activity pattern. Activity
patterns for the subtrees are also shown.

Fig. 4. DE Example 2. Better tree for the DE circuit, which reduces the total
activity by clustering modules with similar activity patterns.

needed. Consider modules A2 and M2, which have activity pat-
terns 001000 and 110110, respectively. Both modules are con-
nected in the clock tree forming a subtree rooted at the internal
node with activity pattern 111110. We use the operatorto
denote the bitwiseORoperation that is used to obtain the activity
pattern of an internal node (or a subtree rooted at this node). The
activity pattern of a subtree with sinks is therefore obtained
by .

Fig. 4 shows another clock tree topology for the above ex-
ample. In the figure, the modules of similar activity are placed
close to one another. By doing so recursively, we can increase
the total number of idle periods. Since the power consumption of
the clock and module can be reduced by gating the clock during
idle periods, the total number of idle periods in a clock tree is a
measure of the power saving by clock gating. Table II compares
the quality of the trees in the DE Examples 1 and 2 (shown in
Figs. 3 and 4, respectively) by this criteria. Note that the total
number of time periods in the full tree is 90.

It should be pointed out that the total number of idle time
periods is just an approximate estimation of power saving by
clock gating. The reason is that inserting clock gates introduces
additional power consumption of gate control signal and gate
control logic. For instance, the different number of active/idle
transitions in the patterns can lead to different power consumed
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TABLE II
COMPARISON OF THETWO CLOCK TREES OFFIGS. 4 AND 5 IN TERMS OF

TOTAL NUMBER OF IDLE PERIODS

Improvement is obtained by matching modules with sim-
ilar patterns.

Fig. 5. H-tree placement for DE Example 2 with two clock gates inserted at
level 1. Clock gates are drawn as circles.

by the gate control signal. More discussions will be given in
Section IV.

B. Locating Clock Gates

Given a clock tree topology, we seek to locate the clock gates
in the tree such that the total power is minimized. The objective
is to turn off as much capacitance as possible. This motivates
us to place the gates close to the parent node. The gate inser-
tion problem requires detailed information about the parasitic
capacitances of the clock tree and the control lines of the gates.
For this reason, we model the module placement by embedding
the clock tree in the plane using an H-tree structure. Example of
such an embedding is shown in Fig. 5.

We now show the effect of clock gate placement on power
consumption. By placing the gates at level 1 in the H-tree em-
bedding of the DE Example 2 (see Fig. 5), we accomplish two
things: the buffer driver (or level-zero gate) only drive the two
gates in question, and the activity patterns for the gates
and are 111110 and 001111, respectively. Since there are
no other gates under these gates, the activity patterns of all the
nodes in their subtrees is inherited from the driving gates at the
subtree roots. Assuming that the modules are embedded in a
uniform grid with grid spacing one, the wire length of the leaf
H-trees is three. An example of a leaf H-tree is the set of ver-
tices . At the next level, the total wire-length of the
H-tree doubles. Therefore, the total wire-length under the gate
for vertex is eight. Since the capacitance contribution of
a wire of length is , where is the capacitance per unit
length, the power contribution of this wire is . We will
set , and, thus, the power contribution of the wiring
is equal to its length. We assume that this is the power contri-
bution of the wiring per activity period. As another example of
locating clock gates, Fig. 6 shows four gates inserted at level 2

Fig. 6. H-tree placement for DE Example 2 with four clock gates inserted at
level 2.

TABLE III
COMPARISON OFPOWER CONSUMPTION FOR THETWO GATED CLOCK

TREES OFFIGS. 5 AND 6

We assume that active power and idle power for a multi-
plier areP = 8 andP = 2, respectively, active and
idle power for other modules areP = 2 andP = 1,
respectively, and the power per gate is one.

of the same tree. Table III compares the power contributions of
Figs. 5 and 6.

In the following sections, we will formulate and solve three
problems related to activity-driven clock trees: clock tree con-
struction, clock gate insertion, and clock gate insertion with zero
skew.

IV. PROBLEM FORMULATION

Assume that for each clock sink we can measure the
total power consumed under the following circumstances:
the total active circuit power , during periods when the
circuits are active and the clock, must be supplied for proper
function, and the totalinactive or idle circuit power ,
when clock supply is unnecessary. For each sink, the periods
of activity and inactivity are defined in an activity pattern

. The total power
consumed by the clock tree is

(1)

where
and power consumption of the-th module during

each active period and each idle period, respec-
tively, and, hence, the first summation term de-
notes the power consumed by all modules;
power consumed by tree sections (i.e., wiring
power);
power consumed by clock gates (i.e., gate
power).

where Let the clock tree be partitioned into a set ofclock tree
sections each corresponding to an edge of whichtree sections
are connected only to internal nodes. Given that the-th tree
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section has activity pattern
and consumes power during each

active period, its power consumption is given by

(2)

If a clock gate is added to this section, the power consumed
by the gate (denoted by ) can be computed as follows. Given
that the activity of the clock gate is , the activity pattern of
its input clock signal is

(where denotes clock signal) and the input and output
capacitances of the gate cause additional input power and
output power during its active period, respectively, we
have

(3)

where is a constant and is a function that measures
the changes in activity (and, hence, power consumption) of the
control signals of clock gates. If we define a set of transitions

, then . Based on the above
discussions, we rewrite (1) as follows:

(4)

If we choose not to gate a tree section, then the gate power
penalty is zero and the activity pattern of that section is inherited
from the parent section. The additional power consumed
by adding a clock gate to the clock tree comes from the addi-
tional activity and capacitance added to the circuit by the clock
gate control signals and by the input and output clock gate ca-
pacitances.

We formulate two general clock tree power minimiza-
tion problems, namely, the problem of constructing an
activity-driven clock tree and the problem of minimizing
the total power in an activity-driven clock tree by clock gate
insertion.

1) ADCTC Problem :Construct a tree on a set of
sinks such that the weighted sum of nodes activities

(5)

in the resulting tree is minimized, where is the weight and
is the activity pattern of sinks and/or internal nodes of the

tree.
Equation (5) is very flexible, since the weights and can

be defined to represent the exact power or an approximate power
consumed by the clock tree sections, the clock gates, and/or the

circuit modules. This can be done by manipulating (2)–(4) into
the form of (5). Hence, the quantity can be tuned to mea-
sure or estimate as needed the power consumed by the system.

We formulate the next problem using the definition of the
activity function given above. Once we have selected a clock
tree, we would like to insert clock gates such that the total power
consumed by the system is minimized.

2) Activity-Driven Minimum Power Gate Insertion
(ADMPGI) Problem : If a gate is added at node
in a clock tree , it increases weighted activity to
due to its input clock signal and control signal, but may reduce
weighted activity to nodes in the subtree rooted at. Find a set
of gates inserted in the tree such that is minimized.

V. CLOCK ALGORITHM WITH PROVABLE BOUNDS

In this section, we consider the ADCTC problem. We propose
a heuristic algorithm to solve this problem. The clock tree has to
be constructed keeping signal skew in mind. The objective is to
construct a complete binary tree. The new algorithm, so-called
ClockAct, is based on recursive weighted matching. The idea
behind the algorithm is to construct a tree in a bottom-up fashion
while minimizing the objective on a level by level basis. We
model the problem as follows: we would like to match pairs of
sinks as well as possible. The matching criteria is the value of
the objective given the activity pattern of the subtree containing
both sinks.

We can construct a complete weighted graph , where
represents the current set of sinks, and the weighted edges

represent all the possible matching pairs.
The edge weights are defined as , where

is the subtree rooted at. A minimum weighted matchingof
selects a set of edges , such that

is minimized subject to: 1) and 2) for any
vertex , there exists only one edge . Each
selected pair of vertices is then connected in the clock tree to
a parent vertex. The algorithm used to connect the vertices to
the parent vertex depends on the stage in which the algorithm is
being used. If the algorithm is producing a global routing of the
clock tree, then this step can be accomplished using azero-skew
merge algorithm[21]. The vertex pair is then deleted from the
set of matching candidates and the parent vertex is added to the
set of candidates to be matched by the next stage. The matching
is repeated until only two vertex-matching candidates remain.
The pseudocode for this algorithm is shown in Table IV.

In the following, we show that if the weights of the cost func-
tion have certain properties, the recursive matching algorithm
will yield a -approximation [12].1

Theorem 1: The recursive matching is a-approximation al-
gorithm for the following cases.

Case 1) when all weights and ;
Case 2) when the target tree topology is an H-tree,

and the tree topology dominates the values of the
weights, or and .

1An algorithm is said to be a�-approximation algorithm if the costH of the
solution produced by the algorithm is within a factor of� of the costH of
the optimal solution, i.e.,maxf(H=H ); (H =H)g � �, where� � 1 is a
constant.
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TABLE IV
PSEUDOCODE FORALGORITHM CLOCK ACT

Proof: We now define the power savings obtained from
an activity-driven tree. From the definition of the cost function

Let denote the total power of the ungated clock tree. For every
idle pattern, there can be at most two transitions. Hence

Now let . The power saving of an activity-
driven clock tree is as follows:

Furthermore, let denote the amount of power savings ob-
tained by gating levelof the tree. Now consider the simple case
when , where we intend to maximize the number of idle
periods. Let the function denote the
number of idle periods in an activity pattern. By the definition
of the function, the number of idle periods cannot increase
when merging two subtrees: .
Thus, lev and by the property stated
above, . Hence, ,
where is the height of the tree. Since ,
then . A perfect matching of the leaf level
provides the lower bound on the total cost of the tree. Thus
the recursive matching algorithm produces a solution that is at
worst a two-approximation. Now let and then

, which is also a two-approximation. This

approximation is tight, as we will show next. Consider a case
where all the activity patterns are equal: any matching in this
case will produce a tree with the desired cost. This completes
the proof for Case 1.

For Case 2, consider the construction of an H-tree. The
H-tree is constructed recursively by connecting the centers of
four H-trees with another H-tree. Assuming that the modules
are placed on a grid with grid spacing one, the total length for
each leaf H-tree is three (since there are three wires on the
H). At each subsequent level, the total wire length doubles. In
general, the H-tree at levelwill have a total of wire
length. Furthermore, since each H-tree spans two levels of the
clock tree, there are H-tree levels. In the leaf level,
there will be a total of H-trees for a total of wire
length. Of this wire length end up in the leaf level of the
clock tree, which has wire length. The total wire length in
the remaining of the H-tree is .
The total wire length in the leaf level and in H-tree isand

, respectively. This indicates that the recursive matching
algorithm yields a three-approximation in this case.

It is known that the weighted matching problem has exact
[11] and fast approximate polynomial time solutions (for
a survey, see [1]). Given that a matching algorithm takes

time to complete, we can obtain the time
complexity of the ClockAct algorithm that follows.

Theorem 2: Given a matching algorithm that can com-
plete a matching in time, the ClockAct
algorithm constructs a binary activity-driven clock tree in

time.
Proof: The recursion cuts the problem size in half at each

step. Let denote the time taken by the ClockAct
algorithm. Then we can produce a recursive formula for the time
complexity: . In
other words, we have
time.

To finish this section, we propose algorithms that compute
lower and upper bounds on the clock tree construction objective

. We later use these bounds as experimental evidence on
the quality of our algorithms. We compute the lower and upper
bounds by considering the construction of an optimal tree with a
single time period. In this case, modules will either be constantly
active or constantly idle. To minimize the power at each level of
the clock tree, we match as many active modules as we can. To
maximize the power at each level of the clock tree, we match as
few modules as we can at each level. To obtain bounds on the
full problem, we apply the algorithm proposed above to each bit
of the modules and sum the objectives values.

VI. A LGORITHMS FORACTIVITY -DRIVEN GATE INSERTION

In this section, we propose two exact algorithms. The first
algorithm solves the ADMPGI problem, but produces solutions
of arbitrary skew. The second algorithm uses the solution to the
first to achieve solutions with zero skew.

A. Exact Algorithm for Gate Insertion

Given that a clock tree has been constructed, we must now
determine the best locations in the clock tree for clock gates.
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TABLE V
PSEUDOCODE FORALGORITHM GATEINSERT

Our objective is to minimize the total power of the system, as
defined in the previous section.

We propose an exact algorithm, called GateInsert, to solve
this problem, based on a bottom-up traversal of the clock tree.
The algorithm inserts clock gates on the clock tree edges, as
close as possible to the parent nodes. The main idea of the al-
gorithm is to keep track, as we go up the tree, of the cost of the
two possibilities of adding or not adding a clock gate, which we
call thegateandno-gatechoices, respectively.

Consider the problem of measuring the power consumed by
a clock gate at the root of a subtree, assuming that we know the
solutions for the children nodes. We also know the desired ac-
tivity pattern for that gate. However, we do not know the activity
pattern of the input clock signal since it depends on the choice
of gating above the root node of the subtree. We observe that the
number of possible activity patterns is equal to the level of the
root node of the subtree. Therefore, we can compute and save
for later use the best solution for each possible input activity
pattern. Similarly, for the no-gate choice, we can make the same
computation. Finally, we compute the best solution for each ac-
tivity pattern by choosing from each child the best from the gate
and no-gate solutions. At the end of the traversal, the clock gate
insertions can be made by following, in top-down fashion, the
choices made at each node in the tree. Table V shows the pseu-
docode for algorithm GateInsert.

Theorem 3: Algorithm GateInsert finds a set of gates in-
serted in a tree such that is minimized.

Proof: Let and denote, for a
node and input activity pattern , the minimum weighted
activity solution, the minimum weighted activity solution using
a gate, and the minimum weighted activity solution with no
gate, respectively. At a node, only two solutions exist: either
the node uses a gate or it uses no gate. Therefore,

Fig. 7. Optimal solution for sample problem. This solution was obtained with
the following parameters. Multiplier active powerP = 8 and idle powerP =
2, other modules active powerP = 2 and idle powerP = 1, the gate control
signal powerb = 1, the gate input powerP (in) = 0:1, the gate output power
P (out) = 0:1, and the tree activity weights are proportional to the wire length
on the H-tree.

. Given a gate and no-gate choice
and the input pattern , we have

(6)

(7)

where is the number of children of node. Note that in the
case of a gated solution, the gate imposes the activity pattern
for the subtree. In the case of the ungated solution, the activity
pattern is the input pattern. Also note that these functions are
of the general form of (5). We observe that the number of pos-
sible input patterns is lev , corresponding to each of
the nodes above , where a gate may be placed, thus setting
the input activity pattern. The first stage of the GateInsert al-
gorithm computes all possible solutions for each vertex. Since
the root node has only one possible input pattern, the value
of is the minimum weighted activity of the tree.
The second stage of the algorithm follows the optimal solution
choices in a top-down manner. Since the parent node’s activity
pattern is set, then the child’s solution is also set.

Fig. 7 shows the optimal solution for DE Example 2.
Theorem 4: Algorithm GateInsert finds a solution to the

ADMPGI problem using time and space.
Proof: By Theorem 3, the algorithm GateInsert computes

and saves lev solutions for each vertex . All other
operations in the algorithm amount to tree traversals which take

time. Therefore, the algorithm takes lev
time and space. Since lev , the time and space
complexities becomes . Also, since the tree is a complete
binary tree, the algorithm takes time and space.

B. Exact Algorithm for Gate Insertion With Zero Skew

The GateInsert algorithm as described above does not take
skew into account. In this paper, we consider the only effects
of buffer/gate skewon the real skew. Skew is defined as the
largest difference between the source to sink delays. Buffer/gate
skew is defined as the largest difference between the number of
gates or buffers between the source to sink paths. By making
the buffer/gate skew zero and choosing the designs of the gates
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and buffers carefully, the remaining skew is due to wiring delay
and load capacitance effects, which can be minimized using the
approaches proposed in [18].

Since the GateInsert algorithm does not consider the number
of gates in the source to sink paths, it may produce solutions with
large skew. To solve this problem, we propose the following
modified algorithm, so-called zsGateInsert. The idea is to have
the same number of buffers/gates in all source to sink paths.
We assume in this solution that either a tree level can be gated
or it cannot. This assumption is consistent with the objective of
constructing zero-skew clock trees. Therefore, the algorithm has
three choices at each node.

1) Insert a gate. This instance requires that all nodes at the
same level must also have a gate or a buffer.

2) Insert a buffer. This occurs while a gate is not needed at
the node, a gate has been inserted at another node of the
same level.

3) Insert no gates and no buffers at any nodes in a given level
of the tree.

We note that inserting a buffer does not change the activity
patterns and only increases the power consumed by the tree.
Hence, we propose the following algorithm modifications.

1) Select a combination of levels that are not allowed to have
buffers or gates. For all vertices on the remaining levels,
add a buffer.

2) Run GateInsert and add gates only in those levels where
this is allowed. When a gate is added, it replaces a buffer.

3) Repeat step 1 for all possible combinations of levels;
choose the best combination.

The above procedure is repeated for all possible combinations
of levels. The following theorem shows the correctness and the
complexity of this algorithm.

Theorem 5: Given a clock tree with levels, the al-
gorithm zsGateInsert finds a solution to the ADMPGI problem
with zero gate/buffer skew. The algorithm needs
time and space.

Proof: The algorithm finds a minimum solution by virtue
of the exhaustive search of possible solutions. The buffer/gate
skew of the solution is zero by the construction of the problem:
every vertex in a level will either have buffers and gates or
neither. Therefore, all source to sink paths have the same
number of active devices. Note that a level allows either gating
or no-gating, which implies that there are two possibilities
per level. For levels, there are a total of possible solu-
tions. Thus, the time complexity is . Again, since

for a complete binary tree, the algorithm takes
time. The space complexity of the algorithm is

that of GateInsert.

VII. EXPERIMENTS

Since no benchmarks exist that can be used in our test with
activity-driven clock design, we used randomly generated bit
patterns in our experiments. The bit patterns can be generated
by one of the following methods.

1) For each module, randomly setactive periods out of a
maximum of time periods.

Fig. 8. Graph shows the percentage of ungated tree power consumed by the
gated trees. Each point represents the average result over 25 such pattern sets.
Experiment was carried out from 10% to 90% activity at the leaves. Curves
show, from top to bottom, an average result over 100 randomly generated trees
and three results obtained from trees generated using the greedy matching
algorithm (where one, zero, and three duplicates of each leaf patterns are
generated, respectively).

2) For each module, randomly select integers in the
range . Construct intervals

such that for . Alterna-
tively, set the the time periods in each interval as either
active or idle.

3) Duplicate times a given set of activity patterns, thus
making .

We have observed that the quality of our results changes with
the types of patterns and with the percentage of active time pe-
riods. To show the properties of our algorithms, we have two
sets of results (where the H-tree structure was assumed).

1) We show the power consumption from ungated clock
trees, randomly constructed trees with gates inserted
using our algorithm, and trees constructed using our
matching and gating algorithms. These results are shown
in Fig. 8.

2) We compare average matching costs for different problem
sizes using randomly constructed clock trees and clock
trees constructed using the greedy matching algorithm.
These results are compared to the lower and upper bounds
computed using the algorithm proposed in Section V. Fur-
thermore, the comparisons are made for different types of
patterns. The results are shown in Fig. 9.

The results shown in Fig. 8 indicate that our choice of
matching function is a good simplified clock tree construction
objective and that the proposed tree construction and gate
insertion algorithms are effective in reducing the dynamic
power consumption. Furthermore, for design instances where
power-driven clock tree construction is not practical, the gate
insertion algorithm produces results of independent interest.

The results in Figs. 8 and 9 show that the matching algorithm
reduces both the matching objective and the power consump-
tion of gated clock trees. Also, it can be seen from these graphs
that the results obtained from this algorithm are very close to
optimal results which are indicated as the lower bound graphs
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Fig. 9. Graphs show matching cost upper bound and lower bounds and average matching cost for randomly generated trees for various problem sizes. Cost values
are normalized as percentages with respect to the cost values of the greedy matching tree solutions.

in Fig. 9. Our experiments show that the greedy matching algo-
rithm produces trees with increased power savings.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach for the con-
struction of activity-driven clock trees with the objective of min-
imizing power consumption. We have developed algorithms that
solve the problems of clock tree construction and gate insertion
into the clock tree while minimizing power consumption and
producing small clock skew.

For future work on activity-driven clock design, the following
topics are of interest:

1) scheduling and allocation with low power objectives;
2) other means of obtaining activity patterns, perhaps during

different abstraction levels of design such as at the behav-
ioral level or the presynthesis level;

3) extension of our algorithms to handle probabilistic ac-
tivity patterns;

4) combination of ADCTC with low-power layout design
by, for example, extending placement algorithms (such

as TimberWolf [19] and Gordian [16]) to deal with these
interrelated issues.
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