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Abstract— A zero-skew routing algorithm with clus-
tering and improvement methods is proposed. This

algorithm generates a zero-skew routing in O(n log n)
time for n pins, and it is proven that the order of

the total wire length is best possible. Our algorithm
achieves 20% reduction of the total wire length on

benchmark data compared with the best known al-

gorithm.

1. INTRODUCTION

Designing zero-skew routings with minimal total wire

length is one of the most crucial issues in current and fu-
ture performance-driven layouts. In synchronous circuits,
in order to optimize the clock period, the clock skew needs
to be minimized, while the shorter total wire length is re-
quired for lower power dissipation.

There have been many researches on routing algorithms
to minimize the clock skew [1, 4, 8, 10, 11, 14, 16]. Jack-
son et al. [10] first proposed a routing method, which
generates approximately equi-distant routings. This algo-
rithm was improved to calculate exact equi-distant rout-
ings [3, 4, 11]. Although the clock skew in equi-dist ant
routings is usually very small [3], equi-distant routings
are not exact zero skew in general. A RC-network model
was applied to these algorithms, so that exact zero skew
routings were finally achieved [16].

Since the exact zero skew has been accomplished, one of
unsolved problems is to minimize the total wire length.
Two algorithms have been proposed for the total-wire-
length minimization. One of the methods is based on a
matching [~, 11], while the other algorithm uses a parti-
tioning technique [1, 2]. These algorithms generate min-
imal total-wire-length routings especially when pins are
regularly distributed on chips. In particular, the algo-
rithm [1, ~] is the best known algorithm in the sense of

the total wire length with O(n log2 n) time complexity for
n pins ‘under the most realistic case’ P2].

In this paper, we first present a bottom-up constructing
algorithm [NS] in which the nearest-neighbor selection is
used n – 1 times. We prove that the order of the total
wire length in this algorithm is best possible. Moreover,
experimental results show that this algorithm calculates
15’ZOshorter routings than the algorithms [1, 2] on bench-
mark data [10, 16]. This implies that pins are irregularly
distributed in actual layouts such as the benchmark data.
However, this algorithm requires 0(n2 Iog n) time because
the Delaunay triangulation [13] needs to be constructed

n – 1 times to find n – 1 nearest neighbor pairs 1.
Next, we propose a clustering algorithm [CL], in which

several pairs of nearest neighbors are selected on a Delau-
nay triangulation at the same time. We discuss that, in
order not to increase the total wire length compared with
Algorithm [NS], there is a limit for the number of the
selected pairs from a triangulation. Our algorithm [CL]
determines the number adaptively, so that it is proven
that the order of the total wire length is still best pos-
sible. Furthermore, we also prove that the algorithm al-
ways selects @( IK 1) pairs from a Delaunay triangulation
for a set K, and that the time complexity is improved
to O(n log n). Computational experiments show that the
results generated by this clustering method are as good
as (even a little better than) those by Algorithm [NS].

In addition, an improvement algorithm is described.
For an initial zero-skew routing tree, an exhaustive search
is performed for a small subtree rooted by each internal
node. Since an optimum solution can be obtained for the
small portion of the tree, the improvement carries out a
shorter total-wire-length routing. With subtrees of con-
stant size, the improvement takes linear time with respect
to the number of pins. Experimental results show that
the clustering-based algorithm achieves !20Y0reduction of
the total-wire length compared with the best known al-
gorithm [1, ~] on the benchmark data [10, 16].

II. ZERO-SKEW ROUTING

. Given a fan-out terminal VT and a set of n fan-in ter-

minals S = {v[, v~, . . . , v:}, a ciock tree is defined by a
Sterner tree [9] rooted by v, whose n leaves are S (Fig. 1).
We call the fan-out terminal root and fan-in terminals
leaves. A leaf set in the subtree rooted by a node v is
denoted by S.. In this paper, clock trees are always bi-
nary, though nodes may degenerate and they do not look
binary in some cases. Also, we call the nearest Steiner
point to the root the center denoted by UC.

We assume that the load capacitance C’(v~) is given
for each leaf V$, which is usually the gate capacitance
of transistors connecting with the leaf. Also, the ioad
capacitance C(v) for an internal node v is defined by the
total capacitance in S. that includes wire capacitance as
well as gate capacitance.

Then, a zero-skew routing for the given root and leaves
is defined by a clock tree in which all delay time from the

1Another 0 (n2 log n) algorithm was recently proposed in [I 2],
which is equivalent to the tim.imlunl-dlcnneter selection in [5]. COIII-

parison between the selection strategies was discussed in [5].
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Figure 1: Clock Tree with a root Vr and leaves S =

{V;, v:,..., v;o}.
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Figure2: n-Model for Zero-Skew Merge at v.

root to all leaves is equal. From this definition, it is clear
that, for any node in the zero-skew routing, all delay from
the node v to leaves in S. should be equal. We call this
delay the delay time t(v) for v. For leaves v:, t(vj) = O.

An exact zero-skew routing can be constructed in a

bottom-up fashion by repeatedly calculating the position

of an internal node v from the positions of children VI
and V2 of v using the following equations derived from

T-model (Fig. 2):

‘(v)= “1($+CO+’(Vi)
=“’2($+c@20+’@2)

c(v) = C(vl) + C(V2) + C(1I + /2),

where 11 (/2) is wire length from v to VI (V2), and r and c

are resistance and capacitance for an unit-length wire [16].
In this paper, all distance is measured in the Manhattan

distance.
This operation to determine the location of a node v

is called the zero-skew merge. At a zero-skew merge, it
is clear that 11 + 12 > 1, where 1 is the distance between

V1 and V2. Therefore, in order to minimize the total wire

length, it is desired to find v such that 11 + 12 = i. If
there is no such a w, zero-skew routing algorithms should
use a detour. Although the number of detours depends
on algorithms and the input data, detours hardly appear
in actual layouts on ‘good’ algorithms.

Note that, in Manhattan distance, a set of feasible
points for v satisfying the above equations forms a di-
agonal segment in general [7]. This segment is called the
segment for v. The segment for v can be calculated in

constant time even if children are also expressed by diag-
onal segments [1, 2, 4, 7].

III. NEAREST-NEIGHBOR SELECTION ALGORITHM [NS]

In this section, we briefly describe our nearest-neighbor
selection algorithm, which is based on a bottom-up con-

struction algorithm presented in [4, 5]. Then, we show
that the order of the total wire length of zero-skew rout-
ings generated by Algorithm [NS] is best possible.

A. Aigorithm [NS]

Let K be a set of points or diagonal segments. Initially,
K = S. Algorithm [NS] has two phases, Find.Center
and Embedding. In Find-Center, segments for all in-
ternal nodes are calculated in a bottom-up fashion, and

then, in Embedding, the best position of each node is
determined in a top-down fashion.

Algorithm Find-Center takes the nearest neighbor
pair VI and V2 from K, calculates a segment for v from v]
and V2 using the zero-skew merge, and put the segment
into K. After n – 1 operations, K has only one element

that is the segment for the center v=.
Next, Algorithm Embedding determines the best po-

sition for each node in the reverse order of Algorithm
Find-Center. First, the position of the center v. is de-

termined on the segment for v= by routing from the root
Vr in the shortest way. Once the position of a node is

determined, we can easily calculate the positions of its

children so as to satisfy the zero-skew merge equations.
Therefore, all positions of nodes are ~alculated in a top-
down fashion starting from the posltlon of Vc.

The algorithm is stated as follows:

Algorithm Find-Center([NS])

Step 1: K := S.

Step 2: If IKI = 1, stop. (The element in h“ is the segment

for the center v..) Otherwise, choose the nearest pair of

points (or diagonal segments) VI and w from h’.

Step 3: (Zero-Skew Merge) Calculate the segment for v from

VI and w using the zero-skew merge. Delete VI and 7M

from K, and add ZJto h’. Go to Step 2.

Algorithm Embedding

Step 1: Determine the center VC on the segment for VC by

selecting the nearest point to the root v~. Route from v~

to VC.

Step 2: local-embedding( vc)

procedure local.embedding(u)

Step 1: If v has no child, return.

Step 2: Let VI and vz be the children of v. For i = {1, 2},

determine a point vi on the segment for UI so as to satisfy

the zero-skew merge equations. Route from v to vi.

Step 3: local-embedding(ul ), local-embedding( uz).

613



Vcr D(4,3)

A(-I ,0)

-i

d
C(I,0)

v.

T
D(4,3)

‘(-’’ol=l,o)o)
& A

B(O,-1) B(o,-1)

(a) Matclung-ba.ed (L = 12) (b) Nearest-neighbor (L = 10)

Figure 3: Matching-Based vs. Nearest-Neighbor Selec-

tion Algorithm (L = total wire length).

B. Properties

The distance between the nearest neighbor pair in Step

2 of Algorithm Find-Center is bounded in the next prop-
erty. Proofs are shown in [6].

Property 1 Suppose that a set K of IA’ I (> 1) points or

segments has diameter D. Then, the distance d+ between
the nearest neighbor pair in K satisfies

d.< D
- ~-l”

Then, the total wire length for Algorithm [NS] is

bounded using Property 1.

Lemma 1 If there is no detour, the total wire length for
Algorithm [NS] is O(@D), where D is diameter of S.

Next, we show that this bound is best possible and
the same order as the total edge length for the minimum

Steiner tree [9] for S. It is clear that, for a leaf set, the
total wire length for the zero-skew routing is not shorter

than that for the minimum Steiner tree. Therefore, we
have only to show that the total edge length for the min-

imum Steiner tree is Q(fiD).

Consider S+ in which n points lie on @ x @ grid

whose interval is ~. It is easy to see that the total edge

length of the minimum Steiner tree for S+ is Q(@D).
Note that it was proven that this lower bound 1s tight
even in average cases for the Euclidean distance [15].

Lemma 2 The order of the total wire length of a zero-
skew routing generated by Algorithm [NS] is best possible.

The matching-based algorithm has the same bound [3].

When pins are regularly distributed, this algorithm gener-
ates a good results due to the perfect matching. However>
in real layouts like benchmark data, the perfect match-
ing could cause long wires. In Fig. 3, the routin by the

fmatching method is 2070 longer than that by [NS In this

figure, a zero-skew routing is approximated by an equi-
distant routing.

Next, the time complexity is evaluated. In Algorithm

Find.Center, Steps 2 and 3 are repeated n – 1 times.

Step 2 requires 0(n2) time in a naive implementation.
This time complexity can be reduced to O(n log n) by a

k
generalized Delaunay triangualtion 13] which always has
an edge connecting the nearest-neig bor pair. This leads
to the next lemma.

Lemma 3 The time complexity of Algorithm [NS] is

0(n2 log n).

As we have seen above, although Algorithm [NS] has
good properties, the time complexity is more expensive

than the best known algorithm because Algorithm [NS]
reconstructs the Delaunay triangulation every time the
nearest neighbor pair needs to be found.

IV. CLUSTERING-BASED ALGORITHM [CL]

In this section, we propose a clustering-based algo-
rithm, in which several nearest-neighbor pairs are selected
from a Delaunay triangulation at the same time, so that
the time complexity is reduced without increasing the to-

tal wire length.

In Algorithm [NS], we reconstruct the Delaunay trian-
gulation every time a pair (WI, V2) is merged into a node

v (i.e., the segment for a node v is calculated from points
(or segments) for nodes VI and V2). Now, consider the
next merge. In many cases especially where IK \ is large,

the next nearest-neighbor pair (v{, v’) does not include
kv. We say for this situation that t e next pair is in-

dependent from the previous pair. In this independent
case, since the previous Delaunay triangulation also has

an edge connecting (vj, v;), we do not have to reconstruct

the Delaunay triangulation.

From this observation, it is expected that merging sev-
eral independent pairs on a Delaunay triangulation will

not increase the total wire length, and that this improve-
ment may reduce the time complexity. However, as we

saw in Fig. 3, the total wire length will increase if most
nodes are merged in a triangulation. Thus, there is a

limit number for zero-skew merges in a triangulation in
order not to increase the total wire length compared with
Algorithm [NS]. In our clustering-based algorithm, the
number of zero-skew merges for a Delaunay triangula-
tion is adaptively varied. We will prove that the time
complexity is reduced without increasing the order of the

total wire length.

We first construct a graph called the nearest-neighbor
graph, which maintains the nearest-neighbor point (or
segment) to each point (or segment) in K. In zero-skew

merges, \K [/k nearest-neighbor pairs are taken from the
graph in the non-decreasing order of distance of pairs,

where k (> 1) is a constant. Typically, 2 < k < 4. For
each pair, if either of the points (or segments) has already
been merged, we consider the pair is not independent from
the previous pairs, and the pair is discarded.

There are two significant characteristics in this
clustering-based algorithm: 1) since the nearest-neighbor
graph is used, pairs of points (or segments) apart from
each other are not taken into account; 2) since only indep-

endent pairs are merged, several nearest neighbor pairs
are selected without increasing the total wire length nor
reconstructing the Delaunay triangulation. Therefore, it
is expected that the total wire length will not increase.

We will prove that the order of the total wire length is still
best possible for Algorithm [CL]. In addition, experimen-
tal results show that Al orithm [CL] generates as good

fresults as Algorithm [NS .

Furthermore, it will also be proven that the number of
merges in a Delaunay triangulation is @([K 1) in any case,
though the number strongly depends on the distribution
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Figure 4: Nearest-Neighbor Graph.

of points or segments. From this property, we prove that
the time complexity is O(n log n).

Now, we state our algorithm. First, we define the
nearest-neighbor graph G’(K, E) on a set K of points or

diagonal segments.

A. Nearest Neighbor Graph

Let K be a set of points or diagonal segments. The

nearest-neighbor graph G(K, E) for K is defined by the

weighted directed graph such that

i) Each node v E K has exact one out-going edge, so that

IEI = IKl,

ii) (Vi, Vj) c E for vi, vj G K + vj is the nearest to Vi

(if there is a tie, one of the tie edges is arbitrarily
selected),

iii) Each edge e = (vi, Vj) E E has a weight w(e) that is
the distance between vi and Vj.

From the definition, G(K, E) is not unique when a node
has more than one nearest neighbors. However, it is easy

to see that a Delaunay triangulation for K should contain
one of the nearest-neighbor graphs for K as a subgraph.

The example of the nearest-neighbor graph for the point
set in Fig. 3 is depicted in Fig. 4.

Let the sequence {eo, el, . . . . elK1-l} be the edges in E

sorted by their weights in non-decreasing order. Then,
the following property characterizes the weight of ei.

Property 2 For O <Vi < IKI – 1,

‘(e’)</++1’
where D is diameter of K.

B. Algorithm [CL]

Now, we state the clustering-based algorithm [CL]. Al-

though this algorithm also has two phases (F’ind.Center
and Embedding), we omit Embedding phase because it
is exactly the same as that in Algorithm [NS].

In FindX7enter phase, we use a parameter k >1. Also,
we use a function s(a, b, c) where a < c defined by

{

a; a>b,

s(a, b, c) = b; a< b<c,

C; b~c.

Algorithm Find-Center([CL])

Step 1: K := S.

Step 2: If IKI = 1, stop. (The element in K is the segment for

the center v=.) Otherwise, construct the nearest-neighbor

graph G(K, E) on h’, and sort edges in E by their weights

in the non-decreasing order.

Step 3: Repeat Step 3.1 s(1, lK\/k, IKI – 1) times. Then, go

to Step 2.

Step 3.1: Take the smallest weight edge (v1, V2) from E,

and delete the edge from E. If neither VI nor w has

already been deleted from K, do Step 3.2.

Step 3.2: (Zero-Skew Merge) Calculate the segment for

v from VI and w using the zero-skew merge. Delete

VI and V2 from K, and add w to K.

C. Properties

In this section, we show some properties for Algorithm

[CL]. Againl proofs are shown in [6]. First, we evaluate
the total wire length. The next lemma is proven from
Property 2.

Lemma 4 If there is no detour, the total wire length for
Algorithm [CL] is O(fiD)j where D is diameter of S.

Lemma 5 The order of the total wire length of a zero-

skew routing generated by Algorithm [CL] is the best pos-
sible.

Next, we calculate the time complexity of Algorithm

[CL]. It is easy to see that the following property is sat-
isfied for nearest-neighbor graphs in Algorithm [CL].

Property 3 For a pair (VI, V2) merged in Step 3.2, at
most Ce edges are in-coming to either V1 or V2 in G(K, E),

where c. is a constant,

This property shows that, when p pairs are merged in

Step 3.2, at most (c, – l)p edges will be ignored in Step

3.1. This observation leads to the next lemma:

Lemma 6 For a set K, at least max(l, lK1/(cek)) pairs

are merged in Step 3.2 of Algorithm Find-Center.

Clearly, Step 2 requires O(IKI log IKI) time, and Step 3
can be performed in O(IKI). From Lemma 6, at the i-th

iteration, IK I is at most
(l-*)i-in Consequen”y

the complexity for our algorithm is evaluated.

Lemma 7 The time complexity of Algorithm [CL] is

O(nlog n).

V. IMPROVEMENT ALGORITHM

In this section, we present an improvement algorithm

for a zero-skew routing previously designed.
Let m be a positive integer. Typically, 4 < m < 6.

Also, for an internal node v, let a tree Tv be a subtree,
which has at most 2m — 1 nodes and is rooted by v, on

the initial zero-skew routing. iVV denotes a set of ‘leaves’
of T,,. (Note that N,, may be internal nodes on the initial
zero~sk~w routing. ) ‘The~, the improvement algorithm for
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Table 1: Total Wire Length for four zero-skew routing algorithms, [1], [NS], [CL], [CL+16].

#pins [1] [NS] [CL] [cL+16](/[1])
priml 269 177928 138787 132980 129185 (0.73)

prim2 603 392348 366646 334107 303994 (0.77)

rl 267 1582498 1485399 1421307 1253347 (0.79)

r2 598 3060399 2828584 2627494 2483754 (0.81)

r3 862 3953785 3645674 3550494 3193801 (0.81)

r4 1903 8039353 7705858 6794605 6499660 (0.81)

r5 3101 12129536 10402178 10195581 9723726 (0.80)

Nv uses an exhaustive search, andcalculates an optimum
sequence of zero-skew merge pairs such that the sequence

generates the minimum total-wire-length zero-skew rout-
ing T: whose leaves are NV, without changing positions,

C(.) ’s, and to’s for Nv. The root of TJ is the new loca-
tion of v.

This improvement for a node is applied to all nodes

in a zero-skew routing, and the improvement for all in-

ternal nodes is iterated until no improvement is made.
The time complexity for an improvement on a node is a
function only of m, though the function is exponential.
Therefore, since m is constant, the improvement for all

nodes requires O(n) time. The number of iterations of

the improvement 1s experimentally less than 20.

VI. EXPERIMENTAL RESULTS

We show experimental results for four algorithms on
benchmark data priml-prim2 [10 and rl-r5 [16]. The first

2algorithm [1] is the best known or the total wire length.

The other three algorithms are [NS], [CL], and [CL+16]
that applies the improvement with m = 6 to [CL]. For

[CL] and [CL+16], we tested 9 values for the parameter

k (k = 2 + 0.25i (O < i ~ 8)), and only the best results
are shown in Table 1. It 1s observed that Algorithm [CL]
is as good as (even a little better than) Algorithm [NS],

and that [C L+16] achieves 20% reduction of the total wire
length compared with [1].

VII. CONCLUSION

A clustering-based algorithm has been proposed for
zero-skew routings. We first showed that a nearest-

neighbor selection algorithm [NS] generates shorter total-
wire-length routings than previous algorithms. The clus-

tering method reduces the time complexity of Algorithm
[NS] without increasing the total wire length. An im-

provement algorithm helps to obtain better solutions us-
ing a localized exhaustive search. Our algorithm accom-
plished 20’XO reduction of the total wire length on bench-
mark data.
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