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Abstract—In the design of high performance VLSI systems,
minimization of clock skew is an increasingly important objec-
tive. Additionally, wirelength of clock routing trees should be
minimized in order to reduce system power requirements and
deformation of the clock pulse at the synchronizing elements of
the system. In this paper, we first present the deferred-merge
embedding (DME) algorithm, which embeds any given connec-
tion topology to create a clock tree with zero skew while minimiz-
ing total wirelength. The algorithm always yields exact zero skew
trees with respect to the appropriate delay model. Experimental
results show an 8% to 15% wirelength reduction over previous
constructions in [17] and [18]. The DME algorithm may be
applied to either the Elmore or linear delay model, and yields
optimal total wirelength for linear delay. DME is a very fast
algorithm, running in time linear in the number of synchroniz-
ing elements. We also present a unified BB + DME algorithm,
which constructs a clock tree topology using a top-down bal-
anced bipartition (BB) approach, and then applies DME to that
topology. Our experimental results indicate that both the topol-
ogy generation and embedding components of our methodology
are necessary for effective clock tree construction. The BB +
DME method averages 15% wirelength savings over the previous
method of [17], and also gives 10% average wirelength savings
when compared to the method of [25]. The paper concludes with
a number of extensions and directions for future research.

I. INTRODUCTION

N SYNCHRONOUS VLSI designs, circuit speed is

increasingly limited by two factors: i) delay on the
longest path through combinational logic, and ii) clock
skew, which is the maximum difference in arrival times of
the clocking signal at the synchronizing elements of the
design. This is seen from the following well-known in-
equality governing the clock period of a clock signal net
[2], [17]:

clock period > t; + ty., + £, + 14

where ¢, is the delay on the longest path through combi-

skew
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national logic, ¢, is the clock skew, ¢, is the set-up time
of the synchronizing elements (assuming edge triggering),
and ¢, is the propagation delay within the synchronizing
elements. The term ¢, can be further decomposed into
14 = ) interconnect + td-gates? where td—interconnect is the delay
associated with the interconnect of the longest path
through combinational logic, and ¢, .., is the delay
through the combinational logic gates on this path. In-
creased switching speeds due to advances in VLSI fabrica-
tion technology will significantly decrease the terms ¢,
tys, and t; ... Therefore, £, ierconnect 3Nd Zy, becOme
the dominant factors in determining circuit performance:
Bakoglu [2] has noted that ¢, may account for over 10%
of the system cycle time in high-performance systems.
With this in mind, a number of researchers have recently
studied the clock skew minimization problem.

Several results address formulations with inherently
small problem size. For building block design styles,
Ramananathan and Shin [21] have proposed a clock distri-
bution scheme that applies when the blocks are hierarchi-
cally organized. The number of blocks at each level of the
hierarchy is assumed to be small, since the algorithm
exhaustively enumerates all possible clock routings and
clock buffer optimizations. Burkis [5] and Boon et al. [4]
have also proposed hierarchical clock tree synthesis ap-
proaches involving geometric clustering and buffer opti-
mization at each level. More powerful clock tree resynthe-
sis or reassignment methods were used by Fishburn [13]
and Edahiro [11] to minimize the clock period while
avoiding hazards or race conditions; Fishburn employed a
mathematical programming formulation, while Edahiro
employed a clustering-based heuristic augmented by tech-
niques from computational geometry. All of these meth-
ods are essentially limited to small problem sizes, either
by their algorithmic complexity or by their reliance on
strong hierarchical clustering. In contrast, we are inter-
ested in clock tree synthesis for “flat” problem instances
with many sinks (synchronizing elements), as will arise in
large standard-cell, sea-of-gates, and multichip module
designs.

Clock tree construction for designs with many clock
sinks was first attacked by the H-tree method, which was
used in regular systolic arrays by Bakoglu and other
authors [1], [10], [14], [26]. The H-tree structure can sig-
nificantly reduce clock skew [10], [26], but is applicable
only when all of the sinks have identical loading capaci-
tances and are placed in a symmetric array. A more
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robust clock tree construction for cell-based layouts is due
to Jackson, Srinivasan, and Kuh [17}: their “method of
means and medians” (MMM) algorithm generates a
topology by recursively partitioning the set of sinks into
two equal-sized subsets, then connecting the center of
mass of the entire set to the centers of mass of the two
subsets. While the MMM solution will have reasonable
skew on average, Kahng ez al. [18] gave small examples for
which the source-sink pathlengths in the MMM solution
may vary by as much as halif of the chip diameter. In some
sense, this reflects an inherent weakness in the top-down
approach: it can commit to an unfortunate topology early
on in the construction. Kahng et al. {9], [18] have proposed
a bottom-up matching approach to clock tree construc-
tion: in practice their method eliminates all source-sink
pathlength skew, while using 5-7% less total wirelength
than the MMM algorithm. However, as the method of [9]
and [18] focuses primarily on pathlength balancing, their
method addresses clock skew minimization only in thg
sense of the linear delay model. Tsay [25] uses ideas
similar to both [17] and [18], and achieves exact zero skew
trees with respect to the Elmore delay model [12], [22].
His algorithm was the first to produce trees with exact
zero skew in all cases. In the same spirit as the method of
[18], Tsay’s method recursively combines pairs of zero
skew trees at “tapping points,” analogous to the “balance
points” in [18], to yield larger zero skew trees.

The primary motivation behind our work is to minimize
the total wirelength of clock routing trees while maintain-
ing exact zero skew with respect to the appropriate delay
model. Total wirelength is a critical parameter of the
clock routing solution since excess interconnect not only
increases layout area but also results in greater tree
capacitance, thus requiring more power for distribution of
the clock signal. However, both the top-down method of
[17] and the bottom-up methods of [9], [18], [25] concen-
trate on the problem of computing a clock tree fopology,
and only incompletely address the associated problem of
finding a minimum-cost embedding of the topology. These
previous methods are actually quite inflexible in that they
permanently embed each internal node of the tree as
soon as it becomes defined [18], or else choose the embed-
ding with at most one level of lookahead in the tree
construction [17], [25].

In this paper, we first propose a new approach that
achieves exact zero skew while significantly reducing the
total wirelength of the clock tree. The basic idea of our
deferred-merge embedding (DME) algorithm is to defer
the embedding of internal nodes in a given topology for as
long as possible: i) a bottom-up phase computes loci of
feasible locations for the roots of recursively merged
subtrees, and ii) a top-down phase then resolves the exact
embedding of these internal nodes of the clock tree. In
practice, the DME algorithm begins with an initial clock
tree computed by any previous method, then maintains
exact zero clock skew while reducing the wirelength. In
regimes where the linear delay model applies, our method
produces the optimal (i.e., minimum wirelength) zero skew

clock tree with respect to the prescribed topology, and
this tree will also enjoy optimal source-sink delay. Experi-
mental results in Section IV below show that the DME
approach is highly effective in both the Elmore and linear
delay models. We achieve average savings in total clock
tree wirelength of 15% over the MMM algorithm [17] and
8% over the method of Kahng ef al. [18]. In all cases, our
clock trees have exact zero skew according to the appro-
priate delay model, and our Elmore delay computations
have been confirmed by SPICE simulations which show
sub-picosecond skew on all benchmark examples.

Since the DME algorithm only optimizes a prescribed
topology, it cannot achieve all possible improvement of
the clock tree construction. Thus, to complement this
successful embedding method, we also propose a new
top-down heuristic for constructing an initial clock tree
topology, based on the geometric concept of a balanced
bipartition (BB). Applying our embedding to topologies
generated in this way yields a unified BB + DME algo-
rithm which gives very promising results: we achieve 15%
reduction in tree cost and as compared with the MMM
algorithm {17], and we achieve 10% reduction in tree cost
and a 22% reduction in Elmore delay as compared with
the method of Tsay [25]." Again, all of our solutions have
exact zero skew. Our methods are quite robust, and
extend to prescribed skew formulations as well as more
general optimizations of topologies for both clock routing
and global routing. Furthermore, because our method
implicitly maintains all possible minimum-cost embed-
dings of a topology, it may be used to reroute the clock
net while preserving minimum wirelength, as may be
necessary when routing density must be minimized.

The remainder of this paper is organized as follows. In
Section II, we formalize the minimum-cost zero skew
clock routing problem and also establish the linear and
Elmore delay models that are used in the subsequent
discussion. Section IIT presents our main results. These
include: i) the DME algorithm for efficiently embedding a
given topology; ii) application of the DME algorithm to
both the linear and Elmore delay regimes; and iii) our
unified BB + DME algorithm, which uses a top-down BB
strategy to derive a good tree topology to which the DME
algorithm may be applied. Section IV gives experimental
results and comparisons with previous work, and Section
V concludes with directions for future research.

II. PROBLEM FORMULATION

The placement phase of physical layout determines
positions for the synchronizing elements of a circuit, which
we call the sinks of the clock net. A finite set of sink
locations, denoted by S = {s,, 5,,"*-, 5,} € R?, specifies an

"Note that SPICE simulations for BB + DME constructions on ran-
dom sink sets (Table IV below) indicate only a 3% improvement in delay
compared to the MMM algorithm. This suggests that although the
Elmore model is reasonably accurate for predicting skew, it is less
accurate for predicting delay.
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instance of the clock routing problem. A connection topol-
ogy is defined to be a rooted binary tree, G, which has n
leaves corresponding to the set of sinks S. A clock tree
T(S) is an embedding of the connection topology in the
Manhattan plane.? The embedding associates a placement
in M2 with each node v € G; we will use pi(T, v) or pl(v)
to represent this location. (When no confusion arises, we
may also denote pl(T, v) simply by v.) The root of the
clock tree is the clock source, denoted by s,. We direct all
edges of the clock tree away from the source; a directed
edge from v to w may be uniquely identified with w and
written as e,,. We say that v is the parent of w, and w is a
child of v; the set of all children of v is denoted by
children(v). The wirelength, or cost, of the edge e, is
denoted by le, |, and must be greater than or equal to the
Manhattan distance between its endpoints pl(w) and
pl(v).3 The cost of T(S), denoted cost(T(S)), is the total
wirelength of the edges in 7(S).

For a given clock tree T(S), let t,(s,, s;) denote the
signal propagation time, or delay, on the unique path from
source s, to sink s;; the collection of edges in this path is
denoted by path(s,, s,). The skew of T(S) is the maxi-
mum value of |t,(sg, 5,) — t,(s,, 5,)| over all sink pairs s,
s; € 8. If T(S) has zero skew then it is called a zero skew
clock tree (ZST). Given a set S of sinks, the zero skew
clock routing problem is to construct a ZST T(S) of
minimum cost. A variant of the zero skew clock routing
problem asks for a minimum cost ZST with a prescribed
connection topology:

Zero Skew Clock Routing Problem (S, G): Given a set S of
sink locations, and given a connection topology G, con-
struct a zero skew clock tree T(S) with topology G and
having minimum cost.

The notion of a zero skew clock tree is well defined only
in the context of a method for evaluating signal delays.
The delay from the source to any sink depends on the
wirelength of the source-sink path, the RC constants of
the wire segments in the routing, and the underlying
connection topology of the clock tree.* Using equations
such as those of Rubinstein et al. [22], one can achieve
tight upper and lower bounds on delay in a distributed
RC tree model of the clock net. However, in practice it is
appropriate to apply one of two simpler RC delay approx-
imations, either the linear model or the Elmore model,
both of which are easier to compute and optimize during
clock tree design.

Note that the binary tree representation suffices to capture arbitrary
Steiner routing topologies. Also, because the meaning is clear, we use
T(S) instead of T(S, G) to denote a clock tree; implicitly, the embed-
dmg is always with respect to a particular topology G.

*To route a wire of length greater than the distance between its
endpoints, the method of specified-length routing due to Hanafusa et al.
[16] can be used.

“The global routing phase of layout will typically consider the clock
and power /ground nets for preferential assignment to (dedicated) rout-
ing layers. We assume that the interconnect delay parameters are the
same on all metal routing layers, and we ignore via resistances. Thus,
wirelength becomes a valid measure of the RC parameters of intercon-
nections.

2.1. Delay Models

2.1.1. Linear Delay: In the linear delay model, the delay
along path(s,, s;) is proportional to the length of the path
and is independent of the rest of the connection topology.
Normalized by an appropriate constant factor, the linear
delay between any two nodes u and w in a source-sink
path is

tp(u,w) = Z le, |-

e, Epath(u, w)

While less accurate than the distributed RC tree delay
formulas of Rubinstein ef al. [22], the linear delay model
has been effectively used in clock tree synthesis [18], [21].
In general, use of the linear approximation is reasonable
with older ASIC technologies, which have larger mask
geometries and slower packages. Tsay [25] notes that the
linear delay model is also proper for emerging optical and
wave interconnect technologies. In addition, we observe
that linear delay applies to hybrid packaging technologies,
which have relatively large interconnect geometries [24].

2.1.2. Elmore Delay: With smaller device dimensions
and higher ASIC system speeds, a distributed RC tree
model for signal delay in clock nets is often required to
derive accurate timing information. Typically, we use the
first-order moment of the impulse response, also known
as the Elmore delay [6], [8], [25]. The Elmore delay model
is developed as follows. Let o and S, respectively, denote
the resistance and capacitance per unit length of intercon-
nect, so that the resistance r, and capacitance ¢, of edge
e, are given by a-le,| and [3 le,|, respectively. For each
s1nk s; in the tree T(S), there is a loading capacitance ¢ L
which is the input capacitance of the functional unit
driven by s;.

We let 7, denote the subtree of T(S) rooted at v, and
let ¢, denote the node capacitance of v.’ The tree capaci-
tance of T, is denoted by C, and equals the sum of
capacitances in T,. C, is calculated using the following
recursive formula:

cy, if v is a sink node s;
Cv = \G + z:wechlldmn(u) (C + Cw)
if v is an internal node.

According to [12], [22], and [23], the Elmore delay
trp(sg, 5;) can be calculated by the following formula (see
[25] for a discussion of underlying circuit models):

tep(Sgs 5;) = Z

e, path(sg, s;)

rev(%ceu + Cv).

More generally, the delay time between any two vertices u

3As noted earlier, we will assume that ¢, = 0 for each internal node in
all of our examples and benchmarks.
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and w on a source-sink path is given by

tep(u, w) = Z

e, path(u, w)

rev(%cev + Cv) .

Elmore delay is additive: if v is a vertex on the u-w path,
then tp(u, w) = tgp(u, v) + tgp(v, w), and in particular,
if v is a child of u on the u-s; path, then tg,(u, s;) =
r.((1/2ec, + C,) + tgp(v, 5). A sink node s; may be
treated as a trivial zero skew subtree with capacitance ¢,
and delay zero.

III. MAIN RESULTS

This section presents our new unified approach to con-
structing a ZST over a given set of sinks S. At a high
level, we divide the construction of the ZST into: i)
generation of a connection topology, and ii) embedding of
that connection topology in the Manhattan plane. Our
discussion begins with the DME algorithm, which com-
putes a wire-efficient embedding of a given topology.
Next, we describe the application of the DME algorithm
to both the linear and Elmore delay models. We then
present a new top-down BB algorithm that creates a good
connection topology, leading to the unified BB + DME
algorithm.

3.1. The DME Algorithm

The DME algorithm embeds internal nodes of the
topology G via a two-phase process. A bottom-up phase
constructs a tree of line segments which represent loci of
possible placements of the internal nodes in the ZST. A
top-down phase then resolves the exact locations of all
internal nodes in 7. In the discussion that follows, the
distance between two points p and g is assumed to be the
Manhattan distance d(p, ¢), and the distance between
two sets of points P and Q, written d(P, Q), is given by
min{d(p, ¢)lp € P and q € Q}.

3.1.1. Bottom-Up Phase: The Tree of Merging Segments:
For prescribed sink locations S and connection topology
G, we construct a tree of merging segments. The basic idea
is as follows. Each node v in G is associated with a
merging segment which represents a set of possible place-
ments of v. The merging segment of a node depends on
the merging segments of its two children, so the connec-
tion topology must be processed in a bottom-up order. In
building the tree of merging segments, we also assign a
length to each edge in G; this length is retained in the
final embedding of G as a ZST.

Let a and b be the children of node v in G. We use
TS, and TS, to denote the subtrees of merging segments
rooted at a and b, respectively. We are interested in
placements of v which allow 7S, and TS, to be merged
with minimum added wire while preserving zero skew.
Define the merging cost between TS, and TS, to be
le | + le,l, where le,| and le,| denote the lengths to be
assigned to edges e, and e,. These lengths are chosen to
minimize merging cost while balancing delays at pi(v).
Because delay is a monotone increasing function of wire-

length, there is a unique optimal assignment of lengths to
e, and e,

We now develop more precisely the construction of the
tree of merging segments. A Manhattan arc is defined to
be a line segment, possibly of zero length, with slope +1
or —1; in other words, a Manhattan arc is a line segment
tilted at 45° from the wiring directions. The collection of
points within a fixed distance of a Manhattan arc is called
a tilted rectangular region, or TRR, whose boundary is
composed of Manhattan arcs (see Fig. 1). The Manhattan
arc at the center of the TRR is called its core. The radius
of a TRR is the distance between its core and its bound-
ary.

The merging segment of node v, ms(v), is defined recur-
sively as follows: if v is a sink s;, then ms(v) = {s;}}. If v is
an internal node, then ms(v) is the set of all placements
pl(v) which atllow minimum merging cost, that is to say, all
points that are both within distance le,| of ms(a) and
within distance |e,| of ms(b). If ms(a) and ms(b) are both
Manhattan arcs, then we obtain the merging segment
ms(v) by intersecting two TRR’s, #rr, with core ms(a) and
radius |e,l, and trr, with core ms(b) and radius |e,}; i.e.,
ms(v) = trr, N 17y,

The merging cost at v has an obvious lower bound of
k = d(ms(a), ms(b)). If the merging cost is greater than «
(i.e., more wirelength is needed to balance the delays),
then one edge length will equal zero and the other will
equal the merging cost. Fig. 2 illustrates the algorithm for
the case where the merging cost is equal to «, and Fig. 3
illustrates the algorithm for the case where the merging
cost is greater than «. An entire tree of merging segments
is illustrated by Fig. 4. The leaves of the tree of segments
are all single points representing the sink locations
$1,°**, 83, and the internal nodes are Manhattan arcs.

We prove that all merging segments are Manhattan
arcs using induction and the following lemma. (Proofs of
all lemmas are given in the Appendix.)

Lemma 1: The intersection of two TRR’s, R; and R,,
is also a TRR and can be found in constant time. If
radius (R)) + radius (R,) = d(core (R,), core (R,)), then
the TRR R, N R, is also a Manhattan arc.

Lemma 1 implies that if ms(a) and ms(b) are both
Manhattan arcs, then ms(v) is a Manhattan arc, as fol-
lows: i) if the merging cost at v is equal to k, then
d(core (trr,), core (1rr)) = le,| + le,| = radius (#7,) +
radius (#7,), and hence, frr, N trry, is a Manhattan arc; or
ii) if the merging cost at v is greater than «, then either
trr, or o, will be a Manhattan arc whose intersection
with any convex set will also be a Manhattan arc. For each
sink s;, the merging segment ms(s;) is a single point and

The uniqueness is shown as follows. Suppose the minimum merging
cost is c. Define a function f(Je,|) to be the path delay from v to sinks in
TS, for edge length |e l; similarly define g(le, ) for the path delay from v
to sinks in TS,,. Define g'(le,]) = g(c — le,D. A length assignment to e,
must satisfy f(le,)) = g'(le,D, or alternatively, (f — g’Xle, D = 0. If both
f and g are monotone increasing functions, then g’ is monotone
decreasing and f — g’ is monotone increasing. Thus (f — g'Xle,) =0
will have at most one solution.
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core

radius

Fig. 1. An example of a TRR with core and radius as indicated.

trry,

. o *

.0' ms (a) .

Fig. 2. Construction of merging segment ms(v) when the merging cost

equals .

trra=ms(a) . .

Fig. 3. Construction of merging segment ms(v) when the merging cost
is greater than «. Note that in this example, radius (#7,) = |le,| = 0.

803

root merging
segment

Fig. 4. An example of a tree of merging segments with sinks s,,---, sg.
The solid lines are merging segments and the dotted lines indicate edges
between merging segments.

thus a Manhattan arc. By induction, therefore, all merging
segments must be Manhattan arcs.

Fig. 5 gives a precise description of the procedure
Build_Tree_of_Segments, which constructs the tree of
merging segments. Details of the Calculate_Edge_
Lengths subroutine depend on the delay model and are
described in Sections 3.2.1 and 3.3.1 below.

By Lemma 1, procedure Build_Tree_of_Segments re-
quires constant time to compute each new merging seg-
ment, and time linear in the size of S to construct the
entire tree of merging segments.

3.1.2. Top-Down Phase: Embedding of Nodes: Once the
tree of segments has been constructed, the exact embed-
dings of internal nodes in the ZST are chosen in a
top-down manner. For node v in topology G, i) if v is the
root node, then select any point in ms(v) to be pl(v);’ or
ii) if v is an internal node other than the root, choose
pl(v) to be any point in ms(v) that is at distance |e,| or
less from the placement of v’s parent p (because the
merging segment ms(p) was constructed such that
d(ms(v), ms(p)) < le,|, there must exist some choice of
pl(v) satisfying this condition). In case ii), the algorithm
first creates a square TRR #rr, with radius le,| and core
equal to {pl(p)}); then, pl(v) can be any point from
ms(v) N #r, (see Fig. 6). For the tree of merging seg-
ments in Fig. 4, the resulting placements are indicated by
the points at which the segments are connected by dotted
lines. Fig. 7 describes the procedure Find_Exact_Place-
ments, which uses the tree of merging segments to deter-
mine the final embedding of nodes in the ZST.

The time complexity of DME is analyzed as follows.
Because each instruction in Find_Exact_Placements is
executed at most once for each node in G (and the
intersection of TRRs ms(v) and #7, can be found in
constant time by Lemma 1), Find_Exact_Placements runs
in time linear in the size of S. Because procedure

"If a fixed source location s} is specified, choose pl(s,) € ms(sy) with
minimum distance from sy and connect a wire directly from s§ to pi(sy).
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Procedure Build_Tree_of_Segments
Input: Topology G; set of sink locations S
Output: Tree of merging segments TS containing
ms(v) for each node v in G and edge length |[e,|
for each v # s
for each node v in G (bottom-up order)
if v is a sink node,
ms(v) — {pl(v)}
else
Let @ and b be the children of v
Calculate_Edge_Lengths(|e, |,|es|)
Create TRRs trrg and trry as follows:
core(trry) — ms(a)
radius(trry) «— |eq|
core(trry) «— ms(b)
radius(trry) — |ey|
ms(v) — trrg Otrry

endif

Fig. 5. Construction of the tree of segments.

‘\'\ possible

‘ placements

ms (V) of v

Fig. 6. Procedure Find_Exact_Placements: finding the placement of v
given the placement of its parent p.

Procedure Find_Exact_Placements
Input: Tree of segments T'S containing ms(v)
and |e, | for each node v in G
Output: ZST T(5)
for each internal node v in G (top-down order)
if v is the root
Choose any pl(v) € ms(v)
else
Let p be the parent node of v
Construct trr, as follows:
core(trry) — {pi(r)}
radius(trrp) — jes|
Choose any pl(v) € ms{v) Nirr,
endif

Fig. 7. Construction of the ZST by embedding internal nodes of the
topology.

Build_Tree_of_Segments also runs in linear time, DME
as a whole is a linear-time algorithm.

3.2. Application of DME to Linear Delay

3.2.1. Calculating Edge Lengths: Calculating the edge
lengths |e,| and le,| is straightforward in the linear delay
model. Let a and b be children of v with merging
segments ms(a) and ms(b), and let ¢, ,(a) and ¢, ,(b) be
the delays from a and b to the sinks in their respective
subtrees. Then, zero skew at v requires that

tLD(a) + |ea‘ = tLD(b) + |€b|.

Again, let « = d(ms(a), ms(b)). If |t; p(a) — 1, p(B)] < «k,
then the merging cost is minimized with le,| + |e,| = «,
ie.,
K+ 1 p(b) — 1, p(a)

2

le,| =

and

leyl = K — le,l.

On the other hand, if |t ,(a) — ¢, ,(b)] > k, then the
merging cost is minimized when one of the edge lengths is
equal to zero. It is easy to see that if ¢, p(a) > ¢, p(b),
then le,l =0 and le,l =1, p(a) —t, p(b); similarly, if
t; pla) <t p(b) then le,| = 0 and le,| = ¢, p,(b) — ¢, p(a).

3.2.2. Optimality of DME for Linear Delay: The follow-
ing theorem states that the DME algorithm is optimal in
the linear delay regime.

Theorem 1: Given a set of sink locations S and a
connection topology G, the DME algorithm produces a
ZST T with minimum cost over all ZST’s for S having
topology G.

The proof of Theorem 1 relies on Lemmas 2 and 3.
Lemma 2 asserts that for any node v in an optimal ZST,
pl(v) is in ms(v) and must therefore satisfy the constraints
imposed in the bottom-up phase of the algorithm. Lemma
3 implies that the placements of two sibling nodes corre-
spond to a closest pair of points in their respective merg-
ing segments. Together, Lemmas 2 and 3 can be used to
show that placements in an optimal ZST must satisfy the
top-down phase of the algorithm. Let ¢, ,(T, x) denote
the delay in ZST T between a point x in T and each sink
which has x on its source-sink path.

Lemma 2: Given a ZST T with topology G, let v be an
internal node with children a and b. Suppose the subtrees
of T rooted at a and b can be generated by the DME
algorithm for some placement of v on ms(v), and also
suppose that g = pl(T, v) & ms(v). Then a new ZST T’
with the same topology can be constructed from T by
moving the placement of v so that the following hold: i)
q' =plT’', v) € ms(v); i) cost(T’) < cost(T); and iii)
t.0(T, @) = 1,5(T', q).

Lemma 2 is illustrated in Fig. 8. The construction of 7"
from T reduces the tree cost by modifying the g—a and
q—b connections so that they share wire on the segment
from g to q'.

Lemma 3: Suppose that a and b are two sibling nodes
in ZST T with parent v, and suppose that the subtrees of
T rooted at a and b can be generated using the DME
algorithm. If d(a, b) > d(ms(a), ms(b)) and d(a, b) >
lt, (T, a) — ¢, ,(T, b)|, then a new ZST T’ can be con-
structed from the same topology, with cost (T'") < cost(T)
and with ¢, (T, q) = t; ,(T', q) for g = pl (T, v).

Fig. 9 contains an illustration of Lemma 3. Moving the
placements of nodes a and b to locations a’ and b’ allows
the a’'—q and b'—q connections to share wire on the
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a

Fig. 8. Optimal placement of v must be on ms(v). pl(T, v) =gq;
pIT’, v) = q'; and cost (T") < cost(T).

B T e

Fig. 9. Optimal placement of siblings @ and b must satisfy the distance
constraint in the top-down phase Find_Exact_Placements. pi(T, a) = a
and pl(T’, a) = a’, etc.; and cost (") < cost(T).

segment from g’ to g. The delay at point g remains
unchanged.

Proof of Theorem 1: The proof is by contradiction.
The DME algorithm places only two constraints on the
placement of a node v in G: i) pl(v) € ms(v) and ii)
d(pl(v), pl(p)) < L, where p is the parent of v and L,
is the edge length assigned by DME to e,. Condition i)
arises by the construction in the top-down phase of DME,
and condition ii) is required by the bottom-up phase of
DME. Suppose ZST T has minimum cost for point set S
and topology G, but contains a node placement violating
one of the two conditions. Let v be a node with greatest
depth in T that violates either condition, and let w be the
sibling of v. Because v has maximum depth, all of the
descendants of v and w can be produced using DME.
Consequently, because 7 has minimum cost, Lemma 2
implies that pl(T, v) must be in ms(v) and pl(T, w) must
be in ms(w). Thus v does not violate condition i).

Consequently, v must violate condition ii), i.e.
d(pKT, v), pAT, p))> L, Let L(T,e,) denote the
length of edge e, in T. Because the length of an edge
must be at least the distance between its endpoints,
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L(T, e,) > L,. Suppose d(pl(T, v), pi(T, w)) < d(ms(v),
ms(w)). Then the subtrees of T rooted at v and w can be
generated by DME for some placement of p on ms(p),
and by Lemma 2, cost(T) can be improved by moving p
to its merging segment and setting L(T’, e,) = L, and
L(T', e,)=L,. If d(piT, v), pl(T,w)) < |t p(v) —
t, p(w)}, then cost(T) can be reduced by moving pl(p) to
plv) if L, =0, or to pl(w) if L, = 0. Thus, we have
d(pl(T, v), pKT, w)) > d(ms(v), ms(w)), and d(pK(T, v),
pIT, w)) > |t; () — 1, p(W)l. Then by Lemma 3 cost (T)
can be decreased, contradicting the assumption that ¢ has
minimum cost. [m]

It can be proved that in the linear model, DME also
minimizes the source-sink delay in a ZST, and that this
delay is equal to one-half the diameter of the sink set S.
A proof of this result is contained in [3].

The DME algorithm is also optimal for any topology in
the variant of the ZST problem where the source location
is predefined. Suppose that ms(s,) is the merging segment
for the root node s, of topology G and that s; is the
prescribed source location. The DME algorithm can be
modified at the beginning of the procedure Find_Exact_
Placements to connect s{, with the closest point in ms(sy).
This point becomes pl(s;). Lemmas 2 and 3 can be used
to prove the optimality of this method: they state that any
tree rooted at a location g & ms(s,) will have minimum
cost only if the two subtrees of G directly below the root
are merged at a point q' € ms(s,) which is then con-
nected to s{ by a single edge.

3.3. Application to Elmore Delay

3.3.1. Calculating Edge Lengths in the Elmore Delay
Model: We use the analysis of Tsay [25] to calculate the
edge lengths needed to merge two trees of merging seg-
ments 7S, and 7S, with minimum merging cost in the
Elmore model. Let TS, and TS,, respectively, have capac-
itance C; and C, and delay ¢, = tzp(a) and ¢, = tz,(D);
let pl(v) be a merging point with minimum merging cost.

From the definition of Elmore delay, we have that
tgp(v, @) = r,((1/2)c, + C,). Thus, pl(v) satisfies

r.(3¢., + Cl) +t, =r,(3¢, + Cz) +t,.

(€]

Let d(ms(a), ms(b)) = . Suppose that TS, and TS, can
be merged with merging cost «; in other words, |e,| = x
and |e,| = k — x for 0 < x < «. Then we have resistances
r,, = ax and r, = a(x —x) and capacitances ¢, = Bx

and ¢,, = Bk — x). Substituting into (1) and solving for x
yields

t,—t; + ak(C, + %ﬁK)
a(C, + C, + Bk)

(2

X =

Case 1: If 0 < x < k, then there exists a feasible zero
skew merging point of TS, and TS, with merging cost «,
le,l = x and le,| = x — x.
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Case 2: If x <0 or x > k, then the assumption of
merging cost « results in a negative edge length for either
e, or e,. In this case, an extended distance k' > k is
required to balance the delays of the two trees. If x <0,
which means ¢; > t,, we choose pl(a) as the merging
point and set le,| = 0 and |e,| = «'. Then

t,=ak' (3B +C,) + 1,

and we use the quadratic formula to solve for x':

| ((aC2) + 2aB(1, — 1)) - aC,
K aB .

Similarly, if x > «, we set |e,| = 0 and

((aC)? +2aB(1, — 1)
ap

The above analysis shows that a zero skew merging
point between two ZST’s can always be found. The merg-
ing cost depends on the distance between the roots of the
ZST’s, the delay of each ZST, and the tree capacitance of
each ZST. Intuitively, to minimize the merging cost we
should therefore choose topologies such that merged sub-
trees have minimum distance between their roots, along
with similar capacitances and delays, so as to avoid the
extra cost k' — k. This motivates our new BB algorithm,
which uses the geometric notion of a balanced bipartition
for computing a topology. Before describing this algo-
rithm in Section 3.4 below, we observe that the DME
algorithm is not optimal for all topologies in the Elmore
delay model.

3.3.2. Suboptimality of DME for Elmore Delay: Recall
that in the linear delay regime, the DME algorithm pro-
duces an optimum (minimum wirelength) ZST for any
given topology. Our experimental results in Section IV
clearly show the effectiveness of the DME algorithm in
the Elmore delay model, and indeed we believe that in
practice the algorithm gives solutions that are very close
to optimum. However, the ZST’s T in Fig. 10 and T’ in
Fig. 11 demonstrate that, for some sink sets and topolo-
gies, DME will not be optimal for Elmore delay. T and T’
connect terminal points s,,..., ss to source s,. Both trees
are assumed to extend to the right side of s,, with their
subtrees to the right of s, being mirror images of the
subtrees to the left of s, (this ensures that the source will
be at s, in the optimal tree). In this example, we set both
the unit resistance « and unit capacitance B to one, and
the loading capacitance ¢, of each sink node s to zero.®

The ZST T’ in Fig. 11 is constructed so that if points s,
and s, are merged at point p;, then vertical wires from
points s, through s¢ will merge along the horizontal wire
from s, to s, with exactly zero skew. If, however, s, and
s, are merged on their merging segment as shown in the
tree T of Fig. 10, the delay at p; will increase, and jogs

)1/2 - aC,;

le,l = k" =

8The example can easily be altered to have non-zero loading capaci-
tances: shorten each edge adjacent to a terminal node by a small value
¢ > 0, and then set the loading capacitance of each terminal node to c.
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Fig. 10. ZST T, which would be constructed by the DME algorithm
with suboptimal cost for its topology. (Note that the tree is not drawn to
scale; lengths of horizontal and vertical segments are as indicated.)
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Fig. 11. ZST T’, which has optimal cost for the topology in Fig. 10, but

which violates the DME algorithm. In 7', the internal nodes placed at
po and p; in T are placed at the same point, p;. (The tree is not drawn
to scale; lengths of horizontal and vertical segments are as indicated.)

will be required in the edges e, through e, . In this
example, the four required jogs are each of length greater
than 0.3. Thus, their sum is greater than 1, which was the
amount of wire saved initially by merging s, and s, at p,.

Table I contains the calculated delay and capacitance at
each of the internal nodes of T and 7. For example, in
T' the capacitance at p;, C,,, is 33; and the delay at node

psis
, , 0.1
tep(P3) = tep(p1) + 0.1% > + Cp;

= 60.5 + 3.305 = 63.8.
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TABLE 1
DELAY AND CAPACITANCE AT EACH INTERNAL NODE IN ZST’s T AND T
Tree T Tree T’

node delay capacitance node delay capacitance
Do 50 20
Py 64.0 32.0 P 60.5 330
P2 67.3 437 § 23 63.8 44.4
P 71.9 55.8 i 68.2 56.2
Ps 77.6 68.4 D 73.9 68.4
So 454.0 2 X 73.66 g 428.6 2 X 73.44

Because unit resistance and capacitance both equal one,
and because loading capacitances at the leaves are zero,
the tree capacitance of a node is given by the amount of
wire in its subtree. Thus, we see in Table I that cost (T') is
less than cost (T') by 0.44.

3.4. Topology Generation

It is easy to see that, as hinted by the examples of Figs.
10 and 11, the choice of topology will affect the success of
the DME embedding. We now present a new heuristic for
generating connection topologies.” The heuristic works in
top-down fashion, dividing the sink nodes recursively into
two partitions with nearly equal total loading capacitance.
We call this heuristic the BB method. The BB method
offers a more powerful top-down partitioning scheme
than the previous approaches of Jackson et al. [17] and
Tsay [25], which divide the sink set recursively, using only
alternating horizontal and vertical cuts.

For our description of the BB method, we introduce the
following notation. Denote the diameter of S by dia(S)
= max{d(p, q)Ip, ¢ € S} and the number of sinks in §
by |S|. Since the cost of any routing tree of § is greater
than dia(S) and less than |S|-(dia(S))/2, we consider
dia(S) to be a heuristic approximation of the cost of any
ZST T(S). Recall also that imbalanced loading capaci-
tance may lead to excess edge length in the DME con-
struction; we call a bipartition of a set of sinks S into two
subsets S; and S, a balanced bipartition if the difference
between the total loading capacitances of the two subsets
is at most max{c, }.'° Intuitively, we would like to find a
balanced bipartition which divides set S with minimum
partition cost, given by dia(S,) + dia(S,). This is the idea
behind the BB heuristic. In the Euclidean metric, the
problem of constructing a balanced bipartition which min-
imizes the sum of diameters can be solved in O(n?) time
[19]. However, we are not aware of any polynomial-time

*No NP-completeness result has been obtained for our general mini-
mum-cost zero skew clock tree formulation (i.e., where the topology has
not been prescribed). However, [9] and [18] showed that a closely related
problem (in the linear delay model), the “bounded-skew pathlength-
balanced tree problem,” is trivially NP-complete since it reduces the
minimum rectilinear Steiner tree problem when the allowed pathlength
skew is infinite. Thus, heuristics for computing promising topologies are
of interest.

For the linear delay model, we use uniform loading capacitances in
the input to the BB algorithm, because delay depends only on the edge
lengths.
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algorithm that yields a minimum cost balanced bipartition
in the Manhattan plane.

Let p.x and p.y be the x- and y-coordinates of point
p. The octagon of set S is defined as the region formed by
the intersection of eight half spaces (in clockwise order
around the octagon): y < max,cs{p.y}, y —x =
min, s {p.y — p.x}, x = min, g {px}, y+x=
min, s {p.y + px}, y =z min,cs{pyl, y —x <
max, g {p.y — px}, x <max,.s{px}, y+x<
max, c s {p.y + p.x}. The octagon set of §, Oct (S), is the
set of sink locations in S that lie on the boundary of S’s
octagon.

Fig. 12(a) shows the octagon for a set of 16 sink
locations; the octagon set is {s,, 53, S5, S19, S14» S16)- The
lines defining the octagon induce a natural circular order-
ing on the sinks in the octagon set. For example, s; — s5
— 50— S5 — Sia — §3 — 8 is the circular order of the
octagon set of Fig. 12(a). Note that the octagon set
construction naturally captures those parameters of the
sink set which are relevant to diameter computations in
the Manhattan plane. Based on extensive experimental
investigations, we have found that each of the sets §; and
S, in a balanced bipartition of § is likely to consist of
consecutive elements in Oct (S). Based on this observa-
tion, a balanced bipartition heuristic is as follows.

1) Compute Oct (S) and sort Oct(S) in circular order.

2) Perform steps 3—5 for each set of [1/2|Oct(S)|
consecutive sinks in Oct(S), called a reference set
and denoted by REF,, i = 1,---,|O0ct ($)I.

3) For each sink p € S, compute the weight of p, equal
to min, ¢ gep, d(p, 1) + Max, ¢ rer, d(p, r).

4) Sort the sinks in ascending order of weight, then add
sinks according to this order to S; until the differ-
ence between the sum of capacitances in S; and one
half the total capacitance is minimized.

5) The remaining sinks are placed in S, and the parti-
tion cost dia (S;) + dia(S,) is obtained.

6) Over all reference sets REF, select the partition (S,
S,) with smallest partition cost.

In the example of Fig. 12(a), each set of three consecu-
tive sinks in the octagon set will be a possible reference
set: REF, = {ss, 514, $1¢} has partition cost 280 as shown
in Fig. 12(b); REF, = {s,4, §14. $14} has partition cost 270
as shown in Fig. 12(c); etc. After all six reference sets
have been evaluated, we find that the optimal reference
set is REF, with cost 270. Fig. 12(d) shows the output of
the BB + DME algorithm on the instance of Fig. 12(a)."

The time complexity of the BB algorithm is affected by
characteristics of the sink set S. The number of times that
the loop over steps 3-5 must be repeated is given by

"' For the Elmore delay model, we observe that the DME algorithm is
not always optimal for topologies generated by balanced bipartitioning.
To see this, we modify the counter-example of Section 3.2 as follows. Let
the loading capacitance of each sink be a small fixed value € > 0.
Suppose that there are 16 sink nodes near point s6 within a very small
radius & > 0 of each other. Similarly, suppose there are 8 sink nodes at
point s5, 4 at s4, 2 at s3 and 1 at both s1 and s2. Then the BB
algorithm will generate the topology of Fig. 10.
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Fig. 12. (a) Octagon lines of 16 sink locations. (b) Partition result of
REF,. (c) Partition result of REF,. (d) The ZST produced by BB + DME.

|Oct (S)|, the number of reference sets. In the worst case
this value is @(n), but in practice it is usually bounded by
a constant. Because BB is recursive, its complexity is also
affected by the relative sizes of the bipartitions. In the

worst case, when loading capacitances are very unbal-
anced, we can have |S;| = 1 and |S,| = |S] - 1.

Steps 3 and 4 dominate all others in the complexity of
BB and are repeated for each reference set. (The diame-
ters in step 5 can be calculated in linear time in the
Manhattan metric.) Step 4 requires O(n log n) operations
each time it is run, while step 3 requires O(n|Oct(S))
time. If {Oct (S)| = O(n), then the total time used in step
3 for a single bipartition can be reduced from O(n?) to
O(n? log n) by using a priority queue such as a Fibonacci
heap.??

In the very worst case, we can have |Oct(S)i = @(n)
and pathologically unbalanced loading capacitances; each
bipartition will require O(n*logn) time and the total
time complexity of BB will be O(n®log n). If [Oct(S)| =
O(1) but loading capacitances are still unbalanced, the
time complexity will be O(n?* log n). The time complexity
is reduced when we impose very reasonable constraints on
the loading capacitances, e.g., the largest and smallest
capacitances can differ by at most a constant factor, or
simply that the cardinalities of the partitions differ by at
most a constant factor. If the loading capacitances are
“palanced” and |Oct(S)| = O(n), then the time complex-
ity of BB is O(n? log n). Finally, under the most realistic
circumstances, when the loading capacitances are bal-
anced and |Oct (S)] = O(1), the time complexity of BB is
O(nlog? n).

IV. EXPERIMENTAL RESULTS

The BB and DME algorithms were implemented on
Sun SPARC workstations in the C/UNIX environment.
The code can be obtained from the authors. We com-
pared routing cost and source-sink delay of the BB +
DME output with previous results of Jackson et al. [17],
Kahng et al. [18], and Tsay [25], which were obtained for
both the linear and Elmore delay models.

Because the DME algorithm can be applied to any
prescribed topology, we also applied it to topologies ob-
tained in previous studies. In this way, we can separate
the effects of DME from the effects of complementary
heuristics for generation of clock tree topologies. We used
two sets of benchmarks: i) sink placements for the MCNC
benchmarks Primary1 and Primary2 used in [17] and [18],
and originally provided by the authors of [17] (Primaryl
contains 269 sinks, and Primary2 contains 603 sinks); and
ii) sink placements for the five benchmark sets r1-r5 used
in [25] (the sizes of these examples range from 267 to
3,101 sinks).

4.1. Linear Delay Model

Our experimental results for linear delay are contained
in Table II. We compared BB + DME with the Method
of Means and Medians (MMM) of Jackson et al. [17] and
with the bottom-up, matching based method of Kahng,

2The priority queue, however, will increase the worst-case space
requirements from O(n) to O(n?).
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TABLE II

CoMPARISON OF BB + DME wiTH OTHER

ALGORITHMS IN THE LINEAR DELAY MODEL USING MCNC BENCHMARKS PRIMARY1 AND PRIMARY2 AND

BENCHMARKS R1 THROUGH R5 FROM TsAY

reduction by reduction by reduction by

KCR + DME BB + DME BB + DME
number MMM KCR KCR + DME from BB + DME from from

of sinks cost cost cost KCR (%) cost MMM (%) KCR (%)

Primaryl 269 161.7 153.9 140.3 8.8 140.5 13.1 8.7
Primary?2 603 406.3 376.7 350.4 7.0 360.8 112 42
rl 267 1,815 1,627 1,497 8.0 1,500 174 78
2 598 3,625 3,349 3,013 10.0 3,010 17.0 10.1
3 862 4,643 4,360 3,902 10.5 3,908 15.8 10.4
r4 1,903 9,376 8,580 7,782 9.3 8,000 14.7 6.8
5 3,101 13,805 12,928 11,665 9.8 11,757 14.8 9.1
average 9.1 14.9 8.2

Cong, and Robins (KCR) [18]. In order to test the perfor-
mance of the DME algorithm alone, we also ran DME on
the topologies produced by the KCR algorithm. The com-
bined BB + DME algorithm produced an average reduc-
tion in cost of 15% from the MMM results. We also
obtained an 8% average cost reduction from the KCR
algorithm. Note that in the linear model, DME also
produces trees with optimal source-sink delay (3], and our
experiments showed an average reduction of 19% from
the KCR algorithm. The improvement in source-sink de-
lay ranged from 9% for Primaryl to 23% for 3.

4.2. Elmore Delay Model

We tested the BB + DME algorithm for Elmore delay
on the same benchmark sink sets. The results are con-
tained in Table III. Again, these results indicate a signifi-
cant improvement by BB + DME over previous algo-
rithms. The average reduction in wirelength was 14% over
MMM results, and 10% over the results of Tsay. It should
be noted that DME alone resulted in an average improve-
ment of only 2% over Tsay’s algorithm, which can be
attributed to the fact that Tsay’s embedding algorithm
allows deferral of the choice of placements for one level
in the tree (the two endpoints of each merging segment
are selected and carried to the next level, where the
actual embedding is chosen to the be the point which
allows the minimum connection cost).® Our results also
indicate a very significant reduction in source-sink delay
in the Elmore model: the combination of KCR + DME
reduced delay over the trees of Tsay by an average of
22%.

To obtain a more complete picture of the BB + DME
performance, we also tested the algorithm on sink sets

BA surprising outcome of our experiments was the strong perfor-
mance of topologies generated by the KCR algorithm. The combination
of KCR and DME actually outperformed BB + DME by an average of
2.5% on the seven benchmarks. We expected balanced topologies to be
superior in the Elmore delay model, where the amount of load on each
line affects delay, but our experimental results indicate that a bottom-up
approach originally designed for the linear delay model can perform as
well or better. However, we note that KCR uses such techniques as
H-flipping and uncrossing of matching edges; the latter has exponential
worst-case time complexity. Moreover, the minimum-diameter biparti-
tioning approach of BB may be more useful when the distribution of
sink locations is highly pathological.

with locations chosen randomly from a square grid, ie.,
with coordinates s;.x, 5.y € [—2500, 2500). The size of
the sink sets ranged from 8 to 64. In these experiments,
we also compared our algorithm with minimum rectilinear
Steiner trees (RST’s) constructed by the heuristic in [7};
the BB + DME tree cost was only 64% above the heuris-
tic RST cost. Finally, we used the circuit simulator
SPICE2G.6 [20] to evaluate clock skew in the ZST’s
generated on the random sink sets. For both the MMM
and BB + DME clock trees, SPICE decks were generated
with the following specifications. The routing area was
assumed to be 0.5 cm X 0.5 cm, and all the parameters
were based on a 1.2-um CMOS technology. An input
clock frequency of 100 MHz and a superbuffer driven by
the input clock source were assumed. The delays between
the source and the sink nodes were measured at the
output node of the inverter which drives the sink nodes.
Table IV shows the average maximum delays, minimum
delays and clock skews for the sinks sets of each size. The
maximum delay of BB + DME was on average 3% less
than that of MMM. The average skew of MMM was 9.2 ps
while that of BB + DME was only 0.5 ps, a 93% reduc-
tion. Fig. 13 shows the output of the BB + DME algo-
rithm on an instance containing 64 sinks. The total rout-
ing length is 50445 pm and th€ source-sink delay is 0.91
ns. By contrast, the MMM algorithm yielded a tree with
cost 59256 pm and delay 0.94 ns for this case.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE
WORK

Minimization of clock skew is critical to the design of
high-performance VLSI systems. Recent research has
yielded a number of heuristics which effectively eliminate
skew according to either the Elmore or linear delay model.
However, these previous methods concentrate on genera-
tion of the clock tree topology, and then embed the
topology in the plane with little concern for the minimiza-
tion of total wirelength.

Obviously, minimization of total wirelength will lead to
reduction of wiring area, with the added effect of less
blockage for subsequent routing phases of layout. We also
note that clocking accounts for a large portion of system
power requirements: wire minimization can significantly
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TABLE III
COMPARISON OF BB + DME WITH OTHER ALGORITHMS IN THE ELMORE DELAY MODEL

reduction by reduction by

BB + DME BB + DME
number MMM Tsay Tsay + DME KCR + DME BB + DME from from
of sinks cost cost cost cost cost MMM (%) Tsay (%)

Primary1 269 161.7 * * 140.1 140.5 13.1 *
Primary2 603 406.3 * * 3452 360.8 11.1 *
rl 267 1,815 1,697 1,658 1,487 1,535 154 9.5
2 598 3,625 3,432 3,368 3,020 3,065 15.4 10.7
3 862 4,643 4,407 4,333 3,867 3,962 147 10.1
r4 1903 9,376 8,866 8,694 7,713 8,054 14.1 9.2
5 3101 13,805 13,199 12,926 11,606 11,837 14.3 10.3
average 14.0 10.0

* Results for Tsay’s algorithm were obtained from Dr. Ren-Song Tsay and were not available for the Primaryl and Primary2 benchmarks.

TABLE IV
MEAN DELAY TIME AND CLOCK SKEW FOR RANDOM SINK SETS (TIME UNIT = PICOSECOND). THE RIGHT-MOST THREE COLUMNS DISPLAY RATIOS
BETWEEN THE RESULTS OF BB + DME AND MMM

MMM BB + DME BB + DME/MMM
delay clock delay clock delay clock
#pts max min skew max min skew max min skew
8 769.3 763.2 6.1 746.6 746.2 0.4 0.970 0.978 .07
16 801.8 797.0 48 783.2 782.5 0.7 0.977 0.982 15
24 836.6 826.2 10.4 808.7 808.3 0.4 0.967 0.978 .04
32 863.5 855.6 79 8373 836.5 0.8 0.970 0.978 .10
40 885.6 876.3 9.3 857.0 856.5 0.5 0.968 0.977 .05
48 908.9 896.4 12.5 876.8 876.3 0.5 0.965 0.978 .04
56 926.2 914.4 11.8 890.2 889.7 0.5 0.961 0.973 .04
64 940.6 930.1 10.5 910.7 910.2 0.5 0.968 0.979 05
average 0.968 0.978 .07
/L topology generating phase (BB) with the embedding phase
- (DME).
.__1/

A

S0

Fig. 13. An example of a ZST produced by BB + DME for 64 ran-
domly chosen sink nodes.

reduce the power needed to drive the clock signal, thus
improving system feasibility and reliability. Finally, wire-
length reduction will improve performance by lessening
such effects as pulse narrowing, pulse deformation, etc.
Given these considerations, our work gives a unified ap-
proach to clock tree construction which combines the

The BB heuristic generates a connection topology by
recursively dividing the set of sinks into two subsets with
similar total loading capacitance while at the same time
minimizing the sum of diameters of the two subsets. This
balance condition is a novel aspect of the method, and is
useful when delay depends on both pathlength and capac-
itance, as in the Elmore model. The partitioning strategy
based on minimizing the sum of diameters improves upon
previous top-down bisection strategies of Jackson et al
[17] and Tsay [25], which use only horizontal or vertical
cuts to partition the set of sinks.

The DME algorithm offers many improvements over
previous embedding schemes. DME constructs a highly
flexible tree of merging segments which allows a choice
among minimum-cost zero skew clock trees. Given any
connection topology over the set of sink locations, DME
always produces a tree with exact zero skew, and may thus
be applied to previously generated clock trees in order to
improve both wirelength and delay. Experiments show
that applying DME alone to the clock trees constructed
by other algorithms results in wirelength reductions of 2%
to 9%. The DME algorithm also extends to problem
formulations where the clock source is prescribed. Finally,
in the linear delay model, DME yields optimal total
wirelength for a given connection topology, and optimal
source-sink delay.

Our experimental results indicate that the BB + DME
methodology yields routing solutions with exact zero skew
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(which we confirmed to be in the subpicosecond range
using SPICE2G.6) and significantly reduced total wire-
lengths (8-15% less than the best previous methods).
Furthermore, the superiority of BB + DME over previous
methods depends on their joint application. For instance,
our improvement of approximately 8% over the
matching-based method of Kahng et al. (KCR) [18] is
directly attributable to the DME embedding, since DME
applied to topologies generated by KCR yields clock tree
cost very similar to that obtained using BB + DME. On
the other hand, DME alone can achieve only 2% out of
the 15% improvement of BB + DME over Tsay [25]. Thus
13% of the cost savings can be attributed to the BB
topology.

There are many promising extensions to our current
approach. The DME algorithm readily applies to prob-
lems of prescribed skew (i.e., “useful” skew [1]), where the
arrival times of the clocking signal must differ by pre-
scribed amounts. This is handled by setting initial delays
at the sinks to non-zero values. The DME algorithm can
also be used for problems with allowed skew [1], [13}, [25],
where the signal must arrive at each sink within some
prescribed segment of time. '

Finally, the general issue of topology generation re-
mains an important area for further investigation. A
promising approach is to run DME concurrently with
matching-based and other bottom-up topology generating
heuristics. In general, the construction of optimal topolo-
gies appears to be very difficult (perhaps NP-hard). How-
ever, we expect further investigations in this area to have
fruitful applications, for both clock tree construction and
the broader area of high-performance routing.

VI. REMARKS

Through independent research, the two groups of au-
thors came up with essentially identical approaches to
constructing zero skew clock routing trees with minimum
wirelength for a given tree topology. The major differ-
ences between the two treatments are: i) Chao, Hsu, and
Ho apply DME to the Elmore delay model, while Boese
and Kahng establish the theoretical results for DME with
respect to both the linear and Elmore delay models; and
ii) Chao, Hsu, and Ho proposed the top-down balanced
bipartition technique to generate an initial clock tree
topology, while Boese and Kahng assume arbitrary exist-
ing tree topologies, e.g., those derived from the KCR
method [9], [18]. The work of Chao, Hsu, and Ho [8]
appeared at the 29th ACM/IEEE Design Automation
Conference; the work of Boese and Kahng [3] appeared at
the 5th IEEE International Conference on ASIC.

APPENDIX: PROOFS OF LEMMAS 1, 2, AND 3

Lemma 1: The intersection of two TRR’s, R, and R,,
is also a TRR and can be found in constant time. If
radius (R,) + radius (R,) = d(core (R,), core (R,)), then
the TRR R, N R, is a Manhattan arc.

Proof: Rotate the plane by 45° so that the boundaries
of R, and R, are vertical and horizontal line segments
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(see Fig. 14). Let R; and Rj be the two TRR’s after
rotation with boundary lines given by:

e Rj:(a, <a, and b, <b,)

x=a
x=a,
y=b
y=>b,.

e Ry:(a;<a, and by; <b,)

X =a,
x=a,
y=b;
y = b,.

Then R} N R} is a rectangular region with boundary lines
x = max{a,, a3)
x = min(a,, a,)
y = max (by, by)
y = min (b,, b,).

Since rotating each TRR by 45° requires constant time,
determining the intersection of the two TRR’s R; N R,
also requires only constant time.

If radius(R,) + radius (R,) = d(core (R;), core(R,)),
then decreasing the radius of either R; or R, must cause
their intersection to become empty; otherwise, we could
form a path between core (R,) and core (R,) with length
less than d(core (R,), core (R,)). Consequently, R, N R,
must have zero width and be a line segment or a single
point. Since R; N R, is also a TRR, it must be a Manhat-
tan arc. O

Define a straight-line path between two points x and y
to be any minimum-length path between them using only
vertical and horizontal lines. If x and y are not on the
same horizontal or vertical line, then there will be an
infinite number of straight-line paths between them. De-
fine the projection area PA(x, Q) from a point x through a
set of points Q as the set of all points p for which there
exists a straight-line path from x to p that passes through
0. (O must be between p and x.) Fig. 15 contains an
example of the projection area from a point x through a
Manhattan arc Q.

The next lemma about projection areas will be used to
prove Lemma 2. It states that the union of two projection
areas from points p and g, respectively, through a merg-
ing segment ms between them, is the entire plane.

Lemma 4: Let ms be a merging segment between the
two points p and g. Then

PA(p, ms) U PA(q, ms) = R%.

Proof: If the merging cost between p and g is greater
than d(p, q), then either ms = { p} or ms = {g}. Since for
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y=b4 --------------
core of the
intersection
e \\
‘
y=b3 .............
y=bj - -
x=al X=33 X=32 x=a4

Fig. 14. Intersection of two TRR’s after 45° rotation.
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Fig. 15. Projection area PA(x, Q) under the Manhattan metric.

any point x, PA(x, {x}) = R2, this implies that either
PA(p, ms) = R* or PA(q, ms) = R? and the proof is
complete. For the case when the merging cost equals
d(p, g), merging segment ms is constructed as the inter-
section of two TRR’s, o, and r,, such that core (trrp) =
{p}, core (¢rr,) = {q}, and

radius (#7,) = x *d(p, q)
radius (#rr,) = (1 —x)*d(p, q)

for some x satisfying 0 <x < 1. If x =1 or x =0, the

lemma is immediately true, since either PA(p, {p}) = R?
or PA(gq, {g})) = R will hold. Let z, and z, be the two
endpoints of merging segment ms. If 0 <x < 1 then we
need to consider the two cases depicted in Fig. 16:

a) z; and z, are both corners of the same TRR, either
trr, or urr,. Assume without loss of generality that
they are both corners of #7,;

b) z, and z, are corners of different TRR’s. Assume
without loss of generality that z, is a corner of #7,
and z, is a corner of #rr,,.

-

Define a ray p,p, from point p, through point p, as
the half-line with endpoint p, that extends through p,. In
case a), the straight-line path from p to z, is a vertical
line segment and the straight-line path from p to z, is a
horizontal segment. In Fig. 16(a) it is evident that
PA(p, {z,}) is a half plane with border line z,p, and
PA(p, {z,}) is a half plane bordered by line z,p,. Fur-
thermore, PA(p, ms) is thg infinite region separated fg)m
p by (and including) ray z, p,, segment ms, and ray z, p,.
Similarly, PA(q, ms) is the region separated from g by
the same border. Consequently, PA(p, ms) U PA(q, ms)
is the entire plane.

In case b), shown in Fig. 16(b), PA(p, ms) is the infinite
region separated from p by (and including) zl—;)1 , ms, and

22772. PA(q, ms) is the region separated from g by the
same border. Again, PA(p, ms) U PA(q, ms) = R%

Lemma 2: Given a ZST T with topology G, let v be an
internal node with children a and b. Suppose the subtrees
of T rooted at a and b can be generated by the DME
algorithm for some placement of v on ms(v), and also
suppose that g = pi(T, v) & ms(v). Then a new ZST T’
with the same topology can be constructed from T by
moving the placement of v so that the following hold: i)
q' =pl(T', v) € ms(v); ii) cost(T") < cost(T); and iii)
t.p(T, @) = 1,5(T", q).

Proof: Consider Fig. 8 of Section 3.2.2. Let a and b
be the placements in 7' of v’s children. By Lemma 4,
there exists a point g’ on ms(v) such that there is a
straight-line path either from a to g or from b to g, that
passes through q'. Without loss of generality, assume that
this path is from b to g. Because bg'q is a straight-line
path, segment bg in T can be replaced by segments bg’
and g'q in T’ without changing the delay between b and
g, and leaving the delay at point ¢ unchanged. Moreover,
the construction of ms(v) ensures that zero skew is main-
tained by setting the edge e, equal to the segment aq’
and pl(T', v) = q'. Define length (T, xy) to be the edge
length between points x and y in ZST T. Because the
delay at g remains unchanged in 7' and the a—q and b—¢q
connections share wire between ¢’ and g in 7', we must
have cost(T"') = cost(T) — length(T", q'q). O

Lemma 3: Suppose that a and b are two sibling nodes
in ZST T with parent v, and suppose that the subtrees of
T rooted at a and b can be generated using the DME
algorithm. If d(a, b) > d(ms(a), ms(b)) and d(a, b) >
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Fig. 16. Two cases to consider in the proof of Lemma 4.

It; p(@) — £, ()], then a new ZST T’ can be constructed
from the same topology, with cost(T') < cost(T) and
with ¢, (T, q) = ¢, ,(T', q) for ¢ = pl(T,v).

Proof. (See Fig. 9 in Section 3.2.2): To prove the
lemma, we will first construct a ZST T,,,,, with source at
q = pl(T, v), and then replace the subtree of T rooted at
v with part of T,,, to create T’. Using [3, theorem 2] we
show that the connections @ — g and b — g share wire on
a partial edge ¢, in 7', whereas they do not share wire in
T. Because T’ is also constructed so that the lengths of
the a — g and b — g connections are the same as in T,
tree T’ will have lower cost than T.

Let G, be the subtree of topology G rooted at v, and
let S, be the set of sinks in G,. Suppose that sink s, is the
sink in S, furthest from g. Create a new sink z that is
located at a point directly opposite of g from s; ie.,
d(q,s;) = d(q,z) and d(s;, z) = 2+ d(q,s;). Consider a
new set of sinks: S,,, = S, U {z}.

We create a topology G,,,, for S,,,,, that merges G, and
z at its root, s,,,,- We then run DME on §,,, using
topology G,,,, to create ZST T,,,,. By [3, theorem 2] 7,,,,,
will have minimum feasible delay at each sink, equal to
one-half the diameter of S,.,,, specifically d(g, s;). By the
Fact used in the proof of [3, theorem 2], ms(s,,,,,q) is the
set of all points within distance d(g, s;) of every sink in
8,0 Therefore, g € ms(s,,, ) and T, can be con-
structed so that g = pI(T,,,,, S,..o)- Let a' = pl(T,,,,, a),
b' = pl(T,,,, b), and q' = pl(T,,,,, v). We now construct
ZST T’ for S by cutting off the subtree of T rooted at g
and replacing it with 7,,,, minus the edge between g and
z. Since t; ,(T", q) = d(q, s,), it must be that ¢, ,(T", q)
< t, (T, ). If the strict inequality holds, we add extra
wire between g and ¢’ to enforce equality, and thereby
retain zero skew.

For convenience, we use e, and e, to represent the
embeddings of edges e, and e, in T'. We also use e,’ to
denote the partial edge between g’ and g in T'. Because
the subtrees of T rooted at @ and b were constructed
according to DME, we have ¢, ,(T,a) = t,,(T’', a’) and
t,p(T, b) = t; (T, b"). Thus, because ¢, (T, q) =
t; (T, @), it must be that
and

leg| = le, | + le, | leyl = ley | + legd. (3)

813

Because d(a, b) > d(ms(a), ms(b)) and d(a, b) >
|2, p(@) — t, (D)), d(a, b) is strictly greater than the merg-
ing cost between ms(a) and ms(b). Therefore,

e >le,| and ley| > leyl. 4
Equations (3) and (4) imply that |e | > 0, and thus
le,| + legl > legd + leyd + legl
As a result, cost(T") < cost(T). O
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