IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 2. FEBRUARY 1993

242

An Exact Zero-Skew Clock Routing Algorithm

Ren-Song Tsay, Member, IEEE

Abstract—In this paper we present an exact zero-skew clock
routing algorithm using the Elmore delay model. The results
have been verified with accurate waveform simulation, We first
review a linear time delay computation method. A recursive
bottom-up algorithm is then proposed for interconnecting two
zero-skewed subtrees to a new tree with zero skew. The algo-
rithm can be applied to single-staged clock trees, multistaged
clock trees, and multi-chip system clock trees. The approach is
ideal for hierarchical methods of constructing large systems.
All subsystems can be constructed in parallel and indepen-
dently, then interconnected with exact zero skew. Extensions to
the routing of optimum nonzero-skew clock trees (for cycle
stealing) and multiphased clock trees are also discussed.

I. INTRODUCTION

N THIS PAPER we propose an exact zero-skew clock

routing algorithm for optimizing the timing perfor-
mance of synchronous digital systems. Clock skew is de-
fined as the maximum difference of the delays from the
clock source to the clock pins on latches. Optimization of
the clock skew can dramatically reduce the system’s cycle
time, and, hence, the timing performance. In contrast,
improper clock skew may sometimes cause clock hazard
and system malfunction [6]. The following equation sum-
marizes the relationship of the clock period P, clock skew
s, worst-case data path delay d,,,,, and other offset con-
stant P, for the condition of proper timing:

P=s+d,, + P,

Note that P, is a constant that includes data setup time,
latch active time, and other possible offset factors such as
safety margins, for example. The latch active time is the
lag time for the data to be latched in after the latch is
triggered by a clock signal.

It is clear from the equation that to reduce the cycle
time P, it is necessary to minimize the skew s, besides
the minimization of the worst-case data delay d,,,,, on the
combinational logics. As interconnection delay is becom-
ing more dominating and design size is becoming larger,
the clock skew is also becoming more significant in terms
of performance optimization.

Many heuristics for clock routing have been proposed
in the past. H-tree structures [1], [4], [10], [7] are the
most widely used, especially in systolic array designs. A
generalization of an H-tree that hierarchically connects the

Manuscript received May 2, 1991; revised February 7, 1992. This paper
was recommended by Associate Editor M. Marek-Sadowska.

R.-S. Tsay was with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598. He is now with Arcsys, Inc., Santa Clara, CA 95054.

IEEE Log Number 9201136.

median points is proposed in [8]. A further improvement
is done by bottom-up pairwise connections which con-
struct a perfect length balanced tree [9]. However, all
these heuristics focus only on wire length balancing, rather
than the real objective of balancing clock delay. These
approaches are not effective enough for tight skew opti-
mization, as encountered in many high-performance de-
signs nowadays. In contrast, what we propose is an exact
algorithm that balances the clock delays directly. It is a
general approach that takes into account uneven loading
and buffering effects.

The outline of this paper is as follows. We first study
how to compute signal delays efficiently on an RC tree.
An RC tree is a connected acyclic undirected graph, with
each branch associated with a resistance value and each
node associated with a capacitance value.

Next, we discuss how a clock tree is modeled as an RC
tree for delay analyses. In general, clock trees are clas-
sified into two types. The first type is single-staged clock
trees in which clock pins are driven directly from a clock
source. In order to reduce phase delays (the maximum
delay from the clock source to a clock pin) and supply
sufficient driving currents, usually several levels of buff-
ers are added to create a multistaged clock tree. Thus the
second type is called mulristaged clock trees, in which the
clock pins are driven from intermediate buffers, and the
buffers are driven by either other buffers or the clock
source. A multichip system clock tree is basically a mul-
tistaged clock tree, except that the clock pins are scattered
on many chips (or cards).

The zero-skew algorithm is then presented. Based on a
lumped delay model and the delay computation method,
we found that any two zero-skewed subtrees can be
merged into a tree with zero skew by tapping the con-
nection to a specific location of each subtree. Basically,
it is a recursive bottom-up algorithm.

Finally, we present experimental results of the zero-
skew algorithm and comparisons with the wire length bal-
ancing heuristics [9]. We also discuss extensions to clock
routing problems that require specific clock skew values
(for cycle stealing), and to the problems of multiphase
clock and optical skew.

II. LiINeaAR TIME HieErRARCHICAL DELAY COMPUTATION

We adopt the commonly used Elmore delay model [5],
[13], [2] to calculate the signal traveling time from a clock
source to each clock pin. We modify the method proposed
in [13} and have a hierarchical method for computing de-

0278-0070/93$03.00 © 1993 IEEE

TSAY: EXACT ZERO SKEW CLOCK ROUTING ALGORITHM

lays in a bottom-up fashion, which is the key to our zero-
skew algorithm.

Rubinstein et al. [13] proposed a delay computation
method using common path resistances of all node pairs
and node capacitances. The time complexity is at least
quadratic, due to the common path resistance calculation
of all node pairs. Instead, we use branch resistance and
total subtree capacitance for delay calculation. The new
method is of linear time complexity.

To develop the algorithm, we first define a few terms.
Let T represent an RC tree with every node associated
with an index. We always assume the index of the root is
0. A predecessor of node i is a node residing on the unique
path between the root and node i, but excluding node i
itself. An immediate predecessor of node i is a predeces-
sor of node i with no other nodes between them. Simi-
larly, a successor of node i is the set of nodes which have
node i as one of their predecessors. An immediate suc-
cessor of node i is a successor of node i with no other
nodes in between. The root is the node with no predeces-
sor, and the leaf nodes are the nodes with no successors.
A subtree T; is defined as the subtree of T formed by the
node i and its successors. Since T is a tree, there is only
one unique edge between a node and its predecessor. So
we simply define branch i as the edge between node i and
its immediate predecessor.

Let ¢; be the node capacitance of node i and r; be the
resistance of branch i. For convenience, if node i is the
root, we set r; = 0. Define IS (i) as the set of all immediate
successors of node i. Then the total subtree capacitance
C; of T, is defined recursively as

C,‘ = ¢ + Z C/\"
kelS(i)

The above equation suggests that the subtree capaci-
tance can be computed in a depth-first search manner. The
capacitance of the subtree rooted from a node can be com-
puted from its own node capacitance and the summation
of the subtree capacitance of its immediate successors.
Hence a recursive bottom-up algorithm can be used to
compute the subtree capacitance of each node. The pro-
cedure of a recursive depth-first capacitance (DFC) cal-
culation routine is outlined below. Note that a single call
to DFC(0) will compute the subtree capacitance of each
node in a bottom-up fashion.

procedure DFC (i)
1. C = ¢;
2. for each j € IS(i) do
3. DFC(j);
4. G =0C+C;
5. end for

end procedure

The time complexity of the depth-first search procedure
is linear in terms of the number of edges [3]. Since for a
tree the number of edges is |[N| — 1, hence the time com-
plexity of computing the subtree capacitance of every node
in 8(|N|), where |N| is the number of nodes on T.

243

To calculate the delay, we first define N as the collec-
tion of all nodes on the tree T and N (i, j) as the collection
of nodes on the path between node i and node j, excluding
i but including node j. The delay to a leaf node i can be
calculated by the following formula:

Iop = Z Tn Cn
neN(Q. i)

As a generalization, we can compute the ‘‘delay time’’
between any two nodes i and j; by the following formula,
assuming i is a predecessor of j.

t; = > r,C,.
neNG.j)
It can be shown easily that if i is an intermediate node
between node & and node j, then

I

3 = t/\'i + t[j. (1)

Suppose that node k is the root (i.e., k = 0); then we
have

to = to; + 1

since there is only one edge between node i and j and ¢
= r;C;. Hence,

ty = to + ;G

This equation suggests that we can easily calculate the
delay from the root to all leaf nodes in one depth-first
search. The delay time to each node can be derived from
its immediate predecessor, the branch resistance, and the
subtree capacitance. Recursively, in a top-down fashion
we compute the delay time to each node. The outline of
the recursive depth-first delay (DFD) calculation routine
is as shown below.

procedure DFD (i)
1. for each j € IS(i) do

2. [()j:t01+"j'q;
3. DFD(j):
4. end for

end procedure

Since the algorithm again runs in a depth-first search
manner, the complexity is §(|N]). A complete hierarchi-
cal delay (HD) calculation algorithm is, simply, first an
execution of DFC to obtain the capacitance information,
and then an execution of DFD for delay calculation of
every node. The outline of HD is as follows:

procedure HD
1. DFC(0);
2. foo = 0,
3. DFD(0);

end procedure

Since both DFC and DFD run in linear time complex-
ity, we easily have the following theorem.

Theorem 2.1 The delay time from the root to each node
on an RC tree can be computed in 8 (|N|).

244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

Buffer

A B
Mo

[dy | o
T

oOr

(a) (b)

Fig. 1. (a) A clock buffer. (b) An equivalent model d,: buffer internal de-
lays C,: buffer input capacitance; r,: buffer output driving resistances; 4:
buffer input node; B: buffer output node.

A. Generalization to Buffered RC Trees

To handle multistaged clock trees (or buffered clock
trees), we generalize the previous delay computation
method for a buffered RC tree. Before we define what is
a buffered RC tree, we first discuss a circuit model of the
clock buffer as shown in Fig. 1(b). We specifically des-
ignate the input node of a buffer as a buffer input node,
which is important for delay calculation. The box in Fig.
1 represents a delay element with d,, as the buffer internal
delay and is connected to the buffer input node on one end
and the buffer output driving resistor r, on the other end.
The buffer input capacitor ¢, is on the buffer input node,
and the buffer output driving resistor r;, is connected to
the delay element and buffer output node. One function
of buffers is to supply enough currents for driving latches.
The other function of buffers is creating stages such that
the subtree capacitance of the buffer output node will not
be carried over, i.e., the equivalent total subtree capaci-
tance as seen at the buffer input node is only ¢,. Usually
the buffer driving resistance and input capacitance are de-
signed to be small values. This is why buffering usually
reduces delay time.

To account for the buffering effects, we define a buff-
ered RC tree to be just like a normal RC tree, except that
each branch i is now also associated with a branch delay
d; besides the branch resistance r;. The branch delay is
always equal to zero, except in the case where it stands
for a buffer. The basic delay calculation presented previ-
ously is modified as the following for buffered RC trees.

The calculation of the equivalent subtree capacitance at
node i is now depending on whether node i is a buffer
input node or not. Thus to compute the subtree capaci-
tance of a buffered RC tree, we modify line 4 of DFC to

G
C,'={

G + G,

We also extend the delay computation for a node i and
its successor j as the following equation in order to ac-
commodate the new branch delay situation, i.e.,

2 (r,C, + dy.
)

neN(,j

if node i is a buffer input node

otherwise.

L

Thus, line 2 of DFD is modified to be
tOj = to,' + ’_',q + d]

for delay calculation of a buffered RC tree, and the HD
calculation routine will run exactly the same way and re-
main linear time complexity.

INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, FEBRUARY 1993

III. DELAY CoMpPUTATION OF CLOCK TREES

We shall discuss in this section how to model a clock
tree as a buffered RC tree so that we can perform delay
computation efficiently. Each clock tree realization con-
sists of wiring segments, clock pins, and clock buffers.
Hence, we shall first study the RC model of each com-
ponent.

A. Equivalent w-Model for a Distributed RC Line

Distributed RC lines are more accurate for character-
izing the circuit performance of wiring segments. A dis-
tributed RC line is usually represented as the symbol
shown in Fig. 2(a). Either a w-model (Fig. 2(b)) or a
T-model (Fig. 2(c)) is used to represent the equivalent
circuit of the distributed RC line under the Elmore delay
model.

Throughout this paper, we will use the equivalent
w-model for the analysis. The equivalent 7-model of a
wire segment is represented by an input node, an output
node, and a branch between both nodes. Let R be the total
wire resistance and C the total wire capacitance. Then the
equivalent input and output node capacitances are all equal
to C/2, and the equivalent branch resistance is R.

B. Equivalent Buffered RC Tree of a Clock Tree

We use a generic example, as shown in Fig. 3(a), to
illustrate how to construct an equivalent buffered RC tree
from a multistaged clock tree. For this particular exam-
ple, we assume a clock source is driving a buffer through
wire 1, and the buffer is connected to the clock pin on a
latch through wire 2. The driving resistance of the clock
source is assumed to be r,. Both wire segments 1 and 2
are represented by equivalent 7-models as discussed ear-
lier. The buffer is transformed to an equivalent circuit with
buffer input capacitance c,, buffer delay d,, and buffer
output driving resistance r;,. The end clock pin of the latch
is associated with a loading capacitance c;. The equiva-
lent buffered RC tree is as shown in Fig. 3(b).

C. Lumped Delay Model

We shall introduce a lumped delay model based on the
fact that the delay can be computed segment by segment
and that the total subtree capacitance is sufficient for cal-
culation. This model will help to ease the presentation of
the zero-skew algorithm.

Recall (1):

tkj = tki + tij'

Suppose i is an immediate successor of k, and j is a leaf
node. Then

ty = d; + .G + 1. 2)

Consider node i as the root of the subtree 7;. To com-
pute the delay time one level up from node k to node j,
we need to know only the branch resistance r;, the branch
delay, the subtree capacitance C; and the delay time from
the root of T; to the leaf node j, according to (1).

TSAY: EXACT ZERO SKEW CLOCK ROUTING ALGORITHM

RC R

|
T TC/Q Ler

(a) (b)

Ri2 A2
Le
(©)

Fig. 2. (a) A distributed RC line. (b) The equivalent w-model. (c) The
equivalent T-mode.

clock source buffer latch

wire 1 ‘ wire 2
(a)
clock source buffer latch
f n (Y f
- G -
Ter il Lo Tewenl LO
wire 1 wire 2

(b)

Fig. 3. (a) A generic multi-staged clock tree. (b) The equivalent buffered
RC tree.

Thus we propose an equivalent lumped delay model of
the subtree T; (see Fig. 4) for simplifying the delay com-
putation. In the equivalent circuit, the subtree T7; is re-
placed by an input capacitance C; and a branch delay ¢;
from input node i to leaf node j. We will use this lumped
delay model for developing the algorithm in the next sec-
tion.

IV. ZERO SKEW ALGORITHM

The zero-skew algorithm is a recursive bottom-up pro-
cess. We describe only one recursive step. Repeating the
process in a bottom-up fashion will construct a complete
zero-skew clock tree.

We assume every subtree has achieved zero skew,
which means the signal delay from the root of the subtree
to its leaf nodes are equal. This is obvious if the sub-
tree contains only one leaf node. Hence, leaf nodes are
the starting subtrees of the algorithm.

To interconnect two zero-skewed subtrees with a wire
and ensure zero skew of the merged tree, the problem to
be solved is the decision of where on the wire the new
root of the merged tree will be, such that the delay time
from this new root to all leaf nodes are equal, i.e., zero
skew. We will call this new roor point on the wire a tap-
ping point, and this process the zero-skew-merge process.

Let us discuss the example shown in Fig. 5 with two
subtrees 1 and 2. First, assume the lumped delay model
of each subtree is as shown in Fig. 5. The tapping point
separates the interconnection wire of the two subtrees into
two halves (which may not be equal). Each half wire seg-

245

VW e b
Icz/zcz/z_Ji,,I,(??___._,,,,_i

f—

Fig. 5. Zero-Skew Merge of two subtrees.

1-x —w

ment is represented as a m-model as shown. To ensure the
delay from the tapping point to leaf nodes of both subtrees
being equal, it requires that

rl(C|/2+Cl)+tl =r2(C2/2+C2)+t2) (3)

according to (2). Note that r; and c, are the total wire
resistance and capacitance of the wire segment 1. Simi-
larly, r, and ¢, are for wire segment 2. There are no branch
delays.

We assume that the total wire length of this intercon-
nection wire segment is /. The wire length from the tap-
ping point to the root of subtree 1 is x X [. Hence, the
wire length from the tapping point to the root of subtree
2willbe (1 —x) X [.

Let o be the resistance per unit length of wire and 3 be
the capacitance per unit length of wire. Then we have r
=al,r,=axl,r, = a(l — x)l. Also, c = BI, ¢, = Bxl,
¢ =61 — X)L

Hence, after solving (3), we find that the zero-skew
condition requires

alBl + C +)

If 0 < x < 1, the tapping point is somewhere along
the segment interconnecting the two subtrees and is legal.
In case that x < 0 or x > 1, it indicates the two subtrees
are too much out of balance. The interconnection wire has
to be elongated. For simplicity, we discuss only the case
that x < 0. For this case, the tapping point has to be
exactly on the root of subtree 1 in order to minimize total
interconnection length. Assume the elongated wire length
is I’. The distributed resistance value is al’ and the dis-
tributed capacitance value is 8/'. To determine a mini-

X =

246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, FEBRUARY 1993

mum elongated wire length ', it requires

1’
t|:t2+al’<C2+6 >

2

or

V@G + 2080 —)] — aly
- - :

ll

Similarly, for the case x > 1, the new root should be
the root of subtree 2, and

_ V@€ +2aB(t — 1)) — aC,

ll
of3

It is worthwhile noting that the uneven loading effect is
naturally taken care of by this approach.

A common practice for wire elongation is done by
“‘snaking,’’ as shown in Fig. 6. Since it is the nature of
a clock wiring algorithm to balance the two subtrees, the
snaking should not occur often. Real examples have
shown less than 1.2% of wire length increase due to the
elongation.

In case that the two subtrees are too much out of bal-
ance and the elongation severely affects the wirability,
then addition of buffers, delay lines, or capacitive termi-
nators should be considered, based on the same balancing
principle. For instance, a capacitive terminator can be at-
tached on the root of subtree 2 for case x < 0, instead of
making a longer wire. The capacitance value, say C,, can
be determined by solving the equation t; = t, + al(C; +
B1/2 + C), or we will have C, = (1, — 1) /() — (&
+ B1/2).

Before presenting the algorithm formally, we define a
few more related terms. The number of stages of a clock
tree is defined as the maximum number of clock buffers
on a path from the clock source to a clock pin, with the
clock source counted as a buffer. A cluster is the collec-
tion of a clock buffer and its associated clock pins. Each
cluster is tagged with a stage number, which is exactly
the number of buffers on the path between the clock source
and the clock buffer of the cluster. The number includes
the clock source and the clock buffer of the cluster. In
conclusion, we have the following efficient zero-skew
clock routing algorithm.

Algorithm 4.1 (Zero-Skew Algorithm)
S1: Let s = number of clock tree stages.
§2: If s = 0, report results and exit: continue, other-
wise.
S3: For each cluster in stage s, do
§$3.1: Treat each clock pin in the cluster as a tap-
ping point. Repeat steps $3.2 and $3.3 un-
til there is only one tapping point left.
§$3.2: Pair up tapping points.
§3.3: For each pair, perform zero-skew-merge of
the two subtrees and determine the new tap-

L

Fig. 6. (a) A regular wire. (b) Elongation of the wire by snaking.

D=(5,15),lc=2F

C=(0,10),lc=1F

P

snaking

E,G=(10,6)

T B=(22,6)lc=10F

o= 0.1Q/unit
§ = 0.2Funit
A=(8,0),lc=16F

Fig. 7. A zero-skew wiring result of a simple example.

ping point, using the algorithm discussed in
this section. If only one point in the group,
then do nothing.

Connect the last tapping point directly to the
clock driver output node.

S4: Lets = s — 1. Continue from S2.

§3.4:

The zero-skew algorithm does not depend on the algo-
rithm used for grouping the clock pins or tapping points
into pairs. For any pairing algorithm, the zero-skew al-
gorithm will work well. However, to optimize wirability,
a minimum weighted matching algorithm may be better,
or a more efficient algorithm that alternately partitions the
clock pins into two equal numbered groups can be used.

When implementation occurs in real environments, we
have to consider blockages and the different electric con-
stants on different layers. The connection between any two
tapping points can be done by any existing wiring algo-
rithm that handles wiring blockages. The tapping point is
then found by searching through each wiring segment of
different electric constants.

To minimize the total wire length, we may construct a
few possible wiring patterns (e.g., two one-bend connec-
tions) between each pair of tapping points, and pick up
the one which gives shorter length at the next higher level
pairing process.

Example: An example with four clock pins (Fig. 7) is
used to illustrate the algorithm. Pin 4 is at (8, 0) with
16-F loading capacitance. Pin B is at (22, 6) with 10-F
capacitance. Pin C is at (0, 10) with 1 F. Pin D is at
(5, 15) with 2 F. The per unit resistance is 0.1 Q, and the
per-unit capacitance is 0.2 F. Pins A and B are in one pair
and C, D in the other pair. According to the algorithm, a
tapping point E is decided to be on (10, 6) so that the

TSAY: EXACT ZERO SKEW CLOCK ROUTING ALGORITHM

247

TABLE 1
STATISTICS OF THE TESTING EXAMPLES

Example R1 R2 R3 R4 R5
No. Pins 267 598 862 1903 3101
Chip width 69 984 94 016 97 000 126 970 142 920
Chip height 70 000 93 134 98 500 126 988 145 224

TABLE 11

COMPARISON BETWEEN THE ZERO-SKEW ALGORITHM AND A WIRE LENGTH BALANCING HEURISTIC

Algorithm Zero Skew Length Balancing
Examples Phase Delay (ns) Skew (ns) Run time(s) Phase Delay (ns) Skew (ps)
R! 1.799 0 0.1 1.798 132
R2 4.631 0 0.3 5.367 806
R3 7.055 0 0.5 7.655 702
R4 20.666 0 1.2 23.316 3558
RS 35.918 0 2.0 38.958 1931

delays to both A and B are all equal to 13.44 ns. Similarly,
a tapping point F is located at (5, 11) for connection to
pins C and D, with equal delay 0.96 ns. The two subtrees
rooted by E and F are very unbalanced. We find that
x = —0.175 < 0. Hence, the wire connecting E and F
has to be elongated by 8.28 units, and the tapping point
G has to coincide with E. The final wiring result is shown
in Fig. 7. Note that the connections between (4, B) and
(C, D) are chosen from the two one-bend connection of
each pair for shorter wire length between (E, F).

V. EXPERIMENTAL RESULTS

We test our algorithm on five different sized examples.
The statistics of the examples are shown in Table I. The
chip width and height units are both in 1 /10 um. We as-
sume the per-unit resistance is 3 m, and the per unit ca-
pacitance is 0.02 fF. The loading capacitances of clock
pins ranged from 30 to 80 fF. For simplicity, we assume
all are one-stage clock trees, i.e., no intermediate clock
buffers. All experiments are conducted on an IBM 3090
machine.

We use a simple heuristic for pairing up clock pins in
this experiment. We recursively partition the pins into two
equal (or almost equal) halves by the median of the sorted
pin list in alternate horizontal and vertical directions. This
heuristic creates a binary tree for each example. Then the
pins are connected, based on the zero-skew algorithm. For
comparison, we also implement the wire length balancing
heuristic [9] on the same binary tree. The results are
shown in Table II. It is obvious that our algorithm really
constructs zero-skewed clock networks according to the
Elmore delay calculation. As demonstrated from the re-
sults, our algorithm shows extreme potential for cycle time
improvement, especially for large chips which are becom-
ing popular in recent products. Because of the balanced
delay, the zero-skew algorithm also performs better than
the wire length balancing algorithm in terms of smaller

phase delay for most cases. A final clock routing result of
the example r3 is shown in Fig. 8.

To be more convincing, we also verify the results with
RICE 3.2 an accurate waveform simulation program [12].
In three test runs, we try one step input (zero rise-time
ramp), and two ramp inputs with rise time 0.5 and 1.0 ns,
respectively. We use 6 poles and 6 zeros for waveform
simulation. The delay time at each clock pin is calculated
as the difference of the time that the output is 50% of the
final output value and the time that the input is 50% of
the final input value. Then the skew is calculated based
on the delay to each clock pin. The results are summa-
rized in Table III. We find that the actual skew is much
smaller than expected. The skew is less than 4.6 ps, even
in the worst case of this experiment (see Table III).

To get better feeling on the impact of wire elongation,
we also calculate the percentage of extra wire length in-
troduced, due to the elongation, to the total wire length.
As summarized in Table IV, even the worst case gives
less than 1.2% penalty, which shows little effect on wir-
ability.

VI. EXTENSIONS

In this section we outline possible extensions of the
basic zero skew algorithm.

Optimum nonzero clock skew: Fishburn in [6] pro-
posed a Linear Programming approach for an optimum
clock skew assignment such that the clock period is min-
imized without clock hazards. This nonzero-skew assign-
ment is mainly for the cycle stealing technique. The rise
time of the clock signal can be adjusted to a certain time
point, so that the critical paths whose delays are longer
than one cycle time can be accommodated without timing
violation. The result of this optimization is that the dif-
ference of the signal delays from the clock source to any
two clock pins has to be a particular value. To realize the
clock routing of such a nonzero-skew result requires a
special routing technique to ensure an exact skew of each

248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, FEBRUARY 1993

Fig. 8. A zero-skew clock routing result of the example r3.

TABLE III
SKEW VALUES COMPUTED FROM THE ACCURATE WAVEFORM SIMULATION
PackAGE RICE

Rise Time 0 ns 0.5ns 1.0 ns

Examples Skew (ps) Skew (ps) Skew (ps)
R1 0.479 0.460 0.433
R2 2.338 2.339 2.353
R3 1.304 1.304 1.302
R4 4.119 4.119 4.118
RS 4.572 4.571 4.567

TABLE IV
PERCENTAGE OF WIRE ELONGATION TO TOTAL CLOCK WIRE LENGTH
Examples R1 R2 R3 R4 RS
Elongation 0.323% 0.553% 1.043% 0.415% 1.168%

pair of clock pins, as predetermined by the skew assign-
ment algorithm.

Our zero-skew algorithm can be modified to solve this
special wiring problem by adding a fictitious delay ele-
ment on each clock pin. Let us assume the optimum clock
delay to clock pin i is Dy + D;, where D, is a common
offset value which is unknown until the clock routing is
determined. Thus the skew between clock pin i and clock
pinjis D; — D;. Let Dy, be the maximum clock delay,

i.e.,

Dmax = maXg (DO + Dk) = DO + max; Dk~
Define the fictitious delay of clock pin i as

di = Doy — (Do + D) = max, D, — D,.

In other words, each clock pin is modeled as a lumped
delay model with an input loading capacitance and a
branch delay, as shown in Fig. 9. Then we perform the
zero-skew algorithm on this modified clock tree with the
fictitious delay on each clock pin.

As pointed out by Fishburn [6], by combining this tech-
nique with the retiming technique [11], one can optimally
make a tradeoff between chip area (in terms of number of
logics and latches) and clock period.

Multi phase clock: To zero-skew a multiphase clock
tree, we first perform the zero-skew algorithm on the clock
subtree of each phase independently, but stop at the final
end tapping point. Each subtree is then connected to the
corresponding output of the clock divider by adding an
appropriate delay element or snaking wires for balancing
the delays according to the phase and the wiring distance
to clock source (Fig. 10).

Optical or wave skew: For this case, the delay is pro-
portional to the traveling distance. Then the zero-skew
criterion is to equalize the traveling distance from the
source to each end terminal. The wire length balancing
algorithm [9], plus the wire elongation scheme, is perfect
for this application.

TSAY: EXACT ZERO SKEW CLOCK ROUTING ALGORITHM

latch i

>
r_ |

(@)

clock pin i

(b)
Fig. 9. (a) A clock pin on a latch. (b) The modified model of a clock pin
according to the optimum skew assignment.

—

CLOCK

Zero Skew

Zero Skew

GEN

b

Fig. 10. Connecting a multiphase clock network.

VII. CONCLUSIONS

We have preseiited a novel zero-skew clock routing al-
gorithm based on the Elmore delay calculation. The ap-
proach is ideal for hierarchical methods of constructing
large systems. All subsystems can be constructed in par-
allel and independently, then interconnected with exact
zero skew. We expect this clock routing algorithm will be
widely used for performance enhancement for synchro-
nous VLSI digital systems.

ACKNOWLEDGMENT

The author would like to thank Prof. Lawrence T. Pil-
lage, Curtis L. Ratzlaff, and Nanda Gopal for their help
in using the RICE package.

REFERENCES

{1] H. B. Bakoglu, J. T. Walker, and J. D. Meindl, *‘A symmetric clock-
distribution tree and optimized high speed interconnections for re-

249

duced clock skew in ULSI and WSI circuits,”” in IEEE Int. Conf.
Computer Design: VLSI in Computers, 1986, pp. 118-122.

[2] P. K. Chan and K. Karplus, **‘Computing signal delay in general rc
network by tree/link partitioning,’* JEEE Trans. Computer-Aided De-
sign, vol. 9, pp. 898-902, Aug. 1990.

{3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. New York: McGraw-Hill, 1990.

{4] S. Dhar, M. A. Franklin, and D. F. Wann. **Reduction of clock de-
lays in VLSI structures,”” in Proc IEEE Int. Conf. Computer Design:
VLSI in Computers, pp. 1984, pp. 778-783.

[5]1 W. C. Elmore, ‘‘The transient response of damped linear networks
with particular regard to wide band amplifiers,”” J. Appl. Phys., vol.
19, pp. 55-63, 1948.

6} J. P. Fishburn, ‘‘Clock skew optimization,”
puters, vol. 39, pp. 945-951, July 1990.

[7] A. L. Fisher and H. T. Kung, ‘‘Synchronous large systolic arrays,”
in Proc. SPIE, 1982, pp. 44-52.

[8] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, *‘Clock routing for
high-performance IC’s,” in Proc. Design Automation Conf., 1990,
pp. 573-579.

[9] A. Kahng, J. Cong, and G. Robins, ‘‘High-performance clock rout-
ing based on recursive geometric matching,”” in Proc. Design Auto-
mation Conf., 1991, pp. 322-327.

[10] S. Y. Kung and R. J. Gal-Ezer, ‘‘Synchronous versus asynchronous
computation in very large scale integrated (VLSI) array processors, ™’
in Proc. SPIE. 1982, pp. 53-65.

[11] C. E. Leiserson, F. M. Rose, and J. B. Saxe, ‘*Optimizing synchro-
nous circuitry by retiming,’” in Proc. Third Caltech Conf., 1983, pp.
87-116.

[12] C. L. Ratzlaff, N. Gopal, and L. T. Pillage, ‘‘RICE: Rapid intercon-
nect circuit evaluator,”” in Proc. Design Automation Conf., 1991, pp.
555-560.

[13] J. Rubinstein, P. Penfield, and M. A. Horowitz, ‘‘Signal delay in rc
tree networks,”’ IEEE Trans. Computer-Aided Design, vol. CAD-2
pp. 202-211, 1983.

IEEE Trans. Com-

Ren-Song Tsay (S'84-M’89) received the B.S.
degree from National Taiwan University, Taiwan,
Republic of China, the M.S. degree from the Uni-
versity of California, Santa Barbara, CA, and the
Ph.D. degree from the University of California,
Berkeley, CA, all in electrical engineering and
computer science. .

He is now with Arcsys, Inc., Santa Clara, CA.
He was Research Staff Member in the Advanced
Design Algorithm Group at the IBM T. J. Watson
Research Center, Yorktown Heights, NY, where
he has worked on several projects, including SMILE (a surface-mount
packaging tool aiming at enhancement of electromagnetic compatibility),
PRIZE (a high-performance circuit placement package for large chip de-
signs), PRIDE (a timing-driven placement and routing integrated design
environment), and RobinHood (a system timing verification tool special-
izing in cycle stealing optimization). His research interests include VLSI
circuit performance optimization algorithms, early design and estimation
analysis, general CAD algorithms, optimization techniques, matrix com-
putation, and parallel processing.

Dr. Tsay received the IBM Outstanding Technical Achievement Award
in 1992 and a Distinguished Paper citation at the International Conference
on Computer-Aided Design (ICCAD) in 1991.

