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ABSTRACT
UndermodernVLSI technology, processvariationsgreatlyaffect
circuit performance,especiallyclock skew which is very timing
sensitive. Unwantedskew dueto processvariationformsa bottle-
neckpreventingfurther improvementon clock frequency. Impact
from intra-chipinterconnectvariationis becomingremarkableand
is difficult to be modeledefficiently dueto its distributive nature.
Throughwire shapinganalysis,we establishan analyticalbound
for the unwantedskew due to wire width variation which is the
dominatingfactoramonginterconnectvariations.Experimentalre-
sultson benchmarkcircuits show that this boundis safer, tighter
andcomputationallyfasterthansimilar existingapproach.

1. INTRODUCTION
WhentheVLSI featuresizebecomesprogressively smaller, pre-

viously negligible processvariationsstart to affect circuit perfor-
mancesignificantly. Theseprocessvariationsresult from many
non-idealconditionssuchasetchingerror, maskmis-alignmentand
defects.For clocknetworks,thesevariationscauseclockskew vari-
ationsor unwantedskews. Sinceclock skew is a lower boundfor
clock period,theunwantedskew dueto processvariationsform a
bottleneckpreventingimprovementon clock frequency. For mod-
ern high performancecircuit designs,processvariation induced
clock skew is taking a greaterandgreaterportion of clock period
time. Therefore,it is very importantto modeltheimpactof process
variationson clock network performanceso that it canbeconsid-
eredduringcircuit/clockdesign.

Realizingthegreatimportanceof processvariations,many works
have beencarriedout to modeltheir effect [10, 7, 2, 9, 15, 1, 17,
14]. Onemajorobjective of thesemodelingworks is to find a re-
liable estimationon theworstcasetiming performanceinducedby
processvariations,eithertheworstdelayalongtiming critical paths
in timing analysisor theworstskew in a clock network. Theesti-
mationresultscanbeappliedasa feedbackto guidefurtherdesign
iterations.

Onecommonapproachto find theworstcaseperformanceis to
run MonteCarlosimulationsfor a certainnumberof iterationsand
pick the worst caseperformanceamongthe results. In order to
obtaina reliableestimation,the numberof iterationsis generally
very largeandconsequentlythehighcomputationalcostmakesthis
methodimpractical. Anotherstraightforward techniqueis to esti-
matethe performanceonly at cornerpointsof processvariations.
Eventhoughthis techniqueis computationallyfast,it is overly pes-
simisticin estimatingtheworstcasedelaydueto gateprocessvari-
ationsascorrelationsamongthegatesareneglected.Therefore,the
corner-point techniqueis usefulonly whena looseboundneedsto

be found quickly. In seekinga goodbalancebetweenestimation
quality andruntime,probability basedapproaches[7, 14] arede-
veloped.Theinterval analysismethod[10] is proposedto establish
a boundfor theworstcasetiming performance.

Theeffect of interconnectprocessvariationsis becomingmore
andmoreremarkableandit is foundin [11] that interconnectvari-
ationsmay cause25% clock skew variations. The impactof in-
terconnectvariationis intrinsically hardto bemodeledefficiently,
sincetheworstcaseinterconnectdelaydoesnotalwaysoccuratthe
processvariationcornerpoints. This fact makes the corner-point
techniquenot applicablefor interconnectvariations.Furthermore,
interconnectvariationsis distributive in naturein contrastto thelo-
calizedvariationsfor transistors.Sincean interconnectwire may
spana long distance,usinga singlevariableto modeleachprocess
parametersuchaswire width or thicknessis inadequateto capture
the differentprocessvariation levels in different regions. This is
especiallytruewhentheintra-chipvariationsstartto dominatethe
inter-chipvariations[12].A naiveapproachto solve thisproblemis
to segmenta long wire into smallerpieces,andconsiderthevari-
ation of eachpieceindividually. However, this approachmay in-
creasethenumberof variablesconsiderablyandtherebyslow down
theestimationspeed.

Our main objective in this paperis to obtaina fastskew bound
estimation,that canbe usedin applicationssuchasprocessvari-
ationdrivenclock network designandchip level designplanning.
Note that, in the above applications,the speedandfidelity of the
estimationis moreimportantthatthenumericalaccuracy, sothatit
canbeusedin the inner loop of optimization.This requirementis
quite differentfrom the requirementsof the postoptimizationes-
timation whereprobabilisticapproachis better. In this work, we
concentrateontheeffectof wire width variationwhichis thedomi-
natingfactorcomparedto otherwire parameterssuchaswire thick-
ness,sincewire width shrinksfasterunderthe non-uniformtech-
nologyscaling.Wehave derivedananalyticalboundfor unwanted
clock skew betweenany two clock sinksdueto wire width varia-
tion. Our proposedtechniqueis basedon theobservationthatesti-
matingtheworst caseskew dueto wire width variationis closely
relatedto the non-uniformwire sizing problemin physicalopti-
mizations.The minimum delaynon-uniformwire sizing problem
for a 2-pinwire(singleloadpath)hasbeensolvedin [8, 3]. Wede-
rive themaximumwire shapingfunction for bothsingleloadpath
andmulti-pin trees.Theminimumdelaywire shapingformulafor
multi-pin treesis also obtainedin our work. Previously, a more
generalversionof this problemwassolvedthroughaniterative al-
gorithm[4]. Similar to theworks of [8, 3, 4], we employ Elmore
delaymodelfor ourderivationsbecauseof its highfidelity andease
of computation.Besidesthebound,we discoveredthat thebound
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Figure1: When estimatingthe worst caseskewbetweensink s1
and s4 in (a), the clock tr eecan be reducedto a simpler model
in (b).

for skew betweentwo clock sinksdependson their commonup-
streampath,eventhoughtheskew betweenthemis independentof
the commonpath. This dependenceis analyzedand found to be
monotonein practice.Theseresultsestablishan analyticalbound
for theunwantedskews dueto wire width variation. Sincethean-
alytical boundcanbecomputedvery quickly, it canbe appliedto
processvariationdrivenclock network designaswell aschip level
designplanning. It is to benotedthat, for theabove applications,
speedandfidelity of thetheestimationis moreimportantthannu-
mericalaccuracy. This is becausethe estimationwill be queried
frequentlyin the inner loop of optimizationanddesignplanning.
Thus,theanalyticalboundfits therequirementprecisely.

2. PROBLEM ANALYSIS
Given a pair of sinkss1 ands2 in a clock routing tree,our ob-

jective is to find a boundfor theworstcaseskew dueto wire width
variation. The skew betweenthe two sinks can be expressedas
q12

� t1 � t2 wheret1 andt2 arethedelayfrom clock driver to s1
and s2, respectively. When thereis wire width variation for the
pathsfrom driver to s1 and s2, the delay t1 and t2 vary in cer-
tain rangesof

�
t1 �min � t1 �max� and

�
t2 �min � t2 �max� , respectively. Evi-

dently, the worst caseskew occursat q12�max
� t1 �max

� t2 �min or
q12�min

� t1 �min
� t2 �max. In previous work, sometimestheskew is

definedasmax�	� q12�max� � � q12�min � 
 or themaximumabsolutevalue
of skews amongall clock sink pairs.Thelatterdefinitionof global
skew is usuallyfor traditionalzero-skew clock network. For mod-
ern aggressive VLSI designs,usefulskews [16] areappliedmore
frequently, thus, we usethe conceptof local pair-wise skew in-
steadof thesingleglobalskew. In handlingprocessvariationsand
otherdelayuncertainties,targetskewsareusuallyspecifiedasaset
of permissibleranges[13] insteadof a setof singlevalues.Since
theremightbeskew violationonboththeupper-boundsideandthe
lower-boundsideof apermissiblerange,weconsiderthemaximum
andtheminimumskew separately. It canbeseenthata boundfor
the worst caseskew canbe obtainedby estimatingthe maximum
andtheminimumdelaysunderprocessvariations.

In orderto estimatethemaximumandtheminimumdelaysdue
to wire width variation,we reducethe routing tree into a simpli-
fied modeldemonstratedin Figure1. In Figure1(a), we wish to
estimatethe worst caseskew betweensink s1 ands4. Sincethe
commonupstreampath s0 � v7 for s1 ands4 doesnot contribute
to the skew betweenthem, we lump its wire resistancetogether
with the driver resistanceinto a virtual driving resistorR at the
nearestcommonparent nodev7 for s1 ands4 in Figure1(b). We
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Figure 2: The worst caseskew estimation is equivalent to find-
ing wir e shapingto maximize/minimize the delay.
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Figure3: The branch load function.

call the branchesv7 � s1 andv7 � s4 ascritical branches. For
wiresoff thecritical branchessuchasv5 � s2 andv6 � s3 in Fig-
ure1(a),their capacitancecanbelumpedto their loadcapacitance
to getC2 andC3 at nodev5 andv6, respectively. If we attemptto
estimatethe maximum(minimum)delayfor sink s1, the width of
wire v5 � s2 shouldbethemaximum(minimum)in orderto maxi-
mize(minimize)theloadC2 for branchv7 � s1.

After thetransformationin Figure1, a boundfor theworstcase
skew estimationbetweentwo sinks is reducedto estimatingthe
maximumand the minimum delay of a path as in Figure2 con-
sideringwire width variations.Whenthewire width w variesin the
rangeof

�
wlo � whi � , we needto find a wire shapingfunction w � x


suchthat the delay from the virtual driver R to the sink is maxi-
mizedor minimized. The minimum delaywire shapingfunction
for apathwithoutbranchloadsis solvedin [8, 3]. An iterativewire
shapingalgorithmis provided in [4] to minimize a weightedsum
of sink delaysin a routingtree.Thoughthis algorithmcanguaran-
teethe optimal wire shapingsolutionandcanbe adopteddirectly
in our case,the convergencerate of this algorithm hasnot been
proved.Sincewewish to minimizethedelayto only oneparticular
sink insteadof aweightedsumof sinkdelays,weareableto derive
ananalyticalformulaof wire shapingin Section3. Theformulafor
themaximumdelaywire shapingis introducedin Section4.

The wire sheetresistanceis denotedas r andthe wire capaci-
tanceper unit lengthandunit width is representedasc. If there
arek branchloadsasindicatedin Figure2, we definethe lumped
downstreambranchloadcapacitanceas:

CL � x
 �
C0 : 0 � x 
 l1
C0 � C1 : l1 � x 
 l2
... :

...
C0 � C1 ��������� Ck : lk � x � lk� 1

(1)

This branch load functionis depictedin Figure3. Notethat l0 � 0
and lk� 1 is sameasthepathlengthL. Thenthedownstreamwire



capacitanceC � x
 at position x is Cw � x
 � c � x
0 w � x
 dx. The total

downstreamcapacitancecanbe written asC � x
 � CL � x
 � Cw � x

TheElmoredelayof thepathin Figure2 canbeexpressedas:

t � RC � L 
 � r
� L

0

C � x

w � x
 dx (2)

We candefinetheupstreamresistanceat positionx asR� x
 � R �
� L

x
r

w � x� dx Fix thewire shapingfunctionw � x
 exceptan infinitesi-

mal strip of width δ at z andlet w � z
 to be a variabley. Thenwe
mayobtainthefirst orderderivative as:

dt
dy

� R� z � δ
2

 cδ � rδ

y2C � z � δ
2

 (3)

Sameconclusionis derived in [3] for thesingleloadcase,thuswe
omit the derivation here. From the above equationwe canobtain
d2t
dy2

� 2rδ
y3 C � z � δ

2 
�� 0. Thus the delay function is convex with
respectto y or wire width.

3. THE MINIMUM DELAY WIRE SHAP-
ING FOR PATH WITH BRANCH LOAD

The minimum delay wire shapingfor a path with single load
� k � 0
 is shown in [8, 3]. In thissection,wedescribetheminimum
delaywire shapingfor a pathwith multiple branchloads. Letting
q � x
 � L

2
rc

RCL � x� , wefirst obtaintheminimumdelaywire shaping

function when the wire width variation boundis not considered.
(Theproof is similar to [3] andis omittedhere.)

Theorem 1: The unconstrained minimumdelay wire shaping
functionfor a pathwith multiplebranch loadsis:

w � x
 � 2CL � x

cL

W � q � x
�
 e2W � q � x��� (4)

whereW � x
 � ∑∞
n� 1

��� n� n � 1

n! xn is theLambert’s W function.
For eachwire segmentbetweenl i � x 
 l i � 1 � 0 � i � k
 , thewire

shapingw � x
 is anexponentialfunction. Theoverall wire shaping
functionis a piecewiseexponentialfunctionwhichmaybediscon-
tinuousat eachbranchpoint, sinceit dependson CL � x
 which is
a piecewise constantfunction whosevaluechangesat the branch
points.Eventhoughtheremightbediscontinuity, thiswire shaping
is monotonouslyincreasingwith respectto x [6].

Whentheboundonwire width variation
�
wlo � whi � is considered,

thesituationis morecomplicated.For wire segmentbetweenl i �
x 
 l i � 1 � 0 � i � k
 , therearesix casesthatmayoccur:

 Case1: Theshapingof entiresegmentfollows theexponen-
tial functionasin Equation(4).

 Case2: Thewidth is uniformly whi.

 Case3: Thewidth is uniformly wlo.

 Case4: Thewidth is wlo whenx is smallerthana valueg,
andthewire shapingfollows exponentialfunctionfrom g to
l i � 1.

 Case5: The width is whi whenx is greaterthana valueh,
andthewire shapingfollows exponentialfunctionfrom l i to
h.

 Case6: Thewidth is wlo whenx is smallerthana valueg,
whi whenx is greaterthana valueh, and the wire shaping
follows exponentialfunctionfrom g to h.
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Figure4: The delay function w.r.t. wir e width is a convex func-
tion. The maximum/minimum delaywir ewidth dependson the
overlap betweenthis function and wir ewidth range
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We call thepositionof x � g andx � h asswitching points. The
methodto decidetheswitchingpointsis verycomplicatedasshown
in [3]. Moreover, it is possiblethatall six casesneedto beevalu-
atedto find theexactminimumdelaywire shaping.In practice,one
cantake the wire shapingaccordingto Equation(4) without con-
sideringthewire width bound,androundthewidth to eitherwlo or
whi at wherethewidth from Equation(4) exceedsthebound.The
switchingpointscanbefoundin theroundingprocessandthewire
shapingin the exponentialsegmentbetweenx � g andx � h can
be recomputedaccordingto the updatedupstreamresistanceand
downstreamcapacitance.Note that this is slightly different from
the rounding-alonementionedin [3]. Even thoughthis heuristic
mayresultin suboptimalsolutions,thecomputationbecomesmuch
easierandwe observed that theerrordueto this approximationis
negligible in practice.

4. THE MAXIMUM DELAY WIRE SHAP-
ING

In this section,we will derive the maximumdelaywire shap-
ing for both both single load pathandpathwith multiple branch
loads. For the easeof presentation,we startwith the single load
situationwherek � 0. It hasbeenshown in Section2 that thede-
lay is a convex functionwith respectto w � x
 . This is illustratedin
Figure4. Therefore,w � x
 hasto beeitherwlo or whi to maximize
thedelay. Becauseof Equation(3), delayfunctionwith respectto
w � x
 is monotonouslydecreasingwhenx is largeor thepositionis
closerto thedriver. Similarly, thedelayfunction is monotonously
increasingwhenthepositionis closerto thesinkside.Thisfactcan
betranslatedto theeffect thatw � x
 will bewlo whenx is largeand
whi whenx is small.Whenthevalueof x increases,thedelayfunc-
tion with respectto wire width at x changesin the directionfrom
(a) to (b) to (c) in Figure4.

Therefore,themaximumdelaywireshapinglooksliketheexam-
ple in Figure5. Thenext problemis to find thepartitioningpoint
x � p wherethe wire width is switchedfrom wlo to whi. When
k � 0, theElmoredelayfor Figure5 canbewrittenas:



t � αp2 � βp � γ (5)

α � � rc � whi
� wlo 


wlo

β � � whi
� wlo 
!� Rc� rcL

wlo

� rC0

wlowhi



γ � RLcwlo � RC0 � 1
2

rcL2 � rLC0

wlo

In orderto find the p thatmaximizethe delay, we first find the
derivative:

dt
dp

� � 2αp � β (6)

Sinceα is always negative, d2t
dp2 
 0 and the maximumdelay is

reachedwhen

p � 1
2
� Rwlo

r � L � C0

cwhi

 (7)

by letting dt
dp

� 0.

In otherwords,p satisfiesthefollowing equation:

R
r " wlo

� � L � p
 � p � C0

cwhi
(8)

If wetransformthedriverinto apieceof wire with width wlo whose
resistanceis sameasthedriver resistanceandtreatthe loadC0 as
a wire of width whi with samevalueof capacitanceC0, then the
above equationshows that p makes lengthof the fat segmentthe
sameasthelengthof thethin segment.

Whenweconsiderthesituationwith branchloads,i.e.,k � 0, the
propertieson dt

dy for Equation(3) donotchangeandthewire shape
is sameasin Figure5 andthevalueof p is determinedby:

R
r " wlo

� � L � p
 � p � CL � p

cwhi

(9)

Eventhoughthewireshapein Figure5 looksstrange,it mayhap-
penin reality. If thepathis routedin anL-shapewith a horizontal
anda vertical segment,the two segmentsareusuallyon different
metal layers. Therefore,it is likely that the width variationhasa
abruptchangeat layerswitching.

5. THE SKEW BOUND DEPENDSON THE
COMMON PATH

It is easyto seethat the variationalongthe upstreamcommon
path for a pair of sinks doesnot contribute to the skew between
them.For theexamplein Figure1, thevariationalongpaths0 � v7
hasnothingto dowith theskew valuebetweensink s1 andsink s4.
However, when the wire width at the commonpathchanges,the
resistanceR in Figure1 changesandthemaximum/minimumwire
shapingfrom v7 to s1 ands4 will changeaswell. Therefore,the
skew boundis affectedby thevariationof Ror their commonpath.

Theorem2: Givenfixedswitchingpoints,theskew upper(lower)
boundbetweentwosinksis a convex(concave)functionwith respect
to their commondriving resistance.

Proof: Let us considerthe casewhereskew upperboundbe-
tweentwo sinkss1 ands4 needto be computed.Let the distance
from s1 ands4 to theirnearestparentnodev7 beL1 andL4, respec-
tively. The load capacitanceat s1 ands4 areC1 andC4, respec-
tively. Thebranchloadsaretemporarilyignored,astheconclusion
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Figure6: Case6 for the minimum delaywir e shaping,the wir e
width is wlo in

�
0� g� and whi in

�
h� L � . Betweeng and h, the wir e

shapefollows exponentialfunction.

for pathwith branchloadsis the sameandcanbe extendedfrom
the single load caseeasily. The skew upperboundbetweenthem
canbeexpressedasq14�max

� t1 �max
� t4 �min. FromSection3 and4,

we know thatboth t1 �max andt4 �min dependon thevalueof R. We

will analyzedq14#max
dR by evaluating dt1 #max

dR and dt4 #min
dR .

By pluggingEquation(7) and the expressionof β into βp, we
have βp � � αp2. Thenthe maximumdelayEquation(5) canbe
transformedto:

t1 �max� R
 � � αp2 � R
 � γ � R

Thenwe canobtainthederivative:

dt1 �max

dR
� � 2αp � R
 dp

dR � dγ
dR

(10)

� c � whi
� wlo 
 p � R
 � L1cwlo � C1

� cwlo � whi
� wlo 


2r
R (11)

� 1
2

� wlo � whi 
$� L1c � C1

whi



The derivative of t4 �min dependson the six different casesde-
scribedin Section3. We will show the derivationsfor the most
basiccase1 and the mostcomplex case6. Derivationsfor other
casesaresimilar, andall thesecasesleadto thesameconclusion.

For case1, theequationfor theminimumdelay(for singleload
case)is givenas[8]

t4 �min
� 1

4
crL2

4 � 1 � 2W � x̂
�
%" W � x̂
 2 (12)

whereW � x̂
 is theLambert’s W functionandx̂ � L4
2

cr
C4R. Since

the Lambert’s W function satisfiesW � x̂
 eW � x̂� � x̂, we canobtain
its derivative as

W&'� x̂
 � W � x̂

x̂ � 1 � W � x̂
�
 (13)

Thenwe have thederivative of t4 �min with respectto R:

dt4 �min

dR
� rcL2

4
4W2 � x̂
 R (14)

CombiningEquation(10) and(14),we cangetthesecondorder
derivative of q14�max:

d2q14�max

dR2
� cwlo � whi

� wlo 

2r � l24r2c

4rR2W � x̂
$� 1 � W � x̂
�
 (15)

Evidently, d2q14#max

dR2 � 0 andq14�max� R
 is a convex function.
Now we considercase6 which is more complex and general.

Thewire shapingfor case6 is depictedin Figure6. We candivide



this wire into threesegments:(i) the thin segmentfrom x � 0 to
x � g, (ii) the exponentialsegmentbetweenx � g andx � h and
(iii) the fat segmentfrom x � h to x � L4. We useCthin

� cwlog,
Cexp

� � h
g cw� x
 dx andCf at

� cwhi � L4
� h
 to representthe wire

capacitancefor eachsegment. Similarly, the wire resistancefor
eachsegmentcanbedefinedasRthin

� rg
wlo

, Rexp
� � h

g
r

w � x� dx and

Rf at
� r � L4 � h�

whi
.

Wecanfind thewire delayfor theexponentialsegmentitself as:

t̃ �
� h

g

r
w � x


� x

g
cw� z
 dz dx (16)

For the exponentialsegment,we cantreatthe fat segmentaspart
of its driving resistanceand the thin segmentas part of its load
capacitance.Thuswecanexpressthedelayfrom x � h to x � g as:

texp
� � R � Rf at 
!� Cexp � Cthin � C4 
 � t̃ � Rexp � Cthin � C4 


Thevalueof texp canbeobtainedthroughEquation(12)exceptthat

the R is replacedby R̃ � R � r � L4 � h�
whi

and the C4 is replacedby

C̃4
� C4 � gcwlo.
Thetotalpathdelayfrom x � L4 to x � 0 canbewritten as:

t4 �min
� R� Cf at � Cexp � Cthin � C4 


� Rf at � 12Cf at � Cexp � Cthin � C4 

� t̃ � Rexp � Cthin � C4 

� Rthin � 12Cthin � C4 


� texp � RCf at � 1
2

Rf atCf at � Rthin � 12Cthin � C4 

� 1

4
cr � h � g
 2 � 1 � 2W � x̃
�
(" W � x̃
 2

� RCf at � 1
2

Rf atCf at � Rthin � 12Cthin � C4 

wherex̃ � h � g

2
rc

R̃C̃4
. Comparingthe above equationandEqua-

tion (12), thedifferencesare(i) thereareadditionaltermswith at
mostlineardependenceon R and(ii) R is replacedby R̃ througha
linear transformation.Sinceboth differenceshave only linearde-

pendenceon R, they do not changethepropertyof d2t4 #min

dR2 � 0 and
q14�max� R
 is still a convex functionfor case6. Othercasescanbe
provedin thesameway.

For a pathwith multiple branchloads,thedifferenceis that the
constantload C4 is replacedby the branchload function CL � x
 .
Sincethe branchload function is piecewise constant,it doesnot

changethepropertyof d2t4 #min

dR2 � 0 either. Sinceq14�min
� t1 �min

�
t4 �max is symmetricto q14�max

� t1 �max
� t4 �min, wecanconcludethat

q14�min is a concave functionwith respectto R. Q.E.D.

Accordingto Theorem2, we needto computethewire shaping
for q14�maxtwice,onewith theminimumRby settingthewire width
alongthecommonpaths0 � v7 to whi, theotherwith themaximum
R by letting the wire width along the commonpathbe wlo. The
maximumof the two skew resultsis finally selectedas the worst
casebound.

6. EXPERIMENT AL RESULTS
In orderto validatetheboundwe derived,we implementedour

formulas,Monte Carlo andthe interval analysis[10] for compar-
isons. Even thoughMonte Carlo methodis not efficient, it can

generatea reliableestimationon theworstcaseperformanceif the
numberof iterationsis sufficiently large. Therefore,the resultof
MonteCarloservesasanidealbaselinefor comparisons.Therea-
sonto comparewith interval analysismethodis becauseits objec-
tive is very closeto ours:to establisha boundefficiently.

Figure7: Histogram of differ encecomparedwith Monte Carlo
simulation for the maximum skew.

Figure8: Histogram of differ encecomparedwith Monte Carlo
simulation for the minimum skew.

The test cases are the r1 � r5 which are applied in the
boundedskew clock routing (BST) work [5]. We downloaded
the boundedskew clock routing code from the GSRC book-
shelf � htt p : ")" vlsicad� ucsd� edu" GSRC " bookshelf " Slots" BST "*

andgeneratedclock routing treesfor r1 � r5 by runningthe BST
code.Theglobalskew boundis setto be100ps. Weassume+ 30%
variationson wire width. We implementedour formulas,Monte
Carloandtheinterval analysismethodin C language.Theexperi-
mentsareperformedonaPCwith PentiumIII, 655MHz processor
and512MB memory.

For eachclock tree,we calculatedtheskew boundof oneof the
sinkswith respectto every othersink in theclock tree. Thusfor a
clock treewith n sinks,we will have n � 1 pairs.We evaluatedthe
skew bounddueto wire width variationsfor the6725pair of sinks
in thefive testcasesof r1 � r5 by all of the threemethods.In or-
der to obtaina meaningfulestimation,we segmentlong wiresinto
smallpiecesof about50µm for theMonteCarloandinterval anal-



ysis.Therefore,thewire width for eachpieceis anindividual vari-
able.For eachsinkpair, werunMonteCarlosimulationfor 50,000
trials whenthe width for eachwire pieceis selectedrandomlyin
the rangeof

�
wlo � whi � . Whenestimatingtheminimum delaywire

shapingwe appliedthe heuristicdescribedin Section3 to decide
the switchingpointsandthe optimalwire shapingfor them. This
heuristicbringsgreatimplementationconveniencewith negligible
quality penalty.

Wetaketheresultfrom MonteCarlosimulationasbaseline.The
resultfrom ourboundis evaluatedby takingthedifferencebetween
them. In otherwords,we evaluatethe maximum/minimumskew
from our boundminusthemaximum/minimumskew from Monte
Carlo simulationfor eachpair of sinks. The boundresult from
the interval analysisis evaluatedin thesameway. Figure7 and8
show thehistogramsof thedifferencefor themaximumskew and
theminimumskew respectively. Thehorizontalaxisrepresentsthe
skew differencein ns andthe vertical axis representsthe number
of sink pairs with a particularvalue of skew difference. In Fig-
ure 7, the differencefrom our boundis alwaysgreaterthanzero.
Meanwhile,thedifferencefrom our boundfor theminimumskew
in Figure8 is alwaysnon-positive. This fact tells thatour method
providesa boundfor theworstcaseskew in practice,eventhough
we appliedheuristicin the implementation.Somesink pairshave
similar pathlengthsto their nearestcommonparentnodeandthe
driver, thusthey have similar skew variationbehaviors. This fact
resultsin serval peaksin thehistograms.Figure7 and8 show that
thepeaksfrom our methodarecloserto zerodifferencecompared
to thepeaksfrom theinterval analysis.Thus,our methodprovides
a tighterboundthantheinterval analysis.

Table 1: Comparisonon computation time in seconds.
Testcase #sinks #pairs MonteCarlo Interval Ours

r1 267 266 8277 3 0.46
r2 598 597 35684 7 4.72
r3 862 861 70288 14 9.65
r4 1903 1902 180270 90 38.31
r5 3100 3099 408750 277 77.5

Thecomputationtime for eachmethodis shown in Table1. In
Table1, column2 andcolumn3 show thenumberof sinksandthe
numberof sinkpairswhoseskew areevaluated.Wecanseethatthe
runtimefrom theMonteCarlosimulationis impractical.Compared
with interval analysis,theruntimeof ourmethodis alwaysshorter.

7. CONCLUSION AND FUTURE WORK
Throughwire shapinganalysis,an analyticalboundfor theun-

wantedskew dueto wire width variationis established.Sincethis
boundcanbeobtainedvery quickly, it canbeappliedto intercon-
nect variation driven designand designplanning. Experimental
resultsshow thatourmethodis safer, fasterandmoreaccuratethan
theinterval analysis.Thisresultcanbeextendedto considertheef-
fect of buffer variationson clock skew andcanbeusedto enhance
thetoolkit to harnesstheprogressively severeprocessvariationef-
fect.
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