Analytical Bound for Unwanted Clock Skew due to Wire Width Variation
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ABSTRACT

UndermodernVLSI technology processvariationsgreatly affect
circuit performance gspeciallyclock skew which is very timing
sensitve. Unwantedskew dueto processvariationformsa bottle-
neck preventing furtherimprovementon clock frequeng. Impact
from intra-chipinterconnecvariationis becomingremarkableand
is difficult to be modeledefficiently dueto its distributive nature.
Throughwire shapinganalysis,we establishan analyticalbound
for the unwantedskew dueto wire width variation which is the
dominatingfactoramonginterconnecvariations.Experimentate-
sults on benchmarkeircuits shaw that this boundis safer tighter
andcomputationallyfasterthansimilar existing approach.

1. INTRODUCTION

WhentheVLSI featuresizebecomesgprogressiely smaller pre-
viously negligible processvariationsstartto affect circuit perfor
mancesignificantly Theseprocessvariationsresult from mary
non-idealconditionssuchasetchingerror, maskmis-alignmenand
defects.For clock networks,thesevariationscauseclock skew vari-
ationsor unwantedskews. Sinceclock skew is a lower boundfor
clock period, the unwantedskew dueto processvariationsform a
bottleneckpreventingimprovementon clock frequeng. For mod-
ern high performancecircuit designs,processvariation induced
clock skew is taking a greaterand greaterportion of clock period
time. Thereforejt is veryimportantto modeltheimpactof process
variationson clock network performancesothatit canbe consid-
eredduringcircuit/clock design.

Realizingthegreatimportanceof proceswvariationsmary works
have beencarriedout to modeltheir effect [10, 7, 2, 9, 15, 1, 17,
14]. Onemajor objective of thesemodelingworksis to find are-
liable estimationon the worstcasetiming performancenducedby
proceswariations eithertheworstdelayalongtiming critical paths
in timing analysisor theworstskew in a clock network. The esti-
mationresultscanbe appliedasa feedbacko guidefurtherdesign
iterations.

Onecommonapproachto find the worst caseperformances to
run Monte Carlosimulationsfor a certainnumberof iterationsand
pick the worst caseperformanceamongthe results. In orderto
obtaina reliable estimation,the numberof iterationsis generally
very largeandconsequentlyhehigh computationatostmalesthis
methodimpractical. Anotherstraightforvard techniqueis to esti-
matethe performanceonly at cornerpointsof processvariations.
Eventhoughthistechniquds computationallyfast,it is overly pes-
simisticin estimatingheworstcasedelaydueto gateproceswari-
ationsascorrelationamongthegatesareneglected.Thereforethe
cornerpoint techniques usefulonly whenalooseboundneedso

be found quickly. In seekinga good balancebetweenestimation
quality and runtime, probability basedapproache§7, 14] arede-
veloped.Theinterval analysismethod[10] is proposedo establish
aboundfor theworstcasetiming performance.

The effect of interconnecprocessvariationsis becomingmore
andmoreremarkableandit is foundin [11] thatinterconnectari-
ationsmay cause25% clock skew variations. The impactof in-
terconnectvariationis intrinsically hardto be modeledefficiently,
sincetheworstcasenterconnectlelaydoesnotalwaysoccuratthe
processvariation cornerpoints. This fact makesthe cornerpoint
techniquenot applicablefor interconnectariations. Furthermore,
interconnecvariationsis distributive in naturein contrasto thelo-
calizedvariationsfor transistors.Sincean interconnectvire may
spanalong distancepsinga singlevariableto modeleachprocess
parametesuchaswire width or thicknesss inadequatéo capture
the different processvariation levels in differentregions. This is
especiallytrue whentheintra-chipvariationsstartto dominatethe
inter-chip variations[12].A naive approacho solwe this problemis
to sggmenta long wire into smallerpieces,and considerthe vari-
ation of eachpieceindividually. However, this approachmay in-
creasehenumberof variablesconsiderablyandtherebyslow down
the estimationspeed.

Our main objectie in this paperis to obtaina fastskew bound
estimation,that can be usedin applicationssuchas processvari-
ationdriven clock network designandchip level designplanning.
Note that, in the abore applications the speedandfidelity of the
estimation's moreimportantthatthe numericalaccurag, sothatit
canbe usedin theinnerloop of optimization. This requirements
quite differentfrom the requirementf the postoptimizationes-
timation whereprobabilisticapproachis better In this work, we
concentrat®nthe effect of wire width variationwhichis thedomi-
natingfactorcomparedo otherwire parametersuchaswire thick-
ness,sincewire width shrinksfasterunderthe non-uniformtech-
nologyscaling.We have derived ananalyticalboundfor unwanted
clock skew betweenary two clock sinksdueto wire width varia-
tion. Our proposedechniques basedon the obsenationthatesti-
matingthe worst caseskew dueto wire width variationis closely
relatedto the non-uniformwire sizing problemin physicalopti-
mizations. The minimum delay non-uniformwire sizing problem
for a2-pinwire(singleload path)hasheensolvedin [8, 3]. We de-
rive the maximumwire shapingfunction for both singleload path
andmulti-pin trees. The minimum delaywire shapingformulafor
multi-pin treesis also obtainedin our work. Previously, a more
generalversionof this problemwassolved throughaniterative al-
gorithm[4]. Similarto the works of [8, 3, 4], we employ Elmore
delaymodelfor ourderivationsbecausef its highfidelity andease
of computation.Besidesthe bound,we discoreredthatthe bound
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Figure 1: When estimatingthe worst caseskew betweensink s;
and s4 in (a), the clock treecan be reducedto a simpler model
in (b).

for skew betweentwo clock sinks dependson their commonup-

streampath,eventhoughthe skew betweerthemis independentf

the commonpath. This dependencés analyzedandfoundto be
monotonein practice. Theseresultsestablishan analyticalbound
for the unwantedskews dueto wire width variation. Sincethe an-
alytical boundcanbe computedvery quickly, it canbe appliedto

processvariationdriven clock network designaswell aschip level

designplanning. It is to be notedthat, for the above applications,
speedandfidelity of thethe estimationis moreimportantthannu-

mericalaccurag. This is becausdhe estimationwill be queried
frequentlyin the inner loop of optimizationand designplanning.
Thus,theanalyticalboundfits therequiremenprecisely

2. PROBLEM ANALYSIS

Given a pair of sinkss; ands, in a clock routing tree, our ob-
jectiveis to find aboundfor theworstcaseskew dueto wire width
variation. The skew betweenthe two sinks can be expressedas
gi2 = t; — to wheret; andt, arethe delayfrom clock driver to s
and sy, respectiely. Whenthereis wire width variation for the
pathsfrom driver to s; and s, the delayt; andt, vary in cer
tain rangesof [ty min,t1,may and [ta min,t2max, respectrely. Evi-
dently, the worst caseskew occursat gi2 max = t1,max— t2,min Of
g12min = t1,min —t2max IN previous work, sometimesghe skew is
definedasmax(|012,max; |d12,min|) OF the maximumabsolutevalue
of skews amongall clock sink pairs. Thelatterdefinition of global
skew is usuallyfor traditionalzero-slew clock network. For mod-
ern aggressie VLSI designs,useful skews [16] are appliedmore
frequently thus, we usethe conceptof local pairwise skew in-
steadof the singleglobal skew. In handlingprocessvariationsand
otherdelayuncertaintiestargetskews areusuallyspecifiedasa set
of permissiblerangeq13] insteadof a setof singlevalues. Since
theremightbe skew violation on boththeupperboundsideandthe
lower-boundsideof apermissibleange we considetthemaximum
andthe minimum skew separatelylt canbe seenthata boundfor
the worst caseskew canbe obtainedby estimatingthe maximum
andthe minimumdelaysunderprocess/ariations.

In orderto estimatethe maximumandthe minimumdelaysdue
to wire width variation, we reducethe routing tree into a simpli-
fied modeldemonstratedn Figurel. In Figure1(a), we wish to
estimatethe worst caseskew betweensink s; andss. Sincethe
commonupsteampath sp ~ v7 for 5, ands,; doesnot contritute
to the skew betweenthem, we lump its wire resistanceogether
with the driver resistancento a virtual driving resistorR at the
neaestcommonparent nodevy for s; ands, in Figure 1(b). We
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Figure 2: The worst caseskew estimation is equivalent to find-
ing wir e shapingto maximize/minimize the delay.
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Figure 3: The branch load function.

call the branchess; ~+ s; andvy ~+ s4 ascritical branches For
wiresoff thecritical branchesuchasvs ~» s, andvg ~ s3 in Fig-
ure 1(a),their capacitanceanbe lumpedto their load capacitance
to getC, andCs at nodevs andvg, respectiely. If we attemptto
estimatethe maximum(minimum)delayfor sink s;, the width of
wire vs ~» s, shouldbe the maximum(minimum)n orderto maxi-
mize(minimize)theloadC, for branchvy ~» s;.

After thetransformationin Figurel, a boundfor theworstcase
skew estimationbetweentwo sinks is reducedto estimatingthe
maximumand the minimum delay of a pathasin Figure2 con-
sideringwire width variations.Whenthewire width w variesin the
rangeof [wWio, W], we needto find a wire shapingfunction w(x)
suchthat the delay from the virtual driver R to the sink is maxi-
mized or minimized. The minimum delay wire shapingfunction
for apathwithout branchloadsis solvedin [8, 3]. An iterative wire
shapingalgorithmis provided in [4] to minimize a weightedsum
of sink delaysin aroutingtree. Thoughthis algorithmcanguaran-
teethe optimal wire shapingsolutionandcanbe adopteddirectly
in our case,the convergencerate of this algorithm hasnot been
proved. Sincewe wish to minimizethedelayto only oneparticular
sink insteadof aweightedsumof sink delayswe areableto derive
ananalyticalformulaof wire shapingn Section3. Theformulafor
themaximumdelaywire shapings introducedn Sectior4.

The wire sheetresistancds denotedasr andthe wire capaci-
tanceper unit length and unit width is representedsc. If there
arek branchloadsasindicatedin Figure2, we definethe lumped
downstreambranchload capacitances:

Co D 0<x<ly
Co+C 1 <x<ly

C¥=A9 . : @)
Co+Ci+...+C Ik <X<lyp1

This branch load functionis depictedin Figure3. Notethatlg =0
andly, 1 is sameasthe pathlengthL. Thenthe dovnstreamwire



capacitanceC(x) at positionx is Cy(x) = ¢ [fw(x)dx. The total
downstreamcapacitancean be written asC(x) = Cp (x) + Cw(X)
TheElmoredelayof the pathin Figure2 canbeexpresseds:

LC(x)
L) +r /0 w0 & )

We can definethe upstreanresistancet positionx asR(x) = R+
fx W(X) dx Fix thewire shapingfunctionw(x) exceptan infinitesi-

mal strip of width & atz andlet w(z) to be a variabley. Thenwe
may obtainthefirst orderderivative as:

dt 0 ro e}
gy =Rz 5)e8- 502+ 3)
Sameconclusionis derivedin [3] for the singleload case thuswe
omit the derivation here. From the abose equationwe canobtain
g—; = 2r5C(z+ ) > 0. Thusthe delay function is corvex with
respecto y or wire width.

3. THE MINIMUM DELAY WIRE SHAP-
ING FOR PATH WITH BRANCH LOAD

The minimum delay wire shapingfor a path with single load
(k=0) isshavnin [8, 3]. In thissectionwe describeheminimum

delaywire shapingfor a pathwith multiple branchloads. Letting

q(x) = % #C(X) we first obtaintheminimumdelaywire shaping

function whenthe wire width variation boundis not considered.

(Theproofis similarto [3] andis omittedhere.)
Theorem 1: The unconstained minimumdelay wire shaping
functionfor a pathwith multiple branch loadsis:

W) = chf Jw(g(x) &5 @
wheeW(x) =S 1 (=040 is the Lamberts W function.

For eachwire segmentbetween <x<li+1(0<i <k), thewire
shapingw(x) is anexponentialfunction. The overall wire shaping
functionis a piecavise exponentialfunctionwhich maybediscon-
tinuousat eachbranchpoint, sinceit dependsn Ci (x) which is
a piecavise constantfunction whosevalue changesat the branch
points. Eventhoughtheremightbediscontinuity this wire shaping
is monotonouslyncreasingwith respecto x [6].

Whentheboundonwire width variation[w o, W] is considered,

the situationis more complicated.For wire sggmentbetweenrl; <
x < liz1(0 < i < k), therearesix caseghatmayoccur:

e Casel: Theshapingof entiresggmentfollows the exponen-
tial functionasin Equation(4).

e Case2: Thewidth is uniformly wy;.
e Case3d: Thewidth is uniformly wi,.

e Case4: Thewidth is wjo whenx is smallerthana valueg,
andthe wire shapingfollows exponentialfunctionfrom g to

i1
e Caseb: Thewidth is wy; whenx is greaterthana valueh,

andthe wire shapingfollows exponentialfunctionfrom |; to
h.

e Case6: Thewidth is wig whenx is smallerthanavalueg,
Whi whenx is greaterthana value h, andthe wire shaping
follows exponentiaffunctionfrom g to h.
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Figure 4: The delay function w.r.t. wir ewidth is a corvex func-
tion. The maximum/minimum delaywir ewidth dependsonthe
overlap betweenthis function and wir e width range [wjq, W;].
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Figure5: The maximum delay wir e shaping

We call the positionof x = g andx = h asswitching points The
methodto decidetheswitchingpointsis very complicatecasshavn
in [3]. Moreover, it is possiblethatall six caseseedto be evalu-
atedto find theexactminimumdelaywire shaping.In practice one
cantake the wire shapingaccordingto Equation(4) without con-
sideringthewire width bound,androundthewidth to eitherw;, or
Wi atwherethe width from Equation(4) exceedshe bound. The
switchingpointscanbefoundin theroundingprocessandthewire
shapingin the exponentialsggmentbetweenx = g andx = h can
be recomputedaccordingto the updatedupstreanresistanceand
downstreamcapacitance Note that this is slightly differentfrom
the rounding-alonementionedin [3]. Even thoughthis heuristic
mayresultin suboptimabkolutions thecomputatiorbecomesnuch
easierandwe obsered thatthe error dueto this approximations
negligible in practice.

4. THE MAXIMUM DELAY WIRE SHAP-
ING

In this section,we will derive the maximumdelay wire shap-
ing for both both single load path and pathwith multiple branch
loads. For the easeof presentationye startwith the singleload
situationwherek = 0. It hasbeenshawvn in Section2 thatthe de-
lay is a convex functionwith respecto w(x). Thisis illustratedin
Figure4. Therefore w(x) hasto be eitherw;, or wy,; to maximize
thedelay Becauseof Equation(3), delayfunctionwith respecto
w(X) is monotonoushdecreasingvhenx is large or the positionis
closerto the driver. Similarly, the delayfunctionis monotonously
increasingvhenthepositionis closerto thesinkside. Thisfactcan
betranslatedo the effect thatw(x) will bew;, whenx s largeand
Whi whenx is small. Whenthevalueof x increasesthedelayfunc-
tion with respecto wire width at x changesn the directionfrom
(a)to (b)to (c) in Figure4.

Thereforethemaximumdelaywire shapindooksliketheexam-
plein Figure5. The next problemis to find the partitioning point
x = p wherethe wire width is switchedfrom w;q, to wyi. When
k = 0, the EImoredelayfor Figure5 canbewritten as:



ap?+pp+y (5)
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y = RLcw0+RC0+%rcL2+

In orderto find the p thatmaximizethe delay we first find the
derivative:

t
@:—ZGHB (6)

Sincea is always neyative, 3—2’; < 0 andthe maximumdelay is
reachedvhen

_LRWo | G
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p
by letting g5 = 0.

In otherwords, p satisfieghefollowing equation:

R Co
T +(L—p) =p+ vy (8)
If wetransformthedriverinto a pieceof wire with width wj, whose
resistances sameasthe driver resistancendtreatthe load Cy as
a wire of width wy,; with samevalue of capacitanc&y, thenthe
above equationshawvs that p makeslengthof the fat sgmentthe
sameasthelengthof thethin segment.
Whenwe considethesituationwith branchloads,i.e.,k > 0, the

propertieson % for Equation(3) do notchangeandthewire shape

is sameasin Figure5 andthevalueof pis determinedy:

CL(p)

g +(L-p=p+ o 9)

Eventhoughthewire shapen Figure5 looksstrangeit mayhap-

penin reality. If the pathis routedin anL-shapewith a horizontal

anda vertical segment, the two segmentsare usually on different

metallayers. Therefore,it is likely thatthe width variationhasa
abruptchangeatlayerswitching.

5. THE SKEW BOUND DEPENDSON THE
COMMON PATH

It is easyto seethat the variation along the upstreamcommon
pathfor a pair of sinks doesnot contrikute to the skew between
them. For theexamplein Figurel, thevariationalongpathsy ~» v7
hasnothingto do with the skew valuebetweersink s; andsink s,.
However, whenthe wire width at the commonpath changesthe
resistanceR in Figure1 changesndthe maximum/minimumwire
shapingfrom vz to s; andss will changeaswell. Therefore,the
skew boundis affectedby the variationof R or theircommonpath.

Theorem2: Givenfixedswitching points,theskew upper(lower)
boundbetweernwo sinksis a convex(concavejunctionwith respect
to their commonrdriving resistance

Proof: Let us considerthe casewhereskew upperboundbe-
tweentwo sinkss; ands, needto be computed.Let the distance
from s; ands, to their nearesparentodev; bel1 andLy, respec-
tively. Theload capacitancets; ands, areC; andCy, respec-
tively. The branchloadsaretemporarilyignored,asthe conclusion

X 1 J

L, h g 0

Figure 6: Case6 for the minimum delay wir e shaping,the wire
width iswj in [0,g] and wy; in [h,L]. Betweeng and h, the wire
shapefollows exponentialfunction.

for pathwith branchloadsis the sameand can be extendedfrom
the singleload caseeasily The skew upperboundbetweenthem
canbeexpressedsi4max = t1,max— t4min- FromSection3 and4,
we know thatbothty max andts min dependon the valueof R. We

will analyzedi@,“,‘?Lax by evaluatingdié",g—ax and dt“g‘”.

By plugging Equation(7) andthe expressionof 8 into Bp, we
have Bp = —ap?. Thenthe maximumdelay Equation(5) canbe
transformedo:

trmax(R) = —ap*(R) +Y(R)
Thenwe canobtainthe derivative:

dtymax dp  dy
4R = —Zap(R)ﬁ + aR (10)
= C(Whi —Wio)P(R) +LicWo+Cq
_ CWo(Whi —Wio) R 1)
2r
1 C
+3 <(W|o+Whi)(|-10+ W—;)>

The derivative of t4 min dependson the six different casesde-
scribedin Section3. We will shav the derivationsfor the most
basiccasel andthe mostcomplex case6. Derivationsfor other
casesresimilar, andall thesecasedeadto the sameconclusion.

For casel, the equationfor the minimum delay (for singleload
case)s givenas[8]

tamin= ZOrLF(L+W(R) W(R)? (12

L

whereW(X) is theLamberts W functionandx = 3,/ %. Since

the Lamberts W function satisfiesW (x)eV®) = %, we canobtain
its derivative as

- W(X)
W) =t — 13
® X(L+W(X)) (13)
Thenwe have thederivative of t4 min with respecto R:

dR ~ MW2(R)R

CombiningEquation(10) and(14), we cangetthe secondorder
derivative of gi4 max

2014 max _ CWio(Whi — Wio) n Irc (15)
dr? 2r ARAW(R) (1T W(R))

2
Evidently, dglié‘zma* > 0 anddi4max(R) is acornvex function.
Now we considercase6 which is more comple and general.
Thewire shapingfor case6 is depictedn Figure6. We candivide



this wire into threesegments: (i) the thin segmentfrom x =0 to
x = g, (ii) the exponentialsggmentbetweenx = g andx = h and
(i) thefatseggmentfrom x = h to x = L4. We useCiphin = CW 0,
Cep = fé‘ cw(x)dx andCsg = CWhi(Lg — h) to representhe wire
capacitancdor eachsegment. Similarly, the wire resistancefor
eachseggmentcanbe definedasRinin = vf,—i, Rexp = fgh de and

Rfat — I'(L47h)

Whi ° . . .
We canfind thewire delayfor the exponentialsegmentitself as:

f:/ghﬁ (/gxcw(z)dz> dx (16)

For the exponentialsggment,we cantreatthe fat segmentas part
of its driving resistanceand the thin segmentas part of its load
capacitanceThuswe canexpresshedelayfromx=htox=gas:

texp = (R+ Reat ) (Cexp + Cthin +C4) + T+ Rexp(Cthin +Ca)
Thevalueof texp canbeobtainedhroughEquation(12) exceptthat

ttle R is replacedby R = R+ % andthe Cy is replacedby
Ca = Cyq+9gCWo.
Thetotal pathdelayfrom x = L4 to x = 0 canbewritten as:
t4,min = R(Cfat +Cexp +Cthin +C4)
1
+Rat (5Crat +Cexp +Cihin +Ca)
+{ 4 Rexp(Cthin +Ca)
1
+Renin(5Cthin +Ca)

1 1
= texp +RCfat + éRfaICfaI + Rthin(écthin +Cy)

_ %cr(h— 9)2(1+2W(X))/W(%)2

1 1
+RCrat + 5RratCrat +Rehin(5 Citin +Ca)

2
whereX = hizg % Comparingthe abore equationand Equa-
tion (12), the differencesare (i) thereareadditionaltermswith at
mostlineardependencen R and(ii) Ris replacedby R througha

lineartransformation.Sinceboth differenceshave only linear de-

pendencen R, they do not changethe propertyof dzdt;;;"‘" > 0and
d14max(R) is still aconvex functionfor case6. Othercasesanbe
provedin the sameway.

For a pathwith multiple branchloads,the differenceis thatthe
constantload C, is replacedby the branchload function C (x).

Sincethe branchload function is piecavise constant,t doesnot

2 .
changethe propertyof (jd—t‘,‘?‘”zm > 0 either Sincedi4min = tymin—

t4,maxis Symmetricto g4 max= t1 max—ta,min, We canconcludethat
014,min is aconcae functionwith respecto R. Q.E.D.

Accordingto Theorem2, we needto computethe wire shaping
for 014 maxtwice, onewith theminimumR by settingthewire width
alongthecommonpathsy ~» v7 to Wy, theotherwith themaximum
R by letting the wire width alongthe commonpathbe wj,. The
maximumof the two skew resultsis finally selectedasthe worst
casebound.

6. EXPERIMENT AL RESULTS

In orderto validatethe boundwe derived, we implementecour
formulas, Monte Carlo andthe interval analysis[10] for compar
isons. Even thoughMonte Carlo methodis not efficient, it can

generata reliableestimationon theworstcaseperformancef the
numberof iterationsis sufficiently large. Therefore the resultof
Monte Carlosenesasanideal baselinefor comparisonsThe rea-
sonto comparewith interval analysismethodis becauséts objec-
tive is very closeto ours:to establisha boundefficiently.
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Figure 7: Histogram of differ encecompared with Monte Carlo
simulation for the maximum skew
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Figure 8: Histogram of differ encecompared with Monte Carlo
simulation for the minimum skew:.

The test casesare the rl — r5 which are applied in the
boundedskew clock routing (BST) work [5]. We downloaded
the boundedskew clock routing code from the GSRC book-
shelf (http : //vIsicaducsdedu/GSRC/boolshelf /S ots/BST /)
andgeneratedlock routing treesfor r1—r5 by runningthe BST
code.Theglobalskew boundis setto be 100ps We assumet30%
variationson wire width. We implementedour formulas, Monte
Carloandtheintenal analysismethodin C language.The experi-
mentsareperformedonaPCwith Pentiumlll, 655MHz processor
and512MB memory

For eachclock tree,we calculatedhe skew boundof oneof the
sinkswith respecto every othersink in the clock tree. Thusfor a
clock treewith n sinks,we will have n— 1 pairs. We evaluatecthe
skew bounddueto wire width variationsfor the 6725pair of sinks
in thefive testcasesf r1 —r5 by all of the threemethods.In or-
derto obtaina meaningfulestimationwe segmentlong wiresinto
small piecesof about50umfor the Monte Carloandinterval anal-



ysis. Thereforethewire width for eachpieceis anindividual vari-
able.For eachsink pair, we run Monte Carlo simulationfor 50,000
trials whenthe width for eachwire pieceis selectedrandomlyin
the rangeof [wjo, Wyi]. Whenestimatingthe minimum delaywire
shapingwe appliedthe heuristicdescribedn Section3 to decide
the switching pointsandthe optimal wire shapingfor them. This
heuristicbringsgreatimplementatiorcornveniencewith negligible
quality penalty

We take theresultfrom Monte Carlosimulationasbaseline The
resultfrom our boundis evaluatecby takingthedifferencebetween
them. In otherwords, we evaluatethe maximum/minimumskew
from our boundminusthe maximum/minimumskew from Monte
Carlo simulationfor eachpair of sinks. The boundresultfrom
theinterval analysisis evaluatedin the sameway. Figure7 and8
shaw the histogramsof the differencefor the maximumskew and
theminimumskew respectiely. Thehorizontalaxisrepresentshe
skew differencein ns andthe vertical axis representshe number
of sink pairswith a particularvalue of skew difference. In Fig-
ure 7, the differencefrom our boundis always greaterthanzero.
Meanwhile,the differencefrom our boundfor the minimum skew
in Figure8 is alwaysnon-positve. This facttells thatour method
providesa boundfor theworst caseskew in practice,eventhough
we appliedheuristicin the implementation.Somesink pairshave
similar pathlengthsto their nearestommonparentnodeandthe
driver, thusthey have similar skew variation behaiors. This fact
resultsin senal peaksin the histograms Figure7 and8 shaw that
the peaksfrom our methodarecloserto zerodifferencecompared
to the peaksfrom theintenval analysis.Thus,our methodprovides
atighterboundthantheinterval analysis.

Table 1: Comparison on computation time in seconds.

Testcase| #sinks | #pairs| MonteCarlo | Intenal | Ours
rl 267 266 8277 3 0.46
r2 598 597 35684 7 4.72
r3 862 861 70288 14 9.65
r4 1903 | 1902 180270 90 38.31
r5 3100 | 3099 408750 277 775

The computatiortime for eachmethodis shavn in Tablel. In
Tablel, column2 andcolumn3 shav the numberof sinksandthe
numberof sink pairswhoseskew areevaluated.We canseethatthe
runtimefrom theMonte Carlosimulationis impractical. Compared
with interval analysisthe runtimeof our methodis alwaysshorter

7. CONCLUSION AND FUTURE WORK

Throughwire shapinganalysis,an analyticalboundfor the un-
wantedskew dueto wire width variationis establishedSincethis
boundcanbe obtainedvery quickly, it canbe appliedto intercon-
nect variation driven designand designplanning. Experimental
resultsshav thatour methodis safer fasterandmoreaccuratehan
theintenal analysis.Thisresultcanbeextendedo considetthe ef-
fect of buffer variationson clock skew andcanbe usedto enhance
thetoolkit to harnesshe progressiely severeprocessvariationef-
fect.

8. REFERENCES

[1] E.Acar, S.R. Nassif,Y. Liu, andL. T. Pileggi. Assessment
of trueworstcasecircuit performanceainderinterconnect
parametewariations.In WorkshopNotes,International

Workshopon Timing Issuesdn the Specificatiorand Synthesis
of Digital Systemspages45—-49,2000.

[2] N.Chang\V. Kanersky, O. S.Nakagava, K. Rahmatand
S.-Y. Oh.Fastgeneratiorof statistically-baseevorst-case
modelingof on-chipinterconnectin Proc. of ICCD, pages
720-7251997.

[3] C.-R ChenandD. F. Wong.Optimalwire-sizingfunction
with fringing capacitanceonsiderationTechnical Report
TR96-28 Departmenbf ComputerScience University of
Texas,November 1996.

[4] C.-P Chen,H. Zhou,andD. F. Wong.Optimalnon-uniform
wire-sizingunderthe EImoredelaymodel.In Proc. of
ICCAD, pages38-43,1996.

[5] J.Cong,A. B. Kahng,C.-K. KohandC.-W. A. Tsao.
Bounded-skw clock andSteinerroutingunderElmore
delay In Proc. of ICCAD, pages$6—-71,1995.

[6] J.CongandK.-S.Leung.Optimalwiresizingunderthe
distributedElmoredelay IEEE Tran.on CAD,
14(3):321-336Junel995.

[7] A. D. Fabbro,B. Franzini,L. Croce,andC. GuardianiAn
assignegrobabilitytechniqueo derive realisticworst-case
timing modelsof digital standarctells.In Proc. of DAC,
pages’02—-706,1995.

[8] J.P. FishturnandC. A. Schevon. Shapinga distributedRC
line to minimize EImoredelay IEEE Tran.on Circuitsand
Systems42(12):1020-1022)ecemberl 995.

[9] P. Zarkesh-Ha,T. Mule, andJ.D. Meindl. Characterization
andmodelingof clock skew with processvariations.In Proc.
of CICC, pages#41-4441999.

[10] C.L. HarknessndD. P. Lopresti.Interval methodgor
modelinguncertaintyin RCtiming analysis|IEEE Tran.on
CAD, 11(11):1388-1401\ovember1992.

[11] Y. Liu, S.R. Nassif,L. T. Pileggi, andA. J. Strojwas.Impact
of interconnectariationson the clock skew of agigahertz
microprocessoin Proc.of DAC, pagesl68-1712000.

[12] S.R. Nassif.Modelingandanalysisof manufcturing
variations.In Proc. of CICC, pages223—-2282001.

[13] J.L. NevesandE. G. FriedmanOptimal clock skew
schedulingolerantto proceswariations.In Proc. of DAC,
pagess23-628,1996.

[14] M. Orshansik andK. Keutzer A generalprobabilistic
framework for worstcasetiming analysisIn Proc. of DAC,
pagesH56-5612002.

[15] D. Sylvester O. S. Nakagava, andC. Hu. Modelingthe
impactof back-endoroceswariationon circuit performance.
In Proc. of the InternationalSymposiunon VLS| Technolayy,
Systemsind Applications pages58-61,1999.

[16] C.-W. A. TsaoandC.-K. Koh.UST/DME: aclocktreerouter
for generakkew constraintsin Proc.of ICCAD, pages
400-405.2000.

[17] S.Zanella,A. Nardi, A. Neviani, M. Quarantelli,S. Sa>ena,
andC. Guardiani. Analysisof theimpactof process
variationson clock skew. IEEE Tran.on Semiconductor
Manufacturing 13(4):401-407November2000.



