
Timing-Driven Global Routing with Efficient
Buffer Insertion

Jingyu Xu, Xianlong Hong, Tong Jing

Dept. of Computer Science & Technology, Tsinghua Univ., Beijing, P. R. China

Abstract -- Timing optimization is an important goal of global
routing in deep submicron era. To guarantee the timing
performance of the circuit, merely adopting topology
optimization becomes inadequate. In this paper, we present an
efficient timing-driven global routing algorithm with buffer
insertion. Our approach is capable of applying
topological-based timing optimization and buffer insertion
simultaneously with routablity considerations. Compared with
previous works, we efficiently solve the timing issues under a
limited buffer usage. The experimental results have
demonstrated significant delay improvement within short
runtime with very small number of buffers inserted.

I. INTRODUCTION
Global routing is an important stage in VLSI physical design. In

the past, congestion was the major concern in global routing. With
the exponential reduction in scaling of feature size, higher
performance design brings substantial advantage over the
competition and interconnect becomes a performance bottleneck.
In many systems designed today, as much as 50% of the clock
cycle is consumed by interconnect delay. As technology advances
scale device dimensions, the significance of interconnect delay is
expected to increase further in the future. Therefore, timing
optimization becomes a crucial task of global routing in order to
maximize the overall chip performance.

To deal with this trend, many helpful researches have been
performed on timing-driven global routing[1-3]. Most of these
works are based on topology optimization. In deep submicron era,
with the dramatic increase in chip density, the connections between
the component modules constitute a directed acyclic graph, and
signals need to meet a large number of timing constraints. Merely
adopting topology optimization technique becomes inadequate.

Buffer insertion is an effective technique for reducing
interconnect delay in both theory and practice. Several works
studied delay-driven buffer insertion for 2-pin nets [4-5]. For
buffer placement in distributed RC trees, Van Ginneken [6]
proposed a classic dynamic programming (DP) algorithm. It has
since been generalized to other applications---low power [7], wire
segmenting[8], noise optimization[9], buffered Steiner tree
construction, etc. Most of these previous works targeted earlier
design stages such as floorplanning and placement, where a large
number of buffer resources are available and the final buffer
solution is always assumed to be feasible for later design phases.
Therefore, such approaches focus on finding the ideal buffer
location precisely with a considerable number of buffers used.

Since global routing is performed on fixed placement, a large
buffer usage is likely to bring disadvantages: first, it adds to the

∗ This work was supported in part by the NSFC under Grant No.60373012,
the SRFDP of China under Grant No.20020003008, and the Hi-Tech
Research and Development (863) Program of China under Grant
No.2004AA1Z1050.

difficulty of ECO placement for realizing those buffer locations;
second, with routablity considerations, it is hard to achieve
routablity/timing solution convergence because lots of routing
resources being occupied by buffers increases congestion. Further,
most earlier approaches either operate on individual routing trees,
or are time consuming to achieve a feasible global buffering.

Facing these problems, the designers naturally desire a buffer
solution consuming less buffer resources while efficiently solves
the timing issues. In this paper, we present an efficient global
routing algorithm with buffer insertion. We conduct global
buffering in two iterative steps: selecting timing-critical nets and
finding buffer location for each single net. In the first step, we
compute timing/congestion information and find nets which have
greatest impact on circuit timing, while the routing tree selected for
buffer insertion is of minimal cost of routablity deterioration. In the
second step, we restrict one net to be inserted with one buffer such
that buffers are distributed to as many critical nets to benefit as
many delay paths as possible in the network. We then derive some
new properties to explore the optimal location for single buffer
insertion for a multi-sink RC tree structure. Our work has the
following contributions.
z Different from existing ones, our approach is capable of

applying topological-based timing optimization and buffer
insertion simultaneously with routablity considerations.

z Our approach handles nets simultaneously and reduces buffer
usage greatly. Taking circuit timing as a whole, our approach
can lead to maximal delay/congestion tradeoff with minimal
number of buffers inserted.

Our experiments have demonstrated significant delay
improvement within short runtime. A network of about 20000
multi-pin nets takes less than 100 seconds to complete the
routablity/timing optimization with buffer insertion.

The remainder of this paper is organized as follows. Section 2
introduces the delay models and defines the problem. Section 3
presents theoretical properties that determine the appropriate
location for buffer insertion. Section 4 describes our global routing
algorithm with efficient buffer insertion. We present experimental
results in Section 5 and summarize in Section 6.

II. PRELIMINARIES
A. Delay Models

The analytical Elmore delay and Sakurai’s heuristic delay
formula [10] have been widely used in delay estimation. In Elmore
delay, the basic model for wiring is modeled as a voltage source
with the on-resistance of the transistor Rs, distributed RC lines of
resistance re, capacitance ce, and loading capacitance Cz. Sakurai
[10] also gave delay calculations for the distributed RC line.
Rewrite these delay forms into a uniform expression. We have,

zeeezesDZ CrcrCcRT βαβ +++=)((1)
For 63.2% threshold Elmore delay, α =0.5 and β = 1.0; for 90%
threshold Elmore delay, α =1.15 and β = 2.3; for 90% threshold
Sakurai delay, α =1.02 and β = 2.21. As in most previous work, we

24490-7803-8834-8/05/$20.00 ©2005 IEEE.

use the RC model for buffers. Buffer consists of three element,
intrinsic delay db, output resistance rb and input capacitance cb.
B. Problem Formulation

In global routing graph (GRG)[3] G = (V, E), each GRG edge is
associated with a number called edge capacity, which indicates the
available tracks between two adjacent vertices. Each output port pi
has a required arrival time RAT(pi). For the circuit to function
properly, we must have Delay(pi)≤RAT(pi) for every pi∈PO, where
PO is the set of circuit output ports and Delay(pi) denotes the delay
of pi from corresponding input port of the circuit. Thus, the
timing-driven global routing problem can be formulated as follows.
Minimize max pi∈PO (Delay(pi)-RAT(pi))

Subject to ∑
=

≤=
nN

i
jijj cuf

1

bufferbuffer AVM ≤

where




=
elsewise

eedgepassesnnetwhen
u ji

ij ,0

,1

Let Nn be the number of nets within a design and fj the total
demand of the nets using edge ej. fj should be no greater than the
edge capacity cj. Mbuffer denotes the number of buffers inserted and
AVbuffer is the number of available buffers. In practice, AVbuffer is
usually between 10%-20% of the number of the cells.

III. OPTIMAL BUFFER INSERTION FOR SINGLE NET
To minimize the buffer usage, we conduct global buffering in

two iterative steps. In this section, we first try to find the optimal
buffer location for a given signal net under one buffer restriction.
In section 4, we then discuss how to obtain a reasonable global
buffering with maximal delay/congestion tradeoff.
A. Buffer Insertion for 2-Pin Nets

Theorem 1 Given a 2-pin net with source s and sink t connected
by a single wire, the optimal location for the placement of a buffer

b on the wire is at distance () ()
rc

rclrRccCr
x bsbt

α
αββ

4
2+−−−

=

from the source.
We omit the proof due to space limitation.
Corollary 1 Given a 2-pin net with source s and sink t

connected by a single wire and a buffer b that Ct=cb and Rs=rb, it is

worthwhile to insert b if and only if
rc

dcRl bbs

α
β)(2 +

> . The

optimal location for insertion is at distance x=l/2 from the source.
Corollary 1 can be obtained by applying Theorem 1 with Ct=cb

and Rs=rb. For 63.2% threshold Elmore delay, C. Alpert et al [8]

has proved that the threshold length is
rc

dcR
l bbs +
> 2 .

Substituting α =0.5 and β = 1.0 into Corollary 1, the result exactly
corresponds with their solution.
B. Buffer Insertion for Multi-Sink Nets

Previous theoretical results for optimal buffer insertion are based
on 2-pin wires. Van Ginneken’s algorithm can be used to compute
buffer solution for multi-sink RC trees, while the DP formulation is
quadratic in time and space usage and limited to inserting buffers
at tree vertices. We derive new properties to explore the optimal
buffer insertion for a multi-sink RC tree. Although these analytical
results target the case of “one net one buffer”, they are very helpful
in finding provably good buffer solution under small buffer usage.
Fig.1(a) illustrates the case, where T denotes the buffer location.

To tackle the optimal location, we transform the tree structure

into a branched path structure from source s to the critical sink t
(Fig.1(b)). We denote the total capacitance of each branch on the
path as C1, C2, ... ,Cn with coordinates x1, x2, ..., xn. Let Cll be the
summation of branch capacitances after insertion point T and load
capacitance of critical sink Ct. Then the load capacitance of T is
given by llT CcxlC +−=)(, where l is the length of the s-t path.

Theorem 2 Given the tree structure of a multi-sink net with
source s and critical sink t, the optimal location for the placement
of a buffer b on the tree is on the path from s to t at distance

rc
crRcClcrx bsbll

2
)()(−−−+

= from s, where
t

xx
ill CCC

i

+= ∑
<

, or

on a branching point u of branches incident on the path from s to t
which yields maximum)()(

),(
b

uspathxy
uxybus cCrlcCR −+− ∑

∈

ββ , where

Cu is the total capacitance of the branch.
Proof: we conduct the proof in two steps. In step1, we prove

that the optimal location should be either on the path from s to t
defined above, or on one of the branching points to decouple the
branch. Then, we prove the optimal location given by Theorem2.

Step1. We partition all the nodes of the tree into three groups
according to their locations and analyze the impact of buffer on
their delays respectively.

Group1: nodes that are in the upstream of insertion point T, and
not on the path from s to t, such as node v in Fig.1(b). We first find
the intersection of branch containing v with the s-t path and denote
it as u’ (in Fig.1(b) u = u’). According to (1), after buffer is inserted,
the terms that can be eliminated from the delay expression of v are:

∑
′∈

+ +=∆
)u,(spathxy

TxyTs CrlCR ββ (2)

The terms that should be added are:
∑

′∈
− +=∆

)u,(spathxy
bxybs crlcR ββ (3)

Group2: nodes that are in the upstream of insertion point T, and
on the path from s to t, such as node u in Fig.1(b). According to (1),
the delay variation of node u is also given by (2) and (3).

Group3: nodes that are in the downstream of insertion point T,
such as the critical sink t in Fig.1(b). After buffer is inserted, the
terms that can be eliminated from the delay expression of t are:

∑
∈

+ +=∆
),(Tspathxy

TxyTs CrlCR ββ (4)

The terms that should be added are:
∑

∈
− +++=∆

),(Tspathxy
bxybTbbs crldCrcR βββ (5)

Suppose the optimal buffer location for critical sink is on the
branch other than on the path. We illustrate the case in Fig.1(b) by
taking v as critical sink instead of t, so that the path from s to v is
the main path. After a buffer is inserted on the branch, the delay
variation of v is given by (2) and (3). Since u’ is fixed, ∆_ is a
constant. Only CT in (2) is a variable. To maximize (2), we should
maximize CT. It is clear that the insertion point T should be moved

s

T

Buffer

db

v

u

t

x

s T

Buffer

db

v

u

l

t

C1 C2 C3 C4

(a) (b)
Figure 1. Insert a buffer into a multi-sink net (a) The original tree
structure, (b) Transform the tree structure into a multi-branched path

2450

to u, which is on the branching point. From (2) and (3), the
maximum delay reduction is)()(

),(
b

uspathxy
uxybus cCrlcCR −+− ∑

∈

ββ ,

where Cu is the total capacitance of the branch. Thus we can
determine the optimal branching point for buffer placement.

Step2. Suppose the delay of sink t before and after buffer
insertion is D and D’, respectively. According to (4) and (5),

[]ll
Tspathxy

xybs CcxlrlrRDD +−







+−=′− ∑

∈

)()(
),(

ββ

0)(
),(

>++− ∑
∈ Tspathxy

bxybbs crldcR ββ (6)

Substituting ∑
∈

=
),(Tspathxy

xylx into (6), setting the derivative of D-D’

with respect to x to 0 and solving for x yields

⇒=
′− 0)(

dx
DDd

rc
crRcClcrx bsbll

2
)()(−−−+

= (7)

For each sub region [xi, xi+1] bounded by two adjacent branches,
the candidate optimal x can be obtained by (7)(if x does not fall
into the region, assign one of the two terminals xi, xi+1 that is nearer
to x as the candidate location). The one yielding maximum delay
reduction on the s-t path is then compared with the optimal
branching point to determine the final location for insertion.

IV. GLOBAL ROUTING WITH EFFICIENT BUFFER INSERTION
In global interconnect, simply buffering each routing tree will be

extremely wasteful in terms of buffers used. To characterize the
timing of the whole circuit to determine where and how to do
buffer insertion remains a complicated problem. In this section, we
first review the critical network concept[11] which has shown to be
efficient in characterizing the most crucial parts of the circuit.
Following this concept, we then present a global routing algorithm
with efficient buffer insertion.
A. Review of the Critical Network Concept

In a circuit, the timing arcs between the component modules
constitute a directed acyclic graph. If we treat all the input and
output pins of cells as vertices and timing arcs between them as
edges, with a virtual primary source s and a sink t added, the
transmission network can be represented by a 5-tuple N=(V, E, w, s,
t), where edge weight w denotes the delay of the arc. Each vertex k
in the network has a required arrival time RAT(k) and an actual
arrival time tE(k). Given a vertex i∈V, i is called a critical vertex if
tE(i) > RAT(i). Given an edge (i,k)∈E, (i,k) is called a critical edge
if tE(i) + delay(i,k) > RAT(k). TL is the maximum timing constraint
of the circuit, while the actual arrival time TE of the primary sink
determines the circuit speed. For output ports with different timing
constraints, the weight of edge connecting the primary sink and
each output port can be defined.

If TE > TL, there exist a network N’ = (V’, E’, w, s, t) consisting
of and only consisting of critical vertices and critical edges. N’ is
called a critical network, where V’ is the set of critical vertices and
E’ is the set of critical edges. Critical network has following
advantages. First, it precisely describes the parts of the circuit that
have crucial impact on circuit delay, avoiding the combinational
explosion problem caused by enumeration of all the delay paths.
Second, critical network dynamically reflects the change of timing
criticality to guide optimization such as rip-up and buffer insertion.
B. The Buffer-Insertion Global Routing Algorithm

To achieve a feasible global buffering, we want to place less
buffers to gain as much delay reduction as possible. According to
Max-flow Min-cut theorem[12], given a cut C of a network, every

directed path from primary source s to primary sink t passes
through at least one edge in C. While in the critical network, every
edge on the cut turns out to be a critical edge. Therefore reducing
the delay of every edge on a cut leads to an overall delay reduction
of circuit. To take account of routablity, we modify the edge weight
w to be a delay improvement cost function and construct a new
critical network N’’ = (V’, E’, w’, s, t). Edge weight w’ indicates the
cost of routablity deterioration per unit delay improvement. Clearly,
a min-cut of N’’ corresponds to a set of nets that have maximal
delay/congestion tradeoff after rerouting. To guarantee maximum
delay improvement of these nets, we compare the delay
performance of every historical routing tree obtained during
congestion optimization to determine an optimal delay tree for
each net in timing optimization.

The algorithm takes three major operations to evaluate the delay
improvement cost for ∀e∈E’: 1) compute the routablity
deterioration cost 2) determine the optimal delay tree 3) compute
delay improvement cost.
(1) Routablity Deterioration Cost

Given a net that contains one or more edges on the cut of N’, a
candidate solution set S is built and inserted with all the historical
routing trees ever obtained by the net. For each tree in S, we
evaluate its congestion impact on the overall solution as
corresponding routablity deterioration cost. For each GRG edge si
that the tree passes, the increase of congestion overflow after
adding a unit edge usage is computed. The summation of overflow
increase on all the edges passed by the tree turns out to be the
routablity deterioration cost.
(2) Determine Optimal Delay Tree

For each tree in S, we compute the number of critical and
non-critical sinks and sort them by negative slack from timing
constraints violation. We compare the delay performance of
candidate trees in terms of their critical sink delays. If delay
performance of two candidates is similar, non-critical sinks and the
congestion cost are then compared.
(3) Delay Improvement Cost

Suppose reroute a net with its optimal delay tree leads to delay
reduction ∆d(∆d>0 indicates a delay improvement), and congestion
reduction ∆c(∆c>0 indicates a routablity improvement). We
evaluate the delay improvement cost for each e∈ E’ as follows.
i) if current routing tree is the optimal delay tree, set w’ = 1, which

ALGORITHM BufferInsertion-GR
1. Evaluate timing and routability;
2. WHILE congested OR timing constraints violated DO
3. Congestion optimization;
4. Update timing information based on transmission queues;
5. WHILE timing constraints violated DO
6. Construct critical network N’=(V’, E’, w, s, t);
7. FOR each edge e∈ E’ DO
8. Find net i containing edge e;
10. Determine the optimal delay tree Ti of net i;
11. Set the improvement weight of the edge w’;
12. ENDFOR
13. N’’=(V’, E’, w’, s, t);
14. calculate the maximum flow and min-cut of N’’;
15. FOR each edge e on the min-cut DO
16. Find net i containing edge e;
17. Reroute net i with optimal delay tree Ti;
18. Insert a buffer on Ti;
19 Num_buffer = Num_buffer +1;
20. ENDFOR
21. ENDWHILE
22. ENDWHILE
ENDPROC

Figure 2. The global routing algorithm with Buffer Insertion

2451

means that simply rerouting will not improve delay whereas
buffer insertion is applicable.

ii) if ∆d>0 and ∆c>0, set w’ = 0, which means that rerouting will
improve timing and routablity simultaneously. if 0<∆d<δ, where
δ is a predefined small constant, a random disturbing is applied
to choose between current routing tree and optimal delay tree.

iii) if ∆d>0 and ∆c<0, set w’ = ∆c2/∆d, which means that rerouting
improves delay at the expense of routablity deterioration.
After above operations, we construct a new critical network N’’

= (V’, E’, w’, s, t) and compute the min-cut of N’’. For each edge
on the min-cut, we find corresponding net and reroute it with
optimal delay tree. Buffers are then inserted based on the
theoretical results presented in section 3. We restrict one net to be
inserted with one buffer such that buffers are distributed to as
many nets to benefit as many sinks as possible in the network. The
description of the algorithm is given in Fig.2.

V. EXPERIMENTAL RESULTS
We have implemented the timing-driven global routing

algorithm in C language and tested it on a Sun Enterprise 450
workstation. The MCNC (Microelectronics Center of North
Carolina) benchmarks are used in the experiments. Table.1
summarizes the benchmark data sets. The parameters(Table.2) are
based on 0.18 µm technology in [13]. The experiments compare
the circuit delay performance and running time of our algorithm
with the method proposed by [11], which adopts topological
optimization based on critical network concept. We will see that
with our efficient buffer insertion scheme, significant delay
improvement and runtime speedups can be achieved under very
small buffer usage. Table.3 shows the performance of the two
algorithms for 5 test cases. “TGR” indicates the solution obtained
by using method in [11] that applies topological optimization
merely, “buffer” indicates our global routing algorithm.

The test results are record by: 1) Max violation: the maximum
timing violation among the output ports of the circuit, or
equivalently, the maximum negative slack; 2) #buffer: the number
of buffers inserted by our algorithm; 3) #buffer / #cell: the ratio of
the number of buffers inserted to the total number of cells; 4)

Overflow edges: the number of congested GRG edges; 5) Runtime;
6) Wire length and 7) Wire length off: the wire length comparison
of the two algorithms.

We can see from Table.3 that our algorithm is capable of
dilivering a substantial delay reduction to satisfy the timing
constaints successfully. The number of buffers used is small with
respect to the number of cells. For large scale circuits, our
algorithm achieves extremely high tradeoff between the delay
reduction and buffer usage. The running time comparison of the
two algorithms is also given in Table.3. It is clear from the table
that our algorithm achieves speedups over method TGR.

Comparison on total wire length are given in the last two
columns of Table.3. We can see that the wire length performance of
the two algorithms is comparable. In some of the test cases, our
algorithm even achieves better wire length than TGR.

VI. CONCLUSIONS
In this paper, we propose a timing-driven global routing

algorithm based on critical network concept to obtain efficient
global buffer insertion. Our approach is capable of applying
topological-based timing optimization and efficient buffer insertion
simultaneously with routablity considerations. The experiments
have demonstrated significant delay improvement within short
runtime with very small number of buffers inserted.

REFERENCE
[1] X. L. Hong, T. X. Xue, J. Huang, C. K. Cheng, E. S. kuh, “TIGER: An

Efficient Timing-Driven Global Router for Gate Array and Standard
Cell Layout Design”, IEEE Trans. on CAD, 16(11): 1323-1330, 1997.

[2] J. Hu, S. S. Sapatnekar, “A Timing-constrained Algorithm for
Simultaneous Global Routing of Multiple Nets”, In: Proc. of
IEEE/ACM ICCAD, San Jose, CA, pp.99-103, 2000.

[3] T. Jing, X. L. Hong, J. Y. Xu, H. Y. Bao, C. K. Cheng, J. Gu, “UTACO:
A Unified Timing and Congestion Optimization Algorithm for
Standard Cell Global Routing”, IEEE Trans. on CAD, 2004, 23(3):
358-365.

[4] H. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
and buffer insertion with restrictions on buffer locations”, in Proc.
ACM/IEEE DAC, 1999, pp. 96–99.

[5] M. Lai and D. F. Wong, “Maze routing with buffer insertion and
wiresizing”, in: Proc. ACM/IEEE DAC, 2000, pp. 374–378.

[6] L. P. P. P. van Ginneken, “Buffer Placement in Distributed RC-tree
Networks for Minimal Elmore Delay," in Proc. Int. Symposium on
Circuits and Systems, pp. 865-868, 1990.

[7] J. Lillis, C. K. Cheng and T. -T. Y. Lin, “Optimal wire sizing and
buffer insertion for low power and a generalized delay model”, IEEE
Trans. Solid-State Circuits, 31(3), 1996, 437-447.

[8] C. Alpert and A. Devgan, “Wire Segmenting for Improved Buffer
Insertion," in: Proc. ACM/IEEE DAC, pp. 588-589, 1997.

[9] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion for noise
and delay optimization”, in: Proc. DAC, 1998, pp. 362–367.

[10] Sacurai, T., “Approximation of Wiring Delay in MOSFET LSI”, IEEE
J. of Solid-State Circuits, 1983, 18(4): 418-426.

[11] T. Jing, X. L. Hong, H. Y. Bao et al “A Novel and Efficient
Timing-Driven Global Router for Standard Cell Layout Design Based
on Critical Network Concept” in: Proc. IEEE ISCAS’02, I 165-I 168.

[12] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[13] Semiconductor Industry Association, National Technology Roadmap
for Semiconductors. San Jose, CA: SIA, 1997.

TABLE. 3 COMPARISON ON DELAY, ROUTABLITY AND RUNTIME PERFORMANCE
Max Violation(ns) Overflow

Edges Runtime (s) Wire Length(µm) Test
case TGR Buffer

#Buffer %#Buffer
/#Cell

TGR Buffer TGR Buffer TGR Buffer

%Wire
Length Off

C2 -0.6135 0.0672 42 7.1% 0 2 11.44 3.85 47143 47154 0.02%
C5 -0.3082 0.4154 36 2.3% 1 0 27.69 11.84 132423 134120 1.28%
C7 -2.2618 0.0929 76 3.5% 0 1 323.60 94.23 157106 157081 -0.02%

S13207 -0.1711 0.2775 89 2.1% 0 0 53.87 45.13 1031458 1032265 0.08%
Avq -3.3831 0.9034 36 0.2% 2 0 157.34 67.57 1369619 1343240 -1.93%

TABLE. 1 BENCHMARK DATA
Testcase #Nets #Cells #Grids

C2 745 590 9*11
C5 1764 1586 16*18
C7 2356 2150 16*18

S13207 4953 4267 24*26
AVQ 21851 22119 65*67

TABLE. 2 PARAMETER LIST
 Description Value
r Wire resistance per unit length(Ω/µm) 0.075
c Wire capacitance per unit length(fF/µm) 0.118
db Intrinsic buffer delay(ps) 36.4
cb Buffer capacitance(fF) 8.0
rb Buffer output resistance(Ω) 200
α Parameter in delay expression 1.02
β Parameter in delay expression 2.21

2452

	MAIN MENU
	Front Matter
	Table of Contents
	Session Chair Index
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

