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Abstract -- Timing optimization is an important goal of global 
routing in deep submicron era. To guarantee the timing 
performance of the circuit, merely adopting topology 
optimization becomes inadequate. In this paper, we present an 
efficient timing-driven global routing algorithm with buffer 
insertion. Our approach is capable of applying 
topological-based timing optimization and buffer insertion 
simultaneously with routablity considerations. Compared with 
previous works, we efficiently solve the timing issues under a 
limited buffer usage. The experimental results have 
demonstrated significant delay improvement within short 
runtime with very small number of buffers inserted. 
 

I. INTRODUCTION 
Global routing is an important stage in VLSI physical design. In 

the past, congestion was the major concern in global routing. With 
the exponential reduction in scaling of feature size, higher 
performance design brings substantial advantage over the 
competition and interconnect becomes a performance bottleneck. 
In many systems designed today, as much as 50% of the clock 
cycle is consumed by interconnect delay. As technology advances 
scale device dimensions, the significance of interconnect delay is 
expected to increase further in the future. Therefore, timing 
optimization becomes a crucial task of global routing in order to 
maximize the overall chip performance.  

To deal with this trend, many helpful researches have been 
performed on timing-driven global routing[1-3]. Most of these 
works are based on topology optimization. In deep submicron era, 
with the dramatic increase in chip density, the connections between 
the component modules constitute a directed acyclic graph, and 
signals need to meet a large number of timing constraints. Merely 
adopting topology optimization technique becomes inadequate. 

Buffer insertion is an effective technique for reducing 
interconnect delay in both theory and practice. Several works 
studied delay-driven buffer insertion for 2-pin nets [4-5]. For 
buffer placement in distributed RC trees, Van Ginneken [6] 
proposed a classic dynamic programming (DP) algorithm. It has 
since been generalized to other applications---low power [7], wire 
segmenting[8], noise optimization[9], buffered Steiner tree 
construction, etc. Most of these previous works targeted earlier 
design stages such as floorplanning and placement, where a large 
number of buffer resources are available and the final buffer 
solution is always assumed to be feasible for later design phases. 
Therefore, such approaches focus on finding the ideal buffer 
location precisely with a considerable number of buffers used.  

Since global routing is performed on fixed placement, a large 
buffer usage is likely to bring disadvantages: first, it adds to the 
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difficulty of ECO placement for realizing those buffer locations; 
second, with routablity considerations, it is hard to achieve 
routablity/timing solution convergence because lots of routing 
resources being occupied by buffers increases congestion. Further, 
most earlier approaches either operate on individual routing trees, 
or are time consuming to achieve a feasible global buffering.  

Facing these problems, the designers naturally desire a buffer 
solution consuming less buffer resources while efficiently solves 
the timing issues. In this paper, we present an efficient global 
routing algorithm with buffer insertion. We conduct global 
buffering in two iterative steps: selecting timing-critical nets and 
finding buffer location for each single net. In the first step, we 
compute timing/congestion information and find nets which have 
greatest impact on circuit timing, while the routing tree selected for 
buffer insertion is of minimal cost of routablity deterioration. In the 
second step, we restrict one net to be inserted with one buffer such 
that buffers are distributed to as many critical nets to benefit as 
many delay paths as possible in the network. We then derive some 
new properties to explore the optimal location for single buffer 
insertion for a multi-sink RC tree structure. Our work has the 
following contributions.  
z Different from existing ones, our approach is capable of 

applying topological-based timing optimization and buffer 
insertion simultaneously with routablity considerations. 

z Our approach handles nets simultaneously and reduces buffer 
usage greatly. Taking circuit timing as a whole, our approach 
can lead to maximal delay/congestion tradeoff with minimal 
number of buffers inserted. 

Our experiments have demonstrated significant delay 
improvement within short runtime. A network of about 20000 
multi-pin nets takes less than 100 seconds to complete the 
routablity/timing optimization with buffer insertion. 

The remainder of this paper is organized as follows. Section 2 
introduces the delay models and defines the problem. Section 3 
presents theoretical properties that determine the appropriate 
location for buffer insertion. Section 4 describes our global routing 
algorithm with efficient buffer insertion. We present experimental 
results in Section 5 and summarize in Section 6. 

II. PRELIMINARIES 
A. Delay Models 

The analytical Elmore delay and Sakurai’s heuristic delay 
formula [10] have been widely used in delay estimation. In Elmore 
delay, the basic model for wiring is modeled as a voltage source 
with the on-resistance of the transistor Rs, distributed RC lines of 
resistance re, capacitance ce, and loading capacitance Cz. Sakurai 
[10] also gave delay calculations for the distributed RC line. 
Rewrite these delay forms into a uniform expression. We have, 

zeeezesDZ CrcrCcRT βαβ +++= )(    (1) 
For 63.2% threshold Elmore delay, α =0.5 and β = 1.0; for 90% 
threshold Elmore delay, α =1.15 and β = 2.3; for 90% threshold 
Sakurai delay, α =1.02 and β = 2.21. As in most previous work, we 
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use the RC model for buffers. Buffer consists of three element, 
intrinsic delay db, output resistance rb and input capacitance cb. 
B. Problem Formulation 

In global routing graph (GRG)[3] G = (V, E), each GRG edge is 
associated with a number called edge capacity, which indicates the 
available tracks between two adjacent vertices. Each output port pi 
has a required arrival time RAT(pi). For the circuit to function 
properly, we must have Delay(pi)≤RAT(pi) for every pi∈PO, where 
PO is the set of circuit output ports and Delay(pi) denotes the delay 
of pi from corresponding input port of the circuit. Thus, the 
timing-driven global routing problem can be formulated as follows. 
Minimize  max pi∈PO (Delay(pi)-RAT(pi)) 
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Let Nn be the number of nets within a design and fj the total 
demand of the nets using edge ej. fj should be no greater than the 
edge capacity cj. Mbuffer denotes the number of buffers inserted and 
AVbuffer is the number of available buffers. In practice, AVbuffer is 
usually between 10%-20% of the number of the cells. 

III. OPTIMAL BUFFER INSERTION FOR SINGLE NET 
To minimize the buffer usage, we conduct global buffering in 

two iterative steps. In this section, we first try to find the optimal 
buffer location for a given signal net under one buffer restriction. 
In section 4, we then discuss how to obtain a reasonable global 
buffering with maximal delay/congestion tradeoff.  
A. Buffer Insertion for 2-Pin Nets 

Theorem 1 Given a 2-pin net with source s and sink t connected 
by a single wire, the optimal location for the placement of a buffer 

b on the wire is at distance ( ) ( )
rc

rclrRccCr
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α
αββ
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from the source. 
We omit the proof due to space limitation.  
Corollary 1 Given a 2-pin net with source s and sink t 

connected by a single wire and a buffer b that Ct=cb and Rs=rb, it is 

worthwhile to insert b if and only if 
rc

dcRl bbs

α
β )(2 +

> . The 

optimal location for insertion is at distance x=l/2 from the source.  
Corollary 1 can be obtained by applying Theorem 1 with Ct=cb 

and Rs=rb. For 63.2% threshold Elmore delay, C. Alpert et al [8] 

has proved that the threshold length is 
rc

dcR
l bbs +
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Substituting α =0.5 and β = 1.0 into Corollary 1, the result exactly 
corresponds with their solution. 
B. Buffer Insertion for Multi-Sink Nets 

Previous theoretical results for optimal buffer insertion are based 
on 2-pin wires. Van Ginneken’s algorithm can be used to compute 
buffer solution for multi-sink RC trees, while the DP formulation is 
quadratic in time and space usage and limited to inserting buffers 
at tree vertices. We derive new properties to explore the optimal 
buffer insertion for a multi-sink RC tree. Although these analytical 
results target the case of “one net one buffer”, they are very helpful 
in finding provably good buffer solution under small buffer usage. 
Fig.1(a) illustrates the case, where T denotes the buffer location.  

To tackle the optimal location, we transform the tree structure 

into a branched path structure from source s to the critical sink t 
(Fig.1(b)). We denote the total capacitance of each branch on the 
path as C1, C2, ... ,Cn with coordinates x1, x2, ..., xn. Let Cll be the 
summation of branch capacitances after insertion point T and load 
capacitance of critical sink Ct. Then the load capacitance of T is 
given by llT CcxlC +−= )( , where l is the length of the s-t path. 

Theorem 2 Given the tree structure of a multi-sink net with 
source s and critical sink t, the optimal location for the placement 
of a buffer b on the tree is on the path from s to t at distance 
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on a branching point u of branches incident on the path from s to t 
which yields maximum )()(
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b
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Cu is the total capacitance of the branch. 
Proof: we conduct the proof in two steps. In step1, we prove 

that the optimal location should be either on the path from s to t 
defined above, or on one of the branching points to decouple the 
branch. Then, we prove the optimal location given by Theorem2.  

Step1. We partition all the nodes of the tree into three groups 
according to their locations and analyze the impact of buffer on 
their delays respectively.  

Group1: nodes that are in the upstream of insertion point T, and 
not on the path from s to t, such as node v in Fig.1(b). We first find 
the intersection of branch containing v with the s-t path and denote 
it as u’ (in Fig.1(b) u = u’). According to (1), after buffer is inserted, 
the terms that can be eliminated from the delay expression of v are: 

∑
′∈

+ +=∆
)u,(spathxy

TxyTs CrlCR ββ    (2) 

The terms that should be added are:  
∑

′∈
− +=∆

)u,(spathxy
bxybs crlcR ββ    (3) 

Group2: nodes that are in the upstream of insertion point T, and 
on the path from s to t, such as node u in Fig.1(b). According to (1), 
the delay variation of node u is also given by (2) and (3). 

Group3: nodes that are in the downstream of insertion point T, 
such as the critical sink t in Fig.1(b). After buffer is inserted, the 
terms that can be eliminated from the delay expression of t are: 

∑
∈

+ +=∆
),( Tspathxy

TxyTs CrlCR ββ    (4) 

The terms that should be added are:  
∑

∈
− +++=∆

),( Tspathxy
bxybTbbs crldCrcR βββ  (5) 

Suppose the optimal buffer location for critical sink is on the 
branch other than on the path. We illustrate the case in Fig.1(b) by 
taking v as critical sink instead of t, so that the path from s to v is 
the main path. After a buffer is inserted on the branch, the delay 
variation of v is given by (2) and (3). Since u’ is fixed, ∆_ is a 
constant. Only CT in (2) is a variable. To maximize (2), we should 
maximize CT. It is clear that the insertion point T should be moved 
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Figure 1. Insert a buffer into a multi-sink net (a) The original tree 
structure, (b) Transform the tree structure into a multi-branched path 
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to u, which is on the branching point. From (2) and (3), the 
maximum delay reduction is )()(

),(
b
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uxybus cCrlcCR −+− ∑

∈

ββ , 

where Cu is the total capacitance of the branch. Thus we can 
determine the optimal branching point for buffer placement. 

Step2. Suppose the delay of sink t before and after buffer 
insertion is D and D’, respectively. According to (4) and (5), 
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Substituting ∑
∈

=
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xylx into (6), setting the derivative of D-D’ 

with respect to x to 0 and solving for x yields 
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For each sub region [xi, xi+1] bounded by two adjacent branches, 
the candidate optimal x can be obtained by (7)(if x does not fall 
into the region, assign one of the two terminals xi, xi+1 that is nearer 
to x as the candidate location). The one yielding maximum delay 
reduction on the s-t path is then compared with the optimal 
branching point to determine the final location for insertion. 

IV. GLOBAL ROUTING WITH EFFICIENT BUFFER INSERTION 
In global interconnect, simply buffering each routing tree will be 

extremely wasteful in terms of buffers used. To characterize the 
timing of the whole circuit to determine where and how to do 
buffer insertion remains a complicated problem. In this section, we 
first review the critical network concept[11] which has shown to be 
efficient in characterizing the most crucial parts of the circuit. 
Following this concept, we then present a global routing algorithm 
with efficient buffer insertion. 
A. Review of the Critical Network Concept 

In a circuit, the timing arcs between the component modules 
constitute a directed acyclic graph. If we treat all the input and 
output pins of cells as vertices and timing arcs between them as 
edges, with a virtual primary source s and a sink t added, the 
transmission network can be represented by a 5-tuple N=(V, E, w, s, 
t), where edge weight w denotes the delay of the arc. Each vertex k 
in the network has a required arrival time RAT(k) and an actual 
arrival time tE(k). Given a vertex i∈V, i is called a critical vertex if 
tE(i) > RAT(i). Given an edge (i,k)∈E, (i,k) is called a critical edge 
if tE(i) + delay(i,k) > RAT(k). TL is the maximum timing constraint 
of the circuit, while the actual arrival time TE of the primary sink 
determines the circuit speed. For output ports with different timing 
constraints, the weight of edge connecting the primary sink and 
each output port can be defined.  

If TE > TL, there exist a network N’ = (V’, E’, w, s, t) consisting 
of and only consisting of critical vertices and critical edges. N’ is 
called a critical network, where V’ is the set of critical vertices and 
E’ is the set of critical edges. Critical network has following 
advantages. First, it precisely describes the parts of the circuit that 
have crucial impact on circuit delay, avoiding the combinational 
explosion problem caused by enumeration of all the delay paths. 
Second, critical network dynamically reflects the change of timing 
criticality to guide optimization such as rip-up and buffer insertion.  
B. The Buffer-Insertion Global Routing Algorithm 

To achieve a feasible global buffering, we want to place less 
buffers to gain as much delay reduction as possible. According to 
Max-flow Min-cut theorem[12], given a cut C of a network, every 

directed path from primary source s to primary sink t passes 
through at least one edge in C. While in the critical network, every 
edge on the cut turns out to be a critical edge. Therefore reducing 
the delay of every edge on a cut leads to an overall delay reduction 
of circuit. To take account of routablity, we modify the edge weight 
w to be a delay improvement cost function and construct a new 
critical network N’’ = (V’, E’, w’, s, t). Edge weight w’ indicates the 
cost of routablity deterioration per unit delay improvement. Clearly, 
a min-cut of N’’ corresponds to a set of nets that have maximal 
delay/congestion tradeoff after rerouting. To guarantee maximum 
delay improvement of these nets, we compare the delay 
performance of every historical routing tree obtained during 
congestion optimization to determine an optimal delay tree for 
each net in timing optimization.  

The algorithm takes three major operations to evaluate the delay 
improvement cost for ∀e∈E’: 1) compute the routablity 
deterioration cost 2) determine the optimal delay tree 3) compute 
delay improvement cost. 
(1) Routablity Deterioration Cost 

Given a net that contains one or more edges on the cut of N’, a 
candidate solution set S is built and inserted with all the historical 
routing trees ever obtained by the net. For each tree in S, we 
evaluate its congestion impact on the overall solution as 
corresponding routablity deterioration cost. For each GRG edge si 
that the tree passes, the increase of congestion overflow after 
adding a unit edge usage is computed. The summation of overflow 
increase on all the edges passed by the tree turns out to be the 
routablity deterioration cost. 
(2) Determine Optimal Delay Tree 

For each tree in S, we compute the number of critical and 
non-critical sinks and sort them by negative slack from timing 
constraints violation. We compare the delay performance of 
candidate trees in terms of their critical sink delays. If delay 
performance of two candidates is similar, non-critical sinks and the 
congestion cost are then compared. 
(3) Delay Improvement Cost 

Suppose reroute a net with its optimal delay tree leads to delay 
reduction ∆d(∆d>0 indicates a delay improvement), and congestion 
reduction ∆c(∆c>0 indicates a routablity improvement). We 
evaluate the delay improvement cost for each e∈ E’ as follows.  
i) if current routing tree is the optimal delay tree, set w’ = 1, which 

ALGORITHM BufferInsertion-GR 
1. Evaluate timing and routability; 
2. WHILE congested OR timing constraints violated DO 
3.  Congestion optimization; 
4.  Update timing information based on transmission queues; 
5.  WHILE timing constraints violated DO 
6.   Construct critical network N’=(V’, E’, w, s, t); 
7.   FOR each edge e∈ E’ DO 
8.    Find net i containing edge e;  
10.    Determine the optimal delay tree Ti of net i; 
11.    Set the improvement weight of the edge w’; 
12.   ENDFOR 
13.   N’’=(V’, E’, w’, s, t); 
14.   calculate the maximum flow and min-cut of N’’; 
15.   FOR each edge e on the min-cut DO 
16.    Find net i containing edge e; 
17.    Reroute net i with optimal delay tree Ti; 
18.    Insert a buffer on Ti; 
19    Num_buffer = Num_buffer +1; 
20.   ENDFOR 
21.  ENDWHILE 
22. ENDWHILE  
ENDPROC 

Figure 2. The global routing algorithm with Buffer Insertion 
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means that simply rerouting will not improve delay whereas 
buffer insertion is applicable. 

ii) if ∆d>0 and ∆c>0, set w’ = 0, which means that rerouting will 
improve timing and routablity simultaneously. if 0<∆d<δ, where 
δ is a predefined small constant, a random disturbing is applied 
to choose between current routing tree and optimal delay tree.  

iii) if ∆d>0 and ∆c<0, set w’ = ∆c2/∆d, which means that rerouting 
improves delay at the expense of routablity deterioration. 
After above operations, we construct a new critical network N’’ 

= (V’, E’, w’, s, t) and compute the min-cut of N’’. For each edge 
on the min-cut, we find corresponding net and reroute it with 
optimal delay tree. Buffers are then inserted based on the 
theoretical results presented in section 3. We restrict one net to be 
inserted with one buffer such that buffers are distributed to as 
many nets to benefit as many sinks as possible in the network. The 
description of the algorithm is given in Fig.2. 

V. EXPERIMENTAL RESULTS 
We have implemented the timing-driven global routing 

algorithm in C language and tested it on a Sun Enterprise 450 
workstation. The MCNC (Microelectronics Center of North 
Carolina) benchmarks are used in the experiments. Table.1 
summarizes the benchmark data sets. The parameters(Table.2) are 
based on 0.18 µm technology in [13]. The experiments compare 
the circuit delay performance and running time of our algorithm 
with the method proposed by [11], which adopts topological 
optimization based on critical network concept. We will see that 
with our efficient buffer insertion scheme, significant delay 
improvement and runtime speedups can be achieved under very 
small buffer usage. Table.3 shows the performance of the two 
algorithms for 5 test cases. “TGR” indicates the solution obtained 
by using method in [11] that applies topological optimization 
merely, “buffer” indicates our global routing algorithm.  

The test results are record by: 1) Max violation: the maximum 
timing violation among the output ports of the circuit, or 
equivalently, the maximum negative slack; 2) #buffer: the number 
of buffers inserted by our algorithm; 3) #buffer / #cell: the ratio of 
the number of buffers inserted to the total number of cells; 4) 

Overflow edges: the number of congested GRG edges; 5) Runtime; 
6) Wire length and 7) Wire length off: the wire length comparison 
of the two algorithms.  

We can see from Table.3 that our algorithm is capable of 
dilivering a substantial delay reduction to satisfy the timing 
constaints successfully. The number of buffers used is small with 
respect to the number of cells. For large scale circuits, our 
algorithm achieves extremely high tradeoff between the delay 
reduction and buffer usage. The running time comparison of the 
two algorithms is also given in Table.3. It is clear from the table 
that our algorithm achieves speedups over method TGR.  

Comparison on total wire length are given in the last two 
columns of Table.3. We can see that the wire length performance of 
the two algorithms is comparable. In some of the test cases, our 
algorithm even achieves better wire length than TGR. 

VI. CONCLUSIONS 
In this paper, we propose a timing-driven global routing 

algorithm based on critical network concept to obtain efficient 
global buffer insertion. Our approach is capable of applying 
topological-based timing optimization and efficient buffer insertion 
simultaneously with routablity considerations. The experiments 
have demonstrated significant delay improvement within short 
runtime with very small number of buffers inserted. 
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TABLE. 3  COMPARISON ON DELAY, ROUTABLITY AND RUNTIME PERFORMANCE  
Max Violation(ns) Overflow 

Edges Runtime (s) Wire Length(µm) Test 
case TGR  Buffer

#Buffer %#Buffer 
/#Cell 

TGR Buffer TGR Buffer TGR Buffer

%Wire 
Length Off

C2 -0.6135 0.0672 42 7.1% 0 2 11.44 3.85 47143 47154 0.02% 
C5 -0.3082 0.4154 36 2.3% 1 0 27.69 11.84 132423 134120 1.28% 
C7 -2.2618 0.0929 76 3.5% 0 1 323.60 94.23 157106 157081 -0.02% 

S13207 -0.1711 0.2775 89 2.1% 0 0 53.87 45.13 1031458 1032265 0.08% 
Avq -3.3831 0.9034 36 0.2% 2 0 157.34 67.57 1369619 1343240 -1.93% 

TABLE. 1  BENCHMARK DATA 
Testcase #Nets #Cells #Grids 

C2 745 590 9*11 
C5 1764 1586 16*18 
C7 2356 2150 16*18 

S13207 4953 4267 24*26 
AVQ 21851 22119 65*67 

TABLE. 2  PARAMETER LIST 
 Description Value 
r Wire resistance per unit length(Ω/µm) 0.075 
c Wire capacitance per unit length(fF/µm) 0.118 
db Intrinsic buffer delay(ps) 36.4 
cb Buffer capacitance(fF) 8.0 
rb Buffer output resistance(Ω) 200 
α Parameter in delay expression 1.02 
β Parameter in delay expression 2.21 
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