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ABSTRACT
Along with the progress of VLSI technology, buffer insertion plays
an increasingly critical role on affecting circuit design and perfor-
mance. Traditional buffer insertion algorithms are mostly net based
and therefore often result in sub-optimal delay or unnecessary buffer
expense due to the lack of global view. In this paper, we propose
a novel path based buffer insertion scheme which can overcome the
weakness of the net based approaches. We also discuss some po-
tential difficulties of the path based buffer insertion approach and
propose solutions to them. A fast estimation on buffered delay is
employed to improve the solution quality. Gate sizing is also con-
sidered at the same time. Experimental results show that our method
can efficiently reduce buffer/gate cost significantly (by 71% on aver-
age) when compared to traditional net based approaches. To the best
of our knowledge, this is the first work on path based buffer insertion
and simultaneous gate sizing.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids - Placement and Routing;
J.6 [Computer-aided Engineering]: Computer-aided Design

General Terms
Algorithms, Performance, Design

Keywords
Buffer Insertion, Interconnect Synthesis, Power Minimization, Global
Routing, Layout, Physical Design

1. INTRODUCTION
Buffer insertion is widely recognized as an essential technique for

interconnect optimization [7] while interconnect is a fundamental
limit [10] for VLSI technology progress. The importance of buffer
insertion has resulted in numerous algorithmic and methodologic
works. Perhaps the most influential work is the classic van Gin-
neken’s algorithm [12]. Given a Steiner tree spanning a signal net
and candidate buffer locations on the tree, van Ginneken’s dynamic
programming (VGDP) algorithm can find the maximum timing slack
solution optimally in quadratic time. This algorithm is extended to
handle buffer cost and buffer library in [18]. A wire segmenting
technique is suggested in [2] for generating candidate buffer loca-
tions. The noise avoidance issue is addressed in buffer insertion
in [3]. Higher order delay models are adopted in buffer insertion
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in [4]. For 2-pin nets, quadratic programming based approach [8]
and closed form buffering solutions are proposed in [2, 9, 11]. Re-
cently, an O(n log n) buffer insertion algorithm is developed [23].

Recently, an industry study [22] predicts that 35% of the cells on
a chip will be buffers at 65nm. The huge number of buffers may
affect various aspects of circuit design and performance including
timing [7], power dissipation [18], signal integrity [3], placement
and routing congestion [5, 22]. Therefore, buffer insertion needs to
be conducted in a more elaborated manner to push the envelope of
performance.

In fact, most of the previous works on buffer insertion are net
based, i.e., buffer insertion is performed on one net after another in-
dividually. Even though the buffer insertion problem with net based
formulations is relatively easy to solve, it may lead to sub-optimal
path delay or unnecessary buffer usage due to the lack of global view.
The weakness of net based buffer insertion can be illustrated through
a very simple example in Figure 1. Consider two nets A and B along
a critical path in the circuit. If we perform buffer insertion on net B
first, 4 buffers are needed on B and then no buffer is needed on A
for satisfying the critical path timing constraint. This is denoted by
solution S1. However, the constraint can also be satisfied by putting
1 buffer on both A and B, denoted as S2. Optimizing the entire path
may get a better solution and certainly can lead to a better deploy-
ment of buffering resources. Usually, net based dynamic program-
ming algorithms such as [18] do not have a global view, nets which
are processed first tend to over-consume buffer resources.

b

c
a

A
B

b

c
a

A
B

S1 S2

Figure 1: Net based buffer insertion solutions depend on net or-
dering.

Despite their current popularity, the net based buffer insertion meth-
ods, without global view of the whole combinational circuit, will
become inadequate for future technologies. In [19, 20], network
based buffer insertion algorithms are proposed. In these approaches,
buffer insertion is performed on all nets between PI/registers and reg-
isters/PO simultaneously through Lagrangian relaxation. However,
both works include a restrictive assumption that buffers are inserted
at every branch node to simplify the calculation of delay. In practice,
whether or not buffers are necessary at certain branch node depends
on timing constraints of related paths. Due to path re-convergence,
it is very difficult to perform network based buffer insertion without
the assumption. Although their works usually produces good results,
they do not scale very well. Indeed, in [20], the CPU time con-
sumption explodes for the larger testcases. When buffer insertion is
considered beyond the limit of nets or gates, it is natural to consider
gate sizing at the same time. In [14], a greedy heuristic on integrated
gate sizing and buffer insertion is proposed. However, it neglects
wire delays. The network based methods make severe oversimplifi-
cations in order to achieve a solution, such as ignoring wire delays
entirely. Our method takes advantage of some global optimization
without sacrificing any of the modeling accuracy that the net based
approaches provide.

In this paper, we propose a path based buffer insertion heuristic in
order to minimize buffer/gate cost subject to path timing constraints.
This approach is in the middle between net based and network based
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methods. However, it can achieve both better solution quality and
faster computation runtime. Since our path based approach can eas-
ily handle false paths, the solution quality can be much better than
network based methods. Besides, instead of relying solely on static
timing analysis, a fast estimation on buffered delay is applied on the
entire network so that a better global view is obtained. Our path
based buffer insertion algorithm is based on the VGDP algorithm
since it is robust and sophisticated enough to handle different in-
stances. However, directly using VGDP may induce problems and
we successfully solve those problems by a set of techniques such as
off-path required arrival time estimation and gate sizing at sinks. Ex-
perimental results show that the usage in buffer/gate cost is reduced
by 71% on average through our approach compared with traditional
net based algorithms. The runtime is also reasonably fast.

2. PROBLEM FORMULATION
A placed and routed circuit can be formulated as a directed acyclic

graph (DAG) G = (V,E). An example is shown in Figure 2. A vertex
v ∈ V can be either (1) a primary input (PI) / primary output (PO)
(e.g., nodes a and r in Figure 2(b)), or (2) a pin of a module (e.g.,
f and i), or (3) a Steiner node on the route (e.g., e, shown as double
circle in Figure 2(b)), or (4) a candidate buffer insertion location (not
shown in Figure 2(b)). An edge is either an interconnect wire (solid
line) or an input-to-output path (dotted line) within a module.

In this paper, interconnect wires are modeled as a distributed RC
network and we adopt the Elmore delay model. Thus, an interconnect
w is annotated by the corresponding resistance R(w) and capacitance
C(w). A buffer bi in the buffer library is defined by its load capaci-
tance C(bi), intrinsic delay T (bi) and output resistance R(bi), while
W (bi) represents the buffer cost which can be either buffer area or
power.

A module is identified by the delay Tj,i for each input-to-output
path, the capacitance Cj of the input pin and the resistance Ri of
the output pin. If xi is the size of the module, Cj = Ĉ jxi + f j and
Ri = R̂i/xi, where Ĉ j, R̂i, f j are the unit size output resistance, unit
size gate area capacitance and gate perimeter capacitance of the mod-
ule. In this paper, the size of each gate is selected from the set
S = {x1, ...,xn}. Each primary input is annotated with a user-defined
arrival time while each primary output a required arrival time.

There may exist buffer blockages in the floorplan, for example, the
shaded box in Figure 2(a). When a buffer insertion candidate location
overlaps with the region of the buffer blockages, it is restricted such
that no buffer can be placed. In other words, there exists no buffer
candidate location within the buffer blockage region.

Signal slew rate is also considered in our path based buffer inser-
tion algorithm. For a signal propagating along a wire, we employ a
simple metric of propagation slew = ln9 ·Elmore delay [7]. The
slew rate at the receiving end of a wire depends on both the propa-
gation slew rate and the launching slew rate at the driving end of the
wire and is given in [13] by

receiving slew =
√

launch slew2 + propagation slew2.
In our buffer insertion algorithm, any buffer solution with receiving slew
greater than a certain threshold will be discarded.

The problem of simultaneous gate sizing and buffer insertion
is defined as follows. Given a DAG which represents a placed and
routed combinational circuit, a buffer library, a set of buffer candi-
date locations, a set of buffer blockage regions, find a buffering solu-
tion such that the overall cost of buffers and gate sizes is minimized.
Buffering solution is in terms of the locations and types of buffers
inserted, and sizes of the gates. At the same time, the solution is sub-
ject to the constraint of both the arrival time at each primary input
and the required arrival time at each primary output as well as the
slew rate requirement.

As mentioned in Section 1, van Ginneken’s dynamic programming
(VGDP) approach is very flexible and efficient so that it can be eas-

ily applied to buffer blockage avoidance (by selectively setting candi-
date buffer locations) while considering buffer cost (i.e., area/power),
buffer polarity and slew rate [17]. In order to utilize the flexibility
and efficiency of VGDP, we intend to use net based buffer insertion
algorithm as a building block for path based buffer insertion. In this
way, we abstract the routing tree of the circuit and ignore all the de-
tails (i.e., Steiner node and interconnect tree structure, etc.) within
the routing tree. An example of our circuit model is shown in Fig-
ure 2(c). In our model, we abstract all interconnect routing so that
vertices only represent PI/PO of the circuit and input/output pins of
modules (we use this definition for vertex hereafter in this paper)
while edges only for input-to-output paths within a module. The
routing tree is identified by its root vertex. For example, the routing
tree RT (c) is rooted at vertex c and with sinks k and m. In a combi-
national circuit, the root of a routing tree is either a PI vertex or an
output pin of a module, while a sink is either a PO vertex or an input
pin of a module.

3. NET BASED BUFFER INSERTION
In this paper, we assume an efficient VGDP algorithm is given

such that it considers buffer blockage, buffer polarity, buffer
area/power and slew rate. For a routing tree, if the required arrival
time (RAT) at each sink vertex is given, VGDP algorithm traverses
every candidate buffer location vi of the tree in a bottom-up manner,
propagating a set of solutions in the form of (c,q,w) which stands for
downstream load capacitance, RAT, and total buffer cost respectively.
Each solution reflects the intermediate results of a buffering solution
on the subtree rooted at vi. When the propagation reaches the driver
(i.e., root vertex), a set of solution with different cost-RAT tradeoff is
obtained. If the arrival time (AT) at the root vertex is given, we pick
the solution with minimum buffer cost while timing requirement is
satisfied.

Conventionally, net based buffer insertion for the whole circuit is
accomplished by iteratively performing the following steps:

1. Static timing analysis (STA) and obtain the RAT and AT at
every vertex

2. Perform buffer insertion for a routing tree with the AT and RAT
obtained from STA (according to a specific net order. Discus-
sion of net order is in Section 6.)

3. Update STA results (of the fanin/fanout cone of the buffered
routing tree) and perform buffer insertion for the next routing
tree

However, this is in fact a greedy algorithm and in our experiment,
we found that the buffering solution of this approach is far from op-
timal even we let the iteration run unboundedly in order to refine the
buffering solution for buffer cost reduction. Our observation to the
problems of net based buffering include:

• STA is usually not buffer aware so the timing estimation at
the first iterations are inaccurate and the circuit is very timing
critical. Hence, the first processed nets tend to over-consume
buffer resources (the case of net B in S1 of Figure 1).

• Since the algorithm is in nature greedy and a poor buffering
decision to a routing tree RT (a) due to incorrect timing esti-
mation may lead to a poor buffering decision at other routing
trees RT (b) where b is a transitive fanin/fanout of a. Thus,
earlier buffering decision may have degraded the quality of the
whole buffering process, which cannot be improved in latter
iterations. This is especially true for those nets along a critical
path from PI to PO.

• Buffering solution of a routing tree is highly depending on the
criticality of the sinks, which in turn depends on buffering of
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(b) The corresponding DAG
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Figure 2: Example of combinational circuit models

their fanout routing tree. Therefore, the criticality can be sub-
stantially different from the results of STA due to buffer block-
ages, which brings significant error in final buffering solution.

4. PATH BASED BUFFER INSERTION
In this section, we propose our path based buffer insertion algo-

rithm (PBBI) as described in this section. The key elements of our
buffer insertion algorithm are (1) buffer aware static timing analy-
sis, (2) path based VGDP buffer insertion, and (3) off-path required
arrival time estimation.

Our algorithm starts with a buffer aware static timing analysis
which also takes care of buffer blockages. In such an approach, the
resultant AT and RAT is comparatively much more accurate than or-
dinary STA and we will not over-consume buffer resources even at
the very beginning. After that, a list of k most critical paths is ob-
tained accordingly. Then, VGDP is applied to the paths. In this
approach, the root and the sink along the path have a fixed AT and
RAT respectively, which in turn produces a relatively good buffering
solution. For all other sinks (namely the off-path sinks), we propose
an approach to adjust their RAT values to become more accurate and
then the RAT are fed into the VGDP algorithm.

4.1 Buffer Aware Static Timing Analysis
Critical path method is widely used as a tool for static timing anal-

ysis (STA) [21]. It propagates the static delay information through-
out the circuit. However, the delay along interconnect changes dur-
ing the process buffer insertion which is a main source of error of net
based buffer insertion algorithms, as mentioned in Section 1. A work
which predicts the post-buffering delay is in [6]. The work derives
delay equations along a buffered wire segment considering buffer
blockages and applies the equations for delay estimation upon multi-
pin nets. Experimental results show that the delay estimation merely
produces insignificant errors. Towards our problem, we verify in our
experiments that integrating this buffer aware delay estimation with
STA provides a good guide for buffer insertion using VGDP. With
buffer aware STA, early buffering step will not over-consume buffer
resource which trap the overall solution into a local optimum.

Buffer aware STA not only provides a good basis for VGDP al-
gorithm on a path, but it is also a crucial element of the whole path
based buffer insertion algorithm. For example, if we are perform-
ing buffer insertion on a critical path pc from PI to PO, it propagates
a set of solutions from the PO vertex with accurate RAT informa-
tion (since the RAT at PO is fixed by user specification). During the
propagation, there may exist some branch paths such that the RAT
of those paths is needed to compute the solution sets. In such a way,
if the RAT of branch paths is not accurate since STA is not aware of
buffering along those branches, VGDP may think that the branches
are more critical than pc, which destroys the solution quality of the
path based buffer insertion algorithm.

4.2 Path Based Buffer Insertion
In order to accomplish path based buffer insertion, a list of dis-

tinct paths must be first obtained. With the help of buffer aware
STA, k most critical paths can be found using a polynomial-time
algorithm in [15] (k can be changed during the progress of the al-
gorithm). The parameter k is a tradeoff between quality and speed
while k can be determined on the fly - stop finding the next criti-
cal path if the slack of the path is less than a specific value. Note
that the accuracy of our algorithm can also be improved when
false paths are detected and only sensitizable critical path are se-
lected. In the whole circuit, each routing tree have to be processed
once. Therefore, if the list of paths are overlapping with each other,
we delete the common vertices from the less-critical path and cut
it into different distinct paths. For example, if the 3 most criti-
cal paths in Figure 2(c) is {b,g, i,r};{a, f , i, j,o,s};{c,k,o,s}, af-
ter removing common vertices, the list of distinct paths becomes
{b,g, i,r};{a, f};{ j,o,s};{c,k}.

After getting a list of distinct paths, for each path, the algorithm
treats all routing trees along the path as one big routing tree. The
merging process is simple since the routing trees is cascaded together
such that the sink (an input pin of a module) along the path merges
into the root (an output pin of the same module) of the fanout routing
tree. The merged vertex is treated as a candidate buffer location such
that a special buffer must be inserted. The parameters of the special
buffer corresponds to the capacitance/delay/resistance of the pin-to-
pin path of the module. In Figure 2(c), the merged routing tree on the
path {b,g, i,r} consists of three sinks l, j,r rooted at b. g and i are
merged into one buffer location with a special buffer bs according to
input-to-output path of M1 (The delay model of a buffer is similar
to that of an input-to-output path of a module). After all, VGDP
algorithm is applied to the merged routing tree. After all paths have
been processed, there may exist some routing trees in which no buffer
insertion has been performed. They are all comparatively non-critical
and net based buffer insertion can be carried out for each of those
nets.

4.3 Off-Path Required Arrival Time Estima-
tion

Since the PBBI algorithm performs buffer insertion in a path-by-
path basis, the buffering solution may violate the timing constraints.
An example is shown in Figure 3. The straight line represents in-
put/output path within a module and dotted curly line stands for a
path. Assume that a is a PI vertex and z is a PO vertex and the algo-
rithm processes the path p1 = {a � g → h � p → r � z} prior to
another path p2 = {i � q}. When applying VGDP on the path p1,
actual buffering solution may reduce the delay along g → h � p to
a value which is less than our delay estimation using buffer aware
STA. Since the delay between a and z is bounded above by the an
user specified RAT and AT, the delay along the paths a � g and
r � z could be larger than our estimation. In such case, it could
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happen that even with the minimum-delay buffering along the path
i � q, the delay along p3 = {a � g → i � q → r � z} still violates
the timing constraint. After each time we perform path based buffer-
ing insertion along a path, the AT and RAT of fanin and fanout cone
for each vertex of the path are updated, so the only situation which
causes the problem is that there exists re-convergence along the path
we are performing buffer insertion. As in the previous example, we
are inserting buffer along the path p1, assuming that there exists a
path i � q in the list of distinct paths. The required arrival time of i
(denoted as RATi) does not reflect the buffering solution along r � z
since the final buffering solution is unknown until the whole path p1
is done. In this consideration, an equation for spreading out the slack
of a path to all the routing tree is needed, which is presented in The-
orem 1. In the following, we first derive the equation and revisit the
problem in the example at the end of this section.

a

g

h

i

p

q

r z
RT(g)

Figure 3: A problem of path based buffer insertion algorithm

Considering a circuit which only contains a cascade of two-pin
routing trees {RT (s1),RT(s2), ...,RT(sk)} as shown in Figure 4. For
each routing tree {RT (si)} with root si, the only sink is ti. With op-
timal buffering, we can find the minimum delay di for each RT (si).
And based on the minimum delay, for each si, ATsi and RATsi is prop-
agated from PI and PO respectively according to the user specified
timing constraint. Note that since the circuit is a sequence of 2-pin
net, the slack RATsi −ATsi must be the same for all si. If ATsi = RATsi ,
the circuit has zero slack and only the minimum-delay buffering so-
lution can fulfill the timing constraint. However, if slack> 0, dif-
ferent buffering with smaller buffer cost is possible. We can de-
note RATsi −ATsi as “useful slack” resource such that buffering al-
gorithm uses it to reduce the total buffer cost. Intuitively, since the
ratio of timing improvement to buffer cost is usually greatest around
the middle region of the cost-delay tradeoff curve, a buffering so-
lution for the whole circuit with minimum cost tends to spread the
“useful slack” to each RT (si). Based on a buffering solution B with
minimum cost, we can calculate the delay dB

i , AT B
si

and RAT B
si

for
each RT (si) accordingly. Note that AT B

s1
= ATs1 and RAT B

tk = RATtk .
Ideally, AT B

si
= RAT B

si
since the solution B would consume “useful

slack” completely.

s1

RT(s1)

t1 s2

RT(s2)

t2 sk

RT(sk)

tk
...

Figure 4: Example of a circuit for Theorem 1

The following theorem is to quantify the spreading of “useful slack”
and it matches with our experimental results of buffering for mini-
mum cost. We define the minimum delay to PO as delay to POBsi =
RAT B

tk −RAT B
si

with buffering solution B and delay to POsi = RATtk −
RATsi with optimal buffering solution for minimum delay.
Theorem 1 If the “useful slack” evenly distributes to every RT(si)
for i = 1, ...,k in a manner that delay to POBsi

delay to POsi
is a constant among all

si, then

RAT B
si

= RATsi −
(RATtk −RATsi)(RATtk −ATtk )

ATtk −ATs1

. (1)

Proof From the assumption that delay to POBsi
delay to POsi

is a constant, we have

RAT B
tk −RAT B

si

RATtk −RATsi

=
RAT B

tk −RAT B
s1

RATtk −RATs1

(2)

RATsi −RAT B
si

RATtk −RATsi

=
RATs1 −RAT B

s1

RATtk −RATs1

(3)

RATsi −RAT B
si

=
(RATtk −RATsi)(RATs1 −ATs1)

RATtk −RATs1

(4)

RATsi −RAT B
si

=
(RATtk −RATsi)(RATtk −ATtk)

RATtk −RATs1

(5)

RATsi −RAT B
si

=
(RATtk −RATsi)(RATtk −ATtk)

ATtk −ATs1

(6)

Equations (2)-(6) shows the derivation of Theorem 1. From (2) to
(3), we substitute RAT B

tk with RATtk and subtract 1 from both side.
(4) is based on the fact that RAT B

s1
= ATs1 with zero slack and (5) is

due to equal slack along the 2-pin routing trees. Finally, we have (6)
because RATtk −RATs1 = ATtk −ATs1 which is delay from s1 to tk. �

Theorem 1 provides a method for adjusting the required arrival
time of i in Figure 3 and the equation is shown in (7), where RATz is
the required arrival time at z and ATz is the arrival time at z based on
buffer aware STA. Although the slack RATz −ATz is due to the path
{a � g → h � p → r � z} which is less than the slack at i, we can
use RATz −ATz as a lower bound estimation. In such case, spreading
the value of RATz −ATz over path a � g → i � q → r � z gives a
good adjustment to RATi and make the sink i a little bit more critical
in the routing tree RT (g).

adjusted RATi = RATi − (RATz −RATi)(RATz −ATz)
ATz −ATa

(7)

5. PATH BASED BUFFER INSERTION AND
SIMULTANEOUS GATE SIZING

The framework of our PBBI algorithm provides us the flexibility
in integrating gate sizing into PBBI. It is due to the fact that when
we cascade several routing trees into one merged tree, input pin and
output pin of a module along the processing path is treated as one
single vertex v , which is a special candidate buffer location and a
buffer must be inserted at v while the resistance/delay/capacitance
characteristic of the buffer is derived from that of the module’s input-
to-output path. In this point of view, if we also consider gate sizing
with n choices of size, then we can derive n special buffers according
to the sizes. Thus, by restricting the VGDP algorithm to insert one
and only one buffer at v choosing from the n special buffers, path
based simultaneous buffer insertion and gate sizing is accomplished.

Indeed, treating the gate sizing as selecting a buffer from a buffer
library may cause error because a gate can have more than one input
and more than one output. When the algorithm changes the size of a
gate along a path, for those input pins and output pins which are not
along the path, their capacitance or resistance values change simulta-
neously without considering the impact resulted from the change.
However, such sacrifice helps maintaining the solution quality of
the processing path (which must be more critical than the unpro-
cessed paths) and we have verified this claim by our experimental
results such that the algorithm can substantially reduce overall area
of buffers and gates.

5.1 Gate Sizing at the Sinks
Along a path, using path based simultaneous buffer insertion and

gate sizing on the merged routing tree cannot solve the problem when
the root of the merged routing tree also need gate sizing. It is espe-
cially true when the root of the merged routing tree is an output pin
of a module. For example, in Figure 2(c), after we already finished
buffer insertion for the merged routing tree of RT (b) and RT (i), if we
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are processing the path {o,s}, the merged routing tree is just RT(o)
itself. In addition to applying VGDP to RT(o), we have to perform
gate sizing for the module m2 with pins { j,k,o}.

Sizing up a gate reduces the output resistance and so the delay is
reduced. At the same time, the input capacitance increases which in
turn raises the delay of upstream interconnect. Such delay increase
can be handled by adding a delay penalty when doing gate sizing as
proposed in [1]. However, the main problem about this issue is that
the increase in load capacitance may alter the other path delays of the
previously buffered routing tree. In the above example, if we size up
the module m2, the increase in input capacitance at j may increase
the downstream load capacitance of RT (i) and it may in turn increase
the delay along the path {i,r}.

In order to fix this problem, we perform gate sizing at all sinks of
the merged routing tree while we apply VGDP. If the sink vertex is
not a PO, and if the module at the sink is not sized previously, we
perform gate sizing for the module at the sink. At a sink s without
gate sizing, VGDP starts to propagate one solution with the corre-
sponding load capacitance, the required arrival time RATs, and zero
cost (which means no buffer has been inserted up to s). With gate
sizing at s, we propagate n solutions (n is the total number of dif-
ferent gate sizes), each of which have a scaled load capacitance, the
gate size as its cost, and an modified required arrival time RAT ′

s (xi).
Assume that the original output resistance of the gate is R0 and that
of a sized gate is Ri, while Rb and Cb is the output resistance and
input capacitance of the buffer used in buffer aware STA. For sim-
plicity, we assume that there is a linear relationship between the de-
lay change (RAT ′

s (xi)−RATs) and the change in resistance (Ri−R0).
Empirically, we found that (8) gives a good and effective calculation
for RAT ′

s (xi), where Lopt is the optimal buffer interval which is also
used in [6]. Intuitively, (Ri −R0)(LoptC +Cb) gives the change in
delay if there exists a buffer in the downstream of s while the length
between s and the buffer is Lopt .

RAT ′
s = RATs +(Ri −R0)(LoptC +Cb)

RAT ′
s = RATs +(Ri −R0)(

√
2RbCbC

R
+Cb) (8)

6. EXPERIMENTAL RESULTS
Circuit Size min D buf

circuit # mod # edge total # B can (ns) cost
a1 53 68 121 1449 10.5 204
a2 154 160 314 1880 20 274
a3 259 272 531 3190 21 484
a4 328 352 680 3897 26.5 592
a5 465 480 945 4316 43 645
a6 564 592 1156 6625 28.3 1009
a7 742 768 1510 6810 61.5 1033
a8 766 816 1582 8658 33 1314
a9 893 928 1821 8083 84 1238
a10 999 1072 2071 11623 54 1700
a11 1958 2136 4094 20432 105 2991
a12 2983 3120 6103 25738 122 3925

Table 1: Summary of testcases

We have implemented a very efficient VGDP buffer insertion al-
gorithm according to [16] which uses approximation techniques to
improve the efficiency. We have performed experiments on 12 com-
binational circuits which are randomly generated based on real nets
from IBM. For simplicity, buffer cost refers to the number of buffer
inserted, which approximately stands for buffer area. All experi-
ments are running on a Debian Linux machine with 2.4 GHz pro-
cessor and 1GB RAM. The size of each testcase is summarized in
Table 1. The first column refers to the number of modulus in the
circuit. The second one refers to the number of edges, which equals
the total number of sinks for all routing trees. The column “total” is
“mod”+“edge” which is a measure of the circuit size. “# B can” is
the total number of buffer candidate locations for each circuit. For
each net in the circuit, a minimum-delay buffer insertion algorithm

is applied, which gives the minimum achievable delay of the circuit.
The minimum delay in ns and the number of buffer inserted are listed
in the last two columns of Table 1.

6.1 Path Based Buffer Insertion
We first compare our PBBI algorithm with the net based buffer

insertion algorithm using the same implementation of VGDP. We set
the delay constraint of a circuit to be its minimum achievable delay
as reported in Table 1. For all the following comparisons between
VGDP and PBBI, the worst slacks of the circuit for both methods
are similar and are not shown in the tables. For net based buffering,
we tried several different ordering1 and made the conclusion that,
on average, all tested ordering performs similarly in terms of total
buffer cost. As a result, in our experimental results, we used the
ordering based on ascending order of worse slack for comparison.
The results are shown in Table 2. The column “B cost” stands for
the total number of buffer inserted while “% redu” is the percentage
of buffer cost reduction when PBBI is compared to net based buffer
insertion.

Net based Path based (PBBI)
circuit B cost CPU/s B cost % redu CPU/s
a1 127 0.7 96 24.41 0.7
a2 144 0.5 138 4.17 1.1
a3 216 1.0 177 18.06 2.0
a4 317 1.3 288 9.15 2.8
a5 357 1.0 338 5.32 3.6
a6 285 2.1 232 18.60 4.3
a7 384 1.5 307 20.05 8.4
a8 434 2.6 359 17.28 5.5
a9 461 1.8 363 21.26 16.1
a10 492 3.7 414 15.85 13.6
a11 841 5.9 766 8.92 39.0
a12 1048 5.1 852 18.70 38.1
Total 5106 27.1 4330 15.20 135.2

Table 2: Comparison of net based and path based buffer inser-
tion

From Table 2, we have the following conclusions.

• The average reduction in buffer area is 15% for PBBI algo-
rithm when comparing to the net based buffer insertion.

• Although there is more than 5× increase in CPU-time, the total
CPU time for the biggest circuit with 3k modules is still less
than 1 minute. In fact, the CPU time is empirically linear to
the size of the circuit and the buffer candidate locations.

Net based Path based (PBBI)
circuit B cost CPU/s B cost % redu CPU/s
a1 103 0.5 83 24.10 0.7
a2 128 0.5 114 12.28 1.1
a3 195 0.9 151 29.14 1.9
a4 294 1.1 241 21.99 2.8
a5 309 0.9 304 1.64 3.8
a6 272 1.8 186 46.24 4.3
a7 343 1.3 248 38.31 8.5
a8 401 2.2 314 27.71 5.7
a9 423 1.7 294 43.88 16.1
a10 463 3.3 336 37.80 13.4
a11 787 5.6 657 19.79 31.2
a12 961 5.2 712 34.97 33.9
Total 4679 25.2 3640 28.54 123.4

Table 3: Comparison of net based and path based buffer inser-
tion considering buffer blockages

In our next experiment, we consider buffer blockages and the re-
sults are shown in Table 3. From the results, we obtained an even
greater buffer cost reduction of 29% when comparing to the net based
buffering. From our observation, it is due to the fact that buffer in-
sertion with blockages becomes more complicated, and an algorithm
with a global view would perform better.
1The ordering includes (1) the topological order from PO to PI and
its reversal (2) first process the net with the smallest worse slack; (3)
first process the net such that most critical paths are passing through
it; (4) according to the descending order of the total load capacitance
of the nets.
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Net based Path based (PBBI+GS)
circuit B cost ∆ G ∆ area CPU/s B cost ∆ G ∆ area % redu CPU/s
a1 115 36 151 0.6 81 8 89 41.06 1.5
a2 189 20 209 0.5 102 24 126 39.71 2.5
a3 278 44 322 0.9 151 10 161 50.00 7.0
a4 391 72 463 1.2 222 94 316 31.75 10.3
a5 488 112 600 0.9 218 61 279 53.50 15.7
a6 641 159 800 1.9 197 16 213 73.38 18.1
a7 779 198 977 1.3 235 34 269 72.47 44.9
a8 839 166 1005 2.4 310 52 362 63.98 19.2
a9 973 310 1283 1.7 279 42 321 74.98 61.9
a10 1089 216 1305 3.5 322 39 361 72.34 38.7
a11 2097 331 2428 6.2 587 68 655 73.02 93.2
a12 3149 837 3986 6.0 709 110 819 79.45 119.4
Total 11028 2501 13529 27.2 3413 558 3971 70.65 432.5

Table 4: Comparison of net based and path based buffer insertion considering gate sizing

6.2 Simultaneous Gate Sizing and Buffer Inser-
tion

We have performed the similar experiments for simultaneously
gate sizing and buffer insertion. For net based approach, we have
implemented the delay penalty scheme [1] which includes driver
sizing into net based buffer insertion process. However, the delay
penalty formula used in the paper is mainly for solution comparison
in VGDP. When applying the delay penalty as a mean to estimate the
delay increase in upstream interconnect, we have to scale the delay
penalty empirically. The results is shown in Table 4. In the table, “∆
G” is the total size change in all gates, “∆ area” is the total increase
in cost (area) from the buffer insertion/gate sizing, and “% redu” is
the percentage of total cost reduction when PBBI+GS is compared
to the net based approach.

From Table 4, we found that the overall cost reduction by PBBI
algorithm is 71% when comparing to net based gate sizing/buffer
insertion. As the same time, our PBBI+GS algorithm is reasonably
efficient as the runtime is within 2 minutes for the biggest testcase.

Our novel technique of performing gate sizing at sink results in
significant improvement in solution quality. For [1], the delay penalty
is calculated at the driver of a routing tree. It is simple and effective
but it only reflects the delay increase in the upstream interconnect to-
wards the gate and the routing tree itself. We have performed exper-
iments for our PBBI algorithm using different gate sizing schemes,
results show that gate sizing using delay penalty takes 14% more area
than our gate sizing at sink technique (the table is not shown due to
space limit). In conclusion, the lack of a global view results in the
trapping into a local optimal solution and the error exacerbates when
the complexity of the problem increases.

7. CONCLUSION
The VLSI technology scaling requests increasingly more buffers

in circuit designs and therefore buffer insertion needs to be carried in
more elaborated manner. As a departure from traditional net based
buffer insertion methods, we propose a path based buffer insertion
approach which can obtain a better buffer usage efficiency due to its
global view. To the best of our knowledge, this is the first work on
path based buffer insertion. Compared to network based methods,
our approach is more practical in terms of computation complexity.
Several techniques are proposed along with the path based buffering
including buffer aware static timing analysis, slack spreading along
off-paths and simultaneous sink sizing. Experimental results show
that our approach can reduce buffer/gate cost by 71% on average
compared to net based methods.
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