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ABSTRACT. This paper explores the usefulness of the multivariate skew-normal distribution in

the context of graphical models. A slight extension of the family recently discussed by Azzalini &

Dalla Valle (1996) and Azzalini & Capitanio (1999) is described, the main motivation being the

additional property of closure under conditioning. After considerations of the main probabilistic

features, the focus of the paper is on the construction of conditional independence graphs for skew-

normal variables. Necessary and sufficient conditions for conditional independence are stated, and

the admissible structures of a graph under restriction on univariate marginal distribution are

studied. Finally, parameter estimation is considered. It is shown how the factorization of the

likelihood function according to a graph can be rearranged in order to obtain a parameter based

factorization.
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1. Introduction

Graphical models currently represent one of the most active areas of statistical research, with

an increasing impact in applications. In spite of substantial advances, however, the

distributional assumption on the continuous components of these models is invariably the

Gaussian one, as far as we are aware. This constraint is closely related to the strong

convenience of working with a parametric family of distributions which allows simple formal

manipulation of the variables under consideration. In particular, closure of the parametric

class under marginalization and conditioning are very convenient features to rely on, and these

properties seldom hold outside the class of multivariate normal distributions.

The present paper explores the potential usefulness in this context of the class of

skew-normal distributions, recently studied by Azzalini & Dalla Valle (1996) and Azzalini &

Capitanio (1999). This class extends the Gaussian one by introducing a vector parameter a
which regulates the shape; when a ¼ 0 we are back to the normal distribution. Specifically, the

density function of a skew-normal variate is

2/kðy � n;XÞU aTx�1ðy � nÞ
� �

; y 2 Rk ; ð1Þ

where /kðy;XÞ is the density function of a k-dimensional Nkð0;XÞ variable, X ¼ ðXijÞ is a full

rank covariance matrix, n is a k-vector of location parameters, U is the distribution function of

Nð0; 1Þ, and

x ¼ diag X11;X22; . . .;Xkkð Þ1=2:
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The class of densities (1) shares a number of properties with the normal one, which justify

the use of the name skew-normal. Among those properties, we mention in particular closure

under affine transformations, v2 distribution of certain quadratic forms, closure under

marginalization and an approximate form of closure under conditioning; see Azzalini &

Capitanio (1999, sect. 3 and 4) for details.

The above list of appealing formal properties makes this class a good candidate for work

in graphical models. However, in this context, exact closure under conditioning is a very

convenient feature to have available. This can be achieved by considering a slight extension of

the class (1), namely

f ðyÞ ¼ /kðy � n;XÞU a0 þ aTx�1ðy � nÞ
� ��

UðsÞ; y 2 Rk ; ð2Þ

where s is an additional real parameter and a0 is a function of ðX; a; sÞ to be specified later.

When s ¼ 0, also a0 ¼ 0 and (2) reduces to (1). The cost to be paid for gaining closure under

conditioning is the loss of the v2 distribution of certain quadratic forms, which holds for (1).

The density form (2) arose in Azzalini & Capitanio (1999) from a conditioning operation on

(1); see specifically their (13). Arnold & Beaver (2000) have examined (2), along with other

extensions to (1), and noticed the property of closure under conditioning. Their work,

however, is focused on a different direction, and has almost no overlap with this paper.

The next section presents a derivation of (2) and its basic probabilistic properties. This study

is intended as a preliminary step to the central theme of the paper which is dealt with in section

3 and 4. In section 3, we focus on the use of density (2) in graphical models examining in

particular the construction of conditional independence graphs and the derivation of their

basic properties. This plan implies dealing, in section 4.1, with estimation of parameters, which

is also of independent interest. In section 4.2, likelihood based factorizations are considered, in

the sense examined by Cox & Wermuth (1999). The type of likelihood functions considered

here have a clear similarity with those of their paper. The key distinction is that in our case

there is a single Gaussian variable being dichotomized and it is unobserved; hence we deal only

with continuous components, which are observed only conditionally on a given event.

The end conclusion of the paper is that the skew-normal distribution is a viable extension of

the Gaussian one. It provides increased flexibility of the distributional assumption with limited

additional complexity and computational burden. The present paper provides a set of basic

results for the construction of graphical models. From this point, further progress is possible;

potential directions of development include directed graphs and models for mixed distribu-

tions, skew-normal and discrete.

2. An extension of the skew-normal distribution

2.1. Definition and simple properties

Consider a ðk þ 1Þ-dimensional normal random vector

W � ¼ ðW0;W1; . . .;WkÞT ¼ W0

W

� �
� Nkþ1ð0; �XX�Þ ð3Þ

where

�XX� ¼ 1 dT

d �XX

� �
ð4Þ

is a full-rank correlation matrix. The probability density function of Z ¼ ðW jW0 þ s > 0Þ is

/kðz; �XXÞUða0 þ aTzÞ=UðsÞ ð5Þ
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where

a0 ¼ s 1 � dT �XX�1d
� ��1=2

; a ¼ 1 � dT �XX�1d
� ��1=2 �XX�1d: ð6Þ

For later use, it is also useful to write, after some algebraic manipulation,

a0 ¼ s 1 þ aT �XXa
� �1=2

; d ¼ 1

1 þ aT �XXa
� �1=2

�XXa:

The corresponding cumulant generating function is essentially as given by Azzalini &

Capitanio (1999, sect. 4.2); by adapting their expression to the present notation, this becomes

KðtÞ ¼ 1

2
tT �XXt þ f0ðs þ dTtÞ � f0ðsÞ

where f0ðtÞ ¼ logf2UðtÞg. Simple differentiation gives immediately

EfZg ¼ K 0ð0Þ ¼ f1ðsÞd; varfZg ¼ K 00ð0Þ ¼ �XX þ f2ðsÞddT:

where fmð
Þ is the mth derivative of f0ð
Þ.
For use in statistics, we also clearly need to introduce a location and a scale parameter.

Hence define

Y ¼ n þ xZ

where n 2 Rk and x is a k � k diagonal matrix with positive diagonal elements. The density

function of Y is then (2) where X ¼ x �XXx, and the cumulants generating function is

KY ðtÞ ¼ nTt þ 1
2 t

TXt þ f0ðs þ dTxtÞ � f0ðsÞ: ð7Þ

If a random variable Y has density function (2), we shall say that it has a (extended) skew-

normal distribution with parameters ðn;X; a; sÞ, and write

Y � SNkðn;X; a; sÞ: ð8Þ

It can be shown that each of the four component parameters ðn;X; a; sÞ can be chosen

independently of the others, which explains why the notation (8) has been adopted. In a

number of aspects, it would be simpler to regard d as the shape parameter, rather than a;

for instance, the components of d identify the marginal indices of skewness of the

corresponding components of Y . Unfortunately, d cannot be chosen independently of X,

since we must ensure that �XX� > 0, and this makes d poorly suited as a parametrization

component.

Some additional formal properties of the family (2) are given in the appendix. These results

are not of direct use for the sequel of the paper but they are of independent interest.

2.2. Marginal and conditional distributions

Consider the following partition of Y and its parameters

Y ¼ Y1

Y2

� �
; n ¼ n1

n2

� �
; X ¼ X11 X12

X21 X22

� �
; a ¼ a1

a2

� �
ð9Þ

where Y1 is of size h. The marginal distribution of Y1 still belongs to the family (2); this

statement follows both from the stochastic construction of Y itself and also from consideration

of (7) evaluated at the point ðt1; 0Þ. Specifically, on partitioning �XX ¼ x�1Xx�1 similarly to X,

and writing

�XX�1
11 ¼ ð �XX11Þ�1; �XX22
1 ¼ �XX22 � �XX21

�XX�1
11

�XX12;
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the marginal distribution turns out to be

Y1 � SNhðn1;X11; a1ð2Þ; sÞ

where

a1ð2Þ ¼
a1 þ �XX�1

11
�XX12a2

1 þ aT
2
�XX22
1a2

� �1=2
: ð10Þ

These formulae can also be obtained as a special case of the more general result on affine

transformations of Y given in the appendix.

The density of the conditional distribution ðY2jY1 ¼ y1Þ is

f2j1ðy2Þ ¼ /k�hðy2 � n2
1;X22
1Þ
� U a0 þ ðaT

1 þ aT
2
�XX21

�XX�1
11 Þx�1

1 ðy1 � n1Þ þ aT
2 x�1

2 ðy2 � n2
1Þ
� �

=Uðs2
1Þ
¼ /k�hðy2 � n2
1;X22
1ÞU a00 þ aT

2 x�1
2 ðy2 � n2
1Þ

� �
=Uðs2
1Þ ð11Þ

where

n2
1 ¼ n2 þ X21X
�1
11 ðy1 � n1Þ ð12Þ

and

X22
1 ¼ X22 � X21X
�1
11 X12;

s2
1 ¼ s 1 þ aT
1ð2Þ

�XX11a1ð2Þ

� 	1=2

þaT
1ð2Þx

�1
1 ðy1 � n1Þ;

a00 ¼ s2
1 1 þ aT
2
1

�XX22
1a2
1
� �1=2

:

From the pattern of (11), one notices that this is still of type (2), namely

ðY2jY1 ¼ y1Þ � SNk�hðn2
1;X22
1; a2
1; s2
1Þ

where

a2
1 ¼ x22
1x
�1
2 a2; x22
1 ¼ X22
1 � Ið Þ1=2; ð13Þ

and � denotes the Hadamard product, that is the component-wise product.

These expressions for the marginal and the conditional distributions are essentially those

given by Azzalini & Capitanio (1999, sect. 4), except for some algebraic simplifications and the

introduction of s, of course.

As mentioned in the introduction, the addition of the new parameter s allows closure of the

class (2) under the operation of conditioning, instead of an approximate form of closure as

discussed by Azzalini & Capitanio (1999, sect. 4.2). This has some costs, however, in particular

the loss of chi-square properties of certain quadratic forms.

2.3. Independence and local dependence function

We now establish some results on independence and conditional independence among

components of Y which will play a central role in the development of section 3.

First of all, independence of Y1 and Y2 introduced in section 2.2 is ensured when at least one

of a1 and a2 is the null vector and X12 is the null matrix, hence also the corresponding block,

X12, in the inverse matrix is 0. As a corollary it follows that at least one of Y1 and Y2 must be

Gaussian. More generally, independence of two affine transformations A1Y and A2Y holds

under the conditions of prop. 6 of Azzalini & Capitanio (1999).

The similar situation holds for the case of conditional independence, except that one works

with the components of the conditional distribution, a2
1 and X22
1. Since
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X22 ¼ ðX�1Þ22 ¼ ðX22
1Þ�1;

and the components of a2
1 are positive multiples of those of a2, then conditional independence

of two components of Y given the others can be examined by simple inspection of a and X�1.

In connection with the problem of graphical models it is useful to re-phrase this result in the

following form.

Proposition 1

Consider the three block partition Y T ¼ ðY T
A ; Y

T
B ; Y

T
C Þ where A;B and C are sets of indices of Y .

Then YA and YB are conditionally independent given YC , that is

YA??YBjYC ;
if and only if the two following conditions hold simultaneously:

(i) XAB ¼ 0,

(ii) at least one of aA and aB tis the null vector,

where aA and aB denote the blocks of a associated to A and B, respectively, and XAB denotes the

block of X�1 with subscripts ðA;BÞ.

The proofs of all the above statements are similar to those for the case s ¼ 0; see Azzalini &

Capitanio (1999, sect. 3, 4, 6.3).

It is interesting to consider the local dependence function studied by Holland & Wang

(1987) and developed further by Jones (1996, 1998), to measure the dependence among the

components of a bivariate variable; this is defined as

cðx; yÞ ¼ @2

@x@y
log f ðx; yÞ:

In the case of a �standard’ bivariate variable SN2ð0; �XX; a; sÞ, we obtain

cðx; yÞ ¼ q
1 � q2

þ a1a2f2ða0 þ a1xþ a2yÞ

where q is the off-diagonal term of �XX. This is identically 0 if q ¼ 0 and a1a2 ¼ 0, in

agreement with the statements above. Notice that, if a1a2 ¼ 0, then cðx; yÞ ¼ constant, a case

connected to the problem studied by Jones (1998). In section 3.4 a consequence of this fact

will be given.

It is worth remarking that cðx; yÞ has been used in graphical models as a measure of

interaction. See Whittaker (1990, ch. 2) for related results, especially those concerning

parametric collapsibility.

3. Graphical models

In this section, we shall consider a random variable Y � SNkðn;X; a; sÞ, with the aim of

examining the properties of the corresponding conditional independence graph GðV ;EÞ. To

avoid trivialities, we assume that Y is a ‘‘proper’’ SN variate, in the sense that a 6¼ 0. In

particular, we shall deal with the following aspects:

(i) how to build GðV ;EÞ;
(ii) the relationships between G and the similar graph, say GW � , of the generating Gaussian

variate W �, as defined in (3);

(iii) the admissible conditional independence relationships between the components of Y ,

when some marginal distributions are Gaussian;

(iv) some properties related to decomposable graphs.
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Some standard definitions and concepts will be used. For background material, the reader is

referred to the first two chapters of Lauritzen (1996). Among these standard results, recall

the factorization of the density according to a graph and the equivalence of the three

Markov properties; see Lauritzen (1996, pp. 29–36). These facts can be immediately

employed here taking into account that an SN variate has a continuous and strictly positive

density function.

3.1. Some preliminary results

In order to build the conditional independence graph of an SN variate, conditions for

pairwise conditional independence are required. They follow as a special case of

proposition 1.

Proposition 2 (Pairwise conditional independence)

If Y � SNkðn;X; a; sÞ, then
Yi??Yjj all other variables

if and only if the following conditions simultaneously hold:

(a) Xij ¼ 0,

(b) aiaj ¼ 0

where Xij denotes the ði; jÞ-th entry of X�1.

Hence, given the parameters of the distribution of Y , the above result leads immediately to

the construction of GðV ;EÞ, since

ði; jÞ 2 E () Xij 6¼ 0 or aiaj 6¼ 0: ð14Þ

However, things are very different working in the reverse direction. In fact, if we take the

topology of GðV ;EÞ as given, and examine the set of compatible null entries of a and X�1, then

from proposition 2 it is easy to note that, given a conditional independence graph, there exists

more than one configuration of consistent non-null entries in a and X�1. The next proposition

states how this set can be identified.

Proposition 3

Denote by fghðVh;EhÞ; h ¼ 1; . . .; qg the set of all the complete subgraphs of G, and consider the

two sets Ia ¼ u : au 6¼ 0f g, IX ¼ ðu; vÞ : Xuv 6¼ 0f g. Then a pair ðX�1; aÞ is consistent with

GðV ;EÞ if and only if there exists j 2 1; 2; . . .; qf g such that the two following conditions hold

simultaneously:

(i) Vj ¼ Ia,
(ii) EnEj � IX � E.

Proof. We prove sufficiency first. Suppose that ðX�1; aÞ is consistent with GðV ;EÞ; then

either auav 6¼ 0 or Xuv 6¼ 0 if and only if ðu; vÞ 2 E, such that IX � E. Since for all u; v 2 Ia we

have auav 6¼ 0, it follows that Ia induces a complete subgraph gj, say, of G. Furthermore, if

ðu; vÞ 2 EnEj, then auav ¼ 0, so that the relationship EnEj � IX follows from (14).

To prove necessity suppose that for some j the relationships Vj ¼ Ia and E n Ej � IX � E
both hold true. Then auav 6¼ 0 if and only if ðu; vÞ 2 Ej, and since ðu; vÞ 2 EnEj implies Xuv 6¼ 0

it follows that relation (14) holds, so that ðX�1; aÞ is consistent with GðV ;EÞ.
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It is well-known that, when the graph associated to a conditional independence structure is

decomposable, the estimation procedure can be simplified. Such simplifications are strictly

related to zero constraints on the parameters, and the results contained in proposition 3 reveal

that a number of different situations must be taken into account. Specifically, it follows from

the above proposition that the number of admissible pairs ðX�1; aÞ, counting the possible

choices of null and non-null terms, is

Xq
h¼1

2ð
qh
2
Þ; ð15Þ

where qh is the number of elements of Vh.

3.2. Relationships between GZ and GW�

Recall from section 2.1 that, given W � ¼ ðW T
0 ;W TÞ, Z ¼ ðW jW0 þ s > 0Þ � SNkð0; �XX; a; sÞ. It is

easy to see that, replacing W � with ð0; nTÞT þ diag 1;X11;X22; . . .;Xkkð Þ1=2W �, the variate

Y � SNkðn;X; a; sÞ can be generated in the same manner. However, since the conditional

independence graph GZðV ;EÞ of Z coincides with GðV ;EÞ, the first one will be considered.

Therefore, if we observe Gaussian variables conditionally on a given event, then the model for

the observed variables is the SN distribution. In this section some relationships between the

��generating’’ Gaussian variate and the resulting skew-normal one are studied.

The relationships between the parameters of Z and W � are one to one, such that, if the

parameters of the SN are known, then the ones of the generating Gaussian variable are uniquely

identified, and vice-versa. The same is not true if our knowledge is restricted to the conditional

independence graph. More precisely, if GW � is given then GZ is uniquely defined, while a set of

consistent GW � corresponds to GZ . The situation is summarized by the following propositions.

Proposition 4

If GW � is known, then GZ is uniquely identified. Furthermore, given GW � the graph GZ can be

obtained by adding those edges needed to make bdð0Þ complete and by deleting 0 and

corresponding edges.

Proof. From (6) we have

ð �XX�Þ�1 ¼ c2 �aTc
�ac ð �XX�1 þ aaTÞ

� �
ð16Þ

where c ¼ ð1 � dT �XX�1dÞ�1=2 > 0. Taking into account proposition 2, the result follows.

Proposition 5

If GZ is known, then GW � is not uniquely identified. Specifically, the number of conditional

independence graphs for W � consistent with GZ is given by (15).

Proof. It is immediate taking into account expression (16) and considering the number of

admissible pairs ðX�1; aÞ.

3.3. Some restrictions on marginal distribution

As stated in section 2.2, the SN family is closed under marginalization, and contains the set of

normal distributions. Hence a k-dimensional variable possessing joint SN distribution can have

some components with Gaussian marginal distribution. It will be shown that, if some marginals
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are Gaussian, then some configurations of the conditional independence graph must be

excluded. This result can be relevant in the model selection context, since the potentially very

large number 2ð
k
2Þ of admissible conditional independence graphs can be reduced.

In the following, the two sets of vertices corresponding to marginally Gaussian and

marginally skew-normal univariate components of Y � SNkðn;X; a; sÞ will be denoted by C
and R, respectively. The graph will then be a marked graph, according as to whether a node

belongs to C or to R. Examples of marked graphs are given in Fig. 1.

Proposition 6

Consider the three block partition Y T ¼ ðY T
A ; Y

T
B ; Y

T
C Þ where A;B and C are disjoint subsets of

indices. If C separates A from B, i.e. YA??YBjYC , then one among the three following conditions

must hold:

(i) A [ C � C
(ii) B [ C � C
(iii) C 6� C.

Proof. Note that by the conditional independence assumption �XXAB ¼ 0 and at least one of

aA and aB is the null vector. Therefore, from the second equality in (6), at least one of the two

following equalities must hold:

�XXAAdA þ �XXACdC ¼ 0; �XXBBdB þ �XXBCdC ¼ 0:

The result then follows from the fact that �XX is strictly positive definite.

Corollary 1

Let ðA;B;CÞ be a partition of V such that A [ C � C. If C separates A from B, then aA ¼ 0.

Proposition 7

If i 2 C and bdðiÞ \ R ¼ fhg, i.e bdðiÞ has only one vertex in R, then ai 6¼ 0.

Proof. Let h be the unique SN vertex in bdðiÞ. Then, from the second equality of (6), we

have ai / Xihdh. Since dh 6¼ 0, it follows that ai ¼ 0 if and only if Xih ¼ 0, implying ði; hÞ j2 E.

Corollary 2

If i; j � C and both bdðiÞ and bdðjÞ have exactly one vertex in R, then ði; jÞ 2 E.

Fig. 1. Two examples of decomposable marked graphs. Here G and SN denote Gaussian and

skew-normal nodes, respectively; the dashed boxes indicate the cliques with non-null as in the joint

5-dimensional distribution.

136 A. Capitanio et al. Scand J Statist 30

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



Proof. Immediate from propositions 3 and 7.

The algebraic conditions for existence of a pair ðX�1; aÞ consistent with a specified

structure for a marked graph can be obtained from (6), taking into account that X and d
are not variation independent. The above two propositions provide two necessary

conditions which can be easily checked for the admissibility of a marked graph in a

practical situation.

(i) In any three-set partition of a marked graph, a subset of Gaussian vertices cannot

separate two subsets each containing some skew-normal vertices.

(ii) In a marked graph, there cannot exist two not connected Gaussian vertices having on

their boundaries exactly one skew-normal vertex.

As an example consider the marked graph in Fig. 1(a). From proposition 7, a2 6¼ 0 and,

since f2g is a separator, a1 ¼ 0 from corollary 1. Then using proposition 3 the set

fi : ai 6¼ 0g � f2; 3g. If node f5g were in C, then the graph would not be admissible, since also

a5 6¼ 0, but f2; 5g is not a complete subgraph.

3.4. Decomposable graphs

A primary role in graphical models context is played by decomposable graphs. If a graphical

model is decomposable, then simplification occurs in both the interpretation of data and the

estimation procedure. In fact, models can be specified in terms of conditional and marginal

probability distributions, leading to a simplified analysis based on lower dimensional

components.

Specifically, if a graph G is decomposable, then the joint density of the associated variables

can be factorized according to a perfect sequence of cliques C1;C2; . . .;Cm; see Lauritzen (1996,

sect. 5.3.1) for details. Hence, on defining

Hj ¼
[j
h¼1

Ch; Rj ¼ Cj n Hj�1; and Sj ¼ Hj�1 \ Cj;

the triplet ðHj�1;Rj; SjÞ, for all j 2 f1; 2; . . .;mg, decomposes the subgraph induced by Hj, and

the joint density admits the factorization

f ¼
Ym
j¼1

fCj


Ym
j¼2

fSj ð17Þ

where fA denotes the joint marginal density of the A components.

Starting from this general result, some specific properties can be stated. It will be shown that

(17) can be rewritten as the product of a skew-normal and m� 1 Gaussian densities. In order

to achieve this result the following lemma is needed.

Lemma 1

Let Y � SNkðn;X; a; sÞ and consider S � V n Ia. Then the conditional distribution of YS given the

remaining variables is Gaussian.

Proof. The result follows taking into account the expression of the shape parameter of a

conditional SN distribution given in (13), and observing that ai ¼ 0; for all i 2 V n Ia.

Lemma 1 implies that the measure of local dependence defined in section 2.3, when

applied to any pair of variables in S conditionally on the remaining, is constant. As a
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consequence it becomes a partial measure of interaction, in the terminology of Whittaker

(1990, sect. 2.3), since it does not depend on the values taken on by the conditioning

variables.

Proposition 8

Suppose that G is decomposable and let C1;C2; . . .;Cm be a perfect sequence of cliques associated

to G. Let j 2 f1; 2; . . .;mg such that Ia � Cj. Then

f ¼ fCj

Y
h6¼j

/ðhÞ ð18Þ

where fCj is the density of a proper skew-normal variate, and the /ðhÞs are suitable Gaussian

densities. Moreover, the shape parameter of fCj is equal to the block aCj of a.

Proof. Notice that, from proposition 3, it follows that an index j 2 f1; . . .;mg such that

Ia � Cj must exist. Furthermore, from lemma 1, the conditional distribution of any subset of

variables corresponding to vertices in S � V n Cj, given the remaining ones, is Gaussian. Then

(17) can be rearranged into

f ¼ fCj

Y
h6¼j

fCh


Ym
h¼2

fSh ¼ fCj

Y
h<j

fCh

fShþ1

Y
h>j

fCh

fSh
ð19Þ

where, considering the partitions of G induced by each separator Sh and taking into account

the global Markov property, ðYChnShþ1
jYShþ1

Þ has a Gaussian distribution when h < j; a similar

fact holds for ðYChnSh jYShÞ when h > j. Finally, the fact that the shape parameter is aCj follows

by consideration of (10). The terms of the two products in (19) determine the specific form of

the /ðhÞs. The explicit expression of their parameters will be given later.

These results will be useful for parameter estimation. In fact, it will be shown in section 4.2

that (19) identifies a parameter based factorization of the likelihood, such that estimation of

the parameters can be performed separately for each clique. Furthermore, since the

conditional distributions /ðhÞ are Gaussian, known results concerning parameter estimation

can be applied, reducing the computational complexity of the procedure.

The discussion of this section has made no assumption on the type of vertices, Gaussian or

skew-normal. In case we are dealing with a marked graph, then this information can be

incorporated, in the sense that, in general, some of the m factorizations (18) can be discarded,

possibly down to only one admissible factorization.

4. Parameter estimation

4.1. Computational aspects

Consider the case where Yi � SNkðni;X; a; sÞ for i ¼ 1; . . .; n, and the components are

independent. Moreover assume that the regression model

ðn1; . . .; nnÞT ¼ Xb

holds for a n� p design matrix X of full rank p. To estimate the parameters ðb;X; a; sÞ, the

corresponding log-likelihood is

log L ¼
Xn
i¼1

� 1
2 log jXj � 1

2 u
T
i X�1ui þ f0 sð1 þ gTXgÞ1=2 þ gTui

� 	
� f0ðsÞ

n o

¼ 1
2 n log jX�1j � 1

2 trðX�1UTUÞ þ
Pn

i¼1 f0ðviÞ � nf0ðsÞ
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where

ui ¼ yi � xT
i b; U ¼ ðu1; . . .; unÞT

vi ¼ sð1 þ gTXgÞ1=2 þ gTui; g ¼ x�1a:

The above function cannot be maximized in closed form and we have to resort on numerical

methods. Details on the computational aspects, including expressions for the derivatives of the

log-likelihood, are given in the appendix.

There is, however, a difficulty to bear in mind. As demonstrated by Azzalini & Capitanio

(1999, sect. 4.2), the class (2) is quite closely approximated by the subclass given by the

restriction s ¼ 0. More explicitly, for each member of the four-parameter class (2), there is a

member of the three-parameter class (1) which is close to it as for numerical values of the

density. When this fact is translated into the context of parameter estimation, the implication

is that it can be difficult to locate the parameters, since there can be more parameter

combinations which have about the same likelihood.

Some numerical work using the scheme described in the appendix has confirmed that the

procedure works but, in some cases, it can have difficulties in converging or equivalently it

might require a very large n, which typically means a few hundred cases even in the case of

equally distributed observations. If these sorts of problems occur, we have found it useful to

construct the profile log-likelihood as a function of s. The source of the above problem is

related to the presence of the parameter s in conjunction with the other parameters, and s is

effectively removed when the log-likelihood is evaluated at any given value of its range.

Therefore the ��near unidentifiability’’ problem is also removed, leading to a much more stable

behaviour of the optimization algorithms.

An example of the outcome is shown in Fig. 2, which refers to the data ðHt;WtÞ of the

Australian Institute of Sport, already used for illustration in related problems by Azzalini &

Dalla Valle (1996) and Arnold & Beaver (2000). Direct global maximization of the log-

likelihood function with respect to all four parameters simultaneously appeared troublesome,

while the construction of the profile log-likelihood was much more stable and numerically

satisfactory, as illustrated by Fig. 2. Only for very large negative values of s was there some

erratic behaviour, but this can presumably be due to numerical instability, especially with UðsÞ
when s is less than, say, �7.

Fig. 2. Profile log-likelihood for s for the data ðHt;WtÞ.
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The shape of the profile log-likelihood in the specific case of Fig. 2 appears peculiar, in

that there seems to exist no finite maximum likelihood estimate. This sort of behaviour has

been discussed by Azzalini & Capitanio (1999, sect. 5.3), and it must be regarded as a failure

of the maximum likelihood method. In practical terms, there is no actual difficulty, in the

sense that each value of s smaller than, say, �4 has associated estimates of the other

parameters which produce about the same density function; this latter sort of plot has not

been reported here.

Notice that s is effectively removed from the expression of (2) when a ¼ 0. Hence the above

discussion applies to the case when a is known to be different from 0.

4.2. Parameter based factorizations

In this section we look at the conditions under which factorizations of the likelihood function

according to a conditional independence graph are parameter based. Parameter based

factorizations of the likelihood lead to simplification of the inference on the parameters of a

model. The idea of exploiting the conditional independencies in a graph to derive parameter

based factorizations has been widely used in the statistical literature on graphical models, and

it is formalized in Cox & Wermuth (1999).

For a family of models specified by a parameter h taking values in a parameter space H, the

likelihood of an observed vector x admits a parameter based factorization if

Lðh; xÞ ¼ L1ðh1; xÞL2ðh2; xÞ

where h1 2 H1 and h2 2 H2 and h1 and h2 are variation independent, that is H ¼ H1 � H2.

A parameter based factorization of the likelihood leads to a simplification in the maximum

likelihood estimation, as the maximum likelihood estimate is obtained by separate maxim-

ization of the factors. Moreover, inference about, say, h1 may be performed from the factor L1

solely. The definition extends directly to more than two factors.

We shall show that some factorizations that exploit the conditional independencies in a

graph are parameter based. As stated in the next proposition, some hypotheses on the

structure of zeros in a are required to establish which factorizations are parameter based.

In the following we denote by Lð
Þ the likelihood based on y, by LCjð
Þ the likelihood based

on yCj and by L�CCjjCj
ð
Þ the likelihood based on the variables belonging to the complement set

�CCj ¼ V n Cj, conditionally on yCj .

Proposition 9

Suppose that G is decomposable, and let C1;C2; . . .;Cm be a perfect sequence of cliques associated

to G. Assume that the admissible zero constraints on a and X�1 are as follows:

1. au ¼ 0 when u j2Cj,

2. Xuv ¼ 0 when ðu; vÞ j2E.

Then the factorization

L ¼ LCjL�CCj jCj
¼ LCj

Y
h<j

LChnShþ1jShþ1

Y
h>j

LChnShjSh

is parameter based for every choice of j 2 f1; 2; . . .;mg.

Proof. Consider the block partition of Y ; n;X and a as defined in (9), where Y1 ¼ YCj and

Y2 ¼ Y�CCj
. Furthermore Y1 is partitioned into Y1R ¼ YRj and Y1S ¼ YSj . Under the above

hypothesis, we get a2 ¼ 0. Hence, applying proposition 8, the factor L2j1 corresponds to a
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Gaussian likelihood, and a1ð2Þ ¼ a1. Taking into account that Y1 contains the separator Y1S ,

the factorization reduces to

Lðn;X; a; sÞ ¼ L1ðn1;X11; a1; sÞL2j1Sðn2
1S ;X22
1SÞ:

According to (18), the term L2j1S factorizes into a product of conditional Gaussian likelihood

functions of the form LR�
h jShþ1

ðnR�
h
Shþ1

;XR�
hR

�
h
Shþ1

Þ and LRh jShðnRh
Sh ;XRhRh
ShÞ, where R�
h ¼ ChnShþ1.

Since n; a;X and s are variation independent, and using known results on Gaussian models,

the m parameter spaces

ðn1;X11; a1; sÞ;
ðnR�

h
Shþ1
;XR�

hShþ1
X�1

Shþ1Shþ1
;XR�

hR
�
h 
Shþ1

; h < jÞ; ð20Þ
ðnRh
Sh ;XRhShX

�1
ShSh ;XRhRh 
Sh ; h > jÞÞ

are variation independent and together span the full space of the original specification under

the constraints defined by the graph G. This concludes the proof.

Notice that (i) the factorization given by this proposition is of type (19); (ii) the iterative

computational procedure described in section 4 needs to be applied only to the SN component

(20), while the others are Gaussians.

When information on the type of each node is given, propositions 6 and 7, and corollary 1

can be used to reduce the number of admissible cliques, possibly down to a single admissible

clique corresponding to non-null as. For instance, the marked graph in Fig. 1(a) can be

decomposed by the perfect sequence of cliques C1 ¼ f1; 2g, C2 ¼ f2; 3g, C3 ¼ f3; 4g,
C4 ¼ f4; 5g, and the separators are S2 ¼ f2g, S3 ¼ f3g, S4 ¼ f4g. As already seen in section

3.3, the set fi : ai 6¼ 0g is a subset of C2, so that the factorization

Lf2;3gð
ÞLf1j2gð
ÞLf4j3gð
ÞLf5j4gð
Þ

is parameter based.

Another particular situation is of special interest. From proposition 9, it follows that the

existence of a parameter based factorization strictly depends on the presence of only one non-

Gaussian density among the factors. As a matter of fact, if all but one marginal densities over

the cliques in a marked graph are Gaussian, then another parameter based factorization does

exist. An example of such a graph is given in Fig. 1(b); here both factorizations

Lf2;3gð
ÞLf1j2gð
ÞLf4j3gð
ÞLf5j4gð
Þ; Lf4;5gð
ÞLf1j2gð
ÞLf2j3gð
ÞLf3j4gð
Þ

are parameter based.

In general situations when information about the clique containing the vertices corres-

ponding to non-null as is not available, an iterative procedure of estimation must be defined.

Proposition 3 defines the whole set of admissible pairs ðX�1; aÞ which are compatible with a

given conditional independence graph, but clearly some of these are negligible in estimation.

Suppose that a conditional independence structure is defined, and that the parameters of the

model are to be estimated under suitable zero constraint. A good rule is to impose at first

the minimum number of constraints, i.e. those strictly necessary to guarantee coherence with

the given independence structure. From proposition 3 they correspond to those defined on the

basis of the pairs ðX�1; aÞ such that Ia ¼ Cj and IX ¼ E, for all cliques Cj, i.e. all maximally

complete subgraphs of G. Then

(a) for each clique Cj, consider a model as defined in proposition 9;

(b) for each model, compute the maximum likelihood estimates using the simplified

procedure based on separate maximization of each factor;

(c) select the model and the parameter estimates with highest value of the likelihood function.
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Notice that, while this procedure does lead to the maximum likelihood estimate, the search is

performed over a parameter space which is not an open set of a Euclidean space. Hence

standard results on the asymptotic distribution of the estimator are not automatically

applicable.
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Appendix

Some properties of Z

The higher derivatives of the cumulant generating function of Z are

dmKðtÞ
dtidtj 
 
 
 dtr

¼ fmðs þ dTtÞdidj 
 
 
 dr; ðm > 2Þ;

which allow computation of the corresponding cumulants; these in turn lead to

c1;k ¼ f3ðsÞ2ðdT!dÞ3; c2;k ¼ f4ðsÞðdT!dÞ2

142 A. Capitanio et al. Scand J Statist 30

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



i.e. the indices of multivariate skewness and kurtosis of Mardia (1970), where � ¼ varfZg�1.

To compute the distribution function of Z, write

PfZ � zg ¼ PfW � zjW0 þ s > 0g
¼ Pf�W0 < s \ W � zg=Pf�W0 < sg
¼ Ukþ1ððs; zTÞT; ~XXÞ=UðsÞ

where ~XX is a matrix similar to �XX�, but with d replaced by �d, and Umðx;AÞ denotes the integral

of /mðx;AÞ. Therefore, the distribution function of Z can be obtained from an algorithm which

produces the distribution function of a ðk þ 1Þ-dimensional normal variate. For a discussion

of the latter problem, see Genz (1993).

For the generation of random numbers, it is natural to exploit the ��definition via

conditioning’’ itself, namely Z ¼ ðW jW0 þ s > 0Þ. This defines a procedure which is concep-

tually simple and easy to simulate on a computer. The only drawback is that it leads to the

rejection of a fraction Uð�sÞ of the simulated W vectors, and this fraction becomes large if

s ! �1. To decrease the rejection rate in the case s � 0, notice that one can generate data

with distribution (5) by setting Z ¼ ð�W j � W0 þ s > 0Þ, when the condition W0 þ s > 0 fails;

this device doubles the acceptance rate when s < 0. The overall fraction p of accepted samples

with this combination of rules is now

p ¼ UðsÞ if s > 0;
2UðsÞ if s � 0:

�

Affine transformations

The distribution of the affine transformation

T ¼ AY þ b;

where A is a h� k matrix of rank h, can be obtained from its cumulant generating function,

KT ðtÞ ¼ KY ðATtÞ þ bTt;

which is still of type (7). Again, the expressions for the parameters of T are similar to those of

the case s ¼ 0; see Azzalini & Capitanio (1999, sect. 3.2, and 4.1). Specifically, we have

T � SNhðnT ;XT ; aT ; sÞ;

where

nT ¼ An þ b;

XT ¼ AXAT;

aT ¼ 1

1 þ aTð �XX � BX�1
T BTÞa

� �1=2
xTX�1

T BTa;

B ¼ x�1XAT:

Aspects of numerical maximization of the log-likelihood

It is convenient to reparametrize the problem, partly because the space of positive definite

matrices X or equivalently X�1 is difficult to handle directly. Therefore we write

X�1 ¼ ATDA ¼ AT diagðexpðwÞÞA ð21Þ

where A is an upper triangular matrix with diagonal elements all equal to 1, and D is the

diagonal matrix of positive values. For numerical optimization, it is convenient to
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reparametrize the diagonal elements of D to expðwÞ, to deal with unbounded parameters.

Hence, the new parametrization is then ðb;A;w; g; sÞ and the log-likelihood is now written as

log L ¼ 1

2
n log jATDAj � 1

2
trðATDAQÞ þ 1T

n f0ðvÞ � nf0ðsÞ ð22Þ

where Q ¼ UUT and

v ¼ ðv1; . . .; vnÞT; f0ðvÞ ¼ ðf0ðv1Þ; . . .; f0ðvnÞÞT; 1n ¼ ð1; . . .; 1ÞT:

Note that, as remarked in Roverato (2000), reparametrization (21) is particularly suitable in

graphical model context. In fact, using th. 2.4 in Paulsen et al. (1989), it is easy to show that, if

the graph GðV ;EÞ is decomposable and the set IX is equal to E, then the rows (and columns as

well) of X�1 can be ordered according to a perfect vertex elimination scheme such that Xij ¼ 0

implies Aij ¼ 0. As a consequence, zero constraints imposed to some entries of X�1 can be

directly applied to the corresponding entries of A.

To increase the efficiency of numerical optimization, it is useful to supply the algorithm with

the derivatives of (22) with respect to b;A;w; g; s; these are as follows:

@ logL
@b

¼ XTUX�1 � XTf1ðvÞgT;

@ log jATDAj
@A

¼ @ log jAj2

@A
¼ 0;

@ log jATADj
@D

¼ D�1;

@trðATDAQÞ
@A

¼ upper triangle of ð2DAQÞ;

@trðATDAQÞ
@D

¼ I � ðAQATÞ;

@f0ðvÞ
@A

¼ f1ðvÞ
s

2ð1 þ gTXgÞ1=2
upper triangle of ð�2ðA�1ÞTggTXÞ;

@f0ðvÞ
@D

¼ f1ðvÞ
s

2ð1 þ gTXgÞ1=2
I � ð�D�1ðA�1ÞTggTA�1D�1Þ;

@ log L
@g

¼ 1T
n f1ðvÞ

s

ð1 þ gTXgÞ1=2
Xg þ UTf1ðvÞ;

@ log L
@s

¼ 1T
n f1ðvÞð1 þ gTXgÞ1=2 � nf1ðsÞ

where � denotes the Hadamard product. On writing d ¼ expðwÞ and using the chain rule

@ logL
@w

¼ @ log L
@d

d;

one converts the derivatives is with respect to d into those for w.
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