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Abstract

We consider a Bayesian analysis of linear regression models that can account for
skewed error distributions with fat tails� The latter two features are often observed char�
acteristics of empirical data sets� and we will formally incorporate them in the inferential
process� A general procedure for introducing skewness into symmetric distributions is �rst
proposed� Even though this allows for a great deal of �exibility in distributional shape�
tail behaviour is not a�ected� In addition� the impact on the existence of posterior mo�
ments in a regression model with unknown scale under commonly used improper priors is
quite limited� Applying this skewness procedure to a Student�t distribution� we generate
a �skewed Student	 distribution� which displays both �exible tails and possible skewness�
each entirely controlled by a separate scalar parameter� The linear regression model with
a skewed Student error term is the main focus of the paper
 we �rst characterize existence
of the posterior distribution and its moments� using standard improper priors and allowing
for inference on skewness and tail parameters� For posterior inference with this model� a
numerical procedure is suggested� using Gibbs sampling with data augmentation� The lat�
ter proves very easy to implement and renders the analysis of quite challenging problems
a practical possibility� Two examples illustrate the use of this model in empirical data
analysis�

KEY WORDS
 Gibbs sampling� Improper prior� Linear regression model� Posterior mo�
ments� Student�t sampling�

� Carmen Fern�andez is Research Fellow� CentER for Economic Research and Assistant Professor�
Department of Econometrics� Tilburg University� ���� LE Tilburg� The Netherlands� Mark Steel is Senior
Research Fellow� CentER for Economic Research and Associate Professor� Department of Econometrics�
Tilburg University� ���� LE Tilburg� The Netherlands� We gratefully acknowledge stimulating discussions
with James O� Berger and Jean�Francois Richard� and useful comments from an anonymous referee� Both
authors bene�tted from a travel grant awarded by the Netherlands Organization for Scienti�c Research
�NWO	�



�

�� INTRODUCTION

This paper aims at introducing two pervasive features of empirical data into statistical
modelling and inference� In particular� we shall introduce a class of sampling models that
can simultaneously account for both skewness and fat tails� and conduct Bayesian inference
in the context of a regression model with unknown scale� Quite surprisingly� the currently
existing toolbox for handling the frequently ocurring phenomenon of skewed data with fat
tails seems very limited indeed� The solutions that we are aware of� e�g� using Stable laws as
in Buckle 
������ seem quite complicated to implement numerically and� more importantly�
seem to lack the �exibility and ease of interpretation that an applied statistician would
typically require�

In a general context� Section � introduces skewness into any continuous 
with respect
to Lebesgue measure in ��� unimodal and symmetric distribution in a rather straightfor�
ward way
 we simply use inverse scaling of the probability density function 
p�d�f�� both
sides of the mode� This does not a�ect the unimodality and allows us to control� with a
single unidimensional parameter� the amount of probability mass both sides of the mode�
Tail behaviour is not a�ected by this operation� yet a great deal of �exibility in distribu�
tional shape is introduced at the expense of a scalar parameter� Clearly� simultaneously
capturing thick tails and skewness can now be achieved by applying this method to a
symmetric fat�tailed distribution�

Despite the relative simplicity of the latter idea� one can not hope to use analytical
methods to perform posterior and predictive inference in suchmodels allowing for skewness�
Therefore� numerical methods will have to be employed� A very useful type of Monte Carlo
method in this context is based on Markov chains� The recent statistical literature in the
area of Markov chain Monte Carlo 
MCMC� abounds and it su�ces to refer the reader
to Tierney 
����� for a general discussion� A particularly useful version of MCMC is
Gibbs sampling� for which we mention the seminal paper of Gelfand and Smith 
�����
and the very clear exposition in Casella and George 
������ Gibbs sampling approximates
drawings from a 
complicated� joint distribution by a Markov chain of drawings from all
full conditional distributions� Properness of these full conditionals� however� does not
imply properness of the joint distribution �an example is provided in Casella and George

������� Thus� if one uses such methods under improper priors� it becomes crucial to verify
existence of the posterior before actually conducting the numerical analysis� Furthermore�
e�cient estimates of marginalmoments are often achieved by averaging over the conditional
moments� using the Rao�Blackwell argument introduced in Gelfand and Smith 
������
Again� existence of the conditional moment does not imply that the marginal moment
from the joint distribution is �nite� The problem of existence of moments does not even
vanish when proper priors are used� Thus� we should also check whether the posterior
moments that we wish to compute actually exist� Therefore� Sections � and � are devoted
to checking for the existence of the posterior distribution and its moments�

Section � considers a general regression model with unknown scale under an improper
prior distribution� and examines the impact of introducing skewness 
following the method
outlined above� into the error distribution on the existence of the posterior distribution
and of its moments�
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Section � speci�es the model further� by considering a linear regression structure with
independent skewed Student error terms and an unknown scale factor� We consider a
standard �non�informative	 prior on the regression and scale parameters� Furthermore�
we do not �x tail behaviour 
controlled by the degrees�of�freedom parameter� nor skewness�
but leave both subject to inference� This model� which will be the focus of the sequel of
the paper� thus allows for both skewness and �exible tail behaviour�

In Section � we examine when a Bayesian analysis can be conducted 
i�e� properness
of the posterior� and which moments of regression coe�cients and scale parameter can
meaningfully be computed� We then design a Gibbs sampler 
using data augmentation� to
conduct posterior inference using this model� The actual numerical implementation will be
shown to result in a very simple sampler� that can easily be run on a PC for the analysis of
moderately large data sets� Section � presents the details� and illustrates that judgmental
user input is restricted to a minimum�

Finally� Section � presents two examples
 a location�scale model applied to a data set
of share price returns� which was used in Buckle 
����� with the Stable distribution as a
modelling device� The second example concerns a data set from astronomy 
a Hertzsprung�
Russell diagram� where a regression model with two explanatory variables is used� In
both examples� posterior and predictive inference is conducted for the general model with
skewness and fat tails� and also for models that only account for one of both features� In
addition� Bayes factors between these models are computed using the methods advocated
in Chib 
����� and in Verdinelli and Wasserman 
������ A �nal section concludes�

In summary� we will argue that the approach proposed here leads to very �exible
modelling of both skewness and fat tails� using only two scalar parameters that are clearly
interpretable with well�de�ned modelling purposes� In addition� the numerical require�
ments are quite modest and the model can easily be used to tackle problems of direct
practical relevance�

All proofs will be grouped in the Appendix� without explicit mention in the main text�

�� INTRODUCING SKEWNESS

In this Section we present a general method for transforming a symmetric distribution
into a skewed distribution� This generalizes the approach followed in Fern�andez� Osiewal�
ski and Steel 
������ where a skewed version of the Exponential Power distribution was
introduced�

Let us consider a univariate p�d�f� f
��� which is unimodal and symmetric around zero�
More formally� we assume that f
s� � f
jsj� and that the latter is decreasing in jsj� We
then generate the following class of skewed distributions� indexed by a scalar � � 
����


p
�j�� �
�

� � �
�

�
f

�
�

�

�
I�����
�� � f
���I������
��

�
� 
����

The basic idea underlying 
���� is simply the introduction of inverse scale factors in the
positive and the negative orthant� Clearly� p
�j�� retains the unique mode at zero� but
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loses symmetry whenever � �� �� More formally� we deduce

p
�j� � �� � f
��� 
����

P 
� � �j��

P 
� � �j��
� ��� 
����

from which it is clear that � controls the allocation of mass to each side of the mode�
Furthermore� the way � intervenes in 
���� implies

p
�j�� � p
��j����� 
����

so that inverting � produces the mirror image around zero� In addition� p
�j�� will inherit
the di�erentiability properties of f
��� By way of illustration� Figure � displays a symmetric
distribution 
� � �� and its skewed counterparts for � � ��� and ��

In order to gain more insight in the properties of 
����� let us examine how � a�ects
its moments� Generally� 
���� leads to a �nite rth order moment 
r � �� if and only if the
corresponding moment of f
�� exists 
i�e� for � � ��� In particular� we obtain

E
�r j�� �Mr

�r�� � ����r

�r��

� � �
�

� 
����

where

Mr �

Z �

�

sr �f
s� ds� 
����

i�e� the rth order moment of f
�� truncated to the positive real line� Of course� E
�rj�� will
only be real�valued for integer r� In addition� the assumptions on f
�� imply that Mr ��
for r � ��� Let us� therefore� concentrate on positive integer order moments� From 
�����
the following properties can be shown to hold for noncentered moments
 for odd r� the rth

order moment retains the same absolute value but changes sign if we invert �� takes the
value zero only for � � �� and is an increasing function of � with lim���E
�rj�� � ��
Even moments� on the other hand� are entirely una�ected by inverting � and� again�
increase without bounds in � for � � �� As a consequence� min� E
�rj�� � E
�rj� � ��
for even r�

If we now consider centered moments� we obtain the following expressions 
provided
f
�� allows for the existence of these moments�


E
�j�� �M�

�
� �

�

�

�
� 
����

V ar
�j�� � 
M� �M�
� �

�
�� �

�

��

�
� �M�

� �M�� 
����

where V ar
�j�� possesses all the properties mentioned above for even noncentered mo�
ments�



�

Skewness� as measured by the standardized third cumulant �see Box and Tiao 
�����
p������� is given by

Sk
�j�� �

�
� �

�

�

� 
M� � �M�
� � �M�M��

�
�� � �

��

�
� �M�M� � �M�

�n

M� �M�

� �
�
�� � �

��

�
� �M�

� �M�

o��� � 
����

As with noncentered odd moments� we �nd Sk
�j�� � �Sk
�j���� and Sk
�j� � �� � ��
but now we have a �nite limit as � 	 �� namely the skewness of f
�� truncated to the
positive real line�

Another popular measure of skewness is the Pearson measure� de�ned through the
standardized di�erence between mean and mode� Since the p�d�f� in 
���� has zero mode�
we obtain


SP 
�j�� �
M�

�
� � �

�

�
n

M� �M�

� �
�
�� � �

��

�
� �M�

� �M�

o��� � 
�����

This skewness measure changes sign as a result of inverting � and is strictly increasing in
�� converging to the Pearson skewness measure of �f
s�I�����
s� as � 	��

In the context of the class of unimodal distributions de�ned in 
����� a natural measure
of skewness is that introduced in Arnold and Groeneveld 
������ de�ned as one minus two
times the probability mass left of the mode� leading to

SM
�j�� �
�� � �

�� � �
� 
�����

which is a strictly increasing function of �� taking values anywhere in 
��� ��� The results
in Arnold and Groeneveld 
����� imply that the latter skewness measure maintains the
convex ordering of distributions introduced by van Zwet 
����� if f
�� is di�erentiable�
Clearly� we also have SM
�j�� � �SM
�j���� and SM
�j� � �� � �� In contrast to the
skewness coe�cients in 
���� and 
������ 
����� does not depend on the choice of f
��� and
the entire range of this skewness measure can be covered by choosing � appropriately with
lim��� SM
�j�� � �� 
extreme left skewness� and lim��� SM
�j�� � � 
extreme right
skewness��

�� EFFECT OF SKEWNESS ON THE EXISTENCE OF POSTERIOR MOMENTS

Let us now consider the impact of introducing skewness into the sampling distribution
on Bayesian inference in the context of a general regression model� In particular� we
examine the issue of existence of the posterior distribution and of its moments�

We shall assume the observables yi � �� i � �� � � � � n� to be generated from

yi � gi
�� � 	���i� 
����
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where gi
�� is a known measurable function from �k
k � �� to �� � � 
��� � � � � �k�� � �k

parameterizes the location and 	 � �� is a precision parameter� We assume the error
terms ��� � � � � �n to be i�i�d� given a parameter 
 � N 
possibly of in�nite dimension� and
� � �� with conditional p�d�f�

p
�ij
� �� �
�

� � �
�

�
f�

�
�i
�

�
I�����
�i� � f�
��i�I������
�i�

�
� 
����

where f� 
�� is unimodal and symmetric around zero� This stochastic assumption introduces
two extra parameters into the problem
 �� the skewness parameter� as explained in the
previous Section� and 
 which can describe other properties of the sampling distribution�
In particular� 
 will control the thickness of the tails in the next Section�

We shall adopt the following class of prior distributions


P��������� � P� 
 P� 
 P� 
 P�� 
����

with P� the usual noninformative distribution characterized by the improper density

p
	 � � 	�� 
����

on ��� P� is any ���nite measure on �k� and P� and P� are proper distributions� An
important special case of 
���� is where P� is Dirac on �� which characterizes symmetry
of the error distribution� In the sequel of this Section� we shall examine the in�uence of
allowing for skewness on posterior inference� To this end� we compare posterior results
under a general P� with those where P� is a Dirac distribution on �� For notational
simplicity� we shall denote the latter case by � � ��

First of all� since the prior distribution in 
���� � 
���� is improper� existence of the
posterior distribution needs to be veri�ed� In addition� our interest will be focussed on the
location and precision parameters � and 	 � since 
 and � are merely auxiliary parameters
to widen the class of sampling distributions� We shall therefore also address the issue of
existence of posterior moments of � and 	 � Needless to say� negative order moments of 	
correspond to positive order moments of the scale � � 	�� and vice�versa�

We now present the main results of this Section for the Bayesian model corresponding
to 
����� 
�����

Theorem �� Given 
r�� � � � � rk� � �k� we obtain that for any P�

E

kY

j	�

j�j j
rj jy�� � � � � yn� ��

if and only if the same holds under � � �� �

Theorem � clearly states that the existence of posterior moments of � is entirely
una�ected by the added uncertainty on �� An important special case is where rj � � for
all j � f�� � � � � kg� which establishes the fact that incorporating skewness in the sampling
does not a�ect properness of the posterior distribution either�
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Theorem ��

�i� For r � � and any P� �
E
	 rjy�� � � � � yn� ��

if and only if the same moment exists under � � ��
�ii� Given r � � and P�� we obtain the following�
�iia� E
	 rjy�� � � � � yn� �� requires existence of the same moment under � � ��
�iib� if

E
	 rjy�� � � � � yn� �� for � � �� and

Z �

�

�
max

�
��
�

�

��r
dP� ���

then E
	 rjy�� � � � � yn� �� under P� � �

Thus� existence of negative order moments of 	 
equivalently� positive order moments
of �� is never a�ected by skewness� whereas for positive order moments of 	 Theorem �

ii� provides necessary and su�cient conditions that do not coincide in general� However�
in certain situations� the su�cient condition in Theorem � 
iib� also becomes necessary� as
stated in the following Theorem


Theorem �� If both

P�

i	������nf� 
 gi
�� � yig� and P�

i	������nf� 
 gi
�� � yig�

are strictly positive� where P� is the prior measure of �� then for any r � � and P��

E
	 rjy�� � � � � yn� ��

if and only if the same moment exists for � � � and
R�
�
�maxf�� ���g�rdP� ��� �

The moment condition on P�� which is often necessary from Theorem �� is quite a
strong requirement
 indeed� many commonly used distributions on �� fail to satisfy this
condition even for moderate values of r 
e�g� neither Exponential nor half�Normal P� allow
for the posterior mean of 	 ��

Finally� we note that the pure location�scale model� where gi
�� � � � �� combined
with a prior density p
�� strictly positive in all of �� is within the framework of Theorem
�� thus� the in�uence of P� on the existence of posterior moments of precision 
or scale�
is entirely characterized for this model� As a simple example where Theorem � does
not apply� consider n � � and k � � with g�
�� � � and g�
�� � ��� Then the set

i	���f� 
 gi
�� � yig is empty whenever y� � �y�� whereas 
i	���f� 
 gi
�� � yig is
empty if y� � �y�� which precludes the application of Theorem ��

�� INFERENCE UNDER SKEWED STUDENT SAMPLING

In the previous Section� we assessed the e�ect of skewing a symmetric unimodal error
distribution with p�d�f� f�
�� on the existence of posterior moments� Now� we shall fully
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specify a Bayesian model which accounts for both skewness and fat tails and the sequel of
the paper will be devoted to posterior and predictive inference from this model� Whereas
the present Section groups results on the properness of the posterior and the existence of
its moments� the next Section will provide a numerical framework for conducting inference
from this model�

In particular� we consider a special case of the model in 
�����
����� using the following
assumptions


a� we specify a linear regression model in 
����� i�e� gi
�� � x�i�� where xi � �k is a
vector of explanatory variables� Throughout� we shall condition on xi without explicit
mention� The entire design matrix X � 
x�� � � � � xn�� will always be assumed to be of
full column rank k� which implies that n � k�


b� f�
�� is chosen to be the p�d�f� of a standard Student�t distribution with 
 degrees of
freedom� Thus� 
 � ���


c� for the prior of � we take the improper uniform distribution on �k� This leads to
p
�� 	 � � 	��� which corresponds to the usual noninformative distribution for regres�
sion and precision parameters� and is the reference prior in the sense of Berger and
Bernardo 
����� if � and 
 are known �see Fern�andez and Steel 
������� Following

����� P� and P� are taken to be any probability measures on ���
In summary� we assume n independent replications from the sampling density

p
yij�� 	� 
� �� ��
�
���

� �

�
�� �
�
�
���

	

� � �
��

� �
	�




yi � x�i��

�

�
�

��
I�����
yi � x�i�� � ��I������
yi � x�i��

��� ���
�

�


����
with prior distribution

P��������� � P� 
 P� 
 P� 
 P� �

where P� 
 P� has density p
�� 	 � � 	�� and P� and P� are proper�

����

The sampling distribution in 
���� will be denoted by �Skewed Student	 with location
x�i�� precision 	

�� 
 degrees of freedom and skewness parameter �� Let us brie�y discuss
the interpretation of the parameters in 
����� � � �k groups the regression coe�cients�
usually of primary interest� and 	 � �� is the precision parameter� In addition to these
parameters of interest� 
���� contains two more parameters� each with a clearly de�ned
modelling purpose� The thickness of the tails is entirely determined by 
 � ��� From
our results in Section � �see e�g� 
������ we know that introducing skewness does not a�ect
the existence of moments of the underlying symmetric distribution� Thus� the sampling
moments will exist up to 
 
not including�� as under Student sampling� Skewness is
controlled by � � ��� as explained in Section �� Following 
����� � determines the amount
of mass both sides of the location


P 
yi � x�i�j�� 	� 
� ��

P 
yi � x�i�j�� 	� 
� ��
� ��� 
����
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Before discussing existence of posterior moments from the Bayesian model in 
�����

����� we stress that 
from Section �� P� does not a�ect properness of the posterior distri�
bution� nor the existence of posterior moments of � and of negative order moments of 	 �
Thus� most results presented here would also apply to the case of 
symmetric� Student�t
sampling� The latter was examined in Fern�andez and Steel 
������ in the context of gen�
eral scale mixtures of Normals� but under �xed 
� Here we shall explicitly incorporate
prior uncertainty on the thickness of the tails� as the latter may be a crucial modelling
instrument� Thus� even when P� does not a�ect the results� the uncertainty on 
 precludes
direct application of the analysis in Fern�andez and Steel 
������

Since the prior distribution in 
���� is improper� we �rst investigate properness of the
posterior distribution�

Theorem �� With n independent replications from the sampling model in 
���� under
the prior in 
����� we obtain a proper posterior distribution if and only if n � k� for any
choices of P� and P�� �

This well�known result under Normal sampling is thus seen to hold in our much more
general framework� where skewness and fat tails are both allowed for� Clearly� any Bayesian
inference from this model will require at least k � � observations� Throughout the sequel
of the paper� we shall� therefore� assume n � k � ��

We now present our �ndings for marginal posterior moments of the components of
�� The following technical De�nition concerning the design matrix X will be required to
adequately characterize the existence of these moments�

De�nition �� singularity index for column j
Given an n 
 k full column�rank matrix X� we de�ne the singularity index for column
j � �� � � � � k as the largest number pj 
� � pj � n�k� such that there exists a 
k���pj �
k
submatrix of X of rank k�� which retains rank k�� after removing its jth column� �

Clearly� if X contains rows of zeros� then pj is at least equal to the number of such
zero rows for all j � �� � � � � k� Furthermore� maxfpj 
 j � �� � � � � kg � � if and only if every
k
 k submatrix of X is nonsingular� Intuitively� the higher pj is� the less information the
design matrix X contains about �j �

As mentioned previously� P� will not a�ect the existence of posterior moments of ��
If 
 is assumed �xed at some positive value 
� 
i�e� P� is a Dirac distribution on 
��� we
know from Fern�andez and Steel 
����� that for r � �

E
j�j j
rjy�� � � � � yn� �� if and only if r � minfn�k� n�k�pj�
�
n�k�pj���g� 
����

We now consider a general P�� In order to examine its in�uence� we partition the class
of probability distributions on �� on the basis of the presence of mass arbitrarily close to
zero�

Theorem �� Consider n observations from the sampling model 
���� and the prior in

���� with P� verifying P�
�� c� � � for all positive c smaller than some constant C� Then�
for any r � ��

E
j�j j
rjy�� � � � � yn� �� if and only if

�
r � n� k if pj � �
r � n� k � pj if pj � � �
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In practice� the most common situation where Theorem � applies is when P� is given
through a p�d�f� verifying p

� � � for all 
 � 
�� C� where C is some positive constant�
As in the case where 
 is �xed �see 
������ the design matrix a�ects existence of moments
of � only through pj � the singularity index of column j� If pj � � 
intuitively� the best
type of design matrix for �j�� we have marginal posterior moments up to n� k� as under
Normal sampling� The other extreme corresponds to pj � n� k� which does not allow for
any positive order moments of �j � Note that di�erent elements of � can possess posterior
moments up to di�erent orders�

The sampling model in 
���� has moments up to and not including 
� Thus� if we
allow 
 to be arbitrarily close to zero� we can preclude the existence of any positive order
sampling moment� If we wish to guarantee �nite sampling moments of a certain order

� � �� we need to rectrict 
 to be bigger than 
�� i�e� we consider distributions P� with
support on 

����� In this situation� more moments of the regression coe�cients can be
shown to exist� as the next Theorem explains�

Theorem �� Combining n observations from 
���� with the prior 
���� where P� has
support on 

����� 
� � �� we obtain�
�i� if r � n� k� then

E
j�j j
rjy�� � � � � yn� ���

�ii� if � � r � minfn� k� n� k � pj � 
�g� then

E
j�j j
rjy�� � � � � yn� ��� �

The necessary and the su�cient condition in Theorem � only coincide when 
� � pj �
in which case moments exist exactly up to n � k 
not including�� Otherwise� we can
guarantee moments of order smaller than n � k � pj � 
� and Theorem � does not cover
the range �n� k � pj � 
�� n� k�� Clearly� when pj � �� bounding 
 away from zero does
not a�ect existence of moments� but for pj � �� we gain at least the moments of order
r � 
n� k � pj �minfn� k� n� k � pj � 
�g��

In contrast to the situation where P� has mass arbitrarily close to zero� analyzed in
Theorem �� moments of order smaller than minfn � k� 
�g will now exist for any design
matrix X� Thus� the design matrix can no longer destroy the existence of all positive order
moments of ��

Finally� in the important special case of the location�scale model� i�e� where x�i� � � �
�� p� � � and posterior moments of � exist exactly up to n�� 
not including�� irrespective
of the choice of P� 
and P���

Let us now consider posterior moments of 	 of order r � �� The in�uence of P� on
the existence of these moments was addressed in Theorems � and �� Taking � � � and 

�xed at 
� � �� Fern�andez and Steel 
����� tells us that the range of �nite moments of 	
is given by r � 
�
n � k�� 
n � k�
��� We now consider general probability distributions
on 
�

First of all� we treat the case where 
 is not bounded away from zero


Theorem 	� Under the assumptions of Theorem �� we obtain

E
	 rjy�� � � � � yn� �� if and only if � 
n� k� � r � �� �



��

Theorem � entirely characterizes the moment existence for 	 � under any P� and choos�
ing any P� with mass arbitrarily close to zero� This choice of P� precludes �nite moments
of 	 of positive order�

However� choosing distributions for 
 which give zero probability to some interval

�� 
�� potentially allows for the existence of some positive order moments of 	 �

Theorem 
� Under the assumptions of Theorem 	� we can derive
�i� for r � ��

E
	 rjy�� � � � � yn� �� if and only if r � �
n� k��

�ii� taking � � ��
E
	 rjy�� � � � � yn� �� if � � r � 
�� �

From Theorem � and Theorem � 
i� we immediately deduce that negative order mo�
ments of 	 
positive order moments of the scale parameter �� always exist exactly up to
�
n � k�� irrespective of P� and P� � The su�cient condition in Theorem � 
ii� indicates
that some positive order moments of 	 exist when � � �� However� we know from Theo�
rems � 
ii� and � that P� can in�uence these moments� In particular� with our choice of
P�� Theorem � applies in the pure location�scale model 
x�i� � � � �� and� thus� existence
of the rth and �rth prior moments of � is also required in that case�

�� NUMERICAL IMPLEMENTATION

In order to conduct inference with the Bayesian model in 
�����
����� numerical meth�
ods will be required� In particular� we shall use a Markov chain Monte Carlo method�
namely the Gibbs sampler with data augmentation� The data augmentation adopted is
motivated by the representation of a Student�t distribution as a scale mixture of Normals
�see 
A��� in the Appendix�� Thus� we can� alternatively� express the sampling density in

���� as

p
yij�� 	� 
� �� �

�
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�

� �
� �

� � �
�

Z �
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where fG

ij
��� 
��� denotes the p�d�f� of a Gamma distribution parameterized as in De�
Groot 
����� p����� Thus� each observation yi� i � �� � � � � n� has its own mixing parameter

i and 
�� � � � � 
n are i�i�d� given 
� Augmenting the parameter set with 

�� � � � � 
n� will
greatly facilitate the numerical analysis� Therefore� we shall conduct a Gibbs sampler
on 
�� 	� 
� �� 
�� � � � � 
njy�� � � � � yn�� Essentially� the Gibbs sampler approximates draw�
ings from the joint distribution by a Markov chain of drawings from the full conditional
distributions� which are described subsequently�
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��� Conditional of �

We will analyze each element of � in a separate Gibbs step� From 
���� and 
����� the
conditional posterior p�d�f� of �j � j � f�� � � � � kg� is de�ned by

p
�j jf�s 
 s �� jg� 	� 
� �� 
�� � � � � 
n� y�� � � � � yn� �

exp
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nX
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i
yi � x�i��
�

�
�

��
I�����
yi � x�i�� � ��I������
yi � x�i��

�

�

����

which will now be rewritten in a form that immediately suggests a simple algorithm for
generating random drawings� Clearly� those observations for which xij � the jth element
of xi� is zero do not contribute to the conditional distribution of �j in 
����� For the m
remaining observations� we compute

w
�j�
i �

yi � x�i� � xij�j
xij

� 
����

noting that the full column rank assumption on X implies that m � �� Then� we order

the observations such that w
�j�
� � w

�j�
� � � � � w

�j�
m and partition �� the domain of �j � into

the sets S
�j�
� � 
��� w

�j�
� �� S

�j�
h � 
w

�j�
h � w

�j�
h��� for h � �� � � � �m � � and S

�j�
m � 
w

�j�
m ����

Ultimately� we can express the conditional posterior of �j as


p
�j jf�s 
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with f�N 
�jt� v� the p�d�f� of a univariate Normal distribution with mean t and variance v�
and
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where we have de�ned
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�j�
i� � 
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The expression in 
���� is now straightforward to draw from� First� we compute the

probabilities attached to each of the sets S
�j�
h forming the partition of �� then we choose

one set at random according to those probabilities� and �nally we draw the corresponding
truncated Normal� using the mixed rejection algorithm of Geweke 
������

��� Conditional of 	

It is immediate from 
���� and 
���� that

p
	�j�� 
� �� 
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from which random drawings can immediately be generated� in particular� we shall use
Cheng�s 
����� GB algorithm�

��� Conditional of 


Generally� the full conditional distribution of 
 given 
�� 	� �� 
�� � � � � 
n� y�� � � � � yn� is
proportional to

�
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�n��� n
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�o�n
exp
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i � log
i�

�
P� � 
����

i�e� the conditional posterior distribution of 
 is absolutely continuous with respect to the
prior P� with Radon�Nikodym derivative proportional to the �rst three factors in 
�����
Clearly� the distribution in 
���� does not directly lend itself to random number generation�
but as 
 is a scalar� many numerical methods should work e�ciently�

In our empirical Section� we shall not bound 
 away from zero and we take P� to be
an Exponential distribution with p�d�f�

p

� � d exp
�d
�� 
����

leading to
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Drawings from 
����� will be generated through rejection sampling �see e�g� Devroye 
������
using an Exponential source density� with its parameter chosen so as to maximize the
overall acceptance probability� as described in Geweke 
������ In particular� we employ
the following strategy

�� Draw 
 from a distribution with p�d�f� 

���� exp
�
�
�� with 
� the unique solution
to
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where �
�� is the digamma function�
�� Accept the drawn value 
 with probability
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For a grid of values of n 
ranging from �� to ���� and plausible values for d �

�
�

Pn
i	�

i � log
i� 
ranging from slightly larger than n�� to �n� empirical acceptance

probabilities are typically in the order of ���� and always above ����� See also Table A��
in Geweke 
������

���� Conditional of �

With general P�� the conditional distribution of � given 
�� 	� 
� 
�� � � � � 
n� y�� � � � � yn�
is proportional to
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using the same notation as in 
����� In our empirical Section� we shall use a Gamma
a� b�
prior on � � ��� leading to

p
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where we have de�ned
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The distribution in 
����� is not of any standard form� for which random number generators
are readily available� However� the density function is bell�shaped and has subquadratic
tails� so that the Ratio�of�Uniforms method of Kinderman and Monahan 
����� can be
applied� Generally� as explained in Devroye 
������ using this method to draw a scalar
variate with p�d�f� proportional to an integrable function g
��� consists in

�� draw a Uniform distribution on the set A � f
u� v� 
 � � u � fg
v�u�g���g�
�� the ratio v�u is a drawing from the required distribution�
In order to draw from the Uniform distribution on A� it is convenient to draw a Uniform on
a rectangle enclosingA� accepting the drawing only if it falls inA� The most e�cient imple�
mentation of this algorithm corresponds to choosing the smallest possible rectangle enclos�
ing A� which is generally given by ��� supxfg
x�g

����
 �infx xfg
x�g���� supx xfg
x�g
�����



��

Taking g
�� to be the kernel in 
������ it is immediate that inf� ��g
�� � �� whereas
the unique positive solution of ���� � 
q � �� n��� � 
q � ��� � � � � maximizes g
��
for q � 
n��� � a� � and ��g
�� for q � 
n��� � a� ��

Choosing a wide range of values for n 
from �� to ���� and a range of empirically
plausible values for a� � and � we estimate acceptance rates to be typically around �� 
and always exceeding �� �

���� Conditional of 
�� � � � � 
n

Drawing from the conditional distribution of the mixing parameters is straightforward
as they are independent with p�d�f�

p
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The full conditional distributions in 
����� 
����� 
������ 
����� and 
����� de�ne a

Gibbs sampler with k � � steps in n � k � � dimensions� Convergence of the induced
Markov chain to the posterior distribution is ensured� since the parameter space has a
Cartesian product structure �see Roberts and Smith 
�������

�� EMPIRICAL EXAMPLES

��� Preliminaries

In this Section� we will use the Bayesian model described in Section � for the analysis
of some examples� following the numerical implementation outlined in the previous Section�

We remind the reader that we adopted the prior distribution in 
���� with an Expo�
nential distribution on 
 as in 
����� and a Gamma
a� b� prior for � � ��� Thus� a full
description of our prior distribution still requires a choice for d in 
���� and for a and b�
In the elicitation of these hyperparameters we shall try to avoid introducing strong prior
information� To this end� we choose d � ���� thus obtaining a prior mean of 
 equal to ��
and a prior variance of ���� essentially allocating substantial prior mass to very thick tails
as well as almost Normal tails� For the skewness parameter� �� we specify a prior with
mean one� which centers the prior around the case of symmetric sampling� The latter is
equivalent to choosing

b �

�
�
a � �

� �

�
a�

��

� 
����

and we shall elicit a using both the prior variance of � and the prior mass on the interval

�� ��� The variance of � is the following decreasing function of a


V ar
�� � a

�
�
a�

�
a � �
��

��

� �� 
����



��

The expression in 
���� would seem to suggest that a very small value of a adequately
conveys a lack of prior information
 e�g� a � ���� corresponds to V ar
�� � ����� However�
the prior probability that � � 
�� �� also decreases in a� and for a � ���� we obtain
P 
� � �� � ����� Since we prefer a prior that gives approximately equal weights to left
skewness 
i�e� � � �� and right skewness 
i�e� � � ��� a compromise is in order� We feel
that the value a � ���� leading to V ar
�� � ���� and P 
� � �� � ���� is quite reasonable�
This particular value leads exactly to a half�Normal prior for �� We shall adopt these prior
choices in both of the examples subsequently analyzed�

Besides the general model allowing for both skewness and fat tails simultaneously� we
shall also consider simpler versions� which incorporate only one of these features at a time�
Thus� we examine three possible sampling models� namely the skewed Student in 
����� the
skewed Normal �the limiting case of 
���� as 
 	�� and the Student�t model �
���� with
� � ��� Priors for parameters present in the models will always be as described above�

In the sequel� we present posterior inference on model parameters and predictive
inference in the context of each model� The latter will be conducted through averaging
the sampling density� using the Rao�Blackwell argument suggested in Gelfand and Smith

������

Model comparison will formally be done through the use of Bayes factors� Due to the
fact that we have proper priors on model�speci�c parameters� the latter can meaningfully
be computed� In order to conduct the actual computations� two distinct methods are
employed
 the method of Chib 
����� and the Savage�Dickey density ratio mentioned in
Verdinelli and Wasserman 
������ based on Dickey 
������

Throughout� we used a sequential version of the Gibbs sampler� discarding the �rst
������ realizations 
the �burn�in	� and basing our results on the following ������� draw�
ings� However� much smaller runs already lead to reliable results� All density plots are
presented without smoothing and are based on �� bins�

As a �nal� but important� note� we stress that the numerical implementation described
in Section � leads to very e�cient algorithms� Using Gauss����i VM version ���� the most
complicated models for both examples treated here executed at a rate of over ������ Gibbs
draws per hour on a PC equipped with a Pentium���� processor� Thus� the analysis of
much more challenging data sets is entirely within reach� even with modest computing
facilities�

���� Share Price Returns

In our �rst example we use a simple location�scale structure 
i�e� k � � and xi � �� i �
�� � � � � n� to model daily share price returns� The particular data set we use concerns Abbey
National shares between July �� and October �� ����� and was used in Buckle 
������
Table � in Buckle 
����� lists the price data� pi� i � �� � � � � ��� from which we construct
the observations yi � 
pi � pi����pi��� i � �� � � � � ���

Buckle 
����� proposed Stable distributions as a way of dealing with skewness and fat
tails� Before discussing our results� let us brie�y contrast this approach with the approach
proposed in the present paper� We feel the main advantages of using the model introduced
in Section � are model �exibility� interpretability of the parameters and computational
simplicity�



��

In particular� whereas we can account for a smooth transition of very fat to Normal
tails� since the sampling density in 
���� behaves in the tails as a Student distribution
with 
 degrees of freedom� Stable distributions display an inherent discontinuity in tail
behaviour� since they either do not possess a �nite variance or are Normal� In addition�
skewness is only allowed for when the variance does not exist�

A related point is that the skewness and tail parameters are inextricably linked for
Stable laws� therefore complicating both the issue of prior elicitation and interpretation
of the parameters� In sharp contrast� our approach entirely separates the e�ect of the
skewness parameter � and the tail parameter 
� facilitating their interpretation and making
prior independence between the two a plausible assumption�

In addition� the Gibbs sampler used in Buckle 
����� requires far more numerical
e�ort than ours� as it involves four Metropolis�Hastings steps and n univariate rejection
sampling steps for the augmentation variables� Since the p�d�f� of a Stable distribution does
not possess a closed form expression� predictive distributions are also much more di�cult
to evaluate than in our case�

Before our discussion of posterior results� a technical issue still needs to be addressed�
Since n � �� Theorem � assures us of the existence of the posterior distribution� However�
this obviously does not prevent the predictive density p
y�� � � � � yn� from being in�nite in
a set of Lebesgue measure zero in �n� For the location�scale model� the latter set consists
of all the samples 
y�� � � � � yn� for which P�
�� fs � �g�fn� sg� � �� where s is the largest
number of identical observations� Thus� when P� has mass arbitrarily close to zero 
as is
the case with the exponential prior considered here�� any sample that contains at least two
identical observations leads to p
y�� � � � � yn� ��� Whereas theoretically a set of Lebesgue
measure zero poses no problem� the censoring and rounding mechanisms underlying many
empirical observations may lead to repeated data points� as is the case in our particular
data set� One obvious solution would be to restrict 
 to be bigger than 
s� ���
n� s�� In
practice� this restriction is relatively harmless� e�g� in our example� � of the �� observations
are repeated 
yi � ��� yet 
 � ��� is su�cient� In the interest of a fair comparison with
the results in Buckle 
������ we have chosen not to restrict the support of P� � but instead
we have slightly perturbed the yi�s� The empirical impact of this minor perturbation is�
however� quite negligible� since we never obtained any empirical evidence of posterior mass
for 
 � ���� Explicitly incorporating the censoring mechanism into the model is� naturally�
a very appealing solution� However� this is outside the scope of the present paper� and is
the object of ongoing research�

Posterior results using the general sampling model in 
���� with the prior as explained
in Subsection ��� are summarized in Table � and Figures ���� Besides the general skewed
Student sampling model� we have also used the Student�t model� which only allows for
thick tails� and the skewed Normal� with only skewness accounted for� From our theoretical
results in Section � we know that positive order posterior moments of � and � � 	�� exist
up to order n�k � �� 
not including� in all three models� whereas positive order moments
of 	 are precluded under Student or skewed Student sampling� Table � reports posterior
means and standard deviations of � and �� The latter vary substantially across models�



��

Table �

skewed Student Student skewed Normal
mean � ������� ������� �������
st� dev� � 
������� 
������� 
�������
mean � ������ ������ ������
st� dev� � 
������� 
������� 
�������

Figure � clearly indicates right skewness in the data� thus� if our model does not account
for this skewness� the location will be shifted to the right� as occurs for the Student�t
model� As Figure � indicates� 
 has substantial posterior mass in regions corresponding
to thick tails� Thus� the skewed Normal model� which has Normal tail behaviour� needs
to decrease the precision 	 in order to capture observations in the tails� Figure � indicates
that precision increases if we account for fat tails and even more if we allow for skewness
as well 
see also Table ���

An interesting feature is that inference on skewness is little a�ected by allowing for
thick tails� Indeed� the skewed Student and the skewed Normal lead to similar posterior
distributions for � 
Figure ��� Even more striking is the similarity of the posterior distribu�
tions for 
 under Student and skewed Student sampling 
Figure ��� Whether we allow for
skewness or not has virtually no impact on inference on the degrees of freedom parameter

� In summary� inference on skewness and thickness of tails seems well separated in our
model� However� the present data set is not very informative on the thickness of the tails�
as we have empirically noticed some sensitivity of posterior inference on 
 with respect to
the choice of d in 
�����

Figure � displays the post�sample predictive density functions under each of the three
models� Note that the predictive from the skewed Student model closely resembles the
data histogram in Figure �� The Student model obviously leads to a symmetric predictive�
which seems at odds with the data� whereas the skewed Normal sampling model clearly
induces more dispersion in the predictive�

A formal comparison of the three models is now conducted using Bayes factors� We
have used the method based on the �Basic Marginal Likelihood Identity	 
BMI� developed
in Chib 
������ This method estimates the marginal likelihood of the observed sample
using Gibbs sampling in combination with the integrating constants of the required full
conditionals� Wherever the latter integrating constants were not available analytically

i�e� for 
 and ��� we have estimated them empirically by normalizing the histograms�
All results were based on ������ draws after a burn�in of ����� draws for each additional
Gibbs sampler involved� Table � presents the resulting Bayes factors� Entry 
i� j� in the
Table indicates the Bayes factor in favour of model i versus model j� For completeness�
the simple Normal model 
for which the marginal likelihood is known analytically� is also
included� Clearly� there is some evidence for both fat tails and skewness in the data�

As a check� we also assessed the evidence in favour of skewness using the Savage�
Dickey density ratio� as explained in Verdinelli and Wasserman 
������ Comparing skewed
Student with Student and skewed Normal with Normal led to the same Bayes factors as
displayed in Table ��
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Table �

skewed Student Student skewed Normal Normal
skewed Student � ��� ��� ����
Student � ��� ���

skewed Normal � ���
Normal �

Overall� our results are not incompatible with those found in Buckle 
������ who also
recorded evidence of right skewness and heavy tails� Only his posterior �ndings on the
location parameter seem in con�ict with ours� as he obtains a posterior mean of ��������
Note� however� that the location parameter in Buckle is not interpretable as the mode

under asymmetry�� whereas our sampling model in 
���� always locates the mode at x�i��
Thus� our location parameter � has the unequivocal interpretation of the mode of the
sampling distribution in this example� We feel this is an added advantage of using the
Bayesian model described in Section ��

���� Hertzsprung�Russell Diagram

Our second example concerns explaining the logarithm of the light intensity of stars

yi� by an intercept and the logarithm of the e�ective surface temperature of the star�
Thus� we now have a regression model with k � �� xi� � � and xi� is the log of the
temperature of star i� We have �� observations for the star cluster CYG OB� 
in the
direction of Cygnus�� which are taken from Rousseeuw and Leroy 
����� Table �� p� ����

The analysis is conducted using the numerical procedures outlined in Section �� im�
plemented as described in Subsection ���� We consider two sampling models� Student�t
and skewed Student� with the priors described in Subsection ���� The design matrix X
of our data set veri�es p� � p� � �� Recalling De�nition �� this can easily be seen as
follows
 none of the values xi� are zero and the maximum number of identical values for
xi� is �ve� This immediately leads to p� � p� � �� Thus� from Theorem �� positive order
posterior moments of �� and �� exist up to the order n � k � � � �� 
including�� under
both sampling assumptions� Theorem � implies that the range of �nite posterior moments
of � � 	�� is given by ��� ��� under both sampling schemes�

As in the previous Example� a technical comment is in order� For the model considered
here� i�e� k � � with an intercept� the practically relevant conditions to check for having
a �nite predictive value are
 no zero observations and those observations corresponding to
equal rows of X should be di�erent� The �rst condition can easily be achieved by adding a
constant to all observations and the intercept� In case the second condition is not ful�lled�
restricting 
 to be bigger than some small value will typically solve the problem� Even
though the empirical posterior probability for 
 � � is zero in our example� we have based
our results on a slightly perturbed sample�

Posterior results are summarized in Table � and Figures ����� Inference on the regres�
sion coe�cients is somewhat a�ected by allowing for skewness� and the posterior mean of
� is smaller under skewed Student sampling� There seems to be evidence of left skewness



��

in the data 
see Figure ��� and� as was the case in our previous example� inference on tail
behaviour is largely una�ected by allowing for skewness 
see Figure ����

Table �

mean �� st� dev� �� mean �� st� dev� �� mean � st� dev� �
skewed Student ���� 
����� ������ 
������ ����� 
������

Student ���� 
����� ������ 
������ ����� 
������

The left skewness revealed in Figure �� is translated into a skewed predictive plot under
skewed Student sampling� conditional on mean values of X and the full observed sample�
Of course� the predictive under Student sampling is symmetric 
see Figure ����

The Bayes factor of skewed Student versus Student sampling was computed to be
��� using the Savage�Dickey density ratio� The latter result conveys moderate evidence in
favour of skewness�

	� CONCLUSION

In this paper� we have introduced a general method for transforming symmetric into
skewed distributions� at the cost of a single scalar parameter� Using such a skewed dis�
tribution for the error terms in a regression model� we establish that the e�ects of this
skewness on the existence of the posterior distribution and its moments is quite limited�
We then consider linear regression under independent skewed Student errors with unknown
skewness and thickness of tails� in combination with a commonly used improper prior on
the regression coe�cients and the precision parameter� For this model� which is central
to the paper� we obtain that the posterior is well�de�ned under the same conditions as
for Normal sampling 
i�e� when sample size exceeds the number of regressors�� existence
of posterior moments of regression coe�cients and precision are examined in detail� A
numerical analysis based on the Gibbs sampler is outlined and applied to a number of
examples�

We feel that the approach proposed here has a number of attractive features



a� It allows for very �exible modelling of the skewness and fat tail features of the data�
Skewness covers the entire range of e�g� the skewness measure in Arnold and Groeneveld

������ which implies that mass can be allocated to the regions both sides of the mode
in any proportion� irrespective of the underlying symmetric distribution� Within the
skewed Student setup� we can allow for any Student tail behaviour� thus ranging from
very fat tails to limiting Normality�


b� The extra parameters introduced into the analysis have very clearly de�ned mod�
elling purposes� The skewness parameter alone controls the allocation of mass with
respect to the mode� whereas the degrees of freedom parameter entirely accounts for
tail behaviour� The two parameters are� thus� clearly interpretable� Prior indepen�
dence is typically a very plausible assumption� which drastically simpli�es the process



��

of choosing prior distributions
 prior elicitation for each of them can simply be con�
ducted independently� From our empirical examples� it seems that prior independence
between these parameters is not substantially altered by the data information�


c� The empirical analysis is very feasible indeed� The Gibbs sampler we construct uses
either standard algorithms or simple rejection methods that prove to work very e��
ciently� The speed of execution is such that the analysis of quite challenging problems
is a real practical possibility� even for users with modest computing facilities�

APPENDIX� PROOFS

Proof of Theorem �

For the Bayesian model in 
����� 
����� E

Qk

j	� j�j j
rj jy�� � � � � yn� �� if and only if

the integral

I� �

Z
�k����N���



kY

j	�

j�j j
rj �	��f

nY
i	�

p
yij�� 	� 
� ��gdP�d	dP�dP� 
A���

is �nite� Since f�
s� � f�
jsj� is decreasing in jsj� we obtain the following upper and lower
bounds for the sampling density p
yij�� 	� 
� ��


�
	

� � �
�

f�

�
	 jyi � gi
��j

h
��

�
� 
A���

with

h
�� �

�
maxf�� �� g for the upper bound�

minf�� �� g for the lower bound�

A���

We now substitute each of these bounds inside the integral in 
A���� Applying Fubini�s
Theorem� we �rst consider the integral with respect to 	 � Transforming from 	 to � �
	�h
��� immediately leads to the upper and lower bounds for I�


�n
Z
��

�
h
��

� � �
�

�n

dP�

Z
�k����N



kY

j	�

j�j j
rj ��n��f

nY
i	�

f�
�jyi � gi
��j�gdP�d�dP� � 
A���

with h
�� as de�ned in 
A���� Clearly� for both choices of h
�� in 
A���� the value of the
�rst integral in 
A��� lies in the interval 
�� ��� In addition� the second integral in 
A��� is

�nite if and only if E

Qk

j	� j�j j
rj jy�� � � � � yn� � � under � � �� thus obtaining Theorem

�� �

Proof of Theorem �

Having a �nite rth order posterior moment of 	 is equivalent to a �nite integral

I� �

Z
�k����N���

	 r��f
nY
i	�

p
yij�� 	� 
� ��gdP�d	dP�dP� � 
A���



��

We now substitute the bounds given in 
A��� � 
A��� for the sampling density inside the
integrand in 
A���� Considering �rst the integral with respect to 	 and transforming to
� � 	�h
��� leads to upper and lower bounds for I� of the form

�n
Z
��

h
��n�r


� � �
� �

n
dP�

Z
�k����N

�n�r��f
nY
i	�

f�
�jyi � gi
��j�gdP�d�dP� � 
A���

with h
�� as de�ned in 
A���� Note that the second integral in 
A��� is �nite if and only
if E
	 rjy�� � � � � yn� �� under � � ��

A� Since the �rst integral in 
A��� is strictly positive for h
�� � minf�� ���g� it follows

that E
	 rjy�� � � � � yn� � � under P� requires the same moment to be �nite under
� � ��


B� In order to obtain a su�cient condition� we consider h
�� � maxf�� ���g� The �rst
integral in 
A��� is then �nite if and only if

Z
��

�
max

�
��
�

�

��r
dP� ��� 
A���

which is immediately ful�lled for r � �� but not for r � ��
Combining 
A� and 
B� proves Theorem �� �

Proof of Theorem �

The necessity of a �nite rth order posterior moment of 	 under � � � was already
established in Theorem �� Thus� we just need to prove that� under the assumptions of
Theorem �� 
A��� is also necessary�

I� � de�ned in 
A���� can be bounded from below as I� � I��I�� where I� restricts the
domain of integration to f� 
 gi
�� � yi for all ig� 	 � ��� 
 � N � and � � �� whereas I�
covers f� 
 gi
�� � yi for all ig� 	 � ��� 
 � N � and � � �� Integrating �rst with respect
to 	 � transforming to � � �	 for I� and to � � 	�� for I� leads to the result� �

Remarks

�� In the remainder of the Proofs we shall be using the fact that the Student distribution is
in the class of scales mixtures of Normals� In particular� the p�d�f� of a standard Student�t
with 
 degrees of freedom can be written as

f�
�� �

Z �

�

�



��

����

exp

�
�



�
��
�
dP	� 
A���

with P	 a Gamma distribution with shape and precision parameters both equal to 
�� 
i�e
with unitary mean��

Fern�andez and Steel 
����� examines Bayesian inference in the context of a linear
regression model with i�i�d� errors distributed as a known scale mixture of Normals� Thus�

�� � � � � 
n� the mixing parameters corresponding to each of the observations� are i�i�d� with
some known probability distribution� say P	� on ��� Our setup now is slightly di�erent




��


�� � � � � 
n are i�i�d� given 
� with a Gamma

��� 
��� distribution� but the prior P� destroys
the independence between the mixing parameters� leading to the p�d�f�

p

�� � � � � 
n� �

Z �

�

�
nY
i	�

fG

�

ij




�
�



�

��
dP� � 
A���

Despite this di�erence with Fern�andez and Steel 
������ many of the proofs and results
from the latter paper are useful for the proofs of the present paper� thus� we will frequently
refer to it in what follows�

�� The following result �see Whittaker and Watson 
������ chap� ��� will be used in the
sequel to provide bounds on the Gamma function
 for z � ��

�
z� � 
������zz�
�
� exp
�z� expf�
z�g� 
A����

with � � �
z� � K�z for some positive constant K� �

Proof of Theorem �

Since� from Theorem �� P� does not a�ect the existence of the posterior distribution�
we consider the Bayesian model in 
����� 
���� taking � � �� Using the representation in

A���� the proof now proceed as follows


A� Consider the joint distribution of 
y�� � � � � yn� �� 	� 
�� � � � � 
n��

B� Integrate out � as a k�variate Normal�

C� Integrate out 	 using a Gamma distribution on 	�� which requires n � k�

D� Finally we are left with a function of 

�� � � � � 
n�� which can be shown to be bounded

�see proof of Theorem � 
ii� in Fern�andez and Steel 
������� Thus� it is integrable for
any probability distribution of 

�� � � � � 
n�� in particular� it is integrable under 
A����
�

Proof of Theorem �

Again� from Theorem �� we simply take � � ��

A� Following the reasoning in the proof of Theorem � 
i� in Fern�andez and Steel 
������

it is immediate that r � n � k is always required� for any choice of P� � for the rth

order posterior moment of �j to exist�

B� Furthermore� from the proof of Theorem � 
ii� in Fern�andez and Steel 
����� �see


A���� � 
A���� in that proof�� we obtain that combining pj � � with r � n � k or
pj � � with r � n�k�pj leads to an rth order posterior moment of �j � for any choice
of P� �


C� Finally we show that when pj � �� posterior moments of �j of order r � n� k� pj do
not exist

From Theorem � 
ii� of Fern�andez and Steel 
����� we know that if r � n� k � pj �


n � k � pj � �� �or� equivalently� 
 � fr � 
n � k � pj�g�
n � k � pj � ���� then
E
j�j jrjy�� � � � � yn� 
� � �� Clearly� if r � n � k � pj � P�
�� fr � 
n � k � pj�g�fn �
k � pj � �g� � �� which implies E
j�j jrjy�� � � � � yn� ��� �



��

Proof of Theorem �

Again we take � � �� From exactly the same argument used in Parts 
A� and 
B� of
the proof of Theorem � we know that E
j�j jrjy�� � � � � yn� � � if r � n � k� whereas the
latter integral is �nite if pj � � and r � n� k or if pj � � and r � n � k � pj � Thus� we
only need to examine the case where pj � � and r � 
n � k � pj � n� k��

From the proof of Theorem � 
ii� in Fern�andez and Steel 
����� �in particular� expres�
sions 
A���� � 
A���� in that proof�� follows that if r � n� k and

Z
�����n

�

�

�

��n�k�pj�r���

p

�� � � � � 
n� d
� � � � d
n ��� 
A����

with p

�� � � � � 
n� as de�ned in 
A���� then E
j�j jrjy�� � � � � yn� ��� Using Fubini�s The�
orem we compute the integral in 
A���� in two steps
 �rst we condition upon 
� which
requires r � n � k � pj � 
� for a �nite integral� We then obtain a function of 
� which
can be shown to be bounded by applying 
A����� whenever r � n� k � pj � 
�� therefore

A���� holds for these values of r� �

Proof of Theorem 	

We start by considering � � ��

A� If r � �
n � k� we know from Theorem � 
i� in Fern�andez and Steel 
����� that

E
	 rjy�� � � � � yn� 
� �� for all 
 � ��� Thus� E
	 rjy�� � � � � yn� �� for any P� �

B� We now consider �
n � k� � r � �� From the proof of Theorem � 
ii� in Fern�andez

and Steel 
����� �in particular� 
A����� 
A���� in that proof�� and with p

�� � � � � 
n�
as de�ned in 
A���� we can deduce that
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d
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A����
implies a �nite rth order posterior moment of 	 � We now show that the inside integral
in 
A����� which shall be denoted by I

�� is a bounded function of 
� and thus
integrable� for any P� � Since I

� is continuous in 
� we only need to prove that it has
�nite limits as 
 converges to zero and in�nity� To show that each of these limits is
�nite� we consider two di�erent upper bounds for I

��


B�� Limit as 
 	�


Since 
n�k � maxf
�� � � � � 
n�kg� we have 
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The latter integral is proportional to


r���

�

 � r

�

�n
�
�

�

�o��
� 
A����

which� by applying 
A����� can be shown to have a �nite limit as 
 	��



��


B�� Limit as 
 	 �

We now perform the integral I

� iteratively� In each of the n � k steps of the
integration we use the upper bound

Z �

�


��� exp
��
�d
 �
��

�
� for any �� � � �� 
A����

This leads to an upper bound for I

� proportional to


r��



 � ��n�k��
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�

n� k�
 � r

�

�n
�
�

�

�o��n�k�
� 
A����

Applying 
A���� leads to an upper bound for 
A���� which has a �nite limit as 
 	 ��

C� Finally we take r � �
 From Theorem � 
ii� in Fern�andez and Steel 
����� we know

that if r � 
n � k�
� then E
	 rjy�� � � � � yn� 
� � �� If r � �� P� assigns positive
probability to the interval 
�� r�fn � kg�� which precludes a �nite rth order posterior
moment of 	 �

Combining 
A��
C� we obtain that� under � � �� E
	 rjy�� � � � � yn� � � if and only if
�
n� k� � r � �� Applying Theorem � concludes the proof� �

Proof of Theorem 


Parts 
A� and 
B� of the proof of Theorem �� together with Theorem �� immediately
lead to Theorem � 
i�� In order to prove Theorem � 
ii�� we follow the reasoning in Part

B� of the proof of Theorem �� now considering r � �� As was shown there� I

� has
an upper bound proportional to the expression in 
A����� which is bounded for 
 � 
�
provided that r � 
�� �
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