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ABSTRACT 
Process variations have a growing impact on circuit performance 
for today’s integrated circuit (IC) technologies. The Non-Gaussian 
delay distributions as well as the correlations among delays make 
statistical timing analysis more challenging than ever. In this paper, 
we present an efficient block-based statistical timing analysis 
approach with linear complexity with respect to the circuit size, 
which can accurately predict Non-Gaussian delay distributions from 
realistic nonlinear gate and interconnect delay models. This 
approach accounts for all correlations, from manufacturing process 
dependence, to re-convergent circuit paths to produce more accurate 
statistical timing predictions. With this approach, circuit designers 
can have increased confidence in the variation estimates, at a low 
additional computation cost.  

Categories and Subject Descriptors 
B.8.2 [Hardware]: Performance and reliability – Performance 
Analysis and Design Aids 

General Terms: Algorithms, verification 
Keywords: Statistical timing, process variation 
1. INTRODUCTION 
With the increasing complexity of VLSI designs and tighter timing 
constraints, timing verification has become a more challenging and 
important task. Timing information can be used for design 
optimization as well as yield improvement in manufacturing. For 
today’s nanometer process technologies, circuit delays are highly 
dependent on manufacturing process variations, especially the intra-
die variations, of both gates and interconnects. Due to the 
correlations among component (gates and interconnect) delays, 
corner case analysis using traditional Static Timing Analysis (STA) 
tools is very pessimistic and no longer capable of finding the circuit 
delay in variational environments.  

As an improvement, Statistical Static Timing Analysis algorithms 
(SSTA) have been proposed by several researchers. Instead 
ofpropagating fixed delay values through gates and interconnect, 
SSTA propagates delay distributions characterized by delay 
Probability Density Functions (PDFs). Path-based SSTA algorithms 
were discussed in [1], [2]. Due to the large number of long paths in 

realistic commercial circuits, the top K longest paths must be 
selected before a path-based algorithm is applied. However, this is a 
very challenging task when both inter-die and intra-die variations 
are present, since variations can change the set of critical paths. So 
far, no effective approach has been published to solve this problem. 
Moreover, path-based algorithms are not incremental. When the 
circuit is optimized, the algorithms have to be re-run, even when 
only a small number of gates are re-sized.  

At the same time, block-based statistical STA algorithms were 
proposed [3]-[7]. Unlike path-based algorithms, block-based 
algorithms walk through the circuit by a breadth-first search. Delay 
PDFs are propagated level by level from the source node to the sink 
node of a timing graph. Since there is no need to find the top K 
paths, and only two atomic operations, sum and max, are required, 
block-based algorithms are favored and widely accepted for their 
efficiency. For illustration purposes, this paper only discusses long 
paths problems. Short paths problems can be treated similarly by 
using the min operation in place of the max operation.  

There are currently two categories of approaches for propagating 
delay PDFs in block-based SSTA algorithms. Each category is 
based upon its specific assumption. The first category assumes 
statistical independence among delays of different gates and 
interconnects. These algorithms are able to process any form of 
delay probability distributions [3], [4]. As a result, nonlinear delay 
models can be handled with this set of techniques. However, 
provided that an IC is affected by both inter-die and systematic 
intra-die variations, the independence assumption for different gate 
and interconnect delays is unrealistic, and spatial correlation must 
be included to get accurate delay predictions.   

On the other hand, the second category assumes Gaussian 
distributions of all delays to take into account the delay correlations, 
based on the “convenient” properties of Gaussian random variables 
[5]-[7]. However, in order to maintain the Gaussian assumption, 
linear delay models are required over process parameters for all 
gates and interconnect delays throughout the circuit. In other words, 
for each gate or interconnect delay, first order Taylor Expansion has 
to be used to represent its delay function in terms of process 
parameters. Moreover, Gaussian distributions must be assumed for 
all signal arrival times. Therefore, this set of techniques loses the 
controllability over nonlinear delays, which can be caused by many 
sources from the nonlinear delay models due to large-scale 
manufacturing process variations, to the nonlinear operation max 
during block-based delay propagation. Due to these nonlinearities, 
the linear delay models with Gaussian distributions are often not 
accurate enough, so that higher order delay models must be used. 
The importance of using nonlinear delay models will be discussed 
in detail in Section 2.   
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To account for both Non-Gaussian delay distributions and 
correlations, we hereby propose a novel block-based statistical 
timing analysis approach. In this approach, all gate/interconnect 
delays and signal arrival times are represented in quadratic form 
over a base set of variational process parameters. From 
experiments, we verify that nonlinear delays can be accurately 
approximated by quadratic models. A breadth-first search algorithm 
is then used to get delay expressions for all nodes of the circuit, 
which guarantees that the algorithm has a linear complexity. The 
parameter base can be derived from the Principal Component 
Analysis (PCA) technique [8].  

The organization of the rest of the paper is as follows: In Section 2, 
we focus on nonlinear delay sources in block-based SSTA, which is 
the main motivation for us to propose this nonlinear approach. 
Section 3 discusses how the two atomic operations: sum and max, 
are performed under quadratic delay models. We show our 
algorithm in Section 4. Experimental results and algorithm 
complexity are discussed in Section 5. We give our conclusions and 
future work in Section 6. 

2. NONLINEARITY IN SSTA 
An increasing magnitude of nonlinear properties is observed in 
today’s industrial circuits. For example, industry speed binning 
results, for circuits such as microprocessors, demonstrate very 
significant nonlinearities in the circuit delay. This is due to 
nonlinear gate/interconnect delay dependence on process variations. 
Delay functions over a certain process parameter set are often 
nonlinear. When the process variations are very small, first order 
Taylor Expansion is an accurate enough approximation. However, 
with the growing variations due to smaller feature sizes, first order 
approximation is no longer precise. Second order terms can’t be 
ignored any more. According to the current technology trends, more 
than ±35% variations on the gate length are cited for 90 nanometer 
processes, and they are getting even larger for 65 nanometer 
processes [9]. Hence, the linear models and the Gaussian 
assumption may cause considerable errors that degrade the accuracy 
of those SSTA algorithms. 

Moreover, models for Chemical Mechanical Polishing (CMP) and 
Critical Dimension (CD) variations are non-linear as well. In Figure 
1, we show the delay PDF of an 800um*0.8um interconnect in 
0.18u technology. In this experiment, a 30% variation is applied on 
the metal thickness, which can be caused by copper CMP dishing 
effect. 

A 15% modeling error is observed in the linear delay model versus 
Monte Carlo SPICE simulation result, while the result of quadratic 
delay model is overlapping the Monte Carlo result. For any 
Gaussian random variable, the skew (3rd order moment) is always 
zero. Non-zero delay skews can’t be represented in linear delay 
models. But under nonlinear delay models, non-zero skews can be 
represented by the quadratic terms. In this example, the skew is 
0.58, which implies the inevitable error introduced by the Gaussian 
approximation.  The modeling error will become even larger as 
process variations increase or more variations sources, such as 
driving strength, are considered. Similarly, nonlinearity can be 
observed in gate delays experiments as well.  

In addition to large-scale process variations, other sources can 
contribute to the need of use of the nonlinear delay models. The 
core of block-based SSTA approaches finding the probability 
distribution of delay D = max(D1, D2, …, Dn), where Di is the delay 
of the i-th partial path to the current node in the statistical timing 

graph of a circuit. The max operation is performed at each node of a 
circuit until the sink node is reached. Because max is a nonlinear 
operation, it will generate Non-Gaussian delay distribution for D, 
even if all Di’s are of Gaussian distributions. Moreover, the partial 
path delays Di’s are often nonlinear as well, due to high order delay 
models caused by large-scale process variations. 

Next consider the nonlinearity source that comes from the atomic 
operations. In propagating delay PDFs through gate/interconnect, 
sum operation is used to handle single input component, like 
inverters, buffers, and interconnects, while, max operation is used to 
handle multi-input gates, like NAND gates, NOR gates and etc.. 
Sum operation is a linear operation. Provided that both input signal 
arrival time and component delay are of Gaussian distributions, the 
output signal arrival time is Gaussian as well. However, the max 
operation, max(A1,A2) over two random variables is non-linear. 
Let’s consider one hypothetical case when the two input operands, 
A1 and A2, have similar mean values, and different variances. Under 
this condition, max function produces a distinctly Non-Gaussian 
output (see the PDF in Figure 2). The PDF of max(A1, A2) is clearly 
Non-Gaussian, though A1 and A2 are independent Gaussian random 
variables conforming to N(0, 0.5) and N(1,3) respectively. Similar 
results can be observed when A1 and A2 are correlated Gaussian 
random variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, if we only use linear approximation on max function as  

cbAaAAAA ++== 2121 ),max('    (1) 

A’, the linear result in Figure 3, is still of Gaussian distribution. A 
considerable error is introduced by this approximation, compared 

Figure 1    Interconnect Delay 
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with the exact max output. However, if we use a quadratic delay 
model instead of the original first-order approximation,  

dAcAAbAbAaAaA +++++= 21
2
2221

2
1211'   (2) 

the error will drop dramatically (the quadratic result in Figure 3).   

From the above discussion we conclude that linear models are not 
accurate enough to handle realistic manufacturing variations. 
Therefore, we propose to apply higher order delay models, such as 
the quadratic Response Surface Methodology (RSM) models in 
statistical timing analysis.  

 
 
 
 
 
 
 
 
 
 
 
 

3. QUADRATIC DELAY MODELS 
In our approach, the arrival time at each timing graph node is 
approximated as a quadratic function of process parameters. Unlike 
the existing methods [5]-[7] that only apply linear approximations, 
our approach can handle Non-Gaussian distributions with arbitrary 
correlations. In this section, we develop a novel methodology to 
perform the atomic operations (sum and max) under quadratic delay 
models.  

3.1. PDFs of Quadratic Functions with 
Gaussian Random Variables 
Since we use quadratic models, we’ll first derive the PDF’s of 
quadratic random functions. For simplicity, we only derive the 
single parameter random function to illustrate the basic idea. It 
should be noted, however, the following mathematical equations 
can be extended to the cases with multiple random variables by 
simple convolutions, as is discussed in Section 3.4.  

Assume random variable x has a normalized Gaussian distribution. 
Its PDF fx is: 

)exp()( 22
1 2xx xf −=
π

    (3) 

Random variable y is a quadratic function of x: 
0                     )( 2 ≠+= abxay    (4) 

Then, according to probability theorems, if a>0, the PDF of y can be 
expressed as: 
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Similarly, if a<0, the PDF is given by: 
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If the second order coefficient in the function is zero, function y is 
degraded to a linear function. Thus, y is of Gaussian distribution, 
and its PDF can be derived easily. 

3.2. Sum Operation 
Let’s now look at the sum operation. For all quadratic functions, we 
can represent them in the following format: 

CBxAxxy T ++=     (7) 

in which, x=(x1, x2, …xn)’  is the independent process parameter 
vector, with normalized Gaussian distributions N(0,1), derived from 
a PCA process. A is a symmetric nn×  matrix, which contains the 
coefficients of second order terms of x. B is a n×1  vector, which 
are the coefficients of first-order terms of x. C is a scalar, which is 
the constant term.  
Therefore, if we have two random variables 

1111 CxBxAxy T ++=  and 2222 CxBxAxy T ++= , the sum 
operation is straightforward: 

33321213 ),( CxBxAxyyyysumy T ++=+==   (8) 

where A3=A1+A2, B3=B1+B2, and C3=C1+C2. 

3.3. Orthogonalization 
Before we start analyzing max operation, we would like to discuss 
an orthogonalization concept. In order to simplify max operation, 
we’d like to remove the cross terms xixj in the quadratic expressions.  

),0(),( 12121 yymaxyyymax −+=    (9) 
where y1 and y2 are as defined in Section 3.2. A2-A1 is a symmetric 
matrix, so it can be factorized into PPT Σ , where Σ is the diagonal 
matrix composed of the eigenvalues of A2-A1, and P is the 
corresponding eigenvector matrix.  
Let ,)(, 12

TPBBPxz −=Φ= we obtain 

),0(),( 12121 CCzzzmaxyyymax T −+Φ+Σ+=   (10) 
which no longer includes cross terms in the max operation. Because 
random variables xi’s are independent and Gaussian, vector 

Pxzzzz n == )',...,,( 21  is a Gaussian vector as well. Moreover, 
since the eigenvectors P of a symmetric matrix are orthonormal, we 
can prove that the zi’s are uncorrelated. According to the property of 
Gaussian distributions, uncorrelated Gaussian random variables are 
also independent. The detailed proof is given in [10]. Therefore, we 
can always map the original parameter base into a new base without 
cross terms, do max operation under the new base, and map results 
back to the original base. From now on, we’ll assume that the input 
operands of max do not include cross terms.  

3.4. Max Operation 
Based on the orthogonalization presented in Section 3.3, the input 
operands of max are quadratic functions of an independent 
normalized base (x1,x2,…,xn)’ without cross terms. That is to say all 
xi’s are N(0,1) Gaussian random variables, and xi, xj are independent 
for any nji ≤<≤1 . Thus we have the following properties: 

Figure 3    Linear vs. Quadratic Approximation 
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The objective of this derivation is to calculate the coefficients Ci of  
),( 21321 DDmaxCxCxCxD T =++=    (13) 

We should note, however, that C1 is not necessarily diagonal. 

We now substitute both (11) and (12) into (13): 
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g is a quadratic function of xi only, and h is a quadratic function of 
the other (n-1) variables, but without xi. As a result, g and h are 
statistically independent, since they are functions of different 
independent random variables. Therefore, the Joint Probability 
Density Function of g and h is the product of their corresponding 
single PDFs. 

If we re-write function g(xi) in the format of (4), we can 
immediately get its PDF fg(ξ) analytically from (5) or (6), because xi 
is of N(0,1) distribution. Similarly, if we re-write function h(x1,…,xi-

1,xi+1,…,xn)  as: 
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      (17) 
we’ll have analytical PDFs for each of the square terms 

2)( jjjj txry += according to Section 3.1. Since yj’s are 

statistically independent, the PDF fω(η) of random variable ω is the 
convolution of all the PDF’s of yj’s. Once we have the PDF of ω, its 
CDF Fω(η) can be derived by numerical integration easily.  

With all this information in hand, we can now start calculating the 
first order and second order moments of xi’s on D of (14). 

The first order moment of xi is 
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For illustration purposes, we re-write equation (14) as 
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From (20), we can also get the first moment of xi, 
ni1xEDxE iiiixx n
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because xi is of N(0,1) distribution, and xi is independent to all xj’s 
when j≠i. Equating (19) and (21), we’ve got all the first-order term 
coefficients in the quadratic form by first-order moment matching. 

Now, let’s look at the second order moments in a similar manner. 

ηηη

ξξξξξ

ηω
η

ω
ξ

dxEf

dgFfgab

xxxxhxExgxEab

hgmaxEabDxE

i
xg

x
ij

ji

niii
gh

ii
ghij

ji

xxij
jii

xx

i

i

nn

⋅⋅∫ ⋅+

⋅⋅⋅∫ ⋅+∑+=

⋅+⋅+∑+=

+∑+=

≤

≠

+−
≥≤≠

≠

)()(

)]([)()(3

)),...,,,...,(())((3

)),((3)(

2
)(

2
22

111
22

22

),...,(
22

2
),...( 11

      (22) 
Again, from expression (20), we have 
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plus matching the mean value of D, which is: 
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By putting the n second order moments and mean matching 
together, we get n+1 linear equations: 
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By solving (25), we get all the coefficients of the square terms and 
the constant term as well.  

So far, we have all the coefficients except those of the cross terms, 
i.e. jiij ≠ ,α . To calculate them, we need to modify (14) a little bit. 
We re-write (14) as (26): 
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g is a quadratic function of parameters xi, xj only, and h is a 
quadratic function of the other (n-2) variables, but without xi and  xj. 

Applying the same calculations as in (18)(19), we get 
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      (29) 
From (20), again we have 

ijjiijji xExEDxxE αα == )()()( 22    (30) 

Therefore, by equating (29) and (30), all cross term coefficients 
αij’s are obtained.  

Putting together all the results from (19), (25) and (29), we have 
derived all the coefficients that we need for the quadratic expression 
in (20). The integrations in (19) (22), (24) and (29) can be 
numerically computed, e.g. using the piece-wise linear 
approximation algorithm proposed in [3]. By substituting the fitted 
quadratic result (20) into (13), and mapping the orthogonal base 
back to the original base, we manage to fit the nonlinear max 
operation as a quadratic form of the normalized independent 
Gaussian base, which is derived from a PCA process.  

Returning to Figure 3 in Section 2, the quadratic curve is the result 
fitted from the approach shown above. There is a huge 
improvement from the linear model approach in terms of accuracy. 
Using the same analysis, similar quality fit for min operation can be 
derived as well. To summarize, we have demonstrated a novel 
fitting approach, which is the core of doing nonlinear block-based 
Statistical Timing Analysis under quadratic delay models.  

4. ALGORITHM 
The main algorithm of our block-based algorithm is shown in 
Figure 4. 

block_based_algorithm { 
initialize(); 
breadth_first_search { 

if (current==single_input_component) 
sum operation; 

else{  /*current==multi_input_component*/ 
max operation pair-wisely; 
second_order_term_prune(); 

} 
} 

} 
 

In the algorithm, initialize() first applies a PCA process to get a 
normalized independent Gaussian base. Then, component delays 
with quadratic models are extracted. Next, a breadth-first search is 
launched to propagate delay distributions from source to sink, level 
by level. 

The max operation basically follows what we demonstrated in 
Section 3.4. It first performs the orthogonalization of   the base to 
get rid of the cross terms. After that, it convolves the analytical 
PDFs of the square terms in (17). Since we keep all the convolution 
results in a table, we can reuse them for different moments. For 
example, both E(x1D) and E(x2D) need the convolution results of 
the square terms from x3 to xn. Then we use numerical integration to 
do the moment matches of (19), (22), (24) and (29). After that, the 
linear equations are solved through LU factorization. It is worth 
pointing out that, once the number of parameters, i.e. the parameter 
base size, is determined, the linear equations (25) are fixed for all 
max operations except for the right hand side moments. Therefore, 
we pre-calculate the inverse matrix of the coefficient matrix on the 

left hand side and save it for computational efficiency. Finally, the 
solutions are mapped back to the original base.  

The second_order_term_prune() function simplifies the delay 
expression by removing insignificant second order terms with small 
coefficients. As you may notice, this algorithm can be easily 
extended for higher order delay models. For example, if we want to 
use third-order delay models, we just need to include more moments 
like )),(( 21

3

),...,( 1

DDmaxxE ixx n

⋅  and then fit the coefficients. The 

tradeoff is the computation complexity due to more coefficients to 
be calculated. 

5. EXPERIMENTS 
5.1 Implementation and Results 
We’ve implemented the proposed algorithm in C++, and compared 
the following in two experimental set-ups: 1) 10,000 Monte Carlo 
simulations; 2) first-order SSTA with linear delay models; and 3) 
the proposed quadratic approach with nonlinear delay models. In the 
first case, we tested this approach on the ISCAS85 benchmark 
circuits implemented in TSMC 0.18µm technology. Both inter-die 
variations and spatial correlated intra-die variations were included in 
the experiments. Experiments were performed on a 900MHz 
Sunfire workstation. The second experiment was performed on a 
portion of an industrial chip M1 with 1K gates, in a 90nm 
technology. 

Table 1 shows the results for all ISCAS85 benchmark circuits. The 
row #Grids provides the spatial correlation information. For 
example, we divided circuit C432 into four groups. In each group, 
same intra-die variations (perfect correlations) are assumed because 
of the close spatial location. In between those groups that are closer 
to each other, higher correlations are considered in the intra-die 
variations. All groups share the same inter-die variations. Table 1 
then lists the circuit delay error on the 99% yield point for first-
order methodology (EOL) and second-order methodology (EOQ) 
compared to the 10,000 Monte Carlo results. First-order 
methodology has an average of 7.74% error, while the proposed 
methodology has a perfect result with almost zero error. The error is 
measured as the difference in delay value over 6σ of the delay 
distribution (∆delay/6σ). The CPU time of the proposed 
methodology (TOQ) is also compared with both first-order 
methodology (TOL) and the Monte Carlo approach (TOM). The 
runtime of our methodology is in the order about 1/100 of the 
10,000 Monte Carlo analysis with comparable accuracy. With the 
increase of circuit size for ISCAS85 benchmark circuits, the run 
time of the proposed methodology increases almost linearly. 

For the industrial chip example in the second experiment, the circuit 
delay PDFs for the three approaches are shown in Figure 5. Our 
quadratic approach result practically overlaps the 10,000 Monte 
Carlo simulation results. There are some errors between the first-
order SSTA (the linear curve) and the Monte Carlo results at both 
tails of the PDF. As we noted above, this is due to the non-zero 
skew introduced by nonlinear delay models. The 99% yield point 
error is calculated for both first-order and quadratic approaches. The 
first-order methodology has an 8.09% error while the proposed 
approach only has a 0.68% error. The CPU runtime for the proposed 
quadratic approach is 11.01s compared to 4521s for 10,000 Monte 
Carlo simulations. 

Figure 4    Block_based SSTA Algorithm 
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It should be noted out that in both experimental set-ups, all cross 
terms are ignored in our quadratic approach, which seems to have 
very little impact on the overall accuracy.  

 

 

 

 

 

 

 

 

 

 

5.2 Complexity 
As shown in Section 4.1, we only need to walk through the circuit 
in a breadth-first manner once. That determines the complexity of 
the algorithm which is linear with respect to the circuit size. As for 
the number of parameters, it is quadratic if we want to fit the full 
quadratic terms. This is because if we have n parameters, we will 
have 1 constant term, n first-order terms, and n2 second-order terms. 
However, from our experiments, we find that most cross terms are 
negligible. As shown in Section 5.1, almost zero errors are observed 
between the proposed approach and Monte-Carlo results even 
without cross terms. Therefore, it is sufficient to keep only several 
important cross terms and ignore the majority of them. This makes 
the complexity of this algorithm improve from O(n2) to O(n) in 
terms of the parameter base size. Another cost in this algorithm lies 
in the numerical convolutions and integrations. Since fast 
convolutions algorithm with FFT are used, it is of klog(k) 
complexity, where k is the number of points being used. Therefore, 
the algorithm is an efficient and practical even for large industrial 
circuits. 

6 CONCLUSIONS 
The main contributions of this work can be viewed in the following 
two aspects. First of all, we have proposed and developed a novel 
block-based Statistical Static Timing Analysis algorithm with 
nonlinear delay modeling. The quadratic approximation of the 
nonlinear max operation is performed via moment matching, which 
considerably increases the robustness of the block-based SSTA 
algorithm. Therefore, our algorithm is capable of propagating 

quadratic delay models with high accuracy. Our prototype was 
implemented and tested on ICSAS85 benchmark circuits as well as 
industrial circuits. The results show both accuracy and efficiency 
under nonlinear delay models. Secondly, we have linked SSTA 
approaches to more realistic process variational models via accurate 
characterization. This makes the proposed nonlinear modeling 
approach practical for realistic industrial circuits. Future work 
includes circuit optimization based on SSTA results and more 
general statistical delay modeling.   
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Table 1    Results of ISCAS85 Benchmark Circuits

Circuit C17 C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552 
#Grids 1 4 4 4 16 16 16 16 64 64 64 

EOL(%) 8.23 7.70 9.78 7.45 8.21 7.09 7.88 7.59 7.44 6.62 7.13 
EOQ(%) 0.06 0.12 0.40 0.11 0.03 0.20 0.19 0.18 0.07 0.10 0.23 
TOM(s) 3.02 85.41 74.52 138.84 200.62 317.24 433.75 609.74 847.95 904.82 1283.14 
TOL(s) 0.01 0.04 0.08 0.14 0.26 0.54 1.06 1.46 2.03 2.92 3.48 
TOQ(s) 0.02 0.17 0.42 0.78 3.75 3.55 3.29 4.9 5.31 7.86 12.59 

 

Figure 5    Circuit Delay PDF of M1 
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