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SUMMARY. Suppose (X, Y ) has a k + 1 dimensional normal distribution. Consider the

conditional distribution of X given Y > y0, for some fixed value y0εR. Such hidden truncation

models provide a flexible family of skewed alternatives to the classical k dimensional normal

distribution. Distributional properties of these models are investigated. Non-normal variants of

the distribution are also discussed as are multiple hidden truncation models. A specific example

involving a skewed bivariate data set (heights and weights of athletes) is analysed in detail.

1. Introduction

Skewed multivariate distributions can arise in situations in which the observed
variables represent a sample that has been truncated with respect to some hidden
covariable. An example which readily comes to mind would involve the distribution
of weights of police officers who have been selected only if they meet a minimal
height requirement. In general one might expect a bivariate normal distribution of
heights and weights. However the distribution of weights of above average height
individuals will be a skewed non-normal distribution. The density function of such
hidden trunctation models, was discussed in some detail in Arnold et al. (1993)
and in Azzalini (1986). The special case in which observations are retained only if
they are above average with respect to the hidden variable was discussed also by
Azzalini (1985). After location and scale transformations the Azzalini skew-normal
density assumes the form

f(x; λ) = 2ϕ(x)Φ(λx), x ε R . . . (1.1)

where ϕ and Φ denote the standard normal density and distribution function and
λ ε R is a “skewness” parameter. Recently Azzalini and Dalla Valle (1996) have
introduced a multivariate extension of the model (1.1). After a linear transformation
the basic Azzalini-Dalla Valle k-dimensional distribution takes the form

f(x;λ) = 2

[
k∏

i=1

ϕ(xi)

]
Φ

(
k∑

i=1

λixi

)
, x ε Rk . . . . (1.2)
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Here λ is a k-dimensional skewness parameter vector. The model (1.2) will, as we
shall see, be equivalent to the one in which, beginning with a (k + 1) dimensional
normal random vector (X, Y ) we retain observations iff their Y values are above
average. The distribution (1.2) thus is a natural extension of the univariate distri-
bution (1.1). However, it is more likely that the truncation on the hidden variable
Y will be at a level not equal to its mean. It is natural to seek a multivariate exten-
sion of the Arnold et al. (1993) univariate model which allowed general truncation
with respect to the hidden variable. As we shall see, the end result of this exercise
is a k-dimensional density which is closely related to (1.2) but has one additional
“skewness” parameter. After affine transformations the joint density is of the form

f(x; λ0, λ) =

[
k∏

i=1

ϕ(xi)

]
Φ(λ0 +

k∑

i=1

λixi)
/

Φ

(
λ0√

1 + λ′λ

)
, x ε R. . . . (1.3)

Distributional properties of this family of distributions will be discussed in section 4.
It is possible to consider variants of the hidden truncation model (1.3). One

might consider cases in which truncation involves more than one hidden variable
attaining an acceptable threshhold value, instead of just one (e.g. sitting and stand-
ing height instead of just height for our police officers). Such multiple constraint
models are discussed briefly in section 6. A second variation involves the use of a
non-normal density ψ1 and a non-normal distribution Ψ2 in place of the standard
normal ϕ and Φ in the development leading to (1.3). Some results in this direc-
tion, focussing on extensions of Azzalini and Dalla Valle’s model (1.2), have been
described in Arnold and Beaver (1997a). Section 5 of the present paper deals with
non-normal extensions of the model (1.3) with special attention paid to the skewed
Cauchy case. In section 7, we reevaluate the Australian athletes data, previously
fitted by Azzalini and Dalla Valle using a model based on (1.2). The additional
skewness parameter present in (1.3) will be shown to lead to a somewhat improved
fit of the data. The suggestion is that the hidden truncation for the Australian
athletes involved some other threshhold for the hidden variable than just “above
average”.

We will begin with a brief review of the one dimensional normal case, discussed
in detail in Azzalini (1985, 1986), Cartinhour (1990) and Arnold et al. (1993).

2. Univariate Hidden Truncation Normal Models

We begin with (X, Y ) having a bivariate normal distribution with mean vector
(µ1, µ2) and variance-covariance matrix (σij)

2,2
i=1,j=1. We then set Z = X condi-

tional on Y > a. Azzalini (1985) considered the case in which a = µY , while Arnold
et al. (1993) considered the more general case. Integration (for details see Arnold
et al. (1993)) yields

fZ(z) =
1
σ1

g

(
z − µ1

σ1

)
. . . (2.1)
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where

g(w) =
ϕ(w)Φ

(
ρw−α

(1−ρ2)1/2

)

Φ(−α)
, . . . (2.2)

ρ denotes the correlation in the original (untruncated) population and α = a−µY

σY
.

The parameters ρ and α control the skewness in the basic density g(w).
For purposes of highlighting the relationship between the density (2.2) and Az-

zalini’s (1985) skew-normal density it is convenient to reparameterize as follows:

λ0 = −α/
√

1− ρ2 . . . (2.3)

λ1 = ρ/
√

1− ρ2 . . . . (2.4)

Both λ0 and λ1 can assume any real value. In terms of these parameters, our basic
hidden truncation density is given by

f(w; λ0, λ1) = ϕ(w)Φ(λ0 + λ1w)
/

Φ

(
λ0√

1 + λ2
1

)
. . . . (2.5)

Azzalini (1985) mentions a density essentially equivalent to (2.5) in a Bayesian
context. (See his equation (9)). An alternative (equivalent) formulation of the
hidden truncation model (2.5) is available. Begin with W,U i.i.d. N(0, 1) random
variables and consider the conditional distribution of W given A = {λ0+λ1W > U}.
However P (A) = Φ( λ0√

1+λ2
1

). It follows that

fW/A(w; λ0, λ1) = ϕ(w)
∫ λ0+λ1w

−∞
ϕ(u)du/P (A)

which is precisely (2.5).
In the case where a = µY in (2.2), equivalently when λ0 = 0 in (2.5), an

alternative stochastic model for (2.5) is possible. (See e.g. Azzalini (1986), Azzalini
and Dalla Valle (1996)). If we begin with Y0 and Y1 i.i.d. N(0, 1) and define

W = δ|Y0|+
√

1− δ2Y1 . . . (2.6)

for δε(−1, 1) then the density of W is given by (2.5) with λ0 = 0 and λ1 = δ√
1−δ2 .

We have been unable to formulate an extension of the model (2.6) which will lead
to the model (2.5) with non-zero values of λ0.

With different notation the moment generating function of the basic skew-normal
density can be found in Arnold et al. (1993) and in Chou and Owen (1984). If we
denote the moment generating function corresponding to (2.5) by M(t) we may
write

M(t) =
∫ ∞

−∞
etwϕ(w)Φ(λ0 + λ1w)

/
Φ

(
λ0√

1 + λ2
1

)
dw
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= et2/2

∫ ∞

−∞
ϕ(w − t)Φ(λ0 + λ1w)

/
Φ

(
λ0√

1 + λ2
1

)
dw

[set v=w-t] = et2/2

∫ ∞

−∞
ϕ(v)Φ(λ0 + λ1t + λ1v)

/
Φ

(
λ0√

1 + λ2
1

)
dv

consequently

M(t) = et2/2Φ

(
λ0 + λ1t√

1 + λ2
1

) /
Φ

(
λ0√

1 + λ2
1

)
. . . . (2.7)

If W has density (2.5), its moments can be obtained by differentation of the moment
generating function (2.7). For example, with δ0 = λ0/

√
1 + λ2

1, δ1 = λ1/
√

1 + λ2
1,

and ψ(δ0) = ϕ(δ0)/Φ(δ0),
E(W ) = δ1ψ(δ0) . . . (2.8)

and
var(W ) = 1− δ0δ

2
1ψ(δ0)− δ2

1ψ2(δ0) . . . . (2.9)

The third standardized cumulant is

γ1 =
(δ2

0 − 1)δ3
1ψ(δ0)− 3δ0δ

2
1ψ2(δ0) + 2δ3

1ψ3(δ0)
(1− δ0δ2

1ψ(δ0)− δ2
1ψ2(δ0))3/2

. . . (2.10)

For any fixed value of λ0, when |λ1| → ∞ (i.e. when |ρ| → 1), δ0 → 0 and δ1 → 1 and

γ1 → sign(δ1)
√

2
π ( 4

π−1)/(1− 2
π )3/2 which has a maximum of approximately .995 as

reported in Azzalini (1986). To obtain higher moments, the recursive relationship
among the moments documented in Arnold et al. (1993) may be useful.

3. Non-normal Univariate Models

Recall that one formulation of the skew-normal distribution began with W,U
i.i.d. N(0, 1) random variables and considered the conditional distribution of W
given λ0 + λ1W > U . In the case λ0 = 0, Arnold and Beaver (1997a) and others
suggested models in which U and W had non-normal distributions. Such models can
be considered for the case λ0 6= 0 also. Assume that W,U are independent random
variables with corresponding density (distribution) functions ψ1(Ψ1) and ψ2(Ψ2)
respectively. Again consider the conditional distribution of W given λ0 +λ1W > U .
The density of W is given by

f(w, λ0, λ1) = ψ1(w)Ψ2(λ0 + λ1w)/P (λ0 + λ1W > U) . . . . (3.1)

The term in the denominator will be generally difficult to evaluate except in special
circumstances. Arnold and Beaver (1997a) focussed on the case where λ0 = 0 and
where both ψ1 and ψ2 were symmetric about zero. In this case the denominator
simplifies to 1/2 and the density assumes the form

f(w; λ1) = 2ψ1(w)Ψ2(λ1w) , . . . (3.2)
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a close parallel to Azzalini’s skew-normal density (1.1). When λ0 6= 0, in order that
the denominator in (3.1) be computable, it is necessary that U−λ1W have a “nice”
distribution. This will be the case if U,W are independent stable random variables
of the same type (for then U−λ1W will also be stable of the same type). The normal
case and the Cauchy case (discussed in Arnold and Beaver (1997b)) are the prime
examples. Non-stable tractable cases do exist. One could allow ψ1 and ψ2 to be
exponential or Laplace densities. (See Balakrishnan and Ambagaspitiye (1994) who
considered the skewed Laplace density.) In order to preserve the rationale for calling
these skewed distributions, it is reasonable to restrict ψ1 to be symmetric (though
(3.1) makes sense without this restriction), however ψ2 need not be restricted to be
symmetric.

4. Multivariate Hidden Truncation Normal Models

The basic scenario involves a (k + 1) dimensional normal random vector
(X1, . . . , Xk, Y ) with a general covariance structure. We then set Z = X condi-
tional on Y > a. Azzalini and Dalla Valle (1996) consider the case a = µY . Here
we allow a to be arbitrary. After an affine transformation the distribution of Z can
be formulated as one obtained as follows (cf. Section 2). Begin with W1, . . . , Wk, U
i.i.d. N(0, 1) random variables and consider the conditional distribution of W given
that λ0 + λ′1W > U where λ0εR and λ1εR

k. The formulation is advantageous
since, using it, the form of the resulting distribution is easily found. Note that the
conditional density of (W,U) given A = {λ0 + λ′1W > U} is

fW,U |A(w, u) ∝
k∏

i=1

ϕ(wi)ϕ(u)I(λ0 + λ′1w > u) . . . . (4.1)

If we then integrate with respect to u we get

fW |A(w) =
k∏

i=1

ϕ(wi)Φ(λ0 + λ′1w)/P (A) . . . . (4.2)

However,

P (A) = P (U − λ′1W < λ0) = Φ(
λ0√

1 + λ′1λ1

)

since U−λ′1W ∼ N(0, 1+λ′1λ1). Thus the k-dimensional hidden truncation density
analogous to (2.5) is given by

f(w; λ0, λ1) =
k∏

i=1

ϕ(wi)Φ(λ0 + λ′1w)
/

Φ(
λ0√

1 + λ′1λ1

) . . . . (4.3)

The Azzalini and Dalla Valle (1996) k-dimensional density is an affine transforma-
tion of (4.3) under the assumption that λ0 = 0 (in which case the denominator in
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(4.3) takes on the value 1/2). Thus the basic Azzalini and Dalla Valle distribution
is of the form

f(w; 0, λ1) = 2(
k∏

i=1

ϕ(wi))Φ(λ′1w) . . . . (4.4)

The family of distributions (4.4) clearly has marginals of the same type. As shown
below, the larger family (4.3) has marginals and conditionals of the same type.

One way to determine the nature of the marginal distributions of (4.3) is to
first identify the moment generating function corresponding to (4.3). We argue as
follows:

M(t) ∝
∫
· · ·

∫

Rk

et′u(
k∏

i=1

ϕ(ui))Φ(λ0 + λ′1u)du

= et′t/2

∫ ∫

Rk

[
k∏

i=1

ϕ(ui − ti)]Φ(λ0 + λ′1u)du

[set vi = ui − ti] = et′t/2

∫ ∫

Rk

[
k∏

i=1

ϕ(vi)]Φ(λ0 + λ′1t + λ′1v)dv

= et′t/2Φ(
λ0 + λ′1t√
1 + λ′1λ1

) .

Since M(0) = 1, the missing normalizing constant is 1/P (A), yielding the moment
generating function in the form

M(t) = et′t/2Φ(
λ0 + λ′1t√
1 + λ′1λ1

)
/

Φ(
λ0√

1 + λ′1λ1

) . . . . (4.5)

To get the moment generating function of a k1 dimensional marginal of the distri-
bution (4.3), i.e. of Ẇ where W = (Ẇ,Ẅ) has been partitioned into subvectors of
dimension k1 and k − k1, we need only to similarly partition t = (ṫ,̈t) and set ẗ =
0 in (4.5). It is then obvious that the marginal m.g.f. of Ẇ is of the same form as
(4.5) (though now of dimension k1).

There is an alternative argument available to justify our claim that the marginals
of the density (4.3) are of the same type. As before we will use our dot-double
dot notation for partitioning vectors. To get the marginal density of the first k1

coordinates of (4.3) we want the conditional density of Ẇ given λ0 +λ′1W > U , i.e.
given λ0 + λ̇

′
1Ẇ > U − λ̈

′
1Ẅ . But the random variable U − λ̈

′
1Ẅ ∼ N(0, 1 + λ̈

′
1λ̈1)

so that our conditioning event can be written as

λ0√
1 + λ̈

′
1λ̈1

+
λ̇
′
1Ẇ√

1 + λ̈
′
1λ̈1

> Ṽ

where Ṽ is N(0, 1) and is independent of Ẇ . Then the k1-dimensional marginal is
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of the form

f(ẇ) =
[
∏k1

i=1 ϕ(wi)]Φ( λ0√
1+λ̈

′
1λ̈1

+ λ̇
′
1ẇ√

1+λ̈
′
1λ̈1

)

Φ( λ0√
1+λ′1λ1

)
. . . (4.6)

By analogous arguments, the marginal density of the last k − k1 coordinates of W
in (4.3) is

f(ẅ) =
[
∏k

i=k1+1 ϕ(wi)]Φ( λ0√
1+λ̇

′
1λ̇1

+ λ̈
′
1ẅ√

1+λ̇
′
1λ̇1

)

Φ( λ0√
1+λ′1λ1

)
. . . (4.7)

and consequently the conditional density of Ẇ given Ẅ = ẅ is (taking the ratio of
(4.3) and (4.7))

f(ẇ|ẅ) =
[
∏k1

i=1 ϕ(wi)]Φ(λ0 + λ̈
′
1ẅ + λ̇

′
1ẇ)

Φ( λ0+λ̈
′
1ẅ√

1+λ̇
′
1λ̇1

)
. . . . (4.8)

Thus all conditionals as well as all marginals of the density (4.3) are of the same
type.

When the (k+1) dimensional normal random vector (X1, . . . , Xk, Y ) has a mean
µ and covariance matrix Σ > 0, both the marginal and conditional distributions
belong to the same family of multivariate skewed normal distributions. Beginning
with (4.3), consider the transformation W = Σ−

1
2 (X − µ) to find that

fX(x) ∝ exp
(
−1

2
(x− µ)′Σ−1(x− µ)

)
×Φ

(
δ0√

1− δ′1δ1

+
δ′1√

1− δ′1δ1

Σ−
1
2 (x− µ)

)

. . . (4.9)
with δ0 = λ0/

√
1 + λ′1λ1 and δ1 = λ1/

√
1 + λ′1λ1. Now consider partitioning

x′ = (ẋ′, ẍ′) with a corresponding partition of Σ and λ1. Using the moment-
generating function, the marginals are of the form

fẌ(ẍ) ∝ exp
(
−1

2
(ẍ− µ̈)′Σ−1

22 (ẍ− µ̈)
)
×Φ


 δ0√

1− δ̈
′
1δ̈1

+
δ̈
′
1√

1− δ̈
′
1δ̈1

Σ−
1
2

22 (ẍ− µ̈)


 .

. . . (4.10)
The conditional density of Ẋ|Ẍ is

fẊ|Ẍ(ẋ|ẍ) ∝ exp
(
−1

2
(ẋ− µ̇(ẍ)′)(Σ11 − Σ12Σ−1

22 Σ21)−1(ẋ− µ̇(ẍ))
)

×Φ

(
δ0√

1− δ′1δ1

+
δ′1√

1− δ′1δ1

Σ−
1
2 (x− µ)

)
. . . (4.11)
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for µ̇(ẍ) = µ̇
1
− Σ12Σ−1

22 (ẍ − µ̈). In the second term in (4.11), partition the k × k

matrix Σ−
1
2 as [(Σ−

1
2 )(1), (Σ−

1
2 )(2)] where (Σ−

1
2 )(1) and (Σ−

1
2 )(2) are of dimensions

k × k1 and k × k2, respectively. This term can be written as

Φ

(
δ0√

1− δ′1δ1

+
δ′1√

1− δ′1δ1

(Σ−
1
2 )(2)(ẍ− µ̈)

+
δ′1√

1− δ′1δ
(Σ−

1
2 )(1)(Σ11 − Σ12Σ−1

22 Σ21)
1
2 × (Σ11 − Σ12Σ−1

22 Σ21)−
1
2 (ẋ− µ̇)

)
,

. . . (4.12)
which is of the same form with τ0 = δ0(ẍ) and τ1 = δ1(ẍ) where

τ0√
1− τ ′1τ1

=
δ0√

1− δ1δ1

+
δ′1√

1− δ′1δ
′
1

(Σ−
1
2 )(2)(ẍ− µ̈) . . . (4.13)

and
τ ′1√

1− τ ′1τ
=

δ′1√
1− δ′1δ1

(Σ−
1
2 )(1)(Σ11 − Σ12Σ−1

22 Σ21)
1
2 . . . . (4.14)

Therefore, the family of multivariate skewed normal distributions (4.9) is closed
under marginalization and conditioning.

Moments of the distribution (4.3) and of its conditional distributions are ob-
tained by differentiating the moment generating function or by differentiating the
logarithm of the moment generating function. From (4.5), we have

log M(t) =
k∑

i=1

t2i + log Φ(
λ0 + λ′1t√
1 + λ′1λ1

)− c .

Differentiating with respect to ti and setting t = 0 yields

E(Wi) =
λ1i√

1 + λ′1λ1

ϕ( λ0√
1+λ′1λ1

)

Φ( λ0√
1+λ′1λ1

)
. . . . (4.15)

Further differentiation yields the variances and covariances.

cov(Wi,Wj) = δij − λ1iλ1j

(1 + λ′1λ1)
[

λ0√
1 + λ′1λ1

g(λ0, λ1) + g2(λ0, λ1)] . . . (4.16)

where δij is the Kronecker delta symbol and where

g(λ0, λ1) = ϕ(
λ0√

1 + λ′1λ1

)
/

Φ(
λ0√

1 + λ′1λ1

) . . . . (4.17)

Naturally, considerable simplification occurs when λ0 = 0, in which case the

expression in (4.17) simplifies to
√

2
π .
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Azzalini and Dalla Valle (1996) remark that in the case λ0 = 0,
∑k

i=1 W 2
i has

a χ2
k distribution. This can be confirmed by considering the moment generating

function of
∑k

i=1 W 2
i in the general case where W has density given by (4.3). We

find

E(et
∑k

i=1
W 2

i ) =
∫
· · ·

∫

Rk

etw′w[
k∏

i=1

ϕ(wi)]
Φ( λ0+λ′1w√

1+λ′1λ1

)

Φ( λ0√
1+λ′1λ1

)
dw

[vi = (1− 2t)1/2wi] = (1− 2t)−k/2

∫
· · ·

∫

Rk

[
k∏

i=1

ϕ(vi)]
Φ(λ0+(1−2t)−1/2λ′1v√

1+λ′1λ1

)

Φ( λ0√
1+λ′1λ1

)
dv

= (1− 2t)−k/2Φ(
λ0√

1 + λ′1λ1
1−2t

)
/

Φ(
λ0√

1 + λ′1λ1

) .

This reduces to the χ2
k moment generating function ((1−2t)−k/2 only when λ0 = 0.

In general, then,
∑k

i=1 W 2
i will not have a χ2

k distribution.

5. Non-normal Multivariate Models

If we dispense with the assumption that the basic random variables W1,W2, . . . ,
Wk, U , discussed in the last section, are normal then we can expect to encounter
new kinds of skewed multivariate distributions. In full generality we consider the
case where W1, W2, . . . ,Wk and U are independent random variables with densities
(distributions) given by ψ1(Ψ1), ψ2(Ψ2), . . . , ψk(Ψk), ψ0(Ψ0) respectively. We then
consider the conditional distribution of W given that λ0+λ′1W > U , as before, where
λ0εR and λεRk. The conditional density of (W,U) given A = {λ0 + λ1W > U} is
of the form

fW,U |A(w, u) ∝ [
k∏

i=1

ψi(wi)]ψ0(u)I(λ0 + λ′1w > u) . . . . (5.1)

Integrating with respect to u yields

fW |A(w) = [
k∏

i=1

ψi(wi)]Ψ0(λ0 + λ′1w)/P (A) . . . . (5.2)

As in the univariate case, the evaluation of P (A) can be troublesome. An exception
occurs if λ0 = 0 and if each of the densities ψ1, . . . , ψk, ψ0 is symmetric. For in that
case U − λ′W is a symmetric random variable and P (A) = 1/2. This leads to the
multivariate version of (3.2) namely

f(w) = 2[
k∏

i=1

ψi(wi)]Ψ0(λ′1w) . . . (5.3)
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where ψ1, . . . , ψk are symmetric densities and Ψ0 is a symmetric distribution func-
tion. The Azzalini and Dalla Valle (1996) k-variate skew-normal distribution (4.4)
is of the form (5.3) with ψ1 = ψ2 = . . . = ψk = ψ0 = ϕ, the standard normal
density. By choosing the ψi’s in (5.3) to be identical but not normal, leads to
natural analogs of the density (4.4) which respectively can be called skew-Cauchy,
skew-Laplace, skew-logistic, etc.

If λ0 6= 0 in (5.2), then computation of P (A) can rarely be accomplished. An
important exception occurs when each of the densities of W1,W2, . . . , Wk and U
are stable (and of the same type). For then, U − λ′W will also have a stable
distribution. The normal case is a natural example. So also is the Cauchy. For the
basic k-variate skew-Cauchy distribution we begin with W1,W2, . . . , Wk, U i.i.d.
standard Cauchy (0, 1) random variables and consider the conditional distribution
of W given λ0 +λ1W > U . Since U −λ1W ∼ C(0, 1+

∑k
i=1 |λ1i|), we obtain, using

(5.2), the density

f(w) = [
k∏

i=1

ψ∗(wi)]Ψ∗(λ0 + λ′1w)/Ψ∗(
λ0

1 +
∑k

i=1 |λ1i|
) . . . (5.4)

where
ψ∗(w) =

1
π(1 + w2)

, wεR

and
Ψ∗(w) =

1
2

+
1
π

Tan−1(w), wεR ,

the standard Cauchy density and distribution respectively. For more detailed dis-
cussion of the skew-Cauchy density (5.4) see Arnold and Beaver (1997b). Note that
the skew-Cauchy density (5.4) has all marginals and conditionals in the same family
(a parallel to the situation encountered with the skew-normal density (4.3)).

6. Multiple Constraint Models

In addition to the example of weights of police officers selected on standing and
sitting heights, we can also consider situations such as admission to a Graduate
School which is contingent upon an applicant’s GPA and GRE scores (V = verbal,
Q = quantitative, A = analytical). With W1 = GPA, W2 = V, W3 = Q and
W4 = A, unconditional admission may require that W1 > 3.2, W2 + W3 > 1100
and W2 + W3 + W4 > 1800. Hence we are led to consider multiple constraint
extensions of the hidden truncation models introduced in Sections 2-5. The normal
multiple constraint model will be most tractable but there is no reason not to begin
with a more general model involving non-normal, not necessarily identical basic
distributions (analogous to the cases in Section 5).

Thus we begin with k + ` independent random variables W1, W2, . . . ,Wk,
U1, U2, . . . , U`. Then we consider the conditional distribution of W given that for
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j = 1, 2, . . . , `, λ
(j)
0 + λ

(j)
1 W > Uj . We will denote the density (distribution) func-

tions of the Wi’s by ψi(Ψi) respectively and the density (distribution) functions of
the Uj ’s by ψ̃j(Ψ̃j) respectively. Note that we allow the possibility that the k + `
distributions will be distinct; though we may expect to encounter some simplifica-
tion in cases where they are more homogeneous in type (e.g. if all are normal). For
notational convenience we define events Aj , j = 1, 2, . . . , ` by

Aj = {λ(j)
0 + λ

(j)
1 W > Uj} . . . . (6.1)

Now we first consider the conditional density of (W,U) given A∗ = ∩`
j=1Aj , i.e.

fW,U |A∗(w, u) =
[
∏k

i=1 ψi(wi)][
∏`

j=1 ψ̃j(uj)](
∏`

j=1 I(λ(j)
0 + λ

(j)′

1 w > uj))

P (∩`
j=1Aj)

.

. . . (6.2)
Next, integrate out u to get the desired conditional density

fW |A∗(w) =
[
∏k

i=1 ψi(wi)]
∏`

j=1 Ψj(λ
(j)
0 + λ

(j)′

1 w)

P (∩`
j=1Aj)

. . . . (6.3)

As in the single constraint case, it is the denominator in (6.3) which generally will
be difficult to deal with.

One case in which the denominator is computable is that in which all the ψi’s and
ψ̃j ’s are standard normal (denoted as usual by ϕ) and where the skewness vectors
λ

(j)
1 , j = 1, 2, . . . , ` are mutually orthogonal. In such a setting it is clear that the

Aj ’s (defined in (6.1)) are independent events. Thus if the λ
(j)
1 ’s are orthogonal and

the basic densities are normal we have

fW |A∗(w) =
[
∏k

i=1 ϕ(wi)]
∏`

j=1 Φ(λ(j)
0 + λ

(j)′

1 w)
∏`

j=1 Φ( λ
(j)
0√

1+λ
(j)′
1 λ

(j)
1

)
. . . . (6.4)

Even more simplification will be encountered if λ
(j)
0 = 0, j = 1, 2, . . . , `. In such a

case

fW |A∗(w) = 2k[
k∏

i=1

ϕ(wi)]
∏̀

j=1

Φ(λ(j)′

1 w) , . . . (6.5)

recognizable as a natural extension of the Azzalini and Dalla Valle k-variate skew
normal density (4.4).

7. The Australian Athletes Revisited

In this section, we shall use the data set reported by Cook and Weisberg (1994),
concerning thirteen variables measured on 202 athletes at the Australian Institute
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of Sport, courtesy of Richard Telford and Ross Cunningham. We shall consider
the person’s height and weight, denoted by (H, W ) as the pair of variables to be
analyzed using a model based upon (1.3) in which (1.3) is given in terms of the
transformed variables x. Here u =

∑−1/2(x− µ) with

Σ−1/2 =
[

θ1 θ2

θ2 θ3

]
. . . (7.1)

The parameterization in (7.1), which was used for computational simplicity,
reflects the natural parameterization in an exponential family of distributions. The
method of maximum likelihood was implemented using the Matlab minimization
routine. Values obtained using a genetic algorithm and simulated annealing were
used as starting values for the Matlab routine. The maximum likelihood estimates
together with the value of the loglikelihood for the 5- and 7- parameter distributions
based upon the bivariate normal are given in Table 1.

Table 1. The loglikelihood and parameter estimates
for 5, 7 and 8 parameter models

Models
Parameters
Estimated 5-parameter 7-parameter 8-parameter

λ0 - - -4.2050
λ1 - -.8617 -.9816
λ2 - 3.1181 3.8888
µ1 180.10 178.34 176.92
µ2 75.01 63.39 46.09
θ1 .1541 .1375 .1281
θ2 -.0586 -.0381 -.0264
θ3 .0993 .0678 .0523

Loglikelihood -1468.85 -1453.75 -1451.75

In testing whether the 7-parameter model produces a better fit than the 5-
parameter model, the likelihood ratio statistic, Λ = f(x : λ̂0, λ̂1, µ̂, θ̂)/f(x : µ̂, θ̂)
produced a value of −2ln(Λ) = −2[(−1468.85) − (1453.75)] = 30.20, which when
compared to critical values of a χ2-distribution with 2 degrees of freedom has a
p-value ≤ .0001. Hence, the 7-parameter model produces a significantly better fit.

The results of an analysis of the data based upon an 8-parameter model as in
(1.3) in which an additional truncation parameter, λ0, is included are also given in
Table 1.

Assessing the fit of the 8-parameter model compared to the 7-parameter model
produced a value of minus twice the log of the likelihood ratio statistic equal to
4.00. When compared to the critical values of a χ2 distribution with one degree
of freedom the likelihood-ratio statistic produced .01 ≤ p-value ≤ .05, indicating
that the additional truncation parameter is significant. In both cases, it appears
that the data have come from a distribution in which hidden truncation was used
in data collection.

Acknowledgements. The authors would like to thank Mark E. Lehr for his role
in analyzing the data. The genetic algorithm and the simulated annealing routines



hidden truncation models 35

used in maximizing the likelihoods were written by him and are available by e-
mailing him at mlehr@pacbell.net.

References

Arnold, B.C., Beaver, R.J., Groeneveld, R.A. and Meeker, W.Q. (1993). The non-
truncated marginal of a truncated bivariate normal distribution. Psychometrika, 58, 471-
478.

Arnold, B.C. and Beaver, R.J. (1997a). Some skewed multivariate models. Technical Report #
249, Department of Statistics, University of California, Riverside.

− − −− (1997b). The multivariate skew-Cauchy distribution. Technical Report #250, Depart-
ment of Statistics, University of California, Riverside.

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics, 12, 171-178.

− − −− (1986). Further results on a class of distributions which includes the normal ones.
Statistica, 56, 199-208.

Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika,
83, 715-726.

Balakrishnan, N. and Ambagaspitiya, R.S. (1994). On skew-Laplace distributions. Tech-
nical Report, Department of Mathematics and Statistics, McMaster University, Hamilton,
Ontario, Canada.

Cartinhour, J. (1990). One-dimensional marginal density functions of a truncated multivariate
normal density function. Commun. Statist. - Theory Meth., 19(1), 197-203.

Chou, Y-M. and Owen, D.B. (1984). An Approximation to the percentiles of a variable of
the bivariate normal distribution when the other variable is truncated, with applications.
Comm. Statist. - Theory Meth. 13, 2535-2547.

Cook, R. D. and Weisberg, S. (1994). An Introduction to Regression Graphics. New York:
Wiley

Barry C. Arnold and Robert J. Beaver
Department of Statistics
University of California
Riverside, CA 92521
e-mail : barry.arnold@ucr.edu, beaver@ucrac1.ucr.edu


