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Abstract

This paper provides an introductory overview of a portion of distribution theory which
is currently under intense activity. The starting point of this topic has been the so-
called skew-normal distribution, but the connected area is becoming increasingly broad,
and its branches include now many extensions, such as the skew-elliptical families, and
some forms of semi-parametric formulations, extending the relevance of the field much
beyond the original theme of ‘skewness’. The final part of the paper illustrates connections
with various areas of application, including selective sampling, models for compositional
data, robust methods, some problems in econometrics, non-linear time series, especially
in connection with financial data, and more.

Some key-words: skew-normal distribution, skew-elliptical distribution, skew-t distribu-
tion, heavy tails, selective sampling, stochastic frontier models, flexible parametric family,
hidden truncation model, graphical models.

1 Background and motivation

The development of parametric families and the study of their properties has ever been a
persistent theme of the statistical literature, although of course not constantly with the same
intensity. In the last few years, there has been another spurt of activity in this area, with
several results appearing in rapid succession, and at increasing rate of generation. A sub-
stantial part of this recent literature is broadly related to the skew-normal (SN) distribution,
which represents a superset of the normal family. This paper intends to provide an introduct-
ory overview of the literature concerned with the SN family of distributions and with other
families for continuous variables connected to the SN class in the mechanism of genesis. The
discussion refers to both the univariate and the multivariate context, and it covers the main
probabilistic properties, issues in statistical inference, and some of the applied work based on
these distributions.

Given all work which has been devoted in the past into the development of so many
parametric families of distributions, and the variety of already available families, it is natural



to ask why to put some additional effort in this direction, and what radically new and appealing
can be found in the realm of families of distributions. The following points attempt to answer
these questions; a few of them anticipate some aspects which will be clarified in the subsequent
development.

¢ The normal family is the limiting or the boundary case for very many parametric families
of probability densities, but it seldom is an interior point of the family. On the contrary,
in practical statistical work, the normal family is quite naturally perceived as the ‘central’
form of a range of densities.

o It is desirable to have available families of distributions which retain at least partly the
mathematical tractability and some nice formal properties of the standard parametric
classes, such as the normal family.

¢ While in the univariate case one has available a very large set of alternatives for data
modelling, the options are far less numerous in the multivariate case. The choice is even
more restricted if one inserts the requirement of the previous remark.

o A parametric family should possibly have associated at least one reasonably simple
mechanism of genesis of variates. These stochastic representation provide support for
use of the family of distributions in practical data modelling, and they can be used for
generation of pseudo-random numbers. In addition, the availability of some forms of
stochastic representations can often allow simple derivation of formal properties of the
distribution.

¢ Ideally, one would like to have available families where a few parameters regulate dis-
tributions with high flexibility of shape and of their main characteristics: skewness,
kurtosis and, in the multivariate case, dependence structure.

o A step beyond the standard concept of parametric class is achieved if the degree of
flexibility of the family of distributions is selectable freely, by suitably increasing the
number of parameters. Such a construction builds a bridge between the parametric and
the nonparametric context, under appropriate conditions on the achievable degree of
approximation to an arbitrary target distribution.

It is clearly unfeasible to discuss here in any detail why the various existing proposals do
not fulfil the above desiderata in some way or another. Only to illustrate the point, consider
the question of constructing a bivariate distribution with normal marginals, and assume that
we tackle the problem using the standard tool represented by the Farlie-Gumbel-Morgenstern
formula, which in the bivariate case takes the form

F(z1,22) = Fi(z1) Fa(z2) [1 + {1l — Fi(21) } {1 — Fy(z2)}]

where F; and F;, denote the marginal distributions and « is a parameter varying in (—1,1). If
we Fy(x) = Fy(xz) = ®(x), where ®(-) denotes the distribution function of a N(0,1), then we
get an expression which extends the notion of normal distribution from the univariate to the
bivariate case, but it does so in a purely formal manner, not linked to the intrinsic properties
of the components F; and F,. A specific unsatisfactory aspect is that, when Fi(z) = Fy(x) =
®(x), the above expression does not produce the bivariate normal distribution, except that



«a = 0 corresponds to an extremely special case of it. In addition, the range of achievable

correlations is limited to the interval (—3, %) only.

Of course, we are not implying that the approach to be described in the rest of the paper
meets, simultaneously and to the full extent, all desiderata described above. It does however
makes significant progress in a number of ways, and it presents a number of interesting and
novel features.

An aspect to be stressed is that this stream of literature is not not only concerned with
skewness. The addition of an extra parameter to allow for skewness in the normal distribution
was the starting point, but current advances of the literature allow much more than this simple
operation. Given any symmetric density function, possibly multivariate, it is now possible to
modify it up to an extreme extent, and still retain some features of the original symmetric
density. Therefore, in the title of various recent papers, the key-prefix ‘skew’ appears more as
identifier of the approach, rather than as a descriptor of the technical content.

2 The univariate skew-normal distribution

2.1 A useful lemma

The following lemma, and its extension to the multivariate case, are central to our develop-
ment. Since its proof is remarkably simple, yet instructive, it is worth presenting it.

Lemma 1 If fy is a one-dimensional probability density function symmetric about 0, and
G is a one-dimensional distribution function such that G' exists and is a density symmetric
about 0, then

f(2) =2 fo(2) G{lw(z)},  (—00 <z <), (1)

is a density function for any odd function w(-).

Proof. Y ~ fy and X ~ G’ are independent random variables, then
b= PX - w(Y) £0) =By (P(X ~ (V) S0V} = [ G{u(e) o) ds

on noticing that w(Y’) and X — w(Y) also have symmetric distribution about 0. QED

This lemma allows us to manipulate a symmetric ‘basis’ density fo through a ‘perturbation’
function P(z) = G{w(z)} to get a new legitimate density f. Since there is much freedom for
the choice of the ingredients G and w, then the class of distributions which can be obtained
starting from a given ‘basis’ fy is vast. The set of ‘perturbed’ densities always include the
‘basis’ density, since w(x) = 0 gives fo = f. Some simple but interesting results connected to
Lemma 1 are as follows.

Stochastic representation If X ~ G’ and Y ~ f; are independent variables, then

Y X <Gw(Y)),
Z= { —Y otherwise, (2)

has density function (1). This expression provides a simple means for random number
generation.



Perturbation invariance If Y ~ f, and Z ~ f, then |Y| 4 |Z|, where the notation 4
denotes equality in distribution. Among other properties, the result implies that all
even moments of Y and Z are the same.

Lemma 1 appears in Azzalini (1985), in the special case w(y) = ay, where « is a constant;
some implications are given in Azzalini (1986). The more general version reported above has
not appeared until much later, in the multivariate setting to be discussed in Section 3.1.

2.2 Definition and some properties

On using the Lemma 1 with fy = ¢ and G = @, the density function and the distribution
function of a N(0,1) variate, respectively, and w(x) = ax where a € R, we get the density

¢(z;0) = 24(2) @(az),  (-00 <z <o), (3)

which is called skew-normal distribution with shape parameter «, denoted by SN(«). If
Z ~SN(a) and Y = £ + w Z, where £ € R, w € RT, then we shall write Y ~ SN(¢, w?, a).

The following properties of the density (3) hold. For most of them the proof is immedi-
ate; for property (d), recall the perturbation invariance property mentioned in the previous
subsection.

If o« =0, we obtain the N(0,1) density.

If Z ~SN(a), then —Z ~ SN(—a).

As a — o0, (3) converges pointwise to the half-normal density, namely 2¢(z) for z > 0.
If Z ~ SN(a), then Z? ~ 3.

For fixed a, density (3) is strongly unimodal, i.e. log f(z; @) is a concave function of z.

The corresponding distribution function is given by
D(z;0) = P(2) —2T(z, )

where T'(z, a) is the function studied by Owen (1956), and it satisfies the relationship
O(z;—a) =1—-0(—2; ).

(g) If U ~ N(0,1) is independent of Z ~ SN(«), then

aU+bZ SN ba @)
VTl + 0 NZIETO R
for any a,b € R.

The shape of density (3) is shown in Figure 1 for a few values of the parameter. Only
positive values of « are considered, since for negative values the density is mirrored on the
opposite side of the vertical axis, by the property (a).

The moment generating function of SN(¢,w?, a) is given by

M(t) =E{ etY} = 2exp(&t + w?t?/2) (dwt) (5)

4



[SYSEN)
S

QR
Ihnn

0.6
1

0.4
1

0.2

0.0
1

Figure 1: Density function SN(«) for a few values of «

where 0 = a/v/ 1+ «?. The result is immediate taking into account the following result, given
for instance by Ellison (1964) and Zacks (1981, p.53-54).

Lemma 2 [fU ~ N(0,1) and a,b € R, then
E{®(a+bU)} = ®{a/V 1+ b?}. (6)
From (5), if follows that

]E{Y} = §+w,u'za
var{Y} = o?(1-26%/7) = w?(1 — 1i2),

4—m
Y1 = )
2 (1—p2)3/?
4
1y
Yo = 2(m—3) 5,
(1 —p2)?

where pu, = y/2/md, and -y, and 9 denote the standardised third and fourth order cumulants,
respectively. The range of y; is approximately (—0.9953,0.9953). It is also possible to show
that

Ix3x-- (r—l) if r is even,

E{Z"} = \f(2k+ m!( Za
V(1 + a?) k+1/2 2k (2m + 1)! (k —m)!

ifr=2k+1and k=0,1,....

Another use of Lemma 2 is to show that
d(2) ®(T V14 a? + az)/P(7) (7)

is also a proper density function for each choice of 7 € R. We shall refer to (7) as the extended
skew-normal distribution, since it reduces to (3) when 7 = 0. This extended version shares a



few of the above-listed formal properties of (3), possible after suitable modification, but not
for instance the chi-square property (d).

The above presentation of the SN distribution is based largely on work of Azzalini (1985),
with additional results of Henze (1986) and Chiogna (1998). The extended version (7) has
been considered briefly in Azzalini (1985) and more extensively in Arnold et al. (1993).

2.3 Early appearances and additional stochastic representations

In addition to (2), there are various other stochastic constructions leading to a variable with
distribution of type (3) or (7). These other representations have appeared in earlier papers
considering manipulations of normal random variates of various forms.

Conditional inspection and selective sampling Motivated by a practical problem in
educational testing, Birnbaum (1950) has considered a problem whose essential aspects
are as follows. Denote by U; the score obtained by a given subject in an attitudinal
or educational test, where possibly U; is obtained as a linear combination of several
such tests, and denote by Uy the score obtained by the same subject in the admission
examination. Assume that, after suitable scaling, (Up,U;) is distributed as a bivariate
normal random variable with unit marginals and correlation p. Since individuals are
examined in the subsequent tests conditionally on the fact that the admission score
exceeds a certain threshold 7/, the distribution of interest is the one of Z = (U1|Uy > '),
and this turns out to be of type (7) with a = p//1 — p? and 7 = —7'. There is no loss
of generality in assuming that the marginal distributions of Uy and U; have the same
parameters of since any differences can be absorbed in 7. Departures from zero location
and unit scale parameter are handled by the transformation ¥ = £ + wZ.

This scheme is in turn connected to the question of biased and selective sampling; see
Section 6.

Selecting the largest/smallest value If (Uy, U;) is as in the previous paragraph, consider
the distribution of max(Up,U;) and of min(Up, U;). Roberts (1966) has examined this
problem in the context of twin studies, when Uy and Uj represent suitably standardised
measurements taken on a pair of twins. Given the type of individuals being measured,
it makes sense to assume equal distribution of the two components. The distribution of
max(Up,Uy) is SN(v/(1 — p)/(1 + p)); for min(Uy, U;) the sign of the shape parameter
is reversed. Roberts (1966) also obtained the chi-square property (d). Recently, similar
results have been re-obtained independently by Loperfido (2002).

Convolution of normal and truncated-normal Weinstein (1964) initiated a discussion
in Technometrics about the cumulative distribution function of the sum of two indepen-
dent normal variables, Vy and Vi, say, when Vj is truncated by constraining it to exceed
a certain threshold. The ensuing discussion, summarised by Nelson (1964), lead to an
expression for computing the required probability, which is in essence the distribution
function of (7).

Although formulated quite differently, a closely related construction has been considered
by O’Hagan & Leonard (1976), working in a Bayesian context. Here  denotes the mean
value of a Normal population for which prior considerations suggest that 8 > 0 but we



are not completely convinced about this. This uncertainty is handled by a two-stage
construction of the prior distribution for @, assuming that |y ~ N(u,0?) and that p
has distribution of type N (uo,o?) truncated below 0. The resulting distribution for 6
corresponds again to the sum of a normal and a truncated normal variable.

In the case when the threshold value of the variable V{ coincides with E{V;}, the above-
discussed sum is equivalent to the form a|Vy|+b Vi, for some real values a and b, and |Vj|
is distributed as an half-normal variable. There is no real loss of generality is considering

the special version
Z:5|V0|+\/1—52V1 (8)

where V) and V; are independent N (0, 1) variables, and 6 € (—1,1). The distribution of
Z is SN(6/V1 — 62).

This Z as the structure of the random term appearing in a stream of econometric
literature dealing with stochastic frontier analysis; a leading paper is Aigner et al. (1977).
In this context, the response variable is given by the output produced by some economic
unit of a given type, and a regression model is built to express the relationship between
the response variable and a set of covariates which represent the input factors employed
to obtain the corresponding output. The key difference from ordinary regression models
is that here the stochastic component is the sum of two ingredients: one is a standard
error term centred at 0 and the other is an essentially negative quantity which represents
the inefficiency of a production unit, producing an output level somewhat below the curve
of technical efficiency. In the common case when the purely random term is normal, and
the inefficiency is assumed to be of type § |Vp| with 0 < 0, we are effectively considering
a regression model with error term of type SN.

A further related case is the nonlinear autoregressive stochastic process studied by Andél
et al. (1984) satisfying a relationship essentially of type

Zt:5|Zt71|+\/1—528t (t:...,—l,O,l,...)

where the {¢;}’s form a sequence of independent variables N (0,1). The integral equation
for the stationary distribution of the process {Z;} has a solution of type (3).

As a general remark, there is a difference in the focus of interest of the earlier papers just
discussed and the more recent work summarised in the previous sections. The target of these
older papers appears to be completed studying the properties of certain transformations of
normal variates, while the more recent papers regard (3) and (7) as new parametric families,
representing an extension of independent interest to the normal family, especially for their
ability to incorporate skewness in the data modelling process.

Although mathematically implicit in what has already been presented, the following ex-
ample is useful to illustrate the stochastic mechanism underlying the SN distribution. Consider
a bivariate normal variable

()~ () (o o)

where the variables H and W may for instance represent ‘height’ and ‘weight’, respectively,
of some people. The distribution of W conditionally on the fact that subjects have ‘weight
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Figure 2: The left-hand side plot shows simulated data from a bivariate normal population,
using different symbols for points which are above the regression line and below that line.
The right-hand side plot display the histogram and the theoretical distribution of values of
the second component which are above the regression line, and the marginal distribution of
the second component

above average’ can be intended in the sense (W|W > p9) or in a more informative form
WU > 0 where U = W — E{W|H}, taking into account the ‘height’ of a subjects to state
whether it is ‘overweight’. It turns out that W|U > 0 ~ SN(ug,092,d/v1 — §2), where
0 =\/1 -0t/ (011 022).

The left-hand side panel of Figure 2 displays a simulated sample from a certain bivariate
normal populations, marking points which are above the regression line E{W|H} differently
from those of the points below that line. The right-hand side plot of the same figure shows the

marginal distribution of W ~ N (ug,092), and compares it with the theoretical distribution
SN(u2,092,0/v/1 — 62) and the observed histogram of W|U >0 .

2.4 Statistical aspects

While the study of the SN distribution on the probabilistic side leads nicely to a collection of
appealing properties which extend in a natural way those of the normal distribution, the con-
nected inferential process has some unusual aspects, especially if we focus on a neighbourhood
of point @ = 0 which corresponds to the normal distribution.

Consider first the case of a simple random sample y = (y1,...,y,)" from SN(¢,w?, @),
with corresponding log-likelihood function

0(&,w?, o) = const — %nlong +2 2+ Z Cola z;) 9)

7

where

z= (zl,...,zn)T :wfl(y—fln)/w, Co(z) = log{2®(x)} (10)
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Figure 3: Profile relative twice log-likelihood function for a sample with n = 87, using two
different parameterisations. The contour lines correspond to upper percentage points of level
0.25, 0.5, 0.75, 0.90, 0.95, 0.99 of a x3 distribution

and 1, is the n-dimensional vector of all 1’s. It is immediate to extend the log-likelihood (9)
to regression models; these will however be discussed in § 3.6.

Besides the common fact that the likelihood equations need to be solved numerically, there
are two additional problems. Firstly, there is always an inflection point at o = 0 of the profile
log-likelihood. Correspondingly, at «« = 0, the expected Fisher information becomes singular.

To have a direct view of the problem, consider the left-hand side plot of Figure 3 which
shows the behaviour of the profile log-likelihood for the (w,a) based of a sample of n = 87
data; the twisted contour levels lines are markedly different from the ideal quadratic shape.
As n increases, this unpleasant sort of behaviour vanishes, except at the point « = 0. For
finite n, however, the effect propagates at some distance away from « = 0, and in this context
the phrase ‘moderate size n’ typically refers to a somewhat larger n than in other settings.

To get around these difficulties, consider the reparametrisation from (£, w?, a) to (1, 02, v1)
obtained on re-writing

Y —t4wZ=p+oZe, =7 - )V gl (1)

Since Zj is a standardised variable, ;1 and o denote the mean and the standard deviation of
Y, respectively; 1 denotes the index of skewness. With this reparametrisation, the likelihood
function and the Fisher information matrix have a regular behaviour. The right-hand side plot
of Figure 3 refers to the same data used for the left-hand side plot, and it demonstrates the clear
improvement in the shape of the log-likelihood obtained with the alternative reparametrisation.

These unusual aspects of the likelihood function and of the expected Fisher information
matrix have been discussed by Azzalini (1985), Chiogna (1997), Azzalini & Capitanio (1999),
Pewsey (2000a). The phenomenon of singularity at « = 0 of the expected Fisher information
matrix is special case of the problem studied in great generality by Rotnitzky et al. (2000),
but motivated by a problem closely related to the present one.



A second peculiar aspect of the log-likelihood function (9) is that, for small or possibly
even moderate value of n, it can be monotonically increasing or decreasing in «; hence the
maximum likelihood estimate & is £oo. The phenomenon is particularly easy to examine in
the one-parameter version of the likelihood, when ¢ and w are known to be 0 and 1, say,
respectively. In this case, (9) reduces to ), {o(cay;) and, if the sample values all have the
same sign, then & occurs at +0o, as noted by Liseo (1990). The root of the problem is in the
limited theoretical range (—0.9953,0.9953) for v; under the SN model; there is however no
direct connection between the phenomenon of & = oo and the sample index of skewness ¢,
falling outside the theoretical admissible range.

It can be argued that the occurrence of & at 00 must be regarded similarly to an estimate
0 or 1 for the parameter of a binomial variable, that is a boundary but not ‘unacceptable’
value. On the other hand, there is a difference from that case, since these boundary estimates
in the binomial case occur when the data give a strong indication in that sense, while for
the SN distribution estimates at oo can occur even for data which appear to be free of any
peculiar pattern; see Figure 4 of Azzalini & Capitanio (1999) for an example.

Therefore & = 400 is perceived as an anomalous outcome, and various proposals have
been put forward to avoid it. In the classical approach, the method proposed by Sartori
(2005) is based on a second-order modification of the likelihood equation which never produces
boundary estimates. See also Monti (2003) for another proposal, based on minimum chi-
square. In the Bayesian approach, Liseo & Loperfido (2004) show that the Jeffreys’ prior for
« is a proper distribution, a most special situation given that the range of « in unbounded.
Hence the posterior distribution for « is a proper distribution too, and use of its mode or
median produces finite estimates, which are shown to have good frequentist properties.

For testing parametrically the hypothesis of normality within the SN class, Salvan (1986)
has shown that the sample index of skewness g1 leads to the test locally uniformly most
powerful among those which are location and scale invariant to test that the null hypothesis
Hjp : @ = 0 against a one-sided alternative. The procedure is based on a form of invariant like-
lihood, whose connections with the Bayesian approach are discussed by Liseo (1990). Muliere
& Nikitin (2002) and Durio & Nikitin (2003) examine local Bahadur efficiency of various
nonparametric tests within the class (3).

Extending the work of O’'Hagan & Leonard (1976), Mukhopadhyay & Vidakovic (1995)
use (3) and similar other densities produced from Lemma 1 to represent the prior distribution
for the expected value of a normal variable.

2.5 Some related distributions

Application of Lemma 1 to other densities fj in place of ¢ produces a variety of skew variants
of fp, in fact one for each choice of G. Of the vast set of possible options, a certain number
have been considered in the literature, with special attention to cases where G = [ fy. Since
the original formulation of Lemma 1 referred to w(z) = ax, this condition carries on in many
papers until very recent ones.

In this subsection, we shall not discuss distributions for which a multivariate treatment
has been developed, since these cases will be presented in a subsequent section, and confine
ourselves to those examined only in the univariate case.
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Gupta et al. (2002) examine a range of possible options for fy, which is in turn selected
to be normal, uniform, logistic and G is taken to be [ fo; the treatment of the ¢ case is
somewhat different and it is in line with the multivariate case to be discussed later. For these
distributions, moments and some other characteristics are obtained. The paper of Nadarajah
& Kotz (2003) has a similar target in the case when fy is kept equal to ¢ and G varies.

A particularly important feature in applications is the possibility to regulate the thickness
of the tails of a symmetric distribution via a shape parameter 7, say. In a location or a
regression model where the error terms are assumed to belong to a parametric family of
this sort inferential methods can be expected to have good robustness properties, since the
adjustable parameter 9 can adapt to the presence of outlying observations.

An important special case of this type is the Subbotin’s distribution (Subbotin, 1923)
with density fo(z) = Cy exp(—|z|¥/4) where 1) > 0 and Cy is a normalising constant; 1) = 2
corresponds to the normal density. This distribution is also known with other names, including
exponential power distribution and generalised error distribution. Combination of this fy with
a skewing factor 2 G(az) has been considered by Azzalini (1986) in two forms: (i) G = [ fo,
and (ii) G = ®. Inferential aspects for case (ii) have been examined by DiCiccio & Monti
(2004), providing a detailed study of asymptotic properties of maximum likelihood estimation.
These are very much similar to those discussed earlier for the SN case, with more technical
complications due to the additional parameter 1. A reparametrisation similar to (11) avoids
singularity of the information matrix at o = 0. DiCiccio & Monti (2004) provide some
illustrative applications of the methodology in some regression and time-series problems.

Replacing the normal density by a skew-normal one in the wrapped normal distribution on
the circle, Pewsey (2000b) has developed a wrapped skew-normal distribution, whose density
function is

f(o):% i ¢(0+27rr—§>q)<a(9+27rr—§)>7 0<6<om

w w

r=—00

where £, w, « are location, scale and skewness parameters. Various formal properties, inferen-
tial aspects and an illustrative example are discussed in the quoted paper.

3 The multivariate skew-normal distribution

3.1 Some general preliminaries

For introducing the multivariate version of the skew-normal distribution, it is useful to consider
the following extension of Lemma 1 to the d-dimensional case; the proof is similar to the
univariate case. In the multivariate context, the concept of symmetric density is not defined
in a unique way, as for d = 1. The result below refers to the assumption of the condition
fo(xz) = fo(—x), called ‘central symmetry’ by some authors; see for instance Serfling (2004).

Lemma 3 If fy is a d-dimensional probability density function such that fo(z) = fo(—x) for
z € R, G is a one-dimensional differentiable distribution function such that G' is a density
symmetric about 0, and w is real-valued function such that w(—z) = —w(zx) for all z € RY,
then

f(z) =2 fo(z) G{lw(2)}, z e R?, (12)

11



is a density function on R%,

Besides the formal analogy with Lemma 1 for constructing new densities starting from a
symmetric density fy, also some other results of §2.1 carry on in the multivariate case.

Stochastic representation If X ~ G’ and Y ~ fy are independent variables, Z defined as
in (2) has distribution (12).

Perturbation invariance If Y ~ fy and Z ~ f, then
tY) L t(2) (13)

for any real-valued function such that t(z) = ¢(—z) for all z € R, irrespectively of the
choice of G and w.

A statement more general but less operative than Lemma 3 has been given by Azzalini &
Capitanio (1999, § 7). The above formulation is in the form presented by Azzalini & Capitanio
(2003) and, in a slightly different way, by Genton & Loperfido (2005); despite the discrepancy
in publication dates, these two papers have been developed independently and more or less
simultaneously. One difference between the two formulations is that Genton & Loperfido
(2005) restrict the statement to the case when fy is of elliptical type. Another difference is
that they replace G{w(z)} by a function 7(z) satisfying the conditions

m(x) >0, w(x) +7(—z) =1, (14)

since the factorisation m(z) = G{w(z)} is not unique. On the other hand, the actual con-
struction of a function m(z) with the prescribed properties is immediate if one selects G and
w as indicated.

Formulations more general than (12) can certainly be considered. If Uy and U; are con-
tinuous variables of dimension m and d respectively, then Arellano-Valle et al. (2002) put
forward the very general formula for the distribution of Z = (U1|Uy > 0), where the notation
Up > 0 is intended as a set of component-wise inequalities,

P{Uo > 0|U1 = Z}
P{Ug > 0}
in a self-explanatory notation. Notice that here the choice of the threshold 0 is without

loss of generality, since no symmetry around 0 is assumed. The problem is that the actual
computation of the integrals involved is amenable only in some cases.

(15)

f2(2) = fu,(2)

For the rest of this section, we shall concentrate on the special case then fy in (12) is the
multivariate normal density. Application of Lemma 3 to more general cases will be discussed
in Sections 4 and 5.

3.2 Definition of skew-normal density and some properties

Consider the case that fo(z) in (12) is ¢q4(z;€2), the density function of a Ny(0,2) variable,
where (Q is a positive definite matrix; also, take G = ® and w to be a linear function. Allowing
for the presence of a d-dimensional location parameter £, the density function is

F@) =2¢aly —&Q) Plaw H(y —¢)),  (yeR?), (16)

12
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Figure 4: Contour levels of bivariate skew-normal distributions for some choices of the para-
meters; in both cases the location parameter is (0,0) and ©2q; = Q99 = 1. The dashed lines
are those with ay21 + agze =k for k = -6, —4,-2,0

where « is shape parameter (o € R?) and w is the diagonal matrix formed by the standard
deviations of €. If a d-dimensional continuous random variable Y has density (16), we say
that its distribution is multivariate skew-normal and write ¥ ~ SNg4(¢,Q «). The reason to
have the apparently redundant term w™' in the argument of ® is to keep the shape parameter
a unaltered when a location and scale transformation of type Y’ = a + bY is applied to Y,
for some positive definite diagonal matrix b.

Figure 4 shows contour levels of two cases of SN distribution where d = 2, ¢ = (0,0)" and
w = I. To illustrate how the down-weighting factor ® (21 + ag29) of the normal density
function operates, some lines with constant value of a12z1 + agz9 are also indicated.

A simple extension of Lemma 2 leads readily to the moment generating function corres-
ponding to (16), that is

M(t)=2exp(¢'t+ 3t"Qt) @(0 wt), teRY, (17)

where
0= (1 + aTQa>71/2 Qa,

and Q = w 'Qw ! is the correlation matrix associated to €. From M (t), one obtains
E{Y} =&+ wp., var{Y'} = Q — wp, pu, w

where p, = /2/7 4§ is the mean value of the reduced variable Z = w=1(Y —¢) ~ SNy(0,Q, ).
The multivariate indices of skewness and kurtosis are

4—m 2( pe Qs )3 ( pl Qs )2
Yi,d = ~_ ) 72,d:27'('—3 ~_ )
( 2 > 1=l Q  p, (m=3) 1=l Q  p,

whose approximate range is (0, 0.9905), and (0, 0.869), respectively.
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Another direct consequence of (17) is that the sum of a multivariate skew-normal vari-
ate and an independent multivariate normal variate is still skew-normal. This property is
immediate on noticing that multiplication of (17) and exp(ut + 3t t), say, gives another ex-
pression of type (17) with d replaced by ¢~ 'wd where ¢ is the diagonal matrix of the standard
deviations of 4+ X. This fact is essentially the multivariate version of property (4).

In analogy with (7), we also introduce an ‘extended’ form of multivariate skew-normal
distribution, with density

Fy) = daly — & Q) Pap + aw ™ (y — £))/(7) (18)

where ag = 7V1 +a' Qa. In this case, we write Y ~ SN4(€,Q,,7). If 7 = 0, then also
ap = 0 and (18) reduces to (16).

The corresponding distribution function can be computed via the distribution function of
a (d + 1)-dimensional normal variate. Specifically, if Z ~ SNy(0,Q, «, 7), then

P{Z < Z} = q)d+1((7—7 ZT)Ta Q)/@(T)
where the notation Z < z means that each component of Z does not exceed the corresponding

component of z, and
(1 —0"
“\-6 Q)

Both families (16) and (18) are closed under marginalisation. Specifically, if Y ~ SN4(§,Q, «, 7)
and its parameters are partitioned as follows

Y1 §1> (911 Q12> (041>
Y = , = , Q = R = 19
(Y2> ; (52 Qo1 Qoo “ a3 (19)
where Y7 is of dimension h, then
Y1 ~ SNp (€1, 1, ay(2), 7)

where -
_ ~ - - .= a4+ Q77 Qo
Q21 = Qoz — 021911 O, ayz) = - T,H = 21/2- (20)
(14 oy Qaz1002)

The expression of the parameters of the marginal distribution is simply produced by ex-
tracting appropriate components of the original parameters, for the £ and €2 components, but
for a the expression is somewhat more involved, and it depends both on a; and on as. In
this sense, it would be simpler to adopt d as the skewness parameter, since marginalisation
would lead to simple extraction of a subset of its components, as it is apparent from (17). The
drawback of adopting d as the shape parameter is that {2 and § are not variation independent,
as we can see from the expression of var{Y '}, while this property holds for the pair (€2, «).

Although families (16) and (18) are much similar in many respects, there are important
differences, since (18) does not fit in the scheme of Lemma 3. One implication is that the
perturbation invariance property (13) holds for (16) but not for (18). One advantage of (18)
over (16) is the property of closure under conditioning. Specifically, if Y has a density of type
extended skew-normal (18), then Y7|Ys = yo is still a member of the same family, but the
same is not true in general for the sub-family with 7 = 0.
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Many of the above results have appeared in Azzalini & Dalla Valle (1996) and in Azzalini
& Capitanio (1999), where the focus is on the case 7 = 0. The extended form (18) has
been discussed by Arnold & Beaver (2000a) and by Capitanio et al. (2003). The latter paper
develops a theory of graphical models for skew-normal variates, apparently the first case of
graphical models for continuous non-Gaussian variables. Explicit expressions of moments of
SNg (&, €, a) up to order four are given by Genton et al. (2001), but not reported here due to
their lengthy expression. Azzalini (2001) provides accurate approximations to select regions
of given probability with minimum geometric volume.

3.3 Stochastic representations

The univariate skew-normal distribution can be obtained by several stochastic mechanisms.
Some of them carry on to the multivariate case, in addition to the general representation (2).

Representation via conditioning If the d-dimensional random variable U is partitioned
in components Uy and U; of size 1 and d, respectively, such that

_ UU * x 1 (5T
U—(UI>NN1+d(0aQ)7 Q _(5 Q) (21)

where 0 is a positive definite correlation matrix, then

A To-15\ % o1
Z = (U1|Uy > 0) ~ Ng(0,Q,0), a= (1—5 QO 5) Q-ls, (22)
The affine transformation Y = £ + wZ leads to density (16).
Representation via convolution Assume that V) ~ N(0,1) and Vi ~ Ny(0,¥) are in-

dependent variables, where ¥ is a correlation matrix, and let A = diag(dy,...,dq) where
d; € (=1,1) for all j’s. Then

Z =A14|Vo| + (Ig— AHY? v, (23)

has distribution SN4(0, 2, ), with a known relationship between the (¥, A) and the (Q, «)
sets of parameters.

It is reassuring that both representations, (22) and (23), lead to the same family of distribu-
tions, since otherwise we would have to choose between two legitimate multivariate extensions
of the univariate distribution (3). In a slightly more elaborate version, similar representations
exist for the extended form (18).

3.4 Linear and quadratic forms

The class (18) is closed under affine transformations. Specifically, if Y ~ SNy(&,Q, «,7),
a € R" and B is a matrix of size h x d, then

W =a+BY ~ SNy (&w, Qw, aw, 7) (24)
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where

SW =a+ B€7

Qw = BQB', (25)
1 _ _

aw = 7 ww Q) H' a H=w'QB"

(1+aT(Q—-HQ, H)a)
and wyy denotes the diagonal matrix of standard deviations of Qyy.

Closure of the class under affine transformation resembles a well known fact for normal
variates, and the formal rules for transforming the location parameter & and the dispersion
matrix € are the same of the normal case.

There exists a particular full-rank affine transformation of type (24) which produces a sort
of ‘canonical form’, in the sense W has d — 1 components with 0 asymmetry and a single
component which ‘absorbs’ all asymmetry of the others. The skewness parameters of this
component is a summary index of asymmetry featuring in many other expressions.

The connection with the normal family is even more striking in the light of the following
result which is the analogue of a known characterisation of the multivariate normal family.

Theorem 4 For a d-dimensional random variable Z, denote by Q = E(Z Z") the matriz of
second-order moments, and suppose that, for all h € R such that h"Qh =1, h' Z has skew-
normal distribution of type (3), with shape parameter depending on h. Then Z has multivariate
skew-normal distribution (16).

Due to the general property of perturbation invariance (13), a vast set of results on quad-
ratic forms of multivariate normal variables carry on for the skew-normal distribution. For
instance, if Y has distribution (16), it is immediate to state:

(a) if C is a full-rank p x d matrix (p < d), then
(Y -9 'o(cT0) 'CT(Y - ¢) ~x;, (26)
for which the case C' = Q! is of special interest;

b)) (Y —&TAY —¢) and (Y — €)' B(Y — €) are independent if and only if AQB = 0.
The above discussion summarises only the most basic properties on linear and quadratic
forms of skew-normal variates, as given by Azzalini & Capitanio (1999), Gupta & Huang (2002)
and Capitanio et al. (2003). Additional distributional properties can be found in Loperfido
(2001) and Genton et al. (2001). In particular, explicit expressions for the moment generating
function and the lower order moments of a general quadratic form Y " AY are available. Notice

that all these properties of quadratic forms refer to (16), and do not carry on to the extended
version (18).

3.5 Further extensions: several latent variables

One limitation of the formulation discussed so far is that, when we consider it in the light of
the representation via conditioning, only one latent variable Uy is admitted. However, if one
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thinks of a form of selective sampling as mentioned in Section 2.3, it is quite natural to allow
that two or more constraints of the form Uy + 7 > 0 are operating simultaneously on a set of
m latent normal variables with 0 mean and covariance matrix I'.

The integrals involved by (15) are can easily be handled, thanks to well-known properties
of the normal distribution, and we arrive at the density function of the form

Q{7+ T(x - §), I}

f(@) = gulo = &) ==

(27)

where ®,,(a, A) denotes the distribution function of a Ny, (0, A) variate evaluated at point
a € R™ 7 is now an m-dimensional parameter vector, T is a matrix m X d, and I'* is a
suitable function of I', T, and €.

Alternatively to the above mechanism of conditioning, a density of type (27) can be ob-
tained via a form of convolution of normal and truncated normal variables.

Quite recently, several papers have put forward distributions essentially of type (27) al-
though formulated in quite different ways. These different formulations include proposals by
Sahu et al. (2003), Liseo & Loperfido (2003a), Gonzéalez-Farias et al. (2004a), Gonzélez-Farias
et al. (2004b), Arellano-Valle & Genton (2005). The question of their interconnections, and in
fact of the essential equivalence among them, is discussed by Arellano-Valle & Azzalini (2004).

Because of the more technical nature of this set of proposals and the fact that the theme
is still under development, we do not discuss in detail these extensions. There are important
properties to be mentioned, however: (i) an improvement over the basic SN formulation is
the closure of the class under sum of independent components; (ii) properties of closure of the
class under marginalisation, affine transformations and conditioning to given values of some
components still hold.

3.6 Statistical aspects

Suppose that a set of independent d-dimensional observations yi,...,y, is available, and
the i-th observation is associated with a p-dimensional vector z; of concomitant variables
(1=1,...,n). These data are arranged in two matrices, y and X, say, of size n X d and n X p,
respectively.

Under the assumption that y; is sampled from a SNy(&;, Q, ) distribution (i = 1,...,n),
the corresponding likelihood function is

¢ = constant — %nlog || — %tr (Q_ID) + Z Cofaw My — &)} (28)

where D =3 (yi — &) (yi — &)’

In many cases, a regression model for the location parameters is introduced, of the form
¢ = z] B for some matrix of regression parameters 3 of size p x d, for i = 1,...,n. The
optimisation process of (28) is much simplified if we introduce 7 = w™'a, in place of . This

reparametrisation allows explicit maximisation of (28) with respect to €2, given by

QB)=n""(y—XB)T(y — XB),
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for any fixed . Hence the profile log-likelihood for (f,7) is

¢*(8,m) = constant — 5nlog|Q(B)| + 1, Co{(y — XB)n}

where it is intended that the function (y is computed component-wise. The function £* must
be maximised numerically, but searching a space of substantially smaller dimension than (28).
Further improvement in the numerical maximisation is achieved by supplying the algorithm
with the expression of the partial derivatives of £*, which are available in closed form. Nu-
merical differentiation of these derivatives leads to Fisher observed information matrix and
standard errors for the estimates.

After the fitting process, a diagnostic tool for the adequacy of the assumed model can be
constructed based on property (26) with C' = Q~!, and adapting the Healy’s diagnostic plots
to the present context; see Healy (1968). If the model is correctly specified, then

di = (yi — &) T My — &), (i=1,...,n), (29)

is distributed as Xﬁ; in practice one must replace the parameters by their estimates, and the
statement is approximate. The plot of the n pairs of points (qi,d(i)), where ¢; is quantile of
the x3 distribution at level i/(n+1) and dy; is the i-th term of the d;’s arranged in increasing
order, is expected to lie along the identity line. A variant of the same method operates on
the probability scale instead of the quantile, plotting the pairs (i/(n + 1), p(;)), where p; is the
distribution function of x2 evaluated at diy.-

For a more detailed discussion of the above material and illustrative numerical examples,
see Azzalini & Capitanio (1999). This paper considers also other aspects of inference, spe-
cifically discriminant analysis and graphical regression models. An expanded treatment of
graphical models is given by Capitanio et al. (2003).

As an illustration of the working of the methodology, we have used data collected at the
Australian Institute of Sport on 202 athletes, and described by Cook & Weisberg (1994).
For this example we consider the pair (LBM,BMI) as the response variable, where the two
acronyms denote Lean Body Mass and Body Mass Index, respectively. A linear model has
been introduced expressing the response variable as a function of two continuous covariates,
Height and Weight, and two factors, Sport (10 levels) and Sex (2 levels), under two alternative
distributional assumptions: bivariate normal and bivariate skew-normal. The top-left panel in
Figure 5 shows the bivariate residuals, with superimposed the contour levels of the fitted error
distribution under assumption of normality, while the bottom-left panel is the corresponding
plot under skew-normality, with some visible improvement in the adequacy of the fit. This
indication is confirmed by the two plots on the right-hand side, which represent the Healy’s plot
on the probability scale, under the two distributional assumptions, and it is further supported
by the likelihood ratio test for nullity of the parameter «, whose observed value 60.3 is highly
significant on the x3 scale. Even if the improvement provided by the SN distribution over the
normal is appreciable, the remaining curvature in the bottom-right plot indicates that there
is still room for improvement.

Another area where the SN distribution is conveniently applied is longitudinal data with
random effects. A typical formulation of linear type for the response profile of the ¢-th indi-
vidual observed at d successive occasions is

ylzﬁsz"i_Zzbl"i_gu (izla"'an)a
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Figure 5: AIS data: plot of residuals (left-hand side) and Healy’s type plot (right-hand side)
after fitting a linear model to the bivariate response variable (LBM, BMI) under the assump-
tion of bivariate normal distribution (top row) and skew-normal distribution (bottom row) for
the error term
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where b; is a g-dimensional vector of random effects associated to individual ¢, Z; denotes a
d x g matrix of additional covariates (¢ < d) and ¢; is a d-dimensional vector of random errors
independent of b;. It is only for simplicity of notation that here we keep d constant across
individuals.

The standard assumption on the random components b; and ¢; is joint normality with
0 mean, and some suitable constraint on the covariance matrices, var{b;} and var{e;}, to
ensure identifiability. Often the structure of var{b;} is assumed to be of diagonal form, and
var{e;} is chosen to have a patterned form corresponding to some form of serial correlation
structure. A formulation with increased generality is obtained by replacing the assumption
of normality by the skew-normality for either b; or ¢;, retaining the assumption of normality
for the other one. Thanks to one of the properties established earlier, the linear combination
Z; b; + ¢; is multivariate skew-normal. Therefore the log-likelihood structure is again of type
(28), after suitable transformation of the parameters, and the procedure described above for
its maximisation can be used. Alternatively, Arellano-Valle et al. (2005a) have developed
an EM-type algorithm for this case. They also consider the more general case where both
components b; and ¢; are of skew-normal type, leading to a distribution for y; of type (27)
with m = 2.

Arellano-Valle et al. (2005b) have examined measurement error models where the usual
hypothesis of normality of the stochastic components is replaced by skew-normality, and have
shown that the marginal joint distribution of the observables is of type (27) with m = 3.

The use of skew-normal distributions to model spatial data has been studied by Kim &
Mallick (2004), regarding the d components of the vector y as the observations on a response
variable at d geographical locations x1,...,x4. In this context, the dispersion parameter 2
is conveniently taken to be of the form o2 K (6) where o is a scale factor and K (#) is scale-
free positive-definite matrix which reflects the dependence structure, often via a function of
a parameter 6 and the distances ||z, — z4|| between points. For estimation of the parameters
and subsequent prediction of the response at a new location zy, Kim & Mallick (2004) frame
the problem in the Bayesian framework and develop a MCMC algorithm.

It has been recalled earlier that, in the scalar case, the use of Jeffreys’ criterion for un-
informative prior of the shape parameter produces a proper distribution (Liseo & Loperfido,
2004). The extension of this property to the multivariate case is studied by Liseo & Loperfido
(2003b) and Liseo (2004).

3.7 Other families

Arnold & Beaver (2000a, 2000b, 2000c) have examined skewed versions of various non-normal
distributions, in a formulation closely similar to (16) or (18) using different ingredients. In
most cases, they consider a constant term g in the skewing factor, leading to a density of
type

constant x fo(z) G(ag + o' x),

similarly to (18) for the SN family, but now with a non-normal fy and G. Since this form of
skewing function does not satisfies the condition of Lemma 3, the normalising constant must
be computed afresh for each choice of fy and G.

A favourable case is when fj is the product of d replicas of the Cauchy density, 1(u) =
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{r(1+u?)}~!, and G is the integral of 4, namely ¥(u) = 2 + 7! arctan(u). The normalising
constant is then available in explicit form, leading to a density of type

d
fe(x) =[] w(x;) ¥lao + a’e)/¥{ao/(1 +1j0)} (30)
7=1
for £ = (x1,...,24)" € R, An appealing aspect is that all marginal and conditional densities

of fo are still members of the same class. Arnold & Beaver (2000b) also provide a numerical
example of use of the distribution to data-fitting.

4 Skew-elliptical distributions

4.1 General aspects

So far we have focused on modifications of the normal density function, or possibly of some
other density, in a way that essentially introduces a form of skewness in the original density.
However, in many practical problems, it is important to be able to regulate a density in a
more flexible way.

Moving in this direction, the natural subsequent step is the ability to regulate both skew-
ness and kurtosis of a distribution. In particular, we want to consider distributions with
thicker tails than the normal, due to the relevance of this aspect in applications.

This target is not possible without taking the basis function fy in (12) to be something
different from the normal density. The basic reason is that the modification applied to fy by
G{w(y)} can only make tails thinner than the original fy. Therefore, we need to replace the
normal density by a parametric family with adjustable thickness of the tails.

An extensively studied class of densities of the required type is the family of elliptical
distributions. A d-dimensional continuous random variable Y belongs to this class if its
density function is constant on ellipsoids, hence it is of the form

Cd 7 _
fo(y;faﬁ)zm—lpf{(y—f)TQ -9},  yeR, (31)
where ¢ € R%, 0 is a covariance matrix, f is a suitable function from Rt to R*, called the
‘density generator’, and ¢y is a normalising constant; we then write Y ~ Elly(¢,Q, f). The
set of elliptical densities includes many parametric families, notably the normal one, to which
it reduces when f(z) = exp(—2/2) and ¢4 = (27) %2. For a detailed account on elliptical
distributions, see Fang et al. (1990).

An initial exploration of the use of (12) with fy of type (31) has been done by Azzalini &
Capitanio (1999). Proceeding along a different route, Branco & Dey (2001) start from a (d+1)-
dimensional variable U = (U, U; )" with location and scale parameters as in (21) but with
assumption of normality replaced the one of elliptical form E1(0, Q*, f! (@+1)) " Consideration
of Z = (U1|Uy > 0) extends the conditioning mechanism (22) from the normal to the elliptical
family. The expression of the density of Y = ¢ + w Z involves the marginal distribution of the
d-dimensional marginal U;, whose density generator is

271.(1/2

P00 =

/ FEAD (2 4oy) p? 1 dr, u>0
0
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and the distribution function F o of EIL(0, 1, fq(y)), where

P f) (u + q(y))
W F @ (g(y)

and q(y) = (y — &) "Q 7 (y — €). The density function of Y is then
Fro(y) Fr (o' (y =€) (32)

fatw)
where f ) is the density of EL(¢,Q, f@) and « is as in (22).

From the general expression (32), Branco & Dey (2001) formulate ‘skew versions’ of vari-
ous multivariate families: logistic, stable, Subbotin (or exponential power), ¢, Pearson type II,
and more. Various formal properties are obtained concerning marginalisation, affine trans-
formations, and quadratic forms, which parallel those of the skew-normal distribution.

Since the Branco & Dey (2001) construction is not set in the form (12) with fy of elliptical
type as it had been considered by Azzalini & Capitanio (1999), the natural question arises of
how the two approaches are related. The problem has been tackled by Azzalini & Capitanio
(2003) where, although a general coincidence could not be established, it has been shown that
this is however valid at least for various important cases, notably the multivariate Pearson
type 1l and type VII families; the latter family is of special relevance because it includes the
t distribution, which will be discussed separately. The essential equivalence of the two above-
mentioned formulations is reassuring, as otherwise we would have two separate concepts of
skew-elliptical distributions.

For the skew-elliptical family one can reproduce a large set of facts established for the
skew-normal distribution: (i) both representations of conditioning type and convolution type
hold and lead to the same distribution, (ii) for the case d = 2, an analogue of the construction
obtained selecting maxima/minima holds, (iii) a sort of canonical transformation exists which
transfers all asymmetry into a single component, and so on. See Fang (2003) and Azzalini &
Capitanio (2003) for a detailed analysis of these aspects.

The question of equivalence between the genesis via conditioning and via convolution has
been examined in a more general framework by Arellano-Valle et al. (2002), showing that
the essential requirement is independence of absolute value of U; and the signs of the m-
dimensional latent variable Uj.

4.2 An interesting case: the skew-¢ distribution

As already mentioned, it is of special interest from the applied view-point to have at hand
families of distributions for which we can regulate both skewness and thickness of the tails.
Among the various alternatives sketched above, an appealing option is offered by a skewed
version of the ¢ density, since this it is fairly tractable from the algebraic viewpoint and, in its
symmetric version, it has already been used for similar purposes.

We shall say that a continuous random variable Y has multivariate skew-t distribution if
its density is of type

T V+d 1/2
Frl) = 21aly: 6,0, T (a -9 (ot ) ;u+d) (33
y
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where £, © and w are as in Section 3.2, Q, = (y — T (y — ),

L(3(v +d)) 1
Q2 (rr)d/2 p(%y) (14 Q,/v)wtd/?

tq(y; €, Q,v)

is the density function of a d-dimensional ¢ variate with v degrees of freedom, and T} (z; v +d)
denotes the scalar ¢ distribution function with v+ d degrees of freedom. In this case, we write
Y ~ ST, Q, a,v).

From the mathematical viewpoint, (33) seems a convincing formulation since it arises from
several different mechanisms:

¢ apart from the shift of location from 0 to &, it can be obtained from the general formu-
lation of Lemma 3 when fy = t4, G(w) = Ti(w;v + d) and w(z) = a'w z/(z"Q 12);

o it falls within the formulation (32) when the generator f(4+1) is taken to be the one of
the t distribution;

o if can be obtained via a convolution of type (23) with (Vy, V1) of elliptical type;

¢ it can be generated by the same construction used for the regular multivariate ¢ distri-

bution, namely
Z

VW/v

where W ~ x2, if Z is an independent variable which is now taken to be SN¢(0, (2, a)
in place of the N4(0, ) distribution used to produce the regular ¢.

Y =€+

(34)

In addition, the family (33) enjoys various appealing formal properties, some of which
indicate a strong link with the SN distribution:

o if v — 00, (33) converges to the SN density (16), as it is clear from representation (34);

o (Y —OTQ Y Y - ¢)/d ~ F(d,v), again obvious from (34), and this allows to build
Healy-type diagnostic plots, similar to those described in Section 3.6 for the SN family,
but using the Snedecor’s F as reference distribution in place of the x?:

o the class of densities is closed under affine transformations, with the same rules (25) of
the SN case for transformation of the parameters &, €2, o, and v kept constant;

o it allows unlimited range for the indices of skewness and kurtosis for the individual
components.

The above statements summarise results of Branco & Dey (2001), Gupta (2003), and
Azzalini & Capitanio (2003). Expressions of joint moments of order up to four and some
moments of quadratic forms of skew-¢ variates are given by Kim & Mallick (2003); these
results are then used to obtain properties of some sample statistics relevant in time series and
spatial statistics. Notice that setting ¥ = 1 in (33) lends another type of skew-Cauchy density,
different from (30).

The data and the linear model used for Figure 5 have been reconsidered under the assump-
tion of skew-t distribution for the error term, and the outcome is summarised in graphical form
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Figure 6: AIS data: plot of residuals (left-hand side) and Healy’s type plot (right-hand side)
after fitting a linear model to the bivariate response variable (LBM, BMI) under the assump-
tion of bivariate skew-t distribution for the error term

in Figure 6. The estimated degrees of freedom are 3.45 with standard error 0.73, pointing to a
fitted distribution with tails markedly different from the normal or skew-normal ones. Corres-
pondingly, the plot on the left-hand side has contour levels quite concentrated in the centre,
with several points falling the tail area. The Healy’s plot using a scaled F' as reference distribu-
tion for the observed Mahalanobis distances is shown in right-hand side plot, and it indicates
that the skew-t¢ distribution provides a satisfactory description of the expected behaviour of
the residuals.

Thanks to the possibility of regulating the thickness of the tails via the parameter v, the
symmetric ¢t distribution has been used to produce robust inferential methods; see for instance
Lange et al. (1989). It has however been remarked in various occasions that in practical
applications outliers do not occur in all directions with equals chance; a detailed study of
this sort has been conducted by Hill & Dixon (1982). Adoption of the skew-¢ in place of the
regular ¢ distribution incorporates this fact into the stochastic model and it can be expected
to improve inferences. More details and some numerical illustrations are given by Azzalini
& Capitanio (2003). Another proposal for robust inference, based of the skew version of the
Subbotin distribution, has been mentioned in Section 2.5 (DiCiccio & Monti, 2004).

A different form of multivariate skew-t distribution has been put forward by Sahu et al.
(2003), with some illustration of its use for Bayesian inference. Another skew-¢ distribution,
presented by Arellano-Valle & Azzalini (2004), is an analogue of (27) in the sense it uses ¢
components and it reduces to (33) when m = 1.

5 Flexible parametric classes

So far we have considered modifications of a centrally symmetric density fo(z) via a perturb-
ation function 2 G{w(z)} which has been taken to have a simple parametric structure. In
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Figure 7: Bivariate standard normal density perturbed using G = ® and w(z) of third-degree
polynomial type, for two choices of the coefficients of the polynomial

most cases w(z) has been taken to have a linear structure or, in (33), a mildly non-linear and
simple form.

Lemma 3 however allows us to make use of much more radical forms of perturbation, and
with a very wide range of options in the choice of the perturbation. As a mere graphical
illustration of the achievable level of flexibility, consider Figure 7 which shows contour level
plots for two perturbations of the bivariate normal density with independent unit marginals,
using G = ® and

w(z) = w(ry,z2) = (z1, T2, 21 x%, x% T, x%, x%) Q

is a third-degree polynomial with only non-zero coefficients for odd-degree terms, and a =
(5,—5,-3,5,-3,3)" and @ = (2,2,2,-2,-2,2)" in the first and the second panel, respect-
ively.

Nothing prevents us from increasing the degree of the polynomial function, as well as
choosing different ingredients fy, G and w. There is then the question of how much flexible
are the densities generated in this way, and whether we can approximate well a given density
function by this method. This important problem has been examined by Wang et al. (2004)
and Ma & Genton (2004), whose results can be summarised as follows. In their formulation,
the term G{w(z)} in (12) is replaced by the perturbation function = (z), satisfying conditions
(14).

Consider an arbitrary d-dimensional continuous density function f(z). For any fixed but
arbitrary point ¢ € R?, there exists a factorisation of the form

f@)=2fe(e —Eme(x —¢), (v eR,

where f¢ is a density centrally symmetric around 0, and 7 is a perturbation function of type
(14). If £ = 0, this representation is of type (12).
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Under regularity conditions, a representation of type f(z) = 2 fo(z) 7(z) can be approxim-
ated arbitrarily closely in the L° norm by a member of the set of functions 2 fy(x) G{wg (x)}
where

K
wgk () :Za‘gK)x%*l, K=0,1,... (35)
7j=1

and G is an arbitrary distribution function such that G’ exists and is symmetric about 0.

These results draw a bridge between the parametric context considered so far and a semi-
parametric or ‘flexible parametric’ one where the term fy is taken to be a member of a
parametric class and the perturbation function is either modelled with high flexibility via (35)
or it is handled in a non-parametric fashion. In the latter option, inferential procedures aim
only at the parameters of interest in fj, neutralising the nuisance component 7 ().

The use of flexible parametric models in a context of linear mixed models for longitudinal
data has been explored by Ma et al. (2004). Methods where 7(x) is handled non-parametrically
have been examined by Loperfido (2004) and by Genton (2004b, §5.4.3).

6 Some connected fields and applications

There are two purposes of this section, which are however partly overlapping: (i) to highlight
the connections with some well-established areas of work; (ii) to mention some applications of
the above-described results to practical problems.

Selective sampling In Section 2.3, we have already mentioned the connection with the
area of biased and selective sampling. Under normality assumption of the overall population,
the effect of this selection it to produce what in our terminology is called a skew-normal dis-
tribution for the observable data. This theme has been extensively studied in the quantitative
sociology under the heading of ‘Heckman model’, whose interplay with statistical theory is
discussed by Copas & Li (1997).

The literature on Heckman model focus strongly on normality assumption. It is plausible
that the above-discussed extensions can produce similar but more flexible and realistic meth-
ods. Skew-elliptical distributions with heavy tails, especially the skew-¢ distribution, can be
expected to be useful.

Stochastic frontier models Another link with existing literature mentioned in Section 2.3
points to the econometric literature on stochastic frontier models. Even here the distributional
results now available can contribute to improve the stochastic modelling and the derivation
of formal properties. Some work in this direction has been done by Tancredi (2002) and
Dominguez-Molina et al. (2004).

Compositional data For the analysis of compositional data, a standard device is to trans-
form the d + 1 original components belonging to the simplex to d components in R¢ using
the additive log-ratio transform, followed by analysis based on methods for normal data; see
Aitchison (1986) for an exhaustive discussion of this approach.
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The additive log-ratio transformation can be followed by assumption of skew-normality on
the transformed data, to improve adequacy in data fitting. This assumption on R¢ induces
back a distribution on the simplex which enjoys certain formal desirable properties, which are
due to the properties of closure under marginalisation and affine transformation of the skew-
normal distribution, inducing some corresponding properties on the simplex. For a discussion
of these issues, see Aitchison & Bacon-Shone (1999), Mateu-Figueras (2003), Aitchison et al.
(2003).

Financial markets Although the assumption of normality underlying many models for fin-
ancial market behaviour has often been remarked to be inadequate, still the associated meth-
odology has been retained due to the lack of adequate replacements of the normal assumption.
Since the SN distribution reproduces various formal properties of the normal, Adcock (2004)
has shown how one can maintain standard formulations of market behaviour while adopting
a more realistic distributional assumption.

Another relevant area for financial applications are special time series formulations, such
as GARCH or stochastic volatility models. The replacement of normal assumption with skew-
normal one has been considered by various authors: Goria (1999), Pietrobon (2003), De Luca
& Loperfido (2004), Cappuccio et al. (2004).

Others The above list of application areas is by no means exhaustive. Many others exist
which unfortunately we cannot examine here in any detail for space reasons. Luckily, quite
a few of them are collected in the recent book edited by Genton (2004a), hence accessible
collectively.

The overall message emerging from all these contributions demonstrates the lively activity
and the relevant potential of this area of research, both on the theoretical and on the applied
side.
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