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Abstract

The distribution theory literature connected to the multivariate skew-normal distri-
bution has grown rapidly in recent years, and a number of extensions and alternative
formulations have been put forward. Theretofore, at the moment there is a variety of
coexisting proposals, similar but not identical, and with rather unclear connections. The
purpose of this paper is to unify the various proposals under a new general formulation,
clarifying at the same time the relationships with and among other proposal. The final
part sketches an extension of the argument to the skew-elliptical family.

Some key-words: skew-normal distribution, skew-elliptical family, skew-t distribution, sto-
chastic representation.

1 The skew-normal distribution and its descendants

1.1 General remarks

There has been recently a resumption of interest in the study of parametric classes of prob-
ability distributions for continuous multivariate random variables. A substantial fraction of
this activity has stemmed by the proposal on the multivariate skew-normal (SN) distribution,
which represents an extension of the multivariate normal family to which an additional param-
eter is being added to regulate skewness. The SN class has been studied by Azzalini & Dalla
Valle (1996) and by Azzalini & Capitanio (1999), and subsequently by several authors, with
intense developments in various directions, often considering non-normal symmetric families
as the starting point in place of the normal class.

These further developments are now so numerous that is not feasible to recall here all
of them; hence we shall restrict our references to specific contributions, as their relevance
occurs in the exposition of the paper. For reviews of the research work produced in this area,
see Arnold & Beaver (2002) and Azzalini (2003). Here we shall confine ourselves to a single
remark: while the original motivation of this approach was the introduction of skewness in
the normal family of distributions, the current developments are of a much higher level of



generality and the effect of these extensions to standard parametric families is much more
substantial than simple ‘insertion’ of skewness.

This very active and stimulating context has seen the appearance of several variants or
alternative proposals of the original skew-normal distribution. Among these, we mention in
particular: the Closed Skew-Normal (CSN) of Gonzélez-Farias et al. (2004), the Hierarchical
Skew-Normal (HSN) of Liseo & Loperfido (2003), the Fundamental Skew-Normal (FSN) of
Arellano-Valle & Genton (2005), the Multivariate Skew-Normal (MSN) of Gupta et al. (2004),
the Skew-Normal of Sahu et al. (2003); although on a slightly different direction, see also
Arnold & Beaver (2000)

While the existence of some many proposals is a sign of the high vitality of this stream of
literature, it inevitably poses problems, namely: is there one version which is the ‘overall best’
skew-normal distribution? are some of these proposals equivalent up to a reparametrisation?
more generally, what are the connections among them? Answering these questions is relevant
for various reasons, beside the mathematical interest per se. First of all, the co-existence of
several alternative variants is a source of much difficulty and confusion, particularly for a non-
specialist who wants to approach this area. In addition, each group of authors tend naturally
to develop further their own formulation, and the final effect would eventually be a lack of
communication among what so far has been a closely interlinked branch of literature.

The purpose of the present paper is to tackle the above questions, and to re-constitute a
‘unified formulation’ of the skew-normal distribution. To achieve this target we shall intro-
duce a further type of skew-normal distribution, and this very fact seems to contradict our
purpose. We show however that this new formulation encompasses all previous proposals,
once some redundancies in parametrisation are removed, and this process also clarifies the
connections among previous variants. In addition, reasons are given for preferring certain
forms of parametrisation in place of others.

1.2 The basic skew-normal distribution

To establish notation, the density function at point z (z € R?) of a Ny(u,¥) random variable
will be denoted by ¢q(z—pu; X); similarly, ®4(z—p; X) represents the corresponding distribution
function. When d = 1, we omit the subscript of ¢ and ®.

The original version of the SN distribution refers to the d-dimensional density function
whose value at  (z € R?) is given by

2ga(w — &) @ (aTw (@ - ©)) 1)

where ¢ (¢ € R?) is a location parameter,  is a positive definite covariance matrix, o (o € R?)
is a parameter which regulates skewness, and w is a diagonal matrix formed by the standard
deviations of ; hence Q@ = wQw, where Q is a correlation matrix. If a random variable
Y = (Y1,...,Y;) " has density (1), we write Y ~ SNy(&, 9, ).

Clearly, setting & = 0 in (1) produces the Ngy(&,€2) distribution. Besides this simple fact,
many other formal properties and analogies with the normal family of distributions support
the adoption of the term ‘skew-normal’, but we do not review these aspects here, and refer
the reader to the literature quoted above. What is more important for our development are
two forms of stochastic representation for a random variable of SN type.



The first of these representations is obtained via the following conditioning mechanism.
Denote by Uy and U; two random variables of dimension 1 and d, respectively, such that

(o) ~ a0y, o= (5 ) ¢
where ) is a correlation matrix and
§=(1+a' Q) Qa, (3)
which ensures that Q* is a correlation matrix. Then Z = (U;|Uy > 0) has density function
2 ¢a(; Q) @(a ) (4)
and the affine transformation
Y=¢(+wZ
has density function (1). For later use, we recall a form of dual expression of (3), given by
a=1-06"Q715)" 120715, (5)

The other stochastic representation is of convolution type. Specifically, assume that V
and V; are independent variables with distribution N(0,1) and Ng(0, ¥), respectively, where
VU is a correlation matrix; also, let A = diag(di,...,d4) where d; € (—1,1) for all j’s, denote
by I; the identity matrix of order d and by 1; the d-dimensional vector of all 1’s. Then

7 =A14|Vo| + (Ig— A2 v, (6)

has distribution of type (4), with a known relationship between the (¥, A) and the (Q, «)
sets of parameters. Again, the affine transformation Y = & 4+ wZ leads to density (1).

1.3 Some extensions and variants

The basic form (1) lends itself to a number of extensions, which have been extensively studied
in the papers quoted in §1.1 and others publications mentioned therein. These extensions
follow one, or possibly more, of the following directions of work.

1. Replace the 0 value of E{Up} in (2) by a further parameter, v say. This additional
parameter changes the normalising constant in (1) from 2 to 1/®(v), and it prevents
the stochastic representation (6), at least in the exact form given above. Notice that
another variant is equivalent, namely setting Z = (U1|Uy > 7), but the two parameters
7 and y cannot be included simultaneously, since only 7 — v is identifiable.

A stochastic representation similar to (6) is given by
Z = A1 Vo(—y) + (Ia - A*)V* 1y

where Vy(¢) ~ LTN(c;0,1), which represents the distribution obtained by truncation
below ¢ of a N(0,1) variate. Notice that the representation Vy(c) = (Vo|Vo > ¢), with
Vo ~ N(0,1) holds.

This form of representation has been obtained by Arnold & Beaver (2002). It is also
connected with a discussion, started by Weinstein (1964) and summarised by Nelson
(1964), which contains in an implicit form the ingredients leading to we now call skew-
normal distribution.



2. The single hidden variable Up in (2) can be replaced by a multivariate variable. Cor-
respondingly, there is a set of constraints of type Uy > 0 where it is understood that
the inequality must hold for each of the components of Uy. A similar form of multivari-
ate extension has been considered for the convolution representation (6). The various
formulations of this type will be discussed more in detail in §2.2 below.

3. Much work has been done replacing the normality assumption by a more general one,
especially using densities of the elliptical families. In this paper, an extension of our
main argument to the elliptical family is sketched in the final section, but we do not
dwell into the connections with other proposals.

Some of the variants which have been put forward occur as reparametrisations of the above
formulation, and some comments are in order.

It is algebraically simpler and apparently equivalent to drop the term w inside the argument
of ®(-) in (1), but in doing so « looses its interpretation as ‘skewness parameter’. To see this,
suppose that Y ~ SNy(0,Q, @), where we take the location parameter to be 0 for simplicity
of argument, and consider the scaled version Y = &Y, for some diagonal matrix w. In the
formulation given above, ¥ ~ SN4(0, & Q &, o) with a unchanged, but this is not the case in
the variant parametrisation, since its & parameter changes to @ 'a. It is clearly unsatisfactory
that a skewness parameter changes its value as an effect of change of scale.

It is true that even a does not reflect only the skewness of the components, since it depends
on the shape of the marginals as well as the correlation matrix €2, although at least it does
not depend on the scale parameter w. In this sense, the use of § in place of « is preferable,
since its generic component ¢; is directly related to the index of skewness of the corresponding
component Y;. There is however the drawback that ¢ and ) are not variation-independent,
as o and () are.

Another variant form of (1) starts replacing €2 in (2) with the identity matrix, and set
Z = (U|Uy > 0). To incorporate a covariance parameter, define further Y’ = ¢ + Q'/2 Z for
some square root QY2 of a covariance matrix 2. The resulting density involves then a term
Q~1/2 which is problematic when we come to state a ‘definition’ of skew-normal distribution,
since the square root is not unique, except when {2 is diagonal. Consequently, one must
either suffer the fact that the ‘definition’ effectively defines several distributions, or to impose
somewhat arbitrarily a specific choice of square root, such as the Cholesky decomposition.
The latter option has also the disadvantage of becoming hardly acceptable when the skewness
parameter is 0, since it would be equivalent to parameterise the normal family by (&, QY 2)
instead of (&,€).

2 Yet another skew-normal distribution

2.1 Two equivalent representations

We introduce an extension of the basic SN distribution via two equivalent types of construc-
tions. The first of these is based on a representation of type (2), but with Uy of dimension m,
and the new constraint Uy 4+ > 0 for some v € R™. As already indicated, a notation of type
X >0, when X is a vector, means that each component of X exceeds 0.



Assume that (Up,U;) is jointly a multivariate normal variable of dimension m + d with

distribution AT
UO ® * r
<U1>N m+d(079)7 Q _<A Q ) (7)

where Q* is a positive definite correlation matrix, and consider the distribution of Z = (U;|Up+
v > 0).

The density function of a variable of type (X1|Xo > ¢), evaluated at point z, is most easily
computed via the general relationship
_ le (w) [P){X() > C|X1 = x}
IP){XO > C} ’

f (@) (8)
in an obvious notation. The role of this simple yet important relationship, clearly valid
also outside the normal context, has been stressed by Arellano-Valle et al. (2002); see their
Theorem 5.1.

The case under consideration lends itself to simple calculation, since (Uy + |U; = y) has
still a distribution of normal type, with well-know expression of the parameters. After simple
algebra, one obtains that the density function of ¥ = ¢ + wZ is

S(y+ATQ ' (y —€);T - ATQ A
D (v;T)

for y € R?. For reasons explained in §2.2, we shall call this expression the Unified Skew-
Normal density and, to ease pronunciation, we adopt the acronym SUN. Hence we write
Y ~ SUNgm (&, v, w,Q*), where w is the vector of the diagonal elements of w, i.e. @ = w14, and
it is intended that the terms I', A, Q required by (9) are recovered by appropriate partitioning
of * as indicated in (7).

There exists another form of genesis for distribution (9), using a convolution mechanism
instead of conditioning. Let Vi and V; be independent variables such that

fy) = daly — &) (9)

VO(_’Y) ~ LTNm(_77 OaF)a Vl ~ Nd(O’ \Ij) (10)

where I" and ¥ are correlation matrices, and the notation LT Ny, (c; i, ¥2) denotes a multivariate
normal variable with all components truncated below ¢, and consider the transformation

V'= ¢4 w {Bo Vo(—7) + B1 Vi} (11)

where By and By denote non-random matrices of order d x m and d x d matrix, respectively,
such that
Q= ByI'By +B,YB], A =ByTl. (12)

The matrix B; can be chosen arbitrarily, under the above constraints. To see that the set
of possible choices is not empty, consider B; = (I; — A?)Y/2, where A? is the diagonal matrix
whose diagonal elements are the same as the diagonal elements of Al "'AT. In particular,
with this choice of By, (11) reduces to (6) when m =1,y =0and I' = 1.

Taking into account that the moment generating function of Vy(—-) evaluated at s is

P (y + I's; 1)

P (y;T) 7 (s € K%,

exp(%sTFs)
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it follows that, under conditions (12), the moment generating function of Y is

Oy + ATwt;T)
P (1;T)

and the corresponding density function is (9); hence Y and Y’ are equal in distribution.

M(t) = exp(¢ Tt + 5t Q1) . (teRY (13)

Representation (11) is the analogue of (6), with the main variant that the term |Vp| of
the latter is replaced by the Vj(—+y). The reason for the change is that taking the absolute
value of the components of Vj ~ N,,,(v,T') does not produce any meaningful distribution. For
v = 0, an exception to this is the special case where I is proportional to I, a situation which
will be discussed separately in Section 2.2, in connection with the FSN family.

One limitation of the basic SN distribution (1) is that, if we partition Z into two com-
ponents, Z; and Zs, say, then it allows independence between Z; and Zy only if one of the
two has a symmetric normal distribution. This limitation is overcome by the SUN family,
which removes that condition for independence; the required conditions on the structure of
the matrix Q* in (7) are given in an appendix. On applying these conditions recursively to
the individual subvectors Z; and Zs, it is seen that at most m independent components are
possible.

2.2 Relationships with similar families

The aim of this section is to show that the SUN family encompasses all extensions to the basic
SN family mentioned in § 1.1, provided redundancies in the parametrisation of some proposals
are removed.

Basic SN family and a simple extension It is easy to see that the same of the basic
SN(&, Q, o) distribution is the same of the SUN, ;1 (£, 0, w, ) distribution, except for a different
form of representation; here I' = 1 and A is given by (3). Conversely, given that a random
variable has distribution SUNg(&,0,w,$2*), the corresponding SNg(&, 2, o) distribution is
uniquely identified, taking into account (5).

A simple extension of the above case is given by SUNy (&, v, w, 2*) which corresponds to
the distribution examined by Arnold & Beaver (2000) and by Capitanio et al. (2003), again
up to change of parametrisation.

Closed SN family Gonzalez-Farias et al. (2004) have examined a form of representation
via conditioning similar to our, and obtained a class of distributions called the Closed Skew-
Normal (CSN) family. The main difference from our conditioning mechanism is that the
analogue of the covariance matrix appearing in (7) is of form

©+DED" DY
»DT ¥

whose ingredients are not required to satisfy any condition, except that ¥ > 0 and ©® > 0.
The CSN family is then obtained as the distribution of Y = £+ Z, where Z = (U1 |Uy+~ > 0),
and parameterised as CSNy (&, 3, D,,0), except that we have introduced a slight change
of notation.



However, the lack of scale constraints on the above covariance matrix makes the parametric
class not identifiable. To see this, consider a diagonal matrix G which can be chosen arbitrarily
provided its diagonal terms are all positive, and notice that the condition Uy + v > 0 is equi-
valent to GUy 4+ Gy > 0. Therefore CSNy,(&,%, D,7,0) and CSNg,,(§, 8, GD, Gy, GOG)
refer to the same probability distribution.

Another critical aspect of the adopted parametrisation is D, which is described as a skew-
ness parameter. In fact, D is not invariant to changes of scale, for reasons analogous to those
discussed in §1.3.

Once the above aspects of the parametrisation are adjusted, the SUN and the CSN class
are equivalent, on setting @ =%, ' =0+ DED" and A=3XD".

CSN-2 family Another extension of the basic SN family is given by the density
P, (y+TD(¥ +D'TD) Ly —€); T+ DT IDT)L)
D (v;T)
which is an extension a distribution considered by Arellano-Valle & Genton (2005); when

€ =0,v=0and I" = I, this density reduces to their (1.9). That density is in turn an
extension of the family introduced by Sahu et al. (2003).

f(y) = ¢aly =&Y +D'TD)

(14)

Since it can be shown that, similarly to the earlier CSN family, also the family of densities
(14) is closed by marginalisation and conditioning, then we refer to is as the CSN-2 class. If
a random variable Y has density function (14), we write Y ~ CSNIIy,,,(&,7, ¥, T', D).

The above density function can be obtained by a conditioning mechanism, similar to those
discussed earlier, on setting

Uo ok sk r D
(U1>N m+d(079 )a Q _<DTF \I’—FDTFD)

and considering Y = ¢ + Z, where Z = (U1|Up + v > 0). An alternative construction of this
distribution will be discussed later. A peculiar aspect of this density is that the skewness
matrix D enters into the density ¢4 which represents the ‘symmetric part’ of the density.

Even for this class there is a problem of overparametrisation, if the covariances matrices
are not restricted. In fact CSNIlg,, (¢, Gy, ¥, GT', G™' D), which correspond to distributions
of (U1|GUy + Gy > 0), for any diagonal matrix G > 0, and CSNIl,,, (¢, Gy, ¥,GT,G™1 D),
correspond to the same density. The coincidence with the SUN family is achieved on setting
Q=¥+DID" and A=DT'T.

Hierarchical SN family The Hierarchical Skew-normal (HSN) distribution has been ob-
tained by Liseo & Loperfido (2003) within a Bayesian context, but the purely probabilistic
argument can linked to our construction as follows. If 6y ~ Ny4(0,%) and 6; ~ Ny4(0,T) are
independent variables, and C is a full-rank m X d matrix (1 < m < d), set

U —Cty crct -cr
= ~ INm+d 03 T
Ui o + 01 -TC' T+X
and define the HSN distribution is as the one of the variable u + (U1|Uy > ¢), parameterised
as HSNy(p,c, 2, Y, C).



There is however a problem of over-parametrisation, very similar to the one of the CSN
family, since even here it originates by the lack of suitable scale constraints. The condition
Uy > c is the same of GUy > Gd if G is as above. Hence the notations HSNy(u,c, 2, T, C)
and HSNy(p, Ge, X, T, GC) refer to the same distribution.

Fundamental SN family The Fundamental Skew-normal (FSN) family studied by Arellano-
Valle & Genton (2005) is obtained via a convolution mechanism which generalises (6), rather
than of conditioning type. An analogous representation of conditioning type is however not
difficult to construct. In it canonical form, CFSNy ,,(A) say, the distribution coincides with

SUNg,m (0,0, I4,Q*), where
-
QF = L A .
A I

This form does not include location and scale parameter, and a dependence structure
separate from the one induced by the skewness parameter A. To insert these ingredients
starting from a variable Z with distribution of above type, one sets ¥ = u + »1/2Z for some
positive definite matrix $1/2. This choice involves the use of a square root matrix ©/2, whose
critical aspects have been already discussed in §1.3.

The next table summarises the correspondence between the parametrisation of the SUN
and those of the other families, assuming all scale factors are 1’s and location parameters are
0.

SUN Q r A
COSN-1 p) ©+DxD" (D%)"
CSN-2 ¥+ D'TD r (rD)"
HSN T+3 cyct  —@cn’
CFSN I I A

2.3 Correspondence between the two representations of the SUN

In this section, we want to examine the connection between the two stochastic representations
of the SUN family set out in Section 2.1. To this end, consider two (m + d)-dimensional
Normal random variables, U and V, having standardised marginals and

wt-wf (D)}-(5 %) wr-w{ ()} (0 2)

where the Uy and the Vj blocks are m-dimensional. The connection between these sets of
variables can be examined on writing

Uo\ _ (AcVo+ AV (15)
Uy BoVo + B11
and considering the implications for the non-stochastic matrices (Ag, 41, By, B1).

There are indeed many choices of these matrices to achieve the above distributional equal-
ity. One particularly meaningful option is to set

Vo = Uy, Vi :Ul—E{U1|U0}:U1—AF71U0



and V; ~ N,,(0,¥), where ¥ = Q0 — AT"'AT. The dual transformation
Uy =V, U =AT""V+W;

achieves the required equality of the correlation matrices provided Q = AT"TAT 4+ ¥, In
other words, we are taking

Ay=1,, A =0, By=AI'"' B, =1,
in (15).

We now use these relationships to establish an explicit connection between the two sto-
chastic representations of the SUN indicated in Section2.1. Consider (10) and notice that the
distribution of Vj(—v) is the same of (Vo|Vp +v > 0), if Vo ~ N, (0,T'). Now re-write the
convolution form in (11) as

BoVo(—y) + BiVi = (BoVo + BiVi|Vo +v > 0)
= (BoUy + B, (U; — AU |Uy + v > 0) (16)
= (UilUp+~v>0)

under the above specifications of By, Bj.

This argument shows that the representation via convolution for V variables corresponds
to a representation via conditioning for the U variables. Also, by reading the sequence of
equalities backward, we transform the representation via conditioning into the one via convo-
lution.

An analogous analysis can be carried out for the related variants of SN distribution. The
following table refers to those variants introduced via a conditioning mechanism operating,
and it provides the ingredients of (15) that relate the U components used for conditioning to
underlying independent variables Vy, V;.

For each of these families, it is possible to convert the representation via conditioning into
one of convolution type, by introducing orthogonal components Vy = Uy, Vi = U —E{U,|Uy},
similarly to the SUN family and then replicating the argument in (16).

The CSN-2 case leads to a particularly clear-cut form, as follows. Let Uy = Vy, U; =
Uy — BE{U;|Up} = Uy — DUy, hence Uy = D'Vy + V4. On making use of the moment
generating function, it can be easily be shown that

Z=UilUg+v>0)=(D Vo +Vi[Vo+7>0) =D (Vy|Vo +7) + Vi = D V(=) + W1,

and obtain that Z = DTVy(—7) + Vi ~ CSNIly,, (0,7, ¥,T). This produces a representation
of the CSN-2 family of convolution type, with a natural choice of the matrices By and Bj in
(12).

The table below summarises the expressions of the matrices involved by the above corres-
pondence for the various families.

AO A1 BO Bl VaI‘{VO} V&I‘{Vi}
CSN-1 I, 0 ¥D'(O©+D¥XD")' I, ©+D¥D' (x~'+ DO~ 'D")!
CSN-2 I, O DT 1, r T
HSN I, 0 -—-xc'(crchH—!' I cyco’ Y+T-roT(crchHter




2.4 Other properties of the SUN

We do not discuss in detail formal properties of the SUN family, as these coincide with those
of the related families discussed earlier, once the parameterisations are properly selected.

Moments and cumulants can be obtained directly from (13), or from suitable adaption
of expressions given by Gupta et al. (2004). The derivation of moments is simplified when
[ = diag(7?,...,72), since the cumulants generating function reduces to

m
K(t)=log M(t) ="t + 3t Qt+ > log (7, 'y; + 7, 10 wt) — log @(v; T).
7=1

where 6.1,...,0d., are the columns of A. From this expression, we obtain
m
E{Y} =K'(0) =&+ > Gilrj ) 75 wd,
j=1

and
m

var{Y} = K"(0) = Q + Z CQ(T]-_I’YJ‘) T]-_Zwé.jé_;w
7j=1
where (,(z) is the r-th derivative of (y(x) = log{2 ®(x)}.
The distribution of a quadratic form of type Q(Z) = Z " AZ, where Z ~ SUNgm (0,7, 14,Q%)

and A is a d X d symmetric matrix of rank p. It can be shown that the moment generating
function of Q(Z) is

;T + 2tAT (I — 2tAQ)~LAA)
(7 1)

Mo(t) = |1 — 2t AQ|~Y/? O

An important special case is when 4 = Q7. To obtain Q(Z) ~ x2 similarly to the case
when Z has normal or skew-normal distribution, we need the conditions v = 0 and that I and
ATQ™'A are diagonal matrices. However, since |I; — 26AQ|~Y/2 = (1 —2t)~'/2 & AQA = A,
it follows that Q(Z) ~ X?) & AQA = A and AA = 0.

3 Extension to the skew-elliptical family

The purpose of the present section is extend the results of the previous sections from the normal
framework to the one of elliptical distributions, at least to some extent. In the development, we
shall make use of some standard results on elliptical distributions, which we do not reproduce
here in detail, as they can be found in standard references; see for instance Fang et al. (1990).

To start with, replace the normality assumption in (7) by the assumption of elliptical
density; hence write

U . . r AT
U:(U?>NElm+d(079;hm+d)a Q :(A Q)?
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where again Q* is a correlation matrix. Here hy,, 14 is the so-called density generator, such
that the density of U is

Frura(; ) = |72 by (w0 (@) ), (7)

for u € R™*¢; we shall denote its distribution function by Fy,q(u;Q*). The two components
of U have distribution of type

UO NElm(Oarahm)u Ul NElm(()?Q;hd)a

whose density generators h,, and hy are computed from h,, 4 using formula (2.23) of Fang
et al. (1990); replacing these generators in (17) in place of hy,,14 provides the expressions of
their densities. The conditional distribution of Uy given Uy = y is

(U0|U1 = y) = (U0|Q(U1) = Q(y)) ~ ELm(ATﬁilyu r— ATQ?lAa hm;q(y))u

where ¢(y) =y Q 'y and hpe(u) = hyra(u + a)/ha(a) denotes the density generator.
Proceeding in the same fashion of the normal case, we consider the variable Y = ¢ + wZ,
where Z = (U1|Up + v > 0), and use the notation Y ~ SUEly,, (§,7, @, Q2% hyyqq). Its density
function can be computed inserting the above ingredients in (8), leading to
Fm;q[wfl(y—ﬁ)] (")/ + ATﬁflwfl(y — f), r— ATﬁflA)
Fo(;T) ’

where Fy,,.q(z; ©) denotes the distribution function of the El,,(0, ©, hy,,) distribution, namely

fy) = faly — &9Q)

(18)

Teo-1
Frna(z;0) = |®|—1/2/ hmia(v' © v+ a) "

v<z ha (a)

Various variant forms can now be obtained from (18) similarly to the normal context above.
We focus attention on the restriction v = 0, which has played an important role also for the
normality case. Under this assumption, the simplification F,(0;T") = ®,,(0;T) holds. This
fact can easily be established taking into account the representation of an elliptical variate
X as X = RW where R denotes a positive scalar variable whose distribution depends of
the density generator of X, and W is uniformly distributed on the unit sphere in R¥, if k is
the dimension of X. It is immediately seen that the probability assigned to each cone with
vertex in the origin is the same for all possible distributions of R, and this property holds in
particular for the orthant; since this probability does not depend on the generator, we can
compute it assuming normality.

An important class of elliptical distributions is generated by the scale-mixtures of the
normal variables. For any elliptical distribution in this class, there is a non-negative random
variable S such that U|S = s ~ Ny,14(0,s71Q%), with S having distribution function H. In
this case

(Z|S =s) = (U1|Up +v > 0,5 = s) ~ SUNg, (0,7, 14,5 *Q*),

and, using (9), the unconditional density of Z is

P (vVsy+ /s ATQ 12T — ATQTIA)
VIR Y

g(z) = / 245 0) dH(s),

11



which for v = 0 reduces to

1

0 = G foonrna fy D) (VR T — ATRTA) dH (5

from which one can obtain the density of ¥ = & + wZ, at least for some convenient forms of
H(s).

An important special case of the above density g(z) occurs when S ~ Gamma(v/2,v/2),
since it is well-known that this mixing distribution applied to the normal variables produces
the multivariate ¢ distribution. After some algebraic manipulations, similar to those employed
by Arellano-Valle & Bolfarine (1995), in this case ¢g(z) becomes

Cm+d,v

®,,(0;T) |QY/2 |0 — ATQ-L AY/2
X / {v+q(z)+2"(0 - ATQLA) g}~ (mHd)/2 4y
z<ATQ-1z

gr(z) =

1 - v +q(2) To-1
= (0 ton [ 2 =222 — ATQ'A), v +d) d
&0 1Y) /xgmlz (m ord | hvd)dr
1 - ~_1 v+q(2) ~_
- QN T, ([ATQ 12 221 - ATQ A
5 e ) T (AT 071 I, vt

where ¢(z) is defined above,
L[ (k + v)] vV/?
Chov = ,
k,’U F(%'U) 7-‘—]6/2
and tg(z; ©,v), Tk (xz;0,v) denote the density function and the distribution function, respect-
ively, of a k-dimensional ¢-distribution with dispersion matrix © and v degrees of freedom.

We have then obtained a d-dimensional density function of skew-t¢ type. When m = 1, this
gr(z) reduces to a form of skew-t already proposed in the literature. This connection is more
directly visible if one compares the density gr(z) with formula (26) of Azzalini & Capitanio
(2003) and formula (2.3) of Gupta (2003); these densities are in turn equivalent to the skew-¢
density of Branco & Dey (2001), although expressed in a different form.

Under the assumption v = 0, it is possible to establish a connection between the repres-
entation of SUEly ,, distribution via conditioning examined above and a representation via

convolution. Assume
Vi r o
(V?) ~ Elptd(0, 5 hpta), X = (0 \I’> )

and, similarly the normal case, consider Vy = Uy and Vi = Uy — E{U;|Up}, i.e.

Uo\ _ Vo .. . (T AT

where Q = AT"'AT 4+ W. Note that, except in the case when h,, 4 is the normal generator,
the variables V{y and V; are uncorrelated but not independent.

In fact, define Vy(c) = (Vo|Vo +¢ > 0) ~ LTEl,(c;0,1'; hy,), where Vo ~ El,, (0,1 by )
and consider the well-known stochastic representation, stated for instance in Theorem 2.6 of

12



Fang et al. (1990),
Vo\ ¢ ( TY2RTyW,
Vi) \V'Y2RTyW, )°
where R, Ty, Wy and W7 are independent variables, such that the so-called radial variable R

is scalar positive, T¢ ~ Beta(m/2,m/2) and Wy and W; have uniform distribution on the
unit sphere of dimension m and d, respectively; 77 = y/1 — T¢. Thus, it follows that

(B ?TyWy + By U 2RTy W, T2 RTy W, > 0)
(BoI'Y2RT\Wy + BYY2RTy WDV 2 W, > 0)
BoT'Y2RTy(Wo|TY2RTy W,y > 0) 4+ B UY/2RTI W,
ByVo(0) + B V1.

(BoVo + B1Vi|Vy > 0)

= = i

Thus, Z' = BoVy(0) + B1Vi ~ SUEIl4m(0,0,14,Q7), provided conditions (12) are satisfies.
For By = I, we have Z' and Z = (U1|Up > 0) have the same SUEL if Q = AT 'AT 4+ U,
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Appendix A: Conditions for independence

We examine conditions under which a partition of a random variable SUN4(0, vy, 14, 2*) into
two components attains independence of these two variables. The question is elementary if
we allow either of these variables to be regular normal, since the conditions are the same for
independence between multivariate normal variables. We then discuss the case where both
subcomponents are allowed to be non-symmetric.

For (Uy,U) distributed as in (7), set Z = (U1|Uy + v > 0), and consider the partition of
Z in two components of size d; and ds, respectively, with dy 4+ ds = d. Correspondingly, write

A Un A1> ~ (Qn Qm)
Z = , = R A = R Q = — — ;
( Zo > ! ( U2 ) ( Ag Qo1 Q9
hence Z; = (Uy;|Up + v > 0), or equivalently Z; = A;Z = (A;U1|Uy +v > 0), for i = 1,2,
where A1 = (Idl,O), A2 = (O,Idz). Clearly Zz ~ SUNdi’m(O,’)’, ldi,Qf),

(T A roA] .
Q; = (AZA A@AZ) - (Az’ o >, (i=1,2).

Consider a similar partition of Uy in blocks of size m; and my, respectively, (mq+mo = m)
and write

ng(Um) 72(’)’1) I‘:<F11 I‘12) <A1>:<A11 A12)
U2 )’ v2 )’ Lo1 Tao )’ A Do A )’
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where Up; and +; have dimension m; x 1, I';; has dimension m; x m;, and A;; has dimension
d; % mj (’L,j = 1,2).

Since
Z1 = (Un1|Uo1 + 71 > 0,Up2 + y2 > 0), Zy = (U12|Up1 + 71 > 0,Up2 + 72 > 0),

then there are two situations under which Z; and Zs are independent:
(i) if (U11,Up1) and (Uyg, Upg) are independent, i.e.

d d
= (U11|Uo1 + 71 > 0), = (U12|Up2 + 72 > 0),

which occurs if B
['2=0, Q2=0, Ap=0, Ay =0

(11) if (UH, Uog) and (Ulg, Ugl) are independent, i.e.

g (U11|Uo2 + 72 > 0), i (Ui2|Uo1 + 71 > 0),

which occurs if B
I'i2=0, Q2=0, Ay =0, Ayp=0.

The above conditions are sufficient for independence; we now turn to necessary condi-
tions. It is clear that the conditions Q9 = cov{U;1,Uia} = 0, I'1s = cov{Up1, Up2} = 0 are
necessary, since we need Uy to be independent of Ujo and Uy independent of Upyo, respect-
ively, in order that ¢q(z; Q) factorises as ¢q, (21; Q1) Ga, (22; Q22) and @,,(y; ) factorises as
Dy (715 T11) Py (725 T22)-

In order to examine the conditions on the matrix A, let
_ Ou 012
-1
0 = <Q21 02 )

and, under the conditions Q9 = 0, I'12 = 0, we have that

+ A Q Zl + A Q 2‘2
+ATQ! n n 2% )
! (72 + ALY 2+ Ay, 2
and
- ATO A — (Fn - (AHQ "Ap + A21§2 'Ag1) _(ALQ "App + Aﬂ@ A22) )
(A12QII All + A22922 A21) F22 - (AIZQII A12 + A22922 A22)

Therefore, ®,,(y +ATQ7 12T — ATQ7'A) can be factorised in either of the following two
ways:

(i) when AJ,Q5) =0 and ALQ =0, as

Dy (11 + Aﬂﬁﬁlzﬁ ' — A1T1(_21711A11)(I’mz (v2 + A2T2(_2521323 Loy — A2T292721A22);
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(ii) or when A[, Q7' =0 and ALQS) =0, as

Py (11 + A;Q;zlzl; [y — A2T1(_22721A21)(I’mz (y2 + A1T2(_21711323 Loy — A1T291711A12)-
Consequently, the conditions for independence are either of the following set:

(i) Q19 =0,T12 =0, AJ; Q0 =0 and ALQ! = 0;
(ii) Q12 =0, 12 =0, A[,Q7' = 0 and ALQ5) = 0.

Notice that, for the above conditions refer to a given partition of Z and a given partition
of Uy. However, the actual question of independence between Z; and Zs is not linked to a
specific partition of Uy. Since, if m > 2, the partition of Uy in two subcomponents is not
unique, the above conditions must be checked for all possible partitions of Uy. Luckily m can
be expected to be very small in most cases, as otherwise the mere computation of the density
(9) becomes unfeasible; hence the number of cases to be scanned is limited.
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