
e

p

re
1]
%
tal
tep

s
ls
d.
or
of

ate
lay,
ue
ay
ore
in

que
e
ot
ns

g

o
re

as

he

Buffer Insertion With Accurate Gate
and Interconnect Delay Computation

Charles J. Alpert
IBM Austin Research Laboratory

Austin, TX 78717
alpert@austin.ibm.com

Anirudh Devgan
IBM Austin Research Laboratory

Austin, TX 78717
devgan@austin.ibm.com

Stephen T. Quay
IBM Server Group
Austin, TX 78717

quayst@austin.ibm.com
Abstract
Buffer insertion has become a critical step in deep submi-
cron design, and several buffer insertion/sizing algorithms
have been proposed in the literature. However, most of these
methods use simplified interconnect and gate delay models.
These models may lead to inferior solutions since the opti-
mized objective is only an approximation for the actual
delay. We propose to integrate accurate wire and gate delay
models into Van Ginneken’s buffer insertion algorithm [18]
via the propagation of moments and driving point admit-
tances up the routing tree. We have verified the effectiveness
of our approach on an industry design.

1. Introduction
Timing optimization techniques, such as wire sizing, buffer
insertion and gate sizing have gained widespread acceptance
in deep submicron design. In particular, buffer insertion can
reduce interconnect delay and fix slew, capacitance and
noise violations while reducing power. Automated buffer
insertion is becoming increasingly pervasive as the ratio of
device to interconnect delay continues to decrease.

Buffer insertion has been an active area of study in recent
years. Closed formed solutions have been proposed in
[1][3][6] for inserting buffers on a 2-pin net. The authors of
[10] insert buffers on a tree by iteratively finding the best
buffer location. The authors of [4] present an algorithm for
simultaneous wire sizing and buffer insertion on a 2-pin net.

Van Ginneken [18] proposed a dynamic programming
algorithm which finds the optimal solution under the Elmore
wire delay model and a linear gate delay model. The
algorithm only permits a single, non-inverting buffer type to
be considered. Several variants to this algorithm have been
proposed [1][2][9][13]. Lillis et al. [9] showed how to
simultaneously perform wire sizing and buffer insertion with
a buffer library that contains both inverting and non-
inverting buffers. They also can control the number of
buffers inserted. The authors of [2] show how to incorporate
noise avoidance while suffering a small delay penalty.

All variants to Van Ginneken’s algorithm and most other
works in buffer insertion use both simplified gate and wire
delay models. The Elmore delay model often overestimates

interconnect delay, and using lumped instead ofeffective
capacitance [15] often overestimates gate delay sinc
resistive shielding is ignored.

Consider the RC network shown in Figure 1. With a ram
input of 300 ps at A, RICE [16] predicts an A-B delay of 10
ps and an A-C delay of 697 ps. The corresponding Elmo
delays are 110 ps and 1110 ps, respectively. Liu et al. [1
also observe that Elmore delay has over 100
overestimation error when compared to SPICE. The to
lumped capacitance seen at A is 1100 ff, whereas for a s
input, RICE gives an effective capacitance of 158 ff.

Figure 1 A simple RC network.

Simplified delay models can hurt buffer insertion algorithm
in two ways. First, even optimal solutions for simple mode
may be inferior since actual delay is not being optimize
Second, simplified delay modeling can cause a po
evaluation of the trade-off between the total number
buffers and slack reduction.

We propose a new extension of [18] that uses both accur
interconnect and gate delay models. For interconnect de
we compute moments via a bottom-up incremental techniq
[11], perform moment matching, and then compute del
using Newton-Raphson iterations. For gate delays, we st
the downstream driving point admittances at each node
the tree, then propagate them up the tree using the techni
of [12]. Experiments for an industry design show that th
runtime penalties for using the accurate models are n
prohibitive. Further, our approach produces better solutio
than Van Ginneken’s algorithm.

2. Preliminaries
We assume that the routing tree topology is given. A routin
tree contains a set of wires and a set
of nodes where is the
uniquesourcenode, is the set ofsink nodes, and is
the set ofinternal nodes. A wire is an ordered pair of
nodes for which the signal propagates from t

. The lumped capacitance and resistance for wire a
denoted by and , respectively. Each node h
a uniqueparent wire . The tree is assumed to be
binary, i.e., each node can have at most two children. Let t
left and right children of be denoted by and

, respectively. If has only one child, then it is
. denotes the buffer library.

100 ff

0.1 kΩ

1000 ff

1.0 kΩA B C

T V E,()= n 1– E
n V so{ } SI IN∪ ∪{ }= so

SI IN
e E∈

e u v,()= u
v e

Ce Re v so≠
u v,() E∈

v T.left v()
T.right v() v
T.left v() B b1 b2 … bm, , ,{ }=

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00
_

ate
tes.

w
r
of

ed.

d

t

ed,
he
te.
m
ts

int
est

n.

st,
d
e
ar

e-
then
-

s
e

r,

.

he

r
ive
A solution to the buffer insertion problem is a mapping
which either assigns a buffer or no

buffer, denoted by , to each internal node of . Let
denote the number of buffers

inserted by . Assigning buffers to induces
nets and subtrees, each with no internally placed
buffers. Let , the
subtree rooted at , be the maximal subtree of such that

is the source and contains no internal buffers.
Observe that if , then .

Assume for now that models for gate and wire delays are
given. Thepath from node to is an ordered
subset of wires of . Awire
path from to is a path such that there
are no buffers assigned to nodes , but and
are both gates. Let and denote
the gate delay through (in which) and wire
delay through , respectively. The total delay

 from to a sink is given by

. (1)

For a given net, therequired arrival time for each
sink is the actual arrival time at , minus the actual
arrival time at , plus the slack at . The condition

(2)
must hold for the net to meet its timing requirements. Our
problem formulation seeks to satisfy timing constraints
while minimizing the total number of inserted buffers.

Buffer Insertion Problem : Given a buffer library and a
tree , find a solution which
minimizes , such that Equation (2) holds.

Note that gate and wire delay are currently undefined,
making the problem formulation general. An alternative
formulation is to minimize the delay on the most critical
path, i.e., . One
problem here is that unnecessary additional buffers may be
inserted, which wastes area and power.

3. Review of Van Ginneken’s Algorithm (VG)
We review Van Ginneken’s algorithm since it forms the
basis for our new approach. The algorithm [18] cannot
control the number of buffers inserted; however, we adopt
the extension in [9] that addresses our problem formulation.

VG as well as [1][2][3][4][9][10][13] use the Elmore delay
model [7]. Let denote the input capacitance of each
sink . The total lumped capacitance at is given
by the sum all sink and wire capacitances downstream from

. The Elmore delay for a wire path is
, summed over each wire

.

Many different models are used for gate delays, but a linear
model is typical. Let be the intrinsic resistance and
the intrinsic delay of a gate . Van Ginneken adopted the
linear model, .

VG proceeds in bottom-up fashion starting at the sinks and

ending at the source. The main idea is to storecandidate
solutions at each node in the tree and to propag
candidates up the tree while also generating new candida
A candidate is a 3-tuple where is
the lumped capacitance seen at , is theslackat , and

is the current solution for . When a node with two
children is encountered, denotes the ne
solution that results from merging solutions and fo
the left and right branches of . There are three types
nodes that are encountered.

• Sink: for this base case, a single candidate is generat

• Node with one child: candidates for the child are copie
up to the parent.

• Node with two children: candidates for the left and righ
children are merged using a linear pruning technique.

After the candidates for a particular node are generat
buffer insertion at is considered for each candidate. T
one yielding the lowest slack is kept as a new candida
Then, the delay of the parent wire for is subtracted fro
the slack of each candidate. The algorithm repea
recursively until the source is encountered, at which po
the driver delay is added to each candidate, and the b
solution is chosen. See [2] or [9] for a complete descriptio

4. -Models and Effective Capacitance
The linear gate delay model is inaccurate in two ways. Fir
if there is significant resistive shielding, the lumpe
capacitance will be much higher than the effectiv
capacitance. Second, gate delay is not a strictly line
function of capacitance. It is more accurate to pr
characterize each gate over a range of capacitances,
perform curve-fitting. The resulting equations are called
factor equations [15]. Errors from curve fitting will be les
than for a linear delay model. To compute gate delay, w
take the following three-step approach (see, e.g., [15]).

1. Compute aπ-model of the driving point admittance for
the RC interconnect.

2. Given theπ-model and the characteristics of the drive
compute an effective capacitance .

3. Use instead of when computing
Also use -factor equations instead of a linear model.

Figure 2 (a) An RC network is reduced to (b) an equivalent -
model, which is used to (c) compute effective capacitance.

Figure 2(a) shows an RC network driven by an inverter. T
network can be reduced to aπ-model (shown in Figure 2(b))
equivalent to the driving point admittance. Aπ-modelis a 3-
tuple where and are the near and fa
capacitances and is the resistance. The effect

M : IN B b{ }∪→
b T

M v IN: M v() B∈∈{ }=
M k T k 1+

k 1+
T v() v{ } SIT v() INT v()∪∪ ET v(),()=

v T
v T v()

v SI∈ T v() v{ } ∅,()=

p u v,() u v
u u1,() u1 u2,() … un v,(), , , E

wp u v,() u v p u v,()
u1 u2 … un, , , u v

Delay v() Delay wp u v,()()
v M v() B∈

wp u v,()
Delay p so si,()() so si SI∈

Delay u() Delay wp u v,()()+
wp u v,() p so si,()∈

∑
RAT si()

si si
so si

si SI∈ Delay p so si,()() RAT si()≤,∀

B
T so{ } SI IN∪ ∪ E,()= M

M

maxsi SI∈ RAT si() Delay p so si,()()–()

Csi
si CT v() v

v Delay wp u v,()()
Re Ce 2⁄() CT x()+()
e w x,() wp u v,()∈=

Rv Kv
v

Delay v() Kv RvCT v()+=

α CT v() q M, ,() CT v()
v q v

M T v()
M M= l Mr∪

Ml Mr
v

v
v

v

π

k

Ceff

Ceff CT v() Delay v()
k

(a)

(b) (c)
Cn Cf

Rπ

Ceff

π

Cn Rπ Cf, ,() Cn Cf
Rπ

e

p
a

the
d
ts
.
a

e at

D
or
C

n
re
ts
capacitance of theπ-model can then be computed, e.g.,
using the technique of [15].

Instead of using the lumped capacitance for each candidate,
we store the -model for the downstream RC network. If
the network is simply a sink , then the -model is

. To propagate -models up the tree, we need to
handle two cases shown in Figure 3.

Case 1 shows a wire (modeled as a uniform RC line) with
downstream -model . We apply the
technique of [12] to compute the new -model

resulting from merging with . The
corresponding procedure is shown in Figure 4.

Figure 3 Two cases for updating theπ-model. Case 1 is when
theπ-model is preceded by a uniform wire e, and Case 2 is when

two -models must be merged to form a single -model.

Figure 4 New_ -model procedure for Case 1.

Case 2 in Figure 3 shows the reduction of left and right -
models and into a
single -model . Figure 5 shows the
corresponding New_ -model procedure.

-models are propagated up any tree by iteratively applying
the appropriate New_ -model procedure. For a node
with -model , we will always have

, i.e., the total lumped capacitance is
preserved in the -model, but now can be used to
illustrate the magnitude of resistive shielding.

5. Interconnect Delay
We now show how to accurately compute the delay for a
wire path as opposed to using the Elmore delay.

Let be the number of moments to be used in th
computation.

Figure 5 New_ -model procedure for Case 2.

5.1 Moment Computation
Since Van Ginneken’s algorithm is bottom-up, bottom-u
moment computations are required. Figure 6(a) shows
wire connected to a subtree rooted at B. Assume that
moments have already been compute
for the path from B to C. We wish to compute the momen

so that the A-C delay can be derived
This computation is done via moment multiplication in
manner similar to [11] and [5].

Figure 6 Illustration of the moments computation.

The techniques in Section 4 are used to reduce the subtre
B to a -model (Figure 6(b)). The wire is
also represented as a -model, . Node
just denotes the point on the far side of the resist
connected to B and not an actual physical location. The R
network can be further simplified to the network shown i
Figure 6(c). The capacitances and at B a
merged to form a capacitor with value . The momen
from A to B can be recursively computed by the equation

(3)

where the moments from A to D are given by

(4)

and . Now the moments from A to C can
be computed via moment multiplication as follows.

New_ -model Procedure

Input: ≡ Wire with capacitance , resistance
≡ Downstream -model

Output: ≡ Resulting -model

1.

2.

 +

3. Return

π
si π

Csi 0 0, ,() π

e
π πd Cn

d Rπ
d C f

d, ,()=
π

π Cn Rπ Cf, ,()= πd e

Ce, Re

Cn Cf

Rπwire e

Cd
n Cd

f

Rd
π

Cr
n Cr

f

Rr
π

Rl
π

Cl
n

Cl
f

Case 1:

Case 2:

Cn Cf

Rπ

π π

π e πd,()

e Ce Re
πd

Cn
d

Rπ
d

Cf
d, ,()= π

π Cn Rπ Cf, ,()= π

y1
d

Cn
d

Cf
d

+= y2
d

R– π
d

Cf
d()

2
= y3

d
Rπ

d()
2

Cf
d()

3
=, ,

y1 y1
d

Ce+= y2 y2
d

Re y1
d()

2
Cey

1
d

Ce
2

3⁄()+ +–=,

y3 y3
d

Re 2y1
d
y2

d
Cey

2
d

+[]–=

Re
2

y1
d()

3 4
3
---Ce y1

d()
2

+
2
3
---Ce

2
y1

d 2
15
------Ce

3
+ +

π y1 y2
2

y3⁄()– y3
2

y2
3⁄– y2

2
y3⁄, ,()=

π

π
πl Cn

l Rπ
l C f

l, ,()= πr Cn
r Rπ

r C f
r, ,()=

π π Cn Rπ Cf, ,()=
π

π
π v

π π Cn Rπ Cf, ,()=
CT v() Cn Cf+=

π Rπ

wp u v,()

New_ -model Procedure

Input: ≡ -model for left branch
≡ -model for right branch

Output: ≡ Resulting -model

1. ,

2.

3. Return

k

π πl πr,()

πl
Cn

l
Rπ

l
C f

l, ,()= π
πr

Cn
r

Rπ
r

C f
r, ,()= π

π Cn Rπ Cf, ,()= π

y1
1

Cn
l

C f
l

+= y1
r

Cn
r

C f
r

+= y2
l

R– π
l

C f
l()

2
=, ,

y2
r

R– π
r

C f
r()

2
= y3

l
Rπ

l()
2

Cf
l()

3
= y3

r
Rπ

r()
2

Cf
r()

3
=, ,

y1 y1
l

y1
r

+= y2 y2
l

y2
r

+= y3 y3
l

y3
r

+=, ,

π y1 y2
2

y3⁄()– y3
2

y2
3⁄– y2

2
y3⁄, ,()=

π

e
mBC

1() mBC
2() … m, BC

k(), ,

mAC
1() mAC

2() … m, AC
k(), ,

Ce, Re

wire e
(a)

(b)

A B
C

A B D

Cn Cf

Rπ
Re

Ce/2Ce/2
^

(c)

Cn = Ce/2 + Cn

A B RπRe

^Ce/2
Cf

D

π Cn
ˆ Rπ Cf, ,() e

π Ce 2⁄ Re Ce 2⁄, ,()

Cn
ˆ Ce 2⁄

Cn

mAB
i() Re mAB

i 1–()Cn mAD
i 1–()Cf+()–=

mAD
i() mAB

i() mAD
i 1–()RπCf–=

mAB
0() mAD

0() 1= =

fy
e.

e)

a

and
,

G
e
.

nd
sed
rce

-
a
r

e
6.
ces.

i-
ery
o
of

ed

ch
e
s
f

he
n-

e
a
m
e

(5)

The first three moments can be used to predict delay in an
RC interconnect tree with reasonable accuracy [8], so our
implementation uses . We use the method of [17] to
map the first three moments to a two-pole approximation.
The path delay is then computed via a Newton-Raphson
iteration with or without a saturated ramp transition time.

5.2 Slack Computation
One property of Elmore delay that makes it attractive for
timing optimization is that the delays are additive, i.e., the
Elmore delay along a path from A to C through B equals the
delay from A to C plus the delay from B to C. This property
does not hold for higher-order delay models.

For example, consider the two-sink RC network in Figure 7.
The required arrival times at C and D are 500 and 740 ps,
respectively, and their Elmore delays from B are 250 and
500 ps, respectively. Under Elmore delay, the slack at node
B is , which makes D
the more critical sink. Observe that the critical path can be
deduced without knowing the topology upstream from B,
i.e., D is the critical sink regardless of the resistance of R.

Figure 7 An RC network with source A and sinks C and D.

If moment matching is used to compute higher-order delays,
then one cannot deduce whether B or D is the critical sink
without first knowing R. Assuming a step response at A and
R=0.25, then RICE reports an A-C delay of 317 ps and an
A-D delay of 547 ps. The slack at node A is thus 183, and C
is the more critical sink. However, if R=1, then the higher-
order delays from A to C and A to D are 801 and 1090 ps,
respectively. The slack at node A becomes -350, and D is
now the more critical sink. Thus, different scenarios for the
upstream resistance can lead to different critical sinks, a
situation which does not occur for the Elmore model!1

At a particular node B, one cannot only maintain the
moments for the most critical path downstream from B
since the most critical path is not known. Instead, one must
store the moments forall the paths to sinks that are
downstream from B. In a tree with n nodes and p sinks, the
total number of moments that would have to be stored at

internal nodes in the tree is . Our experiments veri
that the extra runtime for the computation is not prohibitiv

6. The VGIG Algorithm
The VGIG (VG + accurate Interconnect + accurate Gat
algorithm is our proposed extension of VG. Acandidate
was previously defined as a 3-tuple . Now,
candidate is a 4-tuple . Here,
replaces as the downstream capacitance model,

stores the first three moments for each gate in
where is the set of gates downstream from .

Figure 8 The VGIG (T, B) algorithm.

Figure 8 and Figure 9 show the description of the VGI
algorithm and its corresponding Find_Cands procedure. W
now highlight the main differences between VGIG and VG

• Effective capacitance, as opposed to a linear model, a
moment matching, as opposed to Elmore delay, are u
to compute the delays of the candidates for the sou
(Step 2 of Figure 8).

• Instead of using lumped capacitance, VGIG uses
models. In Step 1 of Figure 9, the -model is set to be
lumped capacitor. The New_ -model procedure fo
merging two -models is invoked in Step 4, and th
procedure for adding a uniform wire is used in Step
These steps replace simply adding lumped capacitan

• To compute interconnect delays in VGIG, each cand
date for a node stores the first three moments to ev
gate downstream from . Moments are initialized t
zero when no interconnect is present (Steps 1 and 5
Figure 9). In Step 6, Equations (3), (4), and (5) are us
to compute the new set of moments .

• In VG, slack was computed by summing delays of ea
individual piece of interconnect. With more accurat
models, delay is not additive, so the slack to all sink
downstream from are recomputed. An input slew o
400 ps is assumed for the buffer. The output slew of t
buffer is used as the input slew for computing interco
nect delay to the sinks. Finally, the minimum slack
over all sinks downstream is computed.

The choice of a 400 ps input slew when computing th
buffer delay is arbitrary. When inserting a buffer in
bottom-up algorithm, the topology of the tree upstrea
from the buffer is still unknown. Since one cannot know th

1 Interestingly, when R = 0.25, the higher-order delay from A to B
is 24 ps, which implies that the higher-order delay from B to C is
293 ps. However, the Elmore delay from B to C is 250 ps, which
implies that the Elmore delay isnotactually an upper bound for a
given wire. Rather, it is an upper bound for an entire wire path.

mAC
i() mAB

j() mBC
i j–()⋅()

j 0=

i

∑=

k 3=

min 500 250– 740 500–,() 240=

R = ? kΩ

500 ff

0.5 kΩA B C

500 ff

1.0 kΩ D

RAT = 500 ps

RAT = 740 ps

Input: ≡ Routing tree
≡ Buffer library

Output: ≡ Best candidate solution for source

1. .
2. for each do
 Compute at with downstream
 Compute using capacitance
 Compute slack to each using
 moments and
 Define .
 3. return such that has maximum .

O np()

CT v() q M, ,()
πT v() q m M, , ,() πT v()

CT v()
m SIT v()

SIT v() v

T so{ } SI IN∪ ∪ E,()=
B
α so

S Find_Candsso()=
α πT so() q m M, , ,() S∈=

Ceff so πT so()
Delay so() Ceff

qw w SIT so()∈
m Delay so()

q̃ min qw w SIT v()∈||{ }=
M CT so() q̃ m M, , ,() S∈ q̃

π
π

π
π

v
v

m̃

v

q̃

e
this
e

-
nd
d.

M

uire

n-

n-

re
n-

y

ct

e
e

er
al
to
l
d.
tic
ur
.

t as
e

0/
value of the buffer’s input slew, we use a fixed value.

Figure 9 Find_Cands(v) procedure.

One step that is unchanged in VGIG is Step 7, the candidate
pruning scheme. Pruning is still based on total lumped
capacitance and slack, which can cause non-inferior
solutions to be pruned. Consider two candidates and
with the same slack and -models and

. Here, will get pruned in favor of
since the lumped capacitance for (100) is less than
(101). However, the effective capacitance of will

likely be much less than because of resistive shielding.
 is the inferior solution, yet gets pruned.

VGIG could probably be improved by utilizing a more
sophisticated pruning scheme. One might try to estimate
effective capacitance instead of lumped capacitance.

However, effective capacitance is typically computed in th
presence of a driver, and the repeated expense of
computation may prove prohibitive. Another alternativ
might be to prune based on the three values in each
model. This may lead to too few solutions being pruned, a
it is not clear that an efficient pruning scheme can be foun

7. Experimental Results
For our experiments, we chose a subset of nets from an IB
ASIC part with over one million transistors. Nets with high
total capacitance were selected since these generally req
buffer insertion. Nets were divided into three groups.

• Small: 20 nets with between 2 and 6 sinks were ra
domly chosen from the set of high capacitance nets.

• Medium: 25 nets with between 7 and 15 sinks were ra
domly chosen from the set of high capacitance nets.

• Large: 10 nets with between 18 and 186 sinks we
noted by designers as particularly troublesome for ma
ual buffer insertion.

We ran four algorithms on each group with a buffer librar
consisting of 3 inverting and 13 non-inverting buffers.

• VG is Van Ginneken’s original algorithm,

• VGI is VG with accurate interconnect delays,

• VGG is VG with accurate gate delays, and

• VGIG is VG with both accurate gate and interconne
delays.

Table 1: Average slack reduction (ps) for the 20 small nets.
Each algorithm can trade-off solution quality with th
number of buffers. As additional buffers are inserted, th
marginal improvement is reduced until the critical numb
of buffers is reached, at which point, adding addition
buffers yields inferior solutions. For each net and for up
the critical number of buffers, the improvement in critica
path delay versus the zero-buffer solution was recorde
The delay improvement was measured via our own analy
engine. We observe only small differences between o
analytic engine and EinsTimer (the IBM static timing tool)

Tables 1, 2 and 3 present the average delay improvemen
a function of the number of buffers inserted for each of th
algorithms. Total runtimes are reported for an IBM RS600
S595 with 1Gb of RAM in the last line of each table.

We make the following observations.

Input: ≡ Current node to be processed
Output: ≡ List of candidate solutions for node
Globals: ≡ Routing tree

 ≡ Buffer library

1. if then

2. else if has only one child then
 for each do

3. else if has two children
.

.
 Set and .
4. while and do
 Let be the ith candidate in .
 Let be the jth candidate in .

 if then .
 if then .
5. if is a feasible buffer location then
 for each buffer do
 for each
 Compute from and .

Use and k-factor equations to compute .
 Compute slack to each
 using moments and
 Let .
 Let be such that is maximum.
 if such an exists then
 Set ,

.
6. Let be the parent wire for .
 for each do
 Compute moments from to each
 using , , and Equations (3),(4), and (5).
 Compute slack to each using moments .

7. Prune of inferior solutions and return .

v
S v
T so{ } SI IN∪ ∪ E,()=
B

S Sb ∅= =
v SI∈

S π Cv 0 0, ,()= RAT v() m 0 0 0, ,{ }{ } M,=,,(){ }=
v

πT v() q m M, , ,() Find_CandsT.left v()()∈
S S πT v() q m M, , ,(){ }∪=

v
Sl Find_CandsT.left v()()=
Sr Find_CandsT.right v()()=

i 1= j 1=
i Sl≤ j Sr≤
αl πl ql ml M,

l
, ,()= Sl

αr πr qr mr M,
r

, ,()= Sr
π New_π-model πl πr,()=
S S π min ql qr,() ml mr∪ Ml Mr∪,,,(){ }∪=

ql qr≤ i i 1+=
qr ql≤ j j 1+=

v
b B∈

α πT v() q m M, , ,() S∈=
Ceff b πT v()

Ceff Delay b()
qw w SIT v()∈

m Delay b()
q̃ min qw w SIT v()∈||{ }=

α q̃
α

M v() b=
Sb Sb Cb 0 0, ,() q̃ 0 0 0, ,{ }{ } M,, ,(){ }∪=

S S Sb∪=
e u v,()= v

α πT v() q m M, , ,() S∈=
m u w SIT u()∈

m e
qw w SIT u()∈ m̃

π New_π-model e πT v)(),()=
S S π min qw w SIT u()∈||{ } m̃ M, , ,(){ } α–∪=

S S

α1 α2
π π1 100 0 0, ,()=

π2 0 100 101, ,()= α2
α1 π1
π2 π2

π1
α1 α2

Buffers # Nets Buffer Insertion Algorithm

VG VGI VGG VGIG

1 20 569 617 548 612

2 20 709 734 783 794

3 20 663 716 797 815

4 19 653 678 831 855

5 12 726 748 1001 1036

CPU Time 223.4 245.7 235.2 244.3

π

acy
.
in
n
g.

to

se
of

-

y

a-
-

n
r-

-

f

• Using moment matching (VGI) yields improvement over
VG ranging form 22 to 53 ps for small nets, -2 to 44 ps
for medium nets, and -18 to 43 ps for large nets. VGI
generally has the most utility for 1 or 2 buffers, with per-
formance declining as the number of buffers increases.
That VGI sometimes obtains worse delays may be
explained by our use of a fixed input slew when the
driver is unknown. A better scheme for choosing input
slew may be able to improve performance further.

Table 3: Average slack reduction (ps) for the 10 large nets.
• More accurate gate delay modeling (VGG) yields

improvements over VG of up to 275, 312, and 510 ps for
small, medium and large nets respectively. VGG clearly
performs better as the number of buffers increases; how-
ever, it sometimes performs worse than VG for one
buffer. This may be due to the k-factor equations not
accurately characterizing the buffer for very high loads.

• Using both accurate gate and interconnect delay models
(VGIG) consistently outperforms VG. Improvements
range from 43 to 310 ps for small nets, 26 to 464 ps for
medium nets, and 16 to 541 ps for large nets. Further,
VGIG yields the best result of all four algorithms in
every case, except for the single buffer solutions.

• The runtime penalties for VGIG are not prohibitive. For
the small and medium nets, VGIG uses 9 and 24 percent
more CPU time than VG, respectively. For large nets,
VGIG takes 3.4 times longer than VG. The increase is
fairly evenly distributed between the interconnect and

gate delay computations.

We have presented two techniques to improve the accur
of delay computations within Van Ginneken’s algorithm
Experiments show that our modeling leads to reductions
critical path delay without a prohibitive runtime increase. I
future work, we plan to integrate simultaneous wire sizin
The use of accurate interconnect delay models may prove
yield significantly higher dividends in this regime.

Acknowledgments
The authors sincerely thank Gopal Gandham and Jo
Neves for their useful discussions and continued support
this project.

References
[1] C. J. Alpert and A. Devgan, “Wire Segmenting For Improved

Buffer Insertion”,IEEE/ACM DAC,1997, pp. 588-593.
[2] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer Insertion for

Noise and Delay Optimization”,DAC, 1998, pp. 362-367.
[3] C. C. N. Chu and D. F. Wong, “Closed Form Solution to

Simultaneous Buffer Insertion/Sizing and Wire Sizing”,Inter-
national Symposium on Physical Design, 1997, pp. 192-197.

[4] C. C. N. Chu and D. F. Wong, “A New Approach to Simulta
neous Buffer Insertion and Wire Sizing”,IEEE/ACM Intl.
Conference on Computer-Aided Design, 1997, pp. 614-621.

[5] J. Cong and C.-K. Koh, “Interconnect Layout Optimization
Under Higher-Order RLC Model”,ICCAD, 1997, 713-720.

[6] S. Dhar and M. A. Franklin, “Optimum Buffer Circuits for
Driving Long Uniform Lines”,IEEE Journal of Solid-State
Circuits, 26(1), 1991, pp. 32-40.

[7] W. C. Elmore, “The Transient Response of Damped Linear
Network with Particular Regard to Wideband Amplifiers”,J.
Applied Physics, 19, 1948, pp. 55-63.

[8] R. Gupta, B. Krauter, B. Tutuianu, J. Willis and L. T. Pileggi,
“The Elmore Delay as a Bound for RC Trees with General-
ized Input Signals”,DAC, 1995, pp. 364-369.

[9] J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Optimal Wire Sizing
and Buffer Insertion for Low Power and a Generalized Dela
Model”, IEEE J. Solid-State Circuits, 31(3), 1996, 437-447.

[10] S. Lin and M. Marek-Sadowska, “A Fast and Efficient Algo-
rithm for Determining Fanout Trees in Large Networks”,
Proc. Euro. Conf. on Design Automation, 1991, pp. 539-544.

[11] F.-J. Liu, J. Lillis and C.-K. Cheng, “Design and Implement
tion of a Global Router Based on a New Layout-Driven Tim
ing Model with Three Poles”, ISCAS, 1997, pp. 1548-1551.

[12] P. R. O’Brien and T. L. Savarino, “Modeling the Driving-
Point Characteristic of Resistive Interconnect for Accurate
Delay Estimation”,IEEE/ACM ICCAD, 1989, pp. 512-515.

[13] T. Okamoto and J. Cong, “Interconnect Layout Optimizatio
by Simultaneous Steiner Tree Construction and Buffer Inse
tion”, ACM/SIGDA Physical Design Workshop, 1996, pp. 1-6.

[14] L. T. Pillage and R. A. Rohrer. Asymptotic Waveform Evalua
tion for Timing Analysis.IEEE TCAD,9(4), 1990, 352-366.

[15] J. Qian, S. Pulllela, and L. Pillage, “Modeling the “Effective
Capacitance” for the RC Interconnect of CMOS Gates”,IEEE
Trans. CAD,.13(12), 1994, pp. 1526-1535.

[16] C. Ratzlaff and L. T. Pillage, “RICE: Rapid Interconnect cir-
cuit Circuit Evaluator using Asymptotic Waveform Evalua-
tion”, IEEE Trans. on CAD, pp. 763-776, June 1994.

[17] B. Tutuianu, F. Dartu, and L. Pileggi, “Explicit RC-Circuit
Delay Approximation Based on the First Three Moments o
the Impulse Response”,DAC, 1996, pp. 611-616.

[18] L. P. P. P. van Ginneken, “Buffer Placement in Distributed
RC-tree Networks for Minimal Elmore Delay”,Intl.
Symp.Circuits and Systems, 1990, pp. 865-868.

Buffers # Nets Buffer Insertion Algorithm

VG VGI VGG VGIG

1 25 774 816 778 800

2 25 1034 1066 1068 1149

3 25 1075 1119 1212 1249

4 25 1116 1114 1231 1278

5 23 1116 1114 1328 1361

6 21 937 943 1249 1262

7 15 908 932 1364 1372

CPU Time 501.0 569.3 578.2 623.2

Table 2: Average slack reduction (ps) for the 25 medium nets.

Buffers # Nets Buffer Insertion Algorithm

VG VGI VGG VGIG

1 10 1556 1605 1493 1572

2 10 1938 1946 1949 1980

3 10 2089 2071 2131 2148

4 10 2062 2057 2175 2172

5 9 2190 2177 2382 2395

6 8 2368 2360 2621 2645

7 8 2927 2930 3437 3468

CPU Time 576.7 958.2 1058.6 1947.2

