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Abstract

Recognizing that routing constraints and process
variations make non-zero skew inevitable, this paper
describes a novel methodology for constructing reli-
able low-skew clock trees. The algorithm efficiently
calculates clock-tree delay sensitivities to achieve a
target delay and a target skew. Moreover, the sen-
sitivities also show that wires should be widened as
opposed to lengthened to reduce skew since the for-
mer improves reliability while the latter reduces it.
This paper introduces the concept of designing reli-
able clock nets with process-insensitive skew.

1 Introduction
Clock skew is defined as the maximum difference in

the delays from the output of the clock buffer to the
inputs of the clocked elements on a chip. With the in-
creasing density of VLSI and the use of several pipeline
stages in hardware design, clock skew becomes a dom-
inating factor in determining the clock period of syn-
chronous digit al systems.

While reducing clock skew should be the main focus
of clock net algorithms, clock-signal delay should be
considered as well since it affects system-level skew[5].
Moreover, for reliable results, it is also important to
consider that the actual width of a line on a fabri-
cated chip may differ from the expected width due to
intra-chip process variations such as over- and under-
et thing, mask misalignment, spot defects, etc. This
paper shows that these wire width process variations
can significantly impact the delay and skew.

Recent algorithms [4, 6] proposed for clock-skew re-
duction construct binary tree-like structures with the
clock pins at the leaf nodes. “Zero-skew” trees are cre-
ated in a recursive bottom-up manner from the clock
pins upwards by tapping the connection between two
zero-skew subtrees at such a location so as to create
a parent zero-skew tree rooted at the tapping point.
Earlier algorithms [5, 8 assume that the wire length

Lis a valid measure of t e delay and try to equalize
the lengths from the root of the clock tree to the leaf
nodes. These algorithms, in effect, minimize skew
while routing the clock net. Our algorithm, on the

*This work was supported in part by IBM Corp., the N*

tional Science Foundation, and the Semiconductor Research

Corporation under contract # 92-DP-142.

other hand, routes the tree first and then minimizes
skew by varying the wire widths of the tree branches.
This gives the router additional flexibility in routing
around possible blockages. Since the algorithms de-
scribed in [5, 8] can easily be modified to route around
blockages, they serve as excellent starting points for
the algorithm described here.

Our approach uses sensitivities to address the most
import ant issues in clock tree synthesis. Firstly, skew
and delay are optimized using sensitivity y information.
In addition, sensitivities are used to increase the reli-
ability of synthesized clock nets. The sensitivity ap-
proach allows us to specify which wire lengths and/or
widths to vary for clock tree synthesis. This paper,
however, uses the latter approach since widening is

\
shown to increase reliability decrease delay sensitiv-
ity to process variation) whi e lengthening is shown
decrease it.

Our paper is organized as follows: In Section 2, we
detail a simple RC delay model [2] and the inaccuracies
associated with using it. The futility of “zero-skew”
clock nets is also intr~duced along with the concept of
reliable clock nets which are insensitive to process vari-
ation. In section 3, we propose an efficient algorithm
to calculate the sensitivities of the leaf-node signal de-
lays to variations in the width of the tree branches.
Techniques for delay reduction, reliability, and skew
reduction based on these sensitivities are described in
section 4. We then present results, conclusions, and
possible extensions of our approach.

2 Practical Considerations
Each branch of a clock tree can be represented by a

distributed resistance-capacitance segment. Each dis-
tributed RC line is modeled as an equivalent lumped
L-or ~-circuit. The lumped resistance of the L-circuit
model of an RC line of length /i is usually approxi-
mated by rl~ and the capacitance by cli where r and
c are the resistance and capacitance per unit length.
Figure 1 shows a route for eight clock pins. The equiv-
alent RC tree with every segment replaced by an L-
model is shown in Figure 2.

We present our notation first: The branch connect-
ing node i to its parent node in the RC tree is labeled
i, and the width of this branch is denoted by wi. The
resistance of branch i is denoted by &. The sum of
the resistances of the branches on the path from node i
to the root is called the upstream resistance, R~; . R~,,

is used to refer to the sum of the resistances along the
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Figure 1: Example clock route on 8 pins. .

Figure 2: Equivalent RC tree for route in Figure 1.

common path from node i to the root and from node
j to the root. The capacitance at node i is denoted by
C’i. There are additional capacitances Cli at the leaf
nodes. The downstream capacit anc~, Cdi, at a node
i is defined as the sum of the capacitances at node i
and all its descendant. nodes. U(j) is the set of all
branches that lie on the path from node j to the root
of the tree. &j (the upstream resistance) denotes the

sum of resistances of the branches in set U(j). If node
i lies on the path from node j to the root, branch j

[

i) as well as node j (i) are said to lie downstream
upstream) of branch i (j) and node i (j).

2.1 Elmore Delay Approximations

The Elmore delay model [2, 7] is commonly used
to approximate the signal delay in RC tree networks.
This model approximates the delay from the root to
any node n in a lumped RC tree by the sum of the
products of the branch resistance, Ri, and the down-
stream capacitance, Cd,, for every branch on the path
from the root to the node, i.e.

(1)

where P(n) is the set of nodes that lie on the path
from the root to node n excluding the root.

However, it should be noted that the Elmore de-
lay is a first-order approximation which is generally
applied as a dominant time constant, or step-response
delay approximation for the circuit. In reality, for slow
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Figure 3: Plots of delay versus input transition time
for two nodes in an RC tree with equal TDS.

input transition times (inputs to the RC net, which
are outputs of the clock driver), the signal is a ramp
follower with an actual delay TD [1 1]. For faster tran-
sition times, the Elmore delay is an approximation.

Figure 3 shows the variation in the actual delay for

two nodes in an RC tree as a function of the input
rise time. A highly-accurate third-order model was

used to generate these curves[l]. For a step input,
the 5070 delay is approximated by 0.692TD. However,
from Figure 3, we observe that this approximation
may, at times, be inaccurate. Roughly speaking, when
the transition time is less than 7TD, the response is
no longer a ramp follower and the first order model

may have significant error[l 1]. Therefore, a clock net
designed for zero skew using the Elmore delay model

may not yield zero skew for small input rise times. We
expect, however, that the non-zero skew due to the

inaccuracy of the Elmore delay model for small rise
times is only a second-order effect when compared to

the skew due to process-related wire width variations.

Our approach does not preclude the use of more ac-
curate delay models[3]; however, the first-order model

does provide excellent efficiency.

In order for an algorithm to attain zero skew for
any input rise time it would have to match the delay

curves at all the leaf nodes in the circuit – a seem-
ingly impossible task. However, reducing the delay
will reduce the transition-time induced skew.

2.2 Reliable Clock Routing

During fabrication, the width of a line on a chip
may differ from the expected width because of process
variations. Ideally, the clock net should guarantee a
certain skew and delay taking these process variations

into account. It is essential for a robust clock net
to exhibit a certain degree of insensitivity to these
process variations.

Consider a change in the width of branch 1 of Fig-
ure 1 from a specified value of WI to WI + Aw due
to process variation. Aw is a random variable which
does not depend on the branch width. Its statistical

characteristics are determined by the process. If the
new resistance and capacitance of branch 1 due to this

variation are RI+ AR1 and C’l + ACI respectively, the
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change in the Elmore delay to any node n downstream
of branch 1 is given by

ATDn = AR1(6’d, – 6’1) (2)

From (2), we see that the skew of binary tree-like
clock nets is extremely sensitive to the changes in the
widths of the branches closest to the root of the tree.
Small changes in the widths of such branches can,
therefore, have a large effect on skew. As a resultl a
carefully designed low-skew clock net may yield high
skew values during actual fabrication due to process-
related wire width variations, if these variations are
not taken into account during design.

3 Sensitivity of Elmore Delays to Cir-

cuit Parameters
For an RC tree, the first moment of the impulse

response at any node is the Elmore delay. It has
been shown that this first moment for all the nodes
in the circuit can be obtained from the solution of
a de-equivalent circuit in which all the capacitors
are replaced by current sources of value equal to the
capacit ance[3]. Since de-circuit sensitivities can be
readily determined by using the adjoint sensitivity
technique[9], the sensitivity of the Elmore delays to
circuit parameters can be obtained with similar ease.

The adjoint of an RC circuit [9] is topologically
equivalent to the original circuit except that the inde-
pendent sources are set to zero and the output node of
interest is driven by a unit current source. An adjoint
analysis of node i in an RC tree which has a nominal
delay TD, can be shown to yield the following sensi-
tivity equations for circuit parameters Rj and Cj:

8Td
~ = 6’dj
8Rj

Rj E U(i)

= o otherwise (3)

inJ=

8Cj
Rc;, (4)

To compute the sensitivities for a set of nodes, a dif-
ferent adjoint network would have to be set up and
analyzed for each node of interest. Instead, the de-
lay sensitivities for all nodes with respect to all the
resistances and capacitances in the circuit can be cal-
culated using (3) and (4) in 0(rz2/og(n)) time by path-
tracing the tree. These sensitivities can be used to ob-
tain the sensitivities with respect to the wire widths.

3.1 Delay Sensitivity to Wire Width
The change in delay to a pin with respect to a wire

can be obtained from the sensitivity of delay with re-
spect to the wire capacitance and resistance by apply-
ing the chain rule. The sensitivity y coefficient for pin i
with respect to wire j is expressed as follows:

The terms 8TDi/8Rj and 8TDi/8cj can be evaluated

as described previously. aRj /Owj and 8Rj /hj can

be computed from the following equations for the re-
sistance and capacitance per unit length:

(6)

C = KCW + Ctr (7)

where KR and KC are independent of the width, Kc w
is the area capacitance and Cfr refers to the fringe
capacitance. Differentiating (6) and (7) with respect
to w yields

t9R R
—= ——
8W w

(8)

ac c – cf.

%= w
[9]

whence,

mJ= C’j – Cj,j OTD, tRj aTD.

~Wj aCj
(lo)

Wj ti)j 8Rj

A positive value of sensitivity obtained from ( 10) indi-
cates a csse where widening wire j increases the delay
to leaf node i while a negative value indicates that the
delay decreases.

It is clear from (10 that the sensitivities are a func-
)tion of the wire wi ths (similar expressions can be

derived in terms of wire lengths). This implies that
the sensitivities need to be recomputed whenever the
width of a wire is modified. The next section demon-
strates the simplicity of this task.

3.2 Updating Sensitivities
The computation of the sensitivities is a one-time

process. Whenever the width of a wire changes, the
sensitivities can be updated in 0(n2) time as opposed
to the O(nzlog(n)) time needed for the initial calcula-
tion of sensitivities.

Changing the width of branch j by A W causes the
resistance and capacitance to change by Akj and ACj
respectively. The effect of this change on the sensitiv-
ities of the delay of the leaf nodes with respect to the
widths of all branches in the tree can be summarized
as follows:

( ~ARj k G D(j) and j G U(i)

-{

&Acj
AL9TD. ‘wk

~ E U(i) II U(j)

auk =
~ARj j = k

(0 otherwise
(11)

4 Clock Tree Synthesis

With efficient algorithms to calculate the delay sen-
sitivities of nodes in an RC tree, we can propose the
following steps for clock-tree synthesis:
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4.1 Delay Reduction
Figure 4 a) shows the distribution of the delays to

ithe leaf no es of a typical clock tree. The extremal
points of this distribution determine the skew while
the average determines the delay. During delay re-
duction, we bring the average of this distribution to
or slightly below a specified target delay, Ttar et.

LSensitivities provide a means of selecting t e right
wires to widen in order to bring the average delay of
an RC tree as close as possible to a specified target
delay. Thedelay toasingle node can be reduced triv-
ially by widening the wire that has the highest nega-
tive sensitivity to this node. However, widening this
wire may have a detrimental effect on delays to nodes
which have positive sensitivities with respect to this

wire. The ideal candidate for wire widening should,
therefore, be selected using a more global metric.

A cost D. is assigned to every branch j in the tree.
iThis cost ta es into account the effect of widening wire

j on all the leaf nodes. If Sij denotes the sensitivity
of the delay to pin i with respect to wire j then the

cost Dj is given by:

N

Dj = ~ sij(T’i – Ttarget) (12)

i=l

where N denotes the number of leaf nodes (clock pins)

in the tree.

We observe the following from the above equation:

● If TDi > Tt~rget, and Sij < 0 (widening decreases
delay), Dj decreases.

● If TDi < Ttar~et, and Sij >0, Dj decreases.

● If TDi > Ttavget, and Sij > 0, Dj increases.

● If TD8 < Ttarget, and Sij <0, Dj increases.

The first two cases clearly aid delay reduction by
bringing the distribution of the delays closer to the
target delay. The last two cases tend to disturb this
distribution by increasing the delay of the pins with
already high delays and lowering those with already
low delays. Hence, at each iteration the wire with the
least cost is widened by a constant amount which is
based upon the minimum grid size. The sensitivities
are recomputed and this procedure continues until the
specified target delay is achieved.

4.2 Skew Reduction

Assuming that the distribution of delays in Fig-
ure 4(a) is normal, we might define the clock-tree skew
as 6UnOm, where Unom is the standard deviation of
this normal distribution. Referring to Figure 4(b),
the nominal skew may be approximated by the differ-
ence between the nominal delay at pin i, TD, , and the

nominal delay at pin j, TDj, since these delays lie near
the boundaries of the nominal distribution.

As shown in Figure 4(b), however, delays TDj and
TD, can vary significantly due to process disturbances.
In fac~, when all the wires in the clock tree are thin,

statistical variations in the widths of wires closest to

t Initial nominal

A

Distribution of
T% due to proxss

variation

1

(c)
Delay ~

Figure 4: Distribution of delays before and after de-
sensitization and skew minimization

the driver may have an enormous impact on the ac-
tual value of skew. In other words, if the delays TD,
and TDj are also modeled as normal distributions with

standard deviations of uT’~i and uT’~j respectively, the

uT~i’s may be significantly larger than the unOm. A

worst-case bound on the skew may, therefore, be ex-
pressed as

skew~ound = 617~0~ + 3UT~i + 3UT~j (13)

To reduce the skew in a reliable manner, we must
reduce the variance of the nominal delay distribution,
as well as the variances of all the nominal delays due to
process variations, as shown in Figure 4(c). Toward
this end, we begin by first attempting to reduce all
~T~,’s to much less than unO~. Then, once all wires,
are de-sensitized in this manner, we attempt to re-
duce c -.m while maintaining the de-sensitization con-
ditions on all wires.

4.2.1 De-sensit izat ion

Low values of absolute sensitivities imply negligible
change in delays for small changes in wire widths.
This information can be used to guide the reduction of
the ~T~i’s due to process variations. It is well under-

stood that increasing the widths of the wires should
reduce the delay sensitivities at the leaf nodes since
small process variations of the widths would result
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in smaller changes in the overall delays, and conse-
quently, smaller skew. The objective then is to make
the delay sensitivities at the leaf nodes small enough
so that the upper bound on the skew is acceptable
without widening wires excessively.

Consider, as an example? that the width of a single
wire j in the clock tree varies from its expected value
due to a single process disturbance (e.g. a spot defect).
Under such circumstances, we would want to make the
delay to all leaf nodes insensitive to changes in the
width of wire j. The maximum process variation in
the width of wire j corresponds to a maximum change

in delay, at one of the leaf nodes, A~D~~=. Therefore,
to de-sensitize wire j, we might increase wj, so that

AT~ma= is less than the maximum allowable change

in skew, AT. Or, increase wj until

Awmaz Sij ~ AT (14)

for all leaf nodes i, where A w~az represents the max-
imum change in wj due to process variations.

Under the assumption of a single-defect model, we
would de-sensitize all of the wires in the tree as follows:
Starting at the leaf nodes, widen all of the wires in a
bottom-up manner so that the maximum change in
delay at any pin due to process variations at wire j
is less than some acceptable change in skew, AT, In
this paper, we have chosen AT to be unOm/2.

It is important to point out that the wires are
widened in a bottom-up manner from the leaf-nodes
in order to properly consider the possible changes in
the upstream sensitivities which tend to increase the
UT~,s. Note that it can be shown that increasing the

width of a wire j, is guaranteed to make all positive
sensitivities smaller, and most negative sensitivities
smaller in magnitude. However, those wires which
lie along the unique path from j to the root node
may have the magnitude of their negative sensitivi-
ties increased by the increase in their downstream ca-
pacitance. Thus, the bottom-up traversal from the

leaf-nodes will use the correct value of downstream
capacit ante.

Of course, all of this assumes a single defect model
which is far from accurate. Under- and over-etching,

for example, influence a large number of wires simul-
taneously in a manner which is difficult to predict.

Therefore, we establish a more stringent condition for
de-sensitization by widening wires until the following

holds:

AwmazSij c ATIL (15)

where L is the depth of the tree. In other words, we
do not allow any wire in the tree to cause a change
in delay of more than AT/L at a leaf node thereby
ensuring that the maximum possible change in delay

from the root to a leaf node is less than AT.

4.2.2 Reducing Nominal Skew

After the wires are de-sensitized, we attempt to nar-
row the distribution of delays about its mean value,
thereby reducing the nominal skew. This is accom-
plished by attempting to make the delays of the leaf

nodes as close to the mean of the distribution as pos-
sible. In this paper, the sensitivities are used to select
wires which narrow the distribution while disturbing
the mean of the distribution as little as possible. Let
A~j denote the change in the delay of node i when
the width of wire j is changed by an amount Awj.
The skew would be reduced to zero if

ATij = Tmean – TD, (16)

for all leaf nodes i in the tree. However, it seems highly
improbable that skew could be eliminated by varying
the width of a single wire. Therefore, we select a wire
that forces the new delays of as many pins as possible,
closer to the current mean delay. To choose the best
wire to widen for skew reduction we assign a cost

N

Dj = ~(lTDi + ATij – Tmean 1) (17)
i=l

to each wire j. Skew could be eliminated if we could
find a wire with zero cost. Alternatively, we select
to widen the wire with the least cost. The change in
delay ATij is estimated using sensitivities by

ATD, = Sij Awj (18)

It should be noted that (18) is valid only for small
changes in width. The wire width increment, Awj, is
constant for all iterations and is based upon the grid
size.

To summarize, the complete clock tree synthesis
approach is to reduce delay, de-sensitize, then reduce
skew. However, we recall from Section 4.2.1 that
widening a wire j may increase the magnitude of the
sensitivity of wires upstream of j. In order to avoid
undoing the de-sensitization process, we add an addi-
tional step (4) to the clock tree synthesis procedure as
follows:

1.

2.

3.

4.

5.

5

Meet Rc delay requirement. (Delay reduction
phase).

Starting at the leaf nodes, widen wires until their
ATD is less than u~Orn/2L. (Desensitization
phas~.=

Use (17) to select the best wire to reduce skew.
Widen this wire by a predetermined increment.
Update anom.

Starting at the modified wire, trace back to
root widening wires as necessary to ensure that
ATD~a= is still less than u~O~/2L.

Go to step 3 until skew objectives are met.

Results
We applied the clock tree synthesis procedure to the

5 examples in [4]. The per micron resistance and ca-
pacitance are assumed to be 3m!2 and 0.02 f F respec-
tively. These examples were routed using the methods
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Example # pins Imtlal Final Worst case w~~=
Skew (ns) Delay (ns) Skew (ns) Delay (ns) skew (ns)

rl 2b’( O 325 223 0080 1270 0203 45 “
r2 598 1:888 5:56 0:179 4:016 0:572 :
r3 862 1.529 7.55 0.149 4.295 0.498 1:.:
r4 1903 4.893 20.25 0.579 11.506 1.252 7.9
r5 3101 4.370 40.85 0.898 16.978 2.141 6.4

Table 1: Delay and skew results for examples in [4].

of means and medians(51. The initial skew and average the conceDt of reliable clock net desire. Our aDDroach
delay are shown in coiu’mns 3 and 4 of Table 1. “

Selecting a target delay of one-half the initial de-
lay and a target skew of 5% of the initial delay? we
applied the clock tree synthesis procedure described
above. Using wire width increments of 0.3 microns
during the skew reduction phase (steps 3 – 5) these
targets were achieved in less than 100 iterations. As
expected, the quality of the results increases with the
number of iterations. Columns 5 and 6 show the nom-
inal skew and delay after 100 iterations. To verify
the effectiveness of the desensitizaton phase, a Monte
Carlo simulation of 500 trials was performed on the fi-
nal clock tree by varying the widths of all wires using
a normal distribution with u = 0.05 microns (which
is a reasonable assumption for today’s submicron pro-
cesses). The worst case skew results of the Monte
Carlo simulation are shown in Column 7. Column 8
shows the maximum wire widths in the final clock tree.
Note that, as expected, the widest wires appear near
the root – they were widened during the desensitiza-
tion phase.

6 Extensions to Clock Meshes
The first moment computation for an RC tree con-

figuration has been shown to be a simple task [10].
We have also demonstrated the ease of calculation of
sensitivities for RC tree structures. Most clock routes
have tree topologies; however, recently there haa been
a great deal of interest in clock meshes. The calcu-
lation of the moments for RC meshes can be accom-
plished in a very efficient manner [1]. As for the sen-
sitivities, we know that they can be calculated for RC
meshes since the adjoint method applies to general-
ized circuits. We are, however, currently working on
ways to calculate the sensitivities of RC meshes with
acceptable efficiency. Such a capability would be ex-
tremely useful, since along with enabling wire-width
opt imizat ion for RC clock meshes, an efficient adjoint
sensitivity approach for meshes could be used to cal-
culate the sensitivities with respect to adding loops of
met al. In words, the sensitivities could aid in predict-
ing the effect of adding a loop where there was none
to begin with, to improve skew and/or reliability.

7 Conclusion
We have presented a technique to perform clock tree

routing using wire width adjustment. Our algorithm
yields low values for delay and skew for any type of
tree configuration. Most importantly, we introduce

increases \he reliability of the clock ~et by con~~dering
the effect of process variations on the skew.
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