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Abstract

As the minimum feature sizes of VLSI circuits get smaller while the
clock frequency increases, the effects of process variations become
significant. We propose a UST/DME based approach to perform
simultaneous non-zero clock skew scheduling and clock tree rout-
ing, taking into consideration the effects of process variations on
clock skews. Our approach ensures that the generated clock tree
has a high tolerance to process variations while minimizing the to-
tal capacitance of the clock tree, which is proportional to the total
wirelength and the total number of buffers. Monte Carlo simula-
tions show that our approach generates clock trees that are highly
tolerant to process variations.

1 Introduction
As the minimum feature sizes of VLSI circuits get smaller while
the clock frequency increases, the effects of process variations
become significant. These variations arise during the manufac-
turing process from the tolerances of the equipment used [14].

Process variation on clock trees may result in violations in
clock skew constraints. In [12], it is shown that interconnect
variations in clock trees can cause as much as 25% variation in
clock skew. In buffered clock trees, more sources of variation
are introduced as buffers are affected by process variations as
well.

One approach to counter such variations would be to use
Monte Carlo simulations to determine the worst case timing per-
formance before constructing the clock tree. However, that re-
quires a high computational cost. Although statistical timing
analysis may reduce the run-time complexity [1, 3], we use a
preventive approach towards synthesizing clock trees that are ro-
bust to process variations by considering the “worst-case” delays
along all paths in a clock tree. This greatly simplifies the layout
synthesis process, and experimental results are promising.

While non-tree designs [15] can benefit from a higher tol-
erance to skew variation, the increase in wire lengths present a
larger load to the clock driver and leads to an increase in clock
power consumption.

Increasing the common paths between sinks that are more
sensitive to process variation can increase the tolerance to process
variation [17]. However, in contrast to many existing clock tree
construction algorithms [2, 11, 16], their approach does not take
into consideration the locality of clock pins and no emphasis is
placed on wirelength reduction.

Zero Skew Tree (ZST) construction algorithms [2, 4] inher-
ently cannot handle process variations; zero skew constraints can
never be satisfied in the presence of process variations. However,
generalizations of zero skew tree construction to Bounded Skew
Tree (BST) [11] construction or Useful Skew Tree (UST) [16]
construction are naturally more robust to process variations. A
straight-forward approach to handling process variations in these
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construction algorithms is to reduce the skew ranges by a safety
margin (usually a predetermined constant), thereby preventing
the algorithm from selecting skew values that are at the very ex-
tremes of the skew constraints. This translates to an increase in
tolerance to process variations. However, since the sensitivity to
process variation is dependent on the topology, the value of the
safety margin may be inadequate or over-pessimistic. In partic-
ular, different parts of a clock tree should have different safety
margins as they have different sensitivities to process variations.

In [13], the authors extend the Bounded Skew Tree/Deferred-
Merge Embedding (BST/DME) approach to construct a process
variation aware clock tree. During the construction of the clock
tree, it considers the worst case variation limit due to process
variations. With any BST/DME approaches, there is a limitation
that the solution space available for clock skew scheduling may
be very limited. To be exact, the skew bound is the intersection
of all skew constraints between every pair of sinks, which may
be an empty set.

To overcome the limitation of restricted skew bounds, in this
work, we extend the Useful Skew Tree/Deferred-Merge Embed-
ding (UST/DME) approach to improve on achieving a process
variation robust (PVR) useful skew tree while minimizing wire-
length. We refer to our algorithm as the PVR-UST/DME ap-
proach. During the intermediate steps of the bottom-up con-
struction of the UST, we analyze and consider the worse case
bound on wire delays and clock skews such that the resulting
clock tree is robust to process variations. The primary objective
is to minimize the total capacitance of the clock tree, which is
proportional to the total wirelength.

In this work, we also consider buffer insertion under process
variation. There are two issues related to buffer insertion. First,
process variation affects logic devices (buffers in this work) as
well. As a result, more variation is introduced to the problem.
Second, the buffers inserted may have a great impact on topol-
ogy construction, since we do not enforce that the number of
buffers from the root to all sinks to be equal. This may result in
an unbalanced tree which reduces the tolerance to process vari-
ations. We insert the minimal number of buffers to reduce the
total capacitance of the clock tree.

The paper is organized as follows: In Section 2, we present
some preliminary definitions and background information. The
UST/DME algorithm is briefly reviewed in Section 3. We present
the PVR-UST/DME algorithm that performs scheduling and con-
struction of a useful skew clock tree without a prescribed topol-
ogy in Section 4. We provide some experimental results in Sec-
tion 6 and conclude the paper.

2 Effects of Process variation on Delay
and Skew

In this paper, the Elmore delay model is used to compute the
delays and skews. Each wire with length l and width w is mod-
eled by a RC π-type circuit with parasitics R = r0 × l/w, C =
ca × l ×w/2+ c f × l/2, where r0 is the wire resistance per unit
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square, ca is the area capacitance per unit length and c f is the
fringing capacitance per unit length.

Without process variations, w can be treated as a constant
and has a nominal width (specified by the designer), denoted
by wnom. In this paper, subscript “nom” represents the condi-
tion when process variations are absent. With the introduction of
variation on w, the actual width we of the wire segment e in the
manufactured circuit may vary between wmax (maximum width)
and wmin (minimum width). In this paper, we set wmax to be
wnom +3σ and wmin to be wnom −3σ, where σ is the standard de-
viation of a given process corner. The downstream capacitance
CTe seen from segment e may also vary. The above variations
will cause the delay to deviate. Although the variation on wire
height can be factored into this work as another cause of delay
variation, we focus only on wire width variations in this paper.

In this work, the buffer model that we use is a switch-level
RC model that has three parameters: input capacitance (cbin),
output resistance (rbu f ) and intrinsic delay (db). Process varia-
tion will also affect these buffer parameters. Therefore, for input
capacitance, we have cbinmin, cbinmax and cbinnom. For output
resistance, we have rbu fmin, rbu fmax and rbu fnom. For intrinsic
delay, we have dbmin , dbmax and dbnom .

The variations in the above mentioned parameters are all
taken into consideration in our algorithm. We shall show how
these variations affect the clock tree construction. For now, we
simply assume that the combination of these variations leads to
a maximum delay (tmax) and minimum delay (tmin) of any wire.

For a clock tree, we use S = {s1,s2, ...,sn} to denote the set
of clock sinks (clock pins of sequential elements) and the clock
source as s0. Consider a synchronous circuit using edge trig-
gered flip-flops (FFs) under a single-phase clocking scheme and
let s j be the clock pin of FFj. For two clock sinks s j and sk, if
there are no process variations, the skew between these sinks is
defined as skew j,knom

= t jnom − tknom , where t jnom and tknom are the
nominal delays (clock arrival time) from s0 to s j and s0 to sk
respectively.

A pair of FFs are sequentially adjacent when only some
purely combinational logic exists between the two flip-flops. Let
FFj and FFk are two sequentially adjacent flip-flops and let the
nominal clock arrival times to FFj and FFk be t jnom and tknom
respectively. In order to prevent hold time violation:

t jnom − tknom ≥ thold,max − tpFF,min − tlogic,min + δl . (1)

Similarly, to prevent setup time violation:

t jnom − tknom ≤ Tclk − tpFF,max − tlogic,max − tsetup,max − δu . (2)

These two inequalities pose upper and lower bound con-
straints on skew j,knom

. tlogic,max and tlogic,min are the maximum
and minimum propagation delays through the combinational logic
block; tpFF,max and tpFF,min are the maximum and minimum prop-
agation delays through the flip-flop; and Tclk is the clock period.
tsetup and thold are the setup and hold times of the flip-flop. In
[16], safety margins δl and δu, are both included in the inequali-
ties to enhance the robustness of the circuits. For simplicity, we
use l j,k ≤ skewinom, jnom = t jnom − tknom ≤ u j,k to represent lower-
and upper-bound skew constraints between FFi and FFj. We
also denote an inequality a ≤ x ≤ b as x ∈ [a,b]. Therefore, we
can express Eqns. (1) and (2) as:

skewjnom,knom ∈ [l j,k,u j,k] . (3)

With the presence of process variations, we have:

t jmin − tkmax ≤ t jnom − tknom ≤ t jmax − tkmin . (4)

Therefore, to ensure correct operation, we have:

t jmin − tkmax ≥ thold,max − tpFF,min − tlogic,min, (5)

and

t jmax − tkmin ≤ Tclk − tpFF,max − tlogic,max − tsetup,max. (6)

In this paper, we assume that thold , tsetup, tlogic, tpFF takes
on the maximum or minimum values under process variations.
Moreover, we explicitly include clock skew variations in our for-
mulation. Therefore, safety margins are not utilized in Eqns. (5)
and (6).

In this work, the problem that we would like to solve can be
stated as follows: Given the skew constraints between the clock
sinks, and the clock pin locations, construct a useful skew clock
tree such that it is tolerant to variations in wire width (limited be-
tween wmax and wmin) and in device parameters (cbin, rbu f and
db). The primary objective is to minimize the total capacitance
of the clock tree, which is proportional to the total wirelength
and the total number of buffers.

3 Review of the UST/DME Algorithm
In this work, we make use of the UST/DME approach to con-
struct the clock tree. The process of tree construction follows
the DME-based paradigm:

1. A bottom-up phase to construct a binary tree of merging
regions or segments, and

2. A top-down phase to determine the exact locations of the
internal nodes.

Merging segments are Manhattan arcs constructed temporar-
ily during the bottom-up phase that represent the loci of possible
embedding points of internal nodes of the final clock tree. Since
a particular skew value is always constant on a merging segment
under the Elmore delay model, the locations of merging seg-
ments determine the clock skew assignment of the final clock
tree. When the skew can vary within a range bounded by skew
constraints, the concept of merging segments can be generalized
to that of merging regions.

As the top-down phase is identical to those presented in [4,
6], emphasis in this paper is placed on the bottom-up phase,
which proceeds as follows: At the beginning of the algorithm,
we have a forest F of singleton subtrees Tsi’s, each containing a
clock sink in S . While F has more than one subtree, two sub-
trees are selected , say Tu and Tw, for merging to form the new
parent subtree Tv. This process continues until one subtree re-
mains in F , which is the final clock tree.

In this work, we assume that the topology of the clock tree
is not given. Hence, the order of subtree merging must be de-
termined. This is the most crucial aspect in achieving minimal
wirelength because it controls the topology of the constructed
clock tree. The order is determined from the nearest neighbor
graph (NNG) [10], which stores the promising merging pairs of
subtrees based on the estimated merging cost (a measure of the
wire length required for the merging operation) of all subtrees in
F . In one iteration, |F |/k independent nearest-neighbor pairs
from the NNG are selected in a non-decreasing order of merging
cost for merging, where k is a constant ranging from 2 to 4 [10].
The NNG is updated after each iteration.

3.1 Incremental Skew Scheduling in UST/DME
In the UST/DME algorithm, when two subtrees are merged, a
new merging region that represents the skew range bounded by
the skew constraints of all the sinks that are children to the two
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subtrees is created. While it means that commitment to a partic-
ular skew value within this skew range is allowed, the validity
of this range must first be ensured (feasibility). Furthermore,
committing to a particular skew causes a change in other skew
ranges. Therefore, before we can further proceed with the sub-
tree merging, we must ensure that the change does not cause in-
feasibility to occur. The process of committing to a skew and en-
suring the validity of the skew range is known as skew schedul-
ing.

Due to space constraints, the fundamental aspects of Incre-
mental Skew Scheduling is cited here without proof. In incre-
mental skew scheduling, a constraint graph Gc(V,E) is used
to capture all the skew constraints between every single pair of
clock sinks/FFs that are adjacent to each other [7, 8]. Gc is a
directed graph with vertices v j ∈ V and directed edges e j,k ∈ E.
v j represents the sink nodes while the edge weight of edges in E
records the skew constraints (Eqns. (1) and (2)) between every
pair of adjacent clock sinks.

There are two important aspects in Incremental Skew Schedul-
ing. One is the creation of the feasible skew range (FSR) be-
tween any pair of sinks, which is stored in a FSR matrix [16].
A key property of the FSR is that when a skew commitment is
made within a FSR, it is guaranteed that a feasible clock skew
schedule exists. The second aspect is that after we commit the
skew between two sinks to a particular value in the correspond-
ing FSR, an update in the FSR matrix is done to maintain the
feasibility of the FSRs.

In the UST/DME algorithm, skew ranges are computed and
merging regions are constructed without considering process vari-
ations. With the presence of process variations, we must ensure
that the merging regions has skew ranges that satisfy Eqns. (5)
and (6), which would ensure that they also satisfy Eqns. (1) and
(2). We shall present our PVR-UST/DME approach and show
how our approach handles process variations in the next section.

4 PVR-UST/DME Approach

4.1 PVR Merging Region Construction
Suppose we have a Manhattan merging segment L such that all
points on this segment is equidistant (rectilinear) to a clock sink,
say s1. Under the Elmore delay model (ignoring process vari-
ations), the delay from any point on L to s1 is a constant. We
denote the delay to be t(L� s1). Now suppose that all points
on L are also equidistant to another sink, s2, and the delay from
any point on L is t(L� s2). Therefore the skew that L represents
is t(L� s1)− t(L� s2), is also a constant. With such a prop-
erty, we can translate the FSR between two clock sinks (obtained
from the FSR matrix) to a region bounded by two merging seg-
ments. One merging segment corresponds to the skew value at
the lower bound of the FSR while the other at the upper bound
of the FSR. We call this region a merging region mv(i).

Now suppose we are trying to merge two merging segments
Lu ⊆ mr(u) and Lw ⊆ mr(w) to form a new parent merging re-
gion mr(v). mr(u) is a parent to clock sinks Su = {su1 ,su2 , ...,sup}
and mr(w) is a parent to clock sinks Sw = {sw1 ,sw2 , ...,swq}. Sup-
pose that for a particular pair of sinks (su1 ,sw1 ), FSRsu1 ,sw1

=
[−lu1,w1 ,uu1,w1 ]. To represent this FSR in mr(v), we can con-
struct two merging segments in mr(v). One single merging seg-
ment Lv1 representing the lower bound would be constructed
such that all points on Lv1 satisfy:

t(Lv1 � su1)− t(Lv1 � sw1) = −lu1,w1 , (7)

where t(Lv � u1) denotes the delay from Lv to su1 and t(Lv �
w1) denotes the delay from Lv to sw1 . The other single merging
segment Lv2 representing the upper bound would be constructed
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Figure 1: Construction of narrowed merging region for s u and sw

in the presence of process variation.

such that all points on Lv2 satisfy:

t(Lv2 � su1)− t(Lv2 � sw1) = uu1,w1 . (8)

The feasible skew region in mr(v) is the region bounded by
Lv1 and Lv2 . Note that this is the merging region that satisfies
only the FSR for su1 and sw1 . Therefore, we have to repeat this
process with every pair of sinks, one sink from each subtree.
However, it turns out that if process variation is not present, the
merging segments are identical for all pairs of sinks, therefore,
only the FSR of one of these pairs of sinks is required to con-
struct the merging region [16].

Consider the same example in the presence of process varia-
tion. Since the delays from the new Lv to sinks Su and the delays
from the new Lv to Sw can vary within a range between a max-
imum and a minimum value, we have to go through all pairs
of sinks (one sink from each subtree) to construct the merging
region.

Here, we take a closer look at what happens to the merging
segments for the same pair of sinks (su1 , sw1 ) under process vari-
ations. To represent this FSR in mr(v), we can construct two
merging segments in mr(v), Lv1 and Lv2 . But since,

tmin(Lv� su1)− tmax(Lv� sw1) ≤ tnom(Lv� su1)− tnom(Lv� sw1)
≤ tmax(Lv� su1)− tmin(Lv� sw1) . (9)

Therefore, the location of Lv1 can vary between:

tmin(Lv1 � su1)− tmax(Lv1 � sw1) = −lu1,w1 , (10)

and

tmax(Lv1 � su1)− tmin(Lv1 � sw1) = −lu1,w1 . (11)

Likewise, the location of Lv2 can vary between:

tmin(Lv2 � su1)− tmax(Lv2 � sw1) = uu1,w1 , (12)

and

tmax(Lv2 � su1)− tmin(Lv2 � sw1) = uu1,w1 . (13)
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Since by definition, the merging region is the region where
the merging segments can satisfy the FSRsu1 ,sw1

(for this sink
pair (su1 , sw1 )), we take the most narrow region bounded by L v1
and Lv2 to bound the merging region of mr(v). This guaran-
tees that any segment selected within this narrowed merging re-
gion nmrsu1 ,sw1

still satisfies FSRsu1 ,sw1
even in the presence of

process variation. In our algorithm, we only compute the most
narrow Lv1 and Lv2 ; the six merging segments in Fig. 1 is drawn
to illustrate the effects of process variations.

Note that this nmr(v)su1 ,sw1
satisfies only FSRsu1 ,sw1

. Of course,
the final mr(v) must also have a feasible region that satisfies the
remaining pairs of sinks. We can form these narrowed merging
regions nmr(v)sui ,sw j

where i = 1, ..., p and j = 1, ...,q.
Once the individual narrowed merging regions of every pair

of sinks have been formed, we take the intersection of all these
narrowed merging regions and form the final mr(v):

mr(v) =
�

sui∈Su,sw j∈Sw

nmr(v)sui ,sw j
(14)

The outline of the PVR-UST/DME algorithm is given in
Figure 2. To construct the merging region mr(v), we sample
the merging region mr(u) with h number of merging segments
Lu ⊆ mr(u). It is important to realize that each of these merg-
ing segments actually represents a particular skew value within
the FSR. Therefore, when we consider a merging segment L u
from the merging region mr(u) for merging (like in step 6),
we are essentially committing to a skew value within the FSR.
Therefore, an update of the FSR matrix is required. This means
that the merging region for the other subtree mr(w) has to be
reconstructed with the new updated FSR. Once this merging
region is reconstructed, we sample it with h merging segments
Lu ∈ mr(u). We construct a merging region for Lu and each Lw.
We iterate this process for all merging segments from mr(u),
constructing h2 merging regions in total. Among these merging
regions, we select the least cost merging region as the new parent
merging region mr(v).

Although the clock trees constructed with our PVR-UST/DME
algorithm have high tolerance to process variation, we cannot
guarantee all trees are entirely tolerant. This is because as we
construct the trees bottom up, we repeatedly commit to skews
that leads to the tightening of the remaining feasible skew ranges.
As we get higher up, the wires (from root to sink) become longer
and therefore have greater variations in delays. It is certainly
possible that the delay variations between two sinks may become
larger than the corresponding feasible skew range, which means
that the narrowed merging region for that particular pair of sinks
would not have a proper bounded region. In such a case, we
use the nominal merging regions (without considering process
variations) for that pair of sinks and continue to construct the
narrowed merging regions for the remaining pairs of sinks. This
ensures that the FSR will still be valid and that the total wire-
length will be minimized at a small sacrifice of process tolerance
as shown in the experimental results. The use of wiresizing to
expand the merging region or the use of topology perturbation
[18] may be useful in overcoming the above limitation; we will
consider such methods in a future extension of this work.

4.2 Delay Bounds and Skew
For the PVR merging region construction, it requires the values
of tmax and tmin. Here, we describe how these values are obtained.

In a clock tree, the path from root to a sink may contain
off-branch subtrees (subtrees that do not contain any segments
along the path). At the nodes along the path, a downstream ca-
pacitance of these off-branch subtrees can be seen. Let the off-

Input: Clock pins S ; local skew constraints C ;
Output: A clock tree routing T satisfying constraints in C

or no solution
1. Construct constraint graph GC = (V,E) from C
2. If GC has negative cycles, return no solution
3. Build the FSR matrix from GC
4. Determine the order of subtree merging from nearest

neighbor graph (NNG) [9] based on merging cost
5. for each merging of subtrees Tu and Tw to form Tv

based on (NNG)
6. Select Lu ∈ mr(u) (skew commitment)
7. Update FSR matrix for skew commitment made in 6
8. Reconstruct mr(w) if FSR matrix is updated
9. Select Lw ∈ mr(w) (skew commitment)
10. Update FSR matrix for skew commitment made in 9
11. for all pairs of sinks between si ∈ Tu and s j ∈ Tw
12. Get FSRi, j = [−di, j,d j,i] for si ∈ Tu, s j ∈ Tw
13. Construct narrowed merging region nmr(v)

with feasible skew skewi, j ∈ FSRi, j
14. Form final mr(v) from the intersection of all nmr(v)s
15. Reconstruct mrs caused by changes in FSR matrix
16. Perform DME top-down Embedding (Embed each node

v on Lv ∈ mr(v) in top-down order)

Figure 2: The PVR-UST/DME algorithm.

branch subtree rooted at node i be To f fi and its nominal capaci-
tance be CTo f finom

. With the presence of process variations, each
of these capacitances may vary between CTo f fimax

(all wires in
To f fi having the maximum wire width) and CTo f fimin

(all wires in

To f fi having the minimum wire width). In our bottom-up clock
tree construction, we keep track of the minimum, maximum and
nominal downstream capacitance of these subtrees.

To find tmin for a path where all the edge lengths are known,
we transform this into a minimum delay wire sizing problem [5].
The minimum delay wire sizing problem is to assign monoto-
nously decreasing wire widths (within wmax and wmin) from root
to sink to optimize tmin. For the off-branch subtrees along the
path, we set their capacitance values to be CTo f fimin

. We then uti-

lize a quick iterative process from [5], that computes the corre-
sponding wire widths in about O(d) time, where d is the number
of wire segments. Similarly, for tmax, the maximum delay can be
found by assigning monotonously increasing wire widths from
root to sink (within wmax and wmin). In this case, we set the ca-
pacitance of the off-branch subtrees along the path to be CTo f fimax
and perform the iterative wire width assignment process to de-
termine the maximum delay achievable.

This provides a reasonable bound on the minimum (maxi-
mum) delay of any wire path due to varying wire widths, instead
of assigning maximum (minimum) widths to all wire branches.

However, in order to construct the merging regions as shown
in Section 4.1, we must compute the exact location of the bound-
ary merging segments based on the minimum (maximum) delays
and skews. In other words, we use Elmore delay to compute the
wire lengths required from the child merging regions in order
to satisfy the skew value required on the merging segment (i.e.
not all edge lengths are known a priori). Using the wire sizing
approach, this become slightly complicated because the com-
puted length changes the upstream resistance and capacitance
seen from the sinks, which in turn changes the maximum and
minimum delay and skews.

Therefore, we start with a initial guess of the lengths (we
assume nominal delays for this guess). We calculate the min-
imum and maximum delays from the merging segment to the
sinks. The skew is then computed based on these delays. After
that, we compute the difference between this computed skew and
the desired skew and make changes to the lengths. This process
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is repeated until the length converges to the desired skew value.
Convergence can be guaranteed because Elmore delay is propor-
tional with lengths. Increasing the length on one side increases
the delay with respect to the same sink.

4.3 Buffer Insertion
In this work, we have also included buffer insertion in our PVR-
UST/DME algorithm to maintain an acceptable clock signal in-
tegrity with steep rising and falling edges.

When we build the trees of merging regions bottom-up, we
keep track of the maximum delay from the roots of the trees
to either sinks or buffers in a DC-connected component. If we
detect that the 10% to 90% rise time (0.9RC for distributed inter-
connects) in any root of a subtree in F is comparable to a small
fraction of the clock period (in this paper we set it to be 5%), we
insert a buffer to that particular root.

To compute the maximum delay with the presence of buffers,
we assign cbinmax, rbu fmax and dbmax for the buffers that lie along
the path and perform the iterative wire width assignment process.
Likewise, we use cbinmin, rbu fmin and dbmin when we compute
the minimum delay. These delay bounds affect the merging re-
gion construction as mentioned in Section 4.1.

5 Complexity Analyses
Suppose we start with n sinks. In iteration i, |F |/k subtrees are
selected for merging, based on the NNG. Therefore n/k i sub-
trees are present in iteration i. For simplicity, we assume that all
subtrees are balanced binary trees.

Consider the merging of a pair of subtrees rooted at nodes u
and w. The two subtrees have p sinks and q sinks, respectively.
Therefore the maximum number of wire segments from root u
and w to its respective sinks are log p and logq, respectively. To
update the minimum and maximum delays from root u to each
of its sinks, O(plog p) operations are required. Likewise, it re-
quires O(qlogq) operations to update the minimum and maxi-
mum delays from root w to each of its sinks. Suppose we have
h samples in merging region mr(u). For one sample Lu in merg-
ing region mr(u) (essentially a skew commitment), we require
O(n2) operations to first perform a FSR computation [16]. To
reconstruct mr(w) (due to the skew commitment in mr(u)), it re-
quires O(q2 logq) operations. For this particular sample Lu from
mr(u), h narrow merging regions for the parent node are con-
structed. Since it takes O(pqlog(p + q)) number of operations
to construct a single narrow merging region, it requires a total
of O(n2 +q2 logq+hpqlog(p+q)) operations to construct the
narrow merging regions for the particular sample Lu from mr(u).
This process is repeated for h samples in mr(u), which would re-
quire O(h(n2 +q2 logq+hpqlog(p+q))) operations.

The highest cost is to update the NNG where we compute the
merging cost between all neighboring merging regions. Here,
we are essentially performing normal merging operations except
that we are obtaining only the cost of merging but not actually
merging the regions together (a test merge). In the worst case,
we have to compare (n/ki)2 merging regions. Therefore, it re-
quires O((n/ki)2(p2 log p + h(n2 + q2 logq + hpqlog(p + q))))
operations, where p2 log p is the number of operations to recon-
struct mr(u) because the FSR may have changed by the previous
merging steps in the same iteration.

Without loss of generality, we let k = 2. Therefore, after
logn iterations, the clock tree construction is complete. Sup-
pose that in iteration i, both p and q are approximated by 2 i in
the worst case and h is a small constant. Therefore, the overall

Table 2: Results with Buffer Insertion.
PVR-UST/DME

Circuit Wirelength Buffers %
µm inserted yield

s1423 95842 10 100.00
s5378 154334 21 93.18
s15850 402123 46 89.56

complexity is:

logn

∑
i=0

n2(
n2

22i +(3i+1) log2) ≈ O(n4) (15)

6 Experiments and results
The proposed clock tree routing algorithm has been implemented
in C++ and tested on three ISCAS89 benchmark circuits on a
Sun UltraSparc-II. The wires are assumed to have a resistance of
0.001Ω per unit square, an area capacitance of 1.2 f F/µm and
a fringing capacitance of 1.5 f F/µm. These numbers are typi-
cal for a 0.25µm process technology. The buffers used have a
nominal input capacitance of 25 f F , a nominal output resistance
of 75Ω and a nominal intrinsic delay of ps. The targeted clock
speed is 1Ghz. The amount of variation of all the parameters
that are subjected to process variation has been set to an arbi-
trary value of ±20%. In other words, the minimum is set at 80%
of the nominal value and the maximum is set at 120% of the
nominal value for any interconnect or device parameter.

The results are tabulated in Tables (1-2). In Table 1, we see
that the PVR-UST/DME has a better performance in terms of
wirelength than the Zero Skew Tree routing (ZST) approach.
When compared to the UST/DME algorithm, the wirelengths
attained from PVR-UST/DME are longer for all three bench-
marks. It is easy to understand the cause of the increase. The
results obtained from the UST/DME algorithm [16] are based
on the fact that process variation is not considered; therefore the
safety margins δl and δu are set to zero. This results in larger
merging regions and they become closer to each other. There-
fore a shorter wirelength can be obtained. In Table (2), results
with buffer insertion is presented.

6.1 Monte Carlo Simulations
To truly evaluate the quality of our solution and to justify the
necessity to consider process variations, we performed Monte
Carlo HSPICE simulations on the constructed clock trees. In
these experiments, the constructed tree (maintaing the tree topol-
ogy) is fed into the simulator and wire widths are assigned to all
the tree branches. The assignment of wire widths follows a nor-
mal distribution that has a mean of wnom and a standard deviation
that corresponds to wmax and wmin at the ±3σ point. The skews
between all pairs of sinks are evaluated based on this width as-
signment using HSPICE and are compared with the given skew
constraints. If the skew between any pair of sinks skew violates
its corresponding skew constraint, the tree is considered to be
faulty. For each clock tree, 10000 simulations are performed
with a new set of width assigment in each run to determine the
yield. The yield is defined as the percentage of clock trees tested
in the simulations that meet the skew constraints under the pres-
ence of process variations.

To compare with the UST/DME approach, three clock trees
are constructed with safety margins (Eqns. (1) and (2) of 0ps,
150ps and 300ps. We assume an equal safety margin for δ l and
δu. Any value higher than 300ps would result in infeasible skew
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Table 1: Comparison of Wirelengths.
ZST *UST/DME PVR-UST/DME % %

Number Wire- Wire- Wire- Reduction Increase CPU
Circuit of clock length length length over over Time

pins µm µm µm ZST UST/DME (min:sec)
s1423 74 107277 89189 95844 10.6 7.5 0:15
s5378 179 176517 149391 156338 12.5 4.7 1:44
s15850 597 448599 355561 402153 10.4 13.1 15:17

*Please refer to Section 6 for more details

Table 3: Results of Monte Carlo Simulations.
% Yield % Yield % Yield % Yield
using using using using

Circuit UST/DME UST/DME UST/DME PVR-UST
δu = δl = 0ps δu = δl = 150ps δu = δl = 300ps /DME

s1423 100.00 100.00 100.00 100.00
s5378 8.90 19.25 38.51 97.48
s15850 0.00 0.00 0.00 94.32

schedules i.e., Gc with negative cycles. The results are tabulated
in Table 3.

From Table 3, we see that process variations can have a great
impact on yield. While smaller sized clock trees are more toler-
ant to process variations, process variations can seriously affect
large sized clock trees. In the UST/DME approach, if safety
margins are not set (set to 0ps), the algorithm takes full advan-
tage of the entire FSR of every merging region and tends to se-
lect the extreme limits of skew bounds to achieve shorter wire-
lengths. Therefore, it may be very sensitive to process varia-
tions. While increasing the safety margins seems to increase the
tolerance to process variations, if it is improperly specified, it
may be inadequate in reducing the effects of process variations.
This is because different tree topologies requires different safety
margins. In cases where the topology is not given, it is virtu-
ally impossible to determine an appropriate safety margin. With
buffers inserted, the yield decreases due to the addition of de-
vice variation (Table 2). Nevertheless, the yield of the proposed
PVR-UST/DME approach is still significantly higher than the
UST/DME approach.
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