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Abstract

Considering the voltage drop constraint over a distributed model for power/ground (P/G) network, we study the following two
problems for physical synthesis of sleep transistors: the min-area sleep transistor insertion (and sizing) (TIS) problem with respect
to a fixed P/G network and the simultaneous sleep transistor insertion and P/G network sizing (TIPGS) problem to minimize the
weighted area of sleep transistors and P/G networks. We show that all sleep transistor placement that disjoin gates from P/G pins
lead to a same minimum area in the TIS and TIPGS problems. We develop optimal algorithms to TIS and TIPGS problems
by modeling the circuit as a single current source, and then extend these algorithms to model the circuit as distributed current
sources. Compared with the best known sizing approach based on sequential linear programming, our algorithms reduce area by
up to 44.1% and 61.3% for TIS and TIPGS problems, respectively. To the best of our knowledge, it is the first in-depth study
on sleep transistor synthesis considering distributed model for P/G network.

I. INTRODUCTION

LEAKAGE current in nanometer devices has increased drastically due to reduction in threshold voltage, channel length
and gate oxide thickness [1]. In addition, an increasing number of modules in a highly integrated system are idle at any

given time. The high leakage devices and low activity rates both contribute to the growing significance of leakage power at the
system level. The Intel Pentium IV processors running at 3GHz already have an almost equal amount of leakage and dynamic
power [2]. To effectively reduce leakage power, sleep transistors (see Fig. 1) can be used to turn off supply voltage when
modules are idle. However, sleep transistors introduce extra supply voltage drop, increase device delay and reduce device noise
margin. Sleep transistors and power supply networks (in short, P/G networks) should be optimized to limit supply voltage
drop.
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Fig. 1. Illustration for sleep transistors. They are turned off when the circuit is idle.

Most existing work optimizes sleep transistors and P/G networks separately. The following recent papers have studied the
synthesis of sleep transistors for bounded supply voltage drop. In [3], the discharging pattern of the switching current is
exploited to reduce sleep transistor area. In [4], circuits are divided into clusters and each cluster is connected to a sleep
transistor. Bin-packing and set-partitioning are employed to reduce the simultaneous switching current in the clusters and
therefore reduce the sleep transistor area. Take advantage of the discharge balancing property of switching current, a mesh
of distributed sleep transistors is proposed to reduce the area of sleep transistors without clustering circuits for simultaneous
switching current reduction [5]. However, all above work assumes ideal or fixed P/G networks. [6] employs a distributed P/G
model and proposes two design styles to layout sleep transistors. They are inserted between each row of the standard cells and
P/G network in one style and form an external ring between all gates and external power supply pins in the other. But, there
is no automatic method presented in [6].

Analysis and optimization of P/G networks have also been studied without considering sleep transistors. Early work such
as [7] applies an integrated package-level and chip-level power bus model to analyze the on-chip power supply noise, i.e.,
supply voltage drop. Recent work [8] proposes a random walk method for P/G network analysis and [9] incorporates P/G noise
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into static timing analysis. The following papers minimize P/G area subject to P/G voltage drop. Assuming no correlation
between current sources modeling logic gates, [10] proposes a sequential linear programming formulation. To consider the
correlation between current sources, [11] introduces a nonlinear programming formulation, and [12] employs an sensitivity-
based optimization based on an event-driven P/G network simulator. To reduce the complexity of P/G optimization, hierarchical
approaches are employed in [12], [13]. Additionally, decoupling capacitance has been allocated to reduce P/G noise [14]. Among
these work, DC analysis with time-invariant current models is used in [9], [10], AC analysis with time-variant current models
is used in [7], [11], [12], [14], and both analysis models are used in [8]. However, none of the above work [3]- [14] considers
simultaneous optimization of sleep transistors and P/G networks in an automatic fashion.

In this paper, we study simultaneous optimization of sleep transistors and P/G networks. Specifically, we study two problems:
the sleep transistor insertion (and sizing) (TIS) problem with fixed P/G network, and simultaneous sleep transistor insertion
and P/G network sizing (TIPGS) problem that sizes both sleep transistors and P/G network wires. We show that the optimal
sleep transistor insertion solution to above two problems must form a cut-set that partitions the logic gates and power supply
pins into two disconnected graphs. Modeling the circuit as a single current source, we show that there exist multiple optimal
TIS or TIPGS solutions with a same area, which offers extra design flexibility to consider other constraints such as routing
congestion. We then extend this conclusion to the case modeling the circuit as distributed current sources.

The rest parts of the paper are organized as follows. We present modeling and problem formulations in Section II, and
solve the TIS and TIPGS problems in Section III and IV, respectively. We present the experiment results in Section V and
conclude the paper in Section VI.

II. MODELING AND PROBLEM FORMULATIONS

We summarize the notations frequently used in this paper in Table I. We will first discuss current model and P/G model
and then formulate the TIS and TIPGS problems.

ρp sheet resistance of P/G network.
ρs effective sheet resistance of sleep transistors.
Lp length of P/G branches.
Ls channel length of sleep transistors.
Wp width of P/G branches.
Ws channel width of sleep transistors.
rp resistance of P/G branches.
rs channel resistance of sleep transistors.
TP tapping points where gates connect to P/G network.
V upper bound of supply voltage drop. The default

value is 10% VDD.
Vp upper bound of voltage drop for P/G network.
Vs upper bound of voltage drop for sleep transistors.
CTP cut-set of P/G branches disconnecting all gates from

power supply.
−−→

CTP CTP with a uniform current direction.
Ap area of P/G network.
A∗

p optimal area of P/G network.
As area of sleep transistors.
A∗

s optimal area of sleep transistors.
TIS min-area sleep transistor insertion and sizing problem.
TIPGS simultaneous sleep transistor insertion and P/G

network sizing problem.
SSN single source network.
MSN multiple source network.

TABLE I
SUMMARY OF NOTATIONS.

A. Switching current model

The switching current of gates is time-variant and varies with respect to the input of the circuit. It has been modeled as
time-invariant variable to reduce the complexity in [9], [10], [15], [16]. In this paper, we model the switching current as
time-invariant maximum current and will extend to time-variant current model in the future.

B. P/G network model

P/G networks include power networks and ground networks. A power network can be transferred into a ground network by
reversing the directions of currents. Therefore, in this paper we only consider the ground network without loss of generality.
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The P/G network is modeled as an adjoint multi-port resistive network with one common-terminal, the ground(GND). The
resistance of P/G branches is

rp = ρp ·
Lp

Wp

, (1)

where ρp, Lp and Wp are the sheet resistance, length, and width of P/G branches, respectively. We illustrate the modeling of
P/G network in Fig. 2. As shown in the figure, gates are modeled as current sources and connect to the P/G network at tapping
points (TP). P/G branches are modeled as resistors.

TP

GND Pin

(a) (b)

GND Pin

GND PinCTP

Fig. 2. An example of P/G network modeling.

A resistive network can be represented as a graph Γ(V,B), where V is the vertex set and B is the branch set. Of particular
interests are special subsets of B called cut-set defined as follows.

Definition 1: A cut-set of Γ(V,B) is a set of branches C ⊆ B. Removing all branches in C causes the network unconnected,
but the removal of any proper subset of this set keeps the network connected. Among all cut-sets, those disconnecting all TP
from power supply pins are defined as TP cut-set and denoted as CTP (see Fig. 2 for an example).

C. Sleep transistor insertion and sizing

We formulate the sleep transistor insertion problem as follows.

Formulation 1: Given a fixed P/G network Γ(V,B), the min-area sleep transistor insertion (and sizing) problem (TIS)
finds a set of branches C ⊆ B to insert sleep transistors such that all paths between TP and power pins are disjointed,
the additional voltage drop introduced by inserted sleep transistors are bounded, and the total sleep transistor area is minimized.

Theorem 1: The optimal solution to the TIS problem must be a CTP .
Proof: Assume S is a solution of TIS and S = CTP ∪ Be. For purpose of contradiction, we assume Be 6= Φ, i.e, there

exists at least one branch ce ∈ Be and one sleep transistor ste inserted on ce. Removing ste from ce decreases the resistance
of ce. According to Corollary 2.22 in [17], decreasing the resistance of one or more edges in a finite resistive network never
increases the effective resistance between any two vertexes. In other words, the effective resistance between any TP and GND
never increases. In turn, the voltage on any TP never increases and it still satisfies the voltage drop constraint if it does before
removing ste. I.e., removing ste results in another solution to TIS with smaller area than S. So, S can not be an optimal
solution of TIS. This leads to a contradiction. Therefore, if S is a solution of TIS, S must be a CTP .
�

A CTP divides V into two disjointed subsets where all TP are in one set V1, and all external power pins in the other set
V2. Although the net current should flow from V1 to V2, the current directions in particular branches of CTP , however, could
be different. Intuitively, the non-uniform current directions in CTP result in a larger sleep transistor area for the given voltage
drop constraints. Therefore, we only consider a CTP with the uniform current direction from V1 to V2. This kind of CTP is
denoted as −−→

CTP in the rest of the paper.

D. Simultaneous sleep transistor insertion and P/G network sizing

Under a constant constraint for voltage drop over sleep transistors and P/G network, increasing the area of sleep transistors
reduces voltage drop over sleep transistors. This allows us to reduce area on P/G network with a constant bound on the overall
voltage drop, or vice versa. In this sense, there is a trade-off between the area of P/G network and that of sleep transistors. This
trade-off can be used to reduce the total chip area. For example, in a design with small number of metal layers, the routing
area may be the bottleneck to decide the size of the chip. In this case, budgeting a relatively large area to sleep transistors but
a small routing area to P/G network can reduce the total chip area.
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To provide a smooth trade-off between the area of P/G network and that of sleep transistors, we formulate the simultaneous
sleep transistor insertion and P/G network sizing problem as follows:

Formulation 2: Simultaneous sleep transistor insertion and P/G network sizing (TIPGS): Given P/G network topology and
voltage drop constraint over the P/G network with embedded sleep transistors, the TIPGS problem finds a −−→

CTP to insert
sleep transistors and determines the size of sleep transistors and P/G branches such that αAp + βAs is minimized, where α
and β are given constants, and Ap and As are the area of P/G network and sleep transistors, respectively.

III. TIS PROPERTIES AND ALGORITHMS

We first solve TIS on Single Source Network (SSN), where all gates are modeled as a single current source and then
extend the solution to Multiple Source Network (MSN), where gates are modeled as distributed current sources.

A. Single source network

SSN falls into the category of one-port two-terminal resistive network as shown in Fig. 3. The two terminals are TP and
ground(GND). In this network, driving-point impedance is defined as

R =
V

I
,

where V and I are the voltage and current between TP and GND, respectively. Regarding this network, TP is a single node
and we have:

C TP

GND

TP

−
+ V I

Fig. 3. Illustration of SSN .

Lemma 1: For an arbitrary −−→
CTP = {c1, c2, ..., ck} in a one-port two-terminal network Γ(V,B), if the resistance of the

resistor in each branch ci increases by ∆ri > 0, we have
1

∆R
≤

∑

−−→
CTP

1

∆ri

, (2)

where ∆R is the increase of the driving-point impedance.
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Fig. 4. Explanation of (3).

Proof: Suppose ii and vi are current and voltage drop for branch ci ∈ B in the network, respectively. By the law of the
conservation of the energy we have

I2R =
∑

B

i2i ri
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and
I2(R + ∆R) =

∑

B

i′2i ri +
∑

−−→
CTP

i′2i ∆ri,

where i′i is the current for branch ci after the increase of the resistance. According to Thomson’s principle1 [17],
∑

B

i′2i ri ≥
∑

B

i2i ri. (3)

We explain (3) in Fig. 4. The original network is shown in (a), where the currents on branches are ii. (b) is the network after
the increase of resistance ∆ri on −−→

CTP . Note that the currents on branches change to i′i. We build (c) by removing ∆ri from
(b) but keeping the currents i′i in each branch. One can see that (c) satisfies KCL equations but unnecessarily satisfies KVL
equations. According to Thomson’s principle, the power consumed on the resistors in (c) should be large or equal to that in
(a). Therefore, we can obtain (3). Consequently,

I2∆R ≥
∑

−−→
CT P

i′2i ∆ri. (4)

According to the arithmetic-geometric mean inequality, we have

(
∑

−−→
CT P

1

∆ri

)(
∑

−−→
CT P

i′2i ∆ri) ≥ (
∑

−−→
CTP

i′i)
2,

by expanding the two sides of the above inequality. Therefore, we can obtain

∑

−−→
CTP

1

∆ri

≥
(
∑

−−→
CT P

i′i)
2

∑

−−→
CTP

i′2i ∆ri

≥
I2

I2∆R

≥
1

∆R
.

�

Lemma 2: For an arbitrary −−→
CTP = {c1, c2, . . . , ck}, if the current on P/G branch ci is ii and

∑

−−→
CTP

1/∆ri is given, the
following conditions minimize ∆V on TP (the increase of voltage after increasing the resistance):

1/∆ri
∑

−−→
CTP

1/∆ri

=
ii
I

. (5)

and the minimum ∆V is
∆V =

I
∑

−−→
CT P

1/∆ri

. (6)

Proof: If the the current on ci is Ii and ∆ri satisfies

1/∆ri
∑

−−→
CTP

1/∆ri

=
Ii

I
, (7)

the current in the network remains unchanged after the increase of resistance in −−→
CTP . Therefore, we have

∆V =
I

∑

−−→
CT P

1/∆ri

. (8)

By Lemma 1, ∆V is minimized.
�

Because ∆ri is the resistance of the sleep transistor inserted at branch ci, Lemma 2 implies the following Lemma.

Lemma 3: All the sleep transistors have a same voltage drop in an optimal TIS solution.
Lemmas 1, 2 and 3 reveal the following solution to TIS in SSN .

1Thomson’s principle states that the network satisfying KCL and KVL equations simultaneously has a smaller or equal power consumption than the network
satisfying KCL only.
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Theorem 2: For any −−→
CTP in SSN , inserting sleep transistor into branch ci ∈

−−→
CTP with area of

Ai = ρs · L
2
s ·

ii

V − Vp

(9)

leads to an optimal solution for TIS, where ii is the current in ci, V is the voltage constraint on TP , and Vp is the voltage
on TP before the insertion of sleep transistors.

Proof: Let the width of the inserted sleep transistor STi be Wi and assume the length of the sleep transistors is uniform
and denoted as Ls. The total area of the inserted sleep transistors is

As = Ls ·
∑

−−→
CTP

Wi (10)

On the other hand, the channel resistance of the sleep transistor in the linear region can be expressed as

Ri
s = ρs ·

Ls

Wi

, (11)

where ρs is constant. Therefore, we have
As = ρs · L

2
s ·

∑

−−→
CTP

1

Ri
s

. (12)

Note that Ri
s is ∆ri in (2), by (2) and (12), we have

As ≥ ρs · L
2
s ·

1

∆R
(13)

≥ ρs · L
2
s ·

I

∆V
(14)

≥ ρs · L
2
s ·

I

V − Vp

. (15)

By Lemma 2, this minimum area for As of
ρs · L

2
s ·

I

V − Vp

(16)

can be achieved in any −−→
CTP by the following conditions:

Ai

As

=
Ii

I
, (17)

where Ai is the area of the sleep transistor inserted in branch ci. In other words, we have

Ai = ρs · L
2
s ·

Ii

V − Vp

. (18)

�

Theorem 3: Any −−→
CTP leads to an optimal solution of TIS with the same area.

Proof: It can be directly derived from Theorem 2.
�

Note that Theorems 2 and 3 solve TIS optimally and indicate that the optimal solution of TIS is not unique. This design
freedom could be used to optimize for other design constraints such as routing congestion.

B. Multiple source network

MSN belongs to m-terminal network as shown in Fig. 5 with m − 1 nodes in TP . Similar to Lemma 1, we have

Hypothesis 1: For an arbitrary −−→
CTP = {c1, c2, ..., ck} in an m-terminal network, if the resistance of the resistor in branch

ci increases by ∆ri > 0, then
m−1
∑

i=1

Ii

∆Vi

≤

k
∑

i=1

1

∆ri

, (19)

where Ii is the current source between terminal i and GND, and ∆Vi is the increase of voltage at terminal i.

TIS of MSN can be solved based on Hypothesis 1. By Hypothesis 1, we have
m−1
∑

i=1

Ii

V − vp,i

≤

k
∑

i=1

1

rs,i

, (20)
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C TP
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GND

m−1V
I m−1

Fig. 5. Illustration of MSN .

where V is the voltage drop constraint on TP , Ii is the current on TPi, vp,i is the voltage on TPi with no sleep transistors
inserted, and rs,i is the resistance of sleep transistors. Similar to Theorem 2 in SSN , we have

As ≥ ρs · L
2
s ·

m−1
∑

i=1

Ii

V − vp,i

. (21)

The right-hand side of (21) is the lower bound on the area of sleep transistors in MSN . One way to achieve the minimum
area is to find a separable −−→

CTP , which is defined as follows.

Definition 2: A −−→
CTP is separable if it can be partitioned to m − 1 subset −−→

CTP

(1)
, · · · , −−→CTP

(m−1)
such that 1) For any

1 ≤ i, j ≤ m − 1, −−→CTP

(i)
∩
−−→
CTP

(j)
= Φ. 2) Each subset −−→CTP

(i)
is a −−→

CTP for TP i.

The simplest separable −−→
CTP is to use all P/G branches directly connected to a current source as −−→

CTP

(i)
.

Hypothesis 1 will be verified experimentally in Section V. Assuming a valid Hypothesis 1, we present an algorithm for
the TIS problem (see figure 6) as follows: A separable −−→

CTP is first obtained and then for each −−→
CTP

(t)
sleep transistors are

inserted according to Theorem 2.

TIS algorithm for MSN

1. Find a separable −−→
CTP = −−→

CTP

(1)
∪ · · · ∪

−−→
CTP

(m−1)
.

2. For each −−→
CTP

(t)

For each ci ∈
−−→
CTP

(t)
, insert sleep transistor with

Ai = ρs · L
2
s ·

ii

V −vp,t
,

where ii is the current on ci and vp,t is the voltage
on TPt before inserting sleep transistors.

Fig. 6. TIS algorithm for MSN .

IV. TIPGS PROPERTIES AND ALGORITHMS

As in Section III, we first solve TIPGS in SSN and then extend the solution to MSN in this section.

A. Single source network

Let Ap be the area of the P/G network, we have

Ap =
∑

B

Lp · Wp. (22)

To solve the TIPGS problem for SSN , we introduce the following lemmas first.

Lemma 4: If a min-area P/G network without sleep transistors satisfies voltage drop constraint Vp at tapping points, the
product of the minimal P/G area A∗

p and Vp is a constant. We define the constant product as

K∗

p = A∗

p · Vp. (23)
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Proof: Considering two arbitrary voltage drop constraint Vp
(1) and Vp

(2), for purpose of contradiction we assume

K∗

p
(1) = Vp

(1)
·
∑

i

Lpi
· W ∗

pi

(1)
, (24)

K∗

p
(2) = Vp

(2)
·
∑

i

Lpi
· W ∗

pi

(2)
, (25)

and
K∗

p
(1) > K∗

p
(2) (26)

Since the resistive network is linear, setting the width of wire pi to be

Wpi

(1′) =
Vp

(2)

Vp
(1)

· W ∗

pi

(2), (27)

the voltage drop on the tapping points are Vp
(1). By (26) and (27),

∑

i

Lpi
· Wpi

(1′) =
Vp

(2)

Vp
(1)

·
∑

i

Lpi
· W ∗

pi

(2)
(28)

<
∑

i

Lpi
· W ∗

pi

(1)
(29)

Which contradicts to the assumption that W ∗

pi

(1) is the optimal solution. Therefore,

K∗

p
(1) ≤ K∗

p
(2). (30)

Similarly, we can prove that
K∗

p
(2) ≤ K∗

p
(1).

In other words,
K∗

p
(2) = K∗

p
(1).

I.e., K∗

p must be constant.
�

Lemma 4 indicates that A∗

p is reversely proportional to Vp and shows that the optimal sizing solution under a voltage drop
constraint Vp,1 can be extended to another voltage drop constraint Vp,2 by scaling the wire widths of all P/G grids using the
ratio of Vp,1/Vp,2. Similar to Lemma 4, we have the following lemma for sleep transistors.

Lemma 5: For a given P/G network, we assume that sleep transistors inserted at an arbitrary −−→
CTP have a voltage drop equal

to or below Vs. The product of the minimum sleep transistor area A∗

s and Vs is a constant. We define the constant product as

K∗

s = A∗

s · Vs. (31)
Proof: According to (15), the minimum As should be

A∗

s = ρs · L
2
s ·

I

Vs

. (32)

Therefore

K∗

s = A∗

s · Vs (33)
= ρs · L

2
s · I (34)

is constant.
�

Lemma 5 indicates the same property for sleep transistors as Lemma 4 for P/G network.
With a total voltage drop V over P/G network and sleep transistors, we denote the voltage drop constraint on sleep

transistors as Vs and the voltage drop constraint on P/G network by removing sleep transistors as Vp.

Lemma 6: Given the voltage drop constraint on the TP in SSN as V , we have

αAp + βAs ≥
(
√

αK∗

p +
√

βK∗

s )2

V
. (35)

In other words, (35) provides a lower bound on the weighted area of P/G network and sleep transistors.
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Proof: According to Lemma 4 and 5, we have

αAp + βAs ≥
αK∗

p

Vp

+
βK∗

s

Vs

, (36)

where
Vp + Vs = V . (37)

Because

(Vp + Vs) · (
αK∗

p

Vp

+
βK∗

s

Vs

) = αK∗

p + βK∗

s + αK∗

p

Vs

Vp

+ βK∗

s

Vp

Vs

(38)

≥ αK∗

p + βK∗

s + 2
√

αK∗

p · βK∗

s (39)

= (
√

αK∗

p +
√

βK∗

s )2 (40)

Therefore
αAp + βAs ≥

(
√

αK∗

p +
√

βK∗

s )2

V
.

�

Theorem 4: In an optimal TIPGS, V ∗

s and V ∗

p must be
√

βK∗

s
√

αK∗

p +
√

βK∗

s

· V , (41)

and
√

αK∗

p
√

αK∗

p +
√

βK∗

s

· V , (42)

respectively (note that TP is a single node in TIPGS).
Proof: Obviously, the conditions to make (40) valid are:

V ∗

s =

√

βK∗

s
√

αK∗

p +
√

βK∗

s

· V , (43)

and
V ∗

p =

√

αK∗

p
√

αK∗

p +
√

βK∗

s

· V . (44)

�

Theorem 5: Inserting sleep transistors at any −−→
CTP leads to optimal TIPGS solutions with the same weighted sum of P/G

network and sleep transistor area.
Proof: This is a direct conclusion from Theorem 4.

�

Theorem 4 is a necessary condition to minimize the weighted sum of P/G network and sleep transistor area. To make
it sufficient, additionally we need to (i) optimally size P/G network to minimize Ap under the voltage drop constraint V ∗

p

determined by (42) and (ii) follow the solution of TIS to insert sleep transistors under the voltage drop constraint V ∗

s

determined by (41).

B. Multiple source network

Similar to SSN , K∗

p and K∗

s can be defined for MSN . Then, the counterpart of Lemma 6 is presented as follows.
Hypothesis 2: Given the voltage drop constraint on TP in MSN as V , we have

αAp + βAs ≥
(
√

αK∗

p +
√

βK∗

s )2

V
. (45)

In other words, (45) provides a lower bound on the weighted area of P/G network and sleep transistors in MSN .
If Hypothesis 2 holds, Theorem 4 and 5 hold for MSN , too. Therefore, an TIPGS algorithm for MSN can be developed

as in Fig. 7. We first determine V ∗

s and (41) and (42), respectively, and then size P/G network and sleep transistors separately.

However, no algorithm has been proposed in the literature to optimally size P/G network (step 2 in Fig. 7). Nevertheless, we
can minimize αAp + βAs based on the best known algorithm to size P/G network and sequential linear programming (SLP)
from [10] is used in this paper.
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TIPGS algorithm for MSN

1. Determine V ∗

s and V ∗

p by (41) and (42), respectively.
2. Size P/G network under constraint V ∗

p to minimize Ap.
3. Insert and size sleep transistors under constraint V ∗

s using
TIS algorithm in Fig. 6.

Fig. 7. TIS algorithm for MSN .

V. EXPERIMENT

In this section, we first verify Hypotheses 1 and 2 by experiments, and then compare the Hypo1-based TIS algorithm in
Fig. 6 and Hypo2-based TIPGS algorithm in Fig. 7 with alternative algorithms based on sequential linear programming.

A. Verification of Hypothesis 1

For the purpose of verifying Hypothesis 1, we define effective area ratio for TIS as

EARTIS = (

m−1
∑

i=1

Ii

∆Vi

)/(

k
∑

i=1

1

∆ri

). (46)

where Ii, ∆Vi, and ∆ri are same as those in Hypothesis 1. If Hypothesis 1 holds, we have

EARTIS ≤ 1. (47)

To verify Hypothesis 1, we compute the EARTIS for nine mesh networks as shown in Table II under 100,000 random
solutions. For each solution, the value of current sources , the −−→

CTP , and the size of sleep transistors are randomly chosen, and
EARTIS is obtained by solving the networks with a linear solver integrated in SIS1.2 [18]. We report the computed EARTIS

in column 4 of Table II.

1 2 3 4 5
Max. EAR

Mesh # Node # Branches TIS TIPGS

3×3 16 24 1.00 0.79
5×5 25 60 1.00 0.68

10×10 121 220 0.96 0.89
20×20 441 840 1.00 0.96
30×30 961 1,860 0.97 0.97
40×40 1,681 3,280 0.98 0.89
60×60 3,721 7,320 0.97 0.93
80×80 6,561 12,960 0.97 1.00

100×100 10,201 20,200 0.96 0.96

TABLE II
RANDOM SOLUTIONS(100,000×) TO COMPUTE THE MAXIMUM EAR.

According to column 4 of Table II, it clearly shows that the maximum EARTIS values in all networks are equal to or less
than 1. This means that the solution of TIS by the algorithm in Fig. 6 has the smallest area among all these 100,000 random
solutions. This strongly indicates the correctness of Hypothesis 1.

B. Verification of Hypothesis 2

To verify Hypothesis 2, we define effective area ratio for TIPGS as

EARTIPGS = (
(
√

αK∗

p +
√

βK∗

s )2

V
)/(αAp + βAs). (48)

If Hypothesis 2 holds, we have
EARTIPGS ≤ 1. (49)

We compute the EARTIPGS for TIPGS in the same fashion as for TIS. For each circuit, we carry out 100,000× random
solutions to find the maximum EARTIPGS . However, in TIPGS K∗

p and K∗

s are needed to compute EARTIPGS . According
to Lemma 4,

K∗

p = A∗

p · Vp. (50)

Since A∗

p is unavailable in the experiments, we approximate K∗

p by

K∗

p = min
S

(Ap · Vp), (51)
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where S represents the set for all solutions. K∗

s is computed by

K∗

s = ρs · L
2
s ·

m−1
∑

i=1

Ii. (52)

We reported the computed EARTIPGS in column 5 of Table II. According to column 5 of Table II, the maximum EARTIPGS

is always less or equal to 1 among 100,000 random solutions for all networks. This clearly implies the correctness of Hypothesis
2.

C. Comparison between algorithms for TIS and TIPGS

Circuit # Block # GND SLP-based Hypo1-based
As(%) As(%)

apte 9 2 0.18 0.14 (-22.2%)
xerox 9 4 0.28 0.17 (-29.3%)

hp 10 3 0.25 0.14 (-44.0%)
a3 25 3 0.21 0.13 (-38.1%)

ami 33 3 0.19 0.13 (-31.2%)
playout 62 5 0.34 0.19 (-44.1%)

g2 241 4 0.15 0.10 (-33.3%)

TABLE III
COMPARISON BETWEEN SLP-BASED AND HYPO1-BASED ALGORITHM FOR TIS.

Circuit # Block # GND SLP-based (%) Hypo2-based (%)
Pin Ap As Weighted sum Ap As Weighted sum

apte 9 2 2.55 0.18 2.73 1.79 0.30 2.09 (-23.4%)
xerox 9 4 3.14 0.28 3.42 1.94 0.26 2.20 (-35.7%)

hp 10 3 2.31 0.25 2.56 1.20 0.31 1.51 (-41.0%)
a3 25 3 2.08 0.21 2.29 1.37 0.25 1.62 (-29.3%)

ami 33 3 1.88 0.19 2.07 0.90 0.19 1.09 (-47.3%)
playout 62 5 4.96 0.34 5.30 4.19 0.38 4.57 (-13.8%)

g2 241 4 3.67 0.15 3.82 1.35 0.13 1.48 (-61.3%)

TABLE IV
COMPARISON BETWEEN SLP-BASED AND HYPO2-BASED ALGORITHM FOR TIPGS.

1) Algorithms: We have revised the sequential linear programming algorithm proposed in [10] to solve TIPGS (denote as
SLP-based algorithm) as the baseline case for comparison. The sequential linear programming algorithm in [10] is employed
to size P/G network, where each branch of P/G network is modeled as a resistor. Because sleep transistors are also modeled
as resistors, we are able to modify [10] to size both the P/G network and sleep transistors simultaneously. Specifically, in the
SLP-based algorithm, we choose a separable −−→

CTP as close as possible to TP and minimize weighted area of P/G network and
sleep transistors.

In fact, the SLP-based algorithm provides a baseline case for comparison for both Hypo1-based algorithm to solve TIS
and Hypo2-based algorithm to solve TIPGS. Hypo1-based algorithm follows the exact steps in Fig. 6. The Hypo2-based
algorithm follows the steps in Fig. 7 but with minor modifications. Because there is no optimal algorithm available to minimize
Ap, we employ the SLP-based algorithm to obtain the “optimal” P/G network under given voltage drop constraints.

For all algorithms in the experiments, we have chosen the same separable −−→
CTP that is directly adjacent to the tapping points.

Theorem 3 and 5 indicate that all −−→CTP have the same optimal value for both TIS and TIPGS, but experiment results have
shown that this −−→

CTP produces a relatively good result for SLP-base algorithm. Therefore, the experiment setting is favorable
to the SLP-base algorithm.

2) Results: The SLP-based, Hypo1-based, and Hypo2-based algorithm have been applied to NCSU benchmarks [19].
Switching current is modeled as time-invariant and the current density is 300mA/mm2, which is similar to that of the
Alpha microprocessor in [20]. We assume the P/G pitch as 50µm and present Ap and As in the percentage of chip area.

To compare the SLP-based algorithm with the Hypo1-base algorithm, we first apply the SLP-based algorithm to find the
size of P/G network branches and the size of sleep transistors. Then, we fix the size of P/G network branches and re-size the
sleep transistors by using the Hypo1-base algorithm. We compare the total area of sleep transistors obtained by the SLP-based
algorithm and Hypo1-base algorithm in Table III. For TIS problem, we found that the Hypo1-base algorithm is consistently
better than the SLP-based algorithm and it can reduce the transistor area by up to 44.1%. As shown in Table IV for TIPGS



11

problem, the Hypo2-base algorithm reduces the total area significantly (up to 61.3%) with α and β being set as 1.0. Also, it
is observed in the experiment that SLP-based algorithm has a different area distribution among sleep transistors compared to
that calculated by Hypothesis 1. We believe this is the main reason that SLP-based algorithm introduces more area.

VI. DISCUSSION AND CONCLUSION

Under a distributed P/G network model, we have studied the sleep transistor insertion (and sizing) problem (TIS) and
simultaneous sleep transistor insertion and P/G sizing problem (TIPGS). We have developed effective algorithms to solve
these two problems by revealing the optimal solutions to them. Compared with the best known approach using sequential
linear programming, our algorithms reduce area by up to 44.1% and 61.3% for TIS and TIPGS, respectively. Our TIS and
TIPGS algorithms are extremely efficiently too, as all steps are based on closed-form formulas. We have shown that there
exist multiple optimal solutions with a same area to these problems. This offers extra design freedoms to consider other design
constraints such as routing congestion and the layout placement for gates.

In this paper, the time-invariant current model is assumed and current density constraint for P/G network is not considered.
In the future, we intend to extend our problem formulations and algorithms to time-variant current model and include the
current density constraint in our study.
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