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ABSTRACT
This paper studies microprocessor floorplanning consider-
ing thermal and throughput optimization. We first develop
a stochastic heat diffusion model taking into account the ap-
plication dependent power load for thermal analysis. Then,
we design the floorplanning algorithm based on this model.
Experimental results show that, compared with the deter-
ministic heat diffusion model, our model obtains up to 3.2oC
reduction of the on-chip peak temperature, 1.25% reduc-
tion of the area, and 1.125x better CPI (cycles per instruc-
tion) performance, respectively. Compared with tempera-
ture aware floorplanning in the HOTSPOT tool set that
ignores interconnect pipelining, our algorithm is up to 27x
faster, reduces the peak temperature by up to 3oC, and also
reduces CPI significantly with a negligible area overhead.

1. INTRODUCTION
Traditional microprocessor floorplanning only considers

area and wire length. Several recent studies [1] [2] [3] have
optimized microprocessor floorplanning on area and CPI
considering interconnect pipelining. As devices keep shrink-
ing, the decreasing rate of power consumption in a chip
cannot catch up with the shrinking chip size. Therefore,
the impact of thermal effects should be considered in the
floorplanning phase, which has not been done in the above
studies.

The existing thermal modeling and thermal aware opti-
mization include: [4] used HOTSPOT [5] to model the whole
package as a thermal RC network and calculated the peak
steady-state temperature. [6] further considered transient
power and the dependency between power and CPI. One
major drawback of the aforementioned work is that the tem-
perature is calculated to evaluate each new floorplan, which
is time-consuming. [7] proposed a simple deterministic heat
diffusion model to avoid directly calculating temperature.
However, this model is too simplified to guarantee a good
solution.

In this paper, we develop an accurate, yet efficient thermal-
aware floorplanning considering the correlation between power
consumptions for different micro-architecture modules and
for different microprocessor applications. Instead of cal-
culating temperature directly during floorplanning, we de-
velop a stochastic heat diffusion model with consideration
of block geometry and the above power correlation. We
apply this model to the iterative-improvement-based floor-
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planning for thermal optimization, and also simultaneously
optimize throughput using the trajectory piecewise linear
model (TPWL) developed in [2].

The rest of this paper is organized as follows. Section 2
introduces the background of floorplanning, microprocessor
performance and the relation between power and temper-
ature. Section 3 reviews the deterministic heat diffusion
model, points out its shortcomings and then presents our
stochastic heat diffusion model. Section 4 summarizes the
experimental results. We conclude in Section 5 and the
details of this paper is included in a technical report at
http://eda.ee.ucla.edu [8].

2. PROBLEM FORMULATION

2.1 Floorplanning
The objective function in our floorplan algorithm consists

of area, CPI, and thermal effect as follows.

Warea · Area

Areanorm
+ WCPI · CPI

CPInorm
+

Wthermal · thermal

thermalnorm
(1)

where Warea, WCPI , and Wthermal are the weights for corre-
sponding constraints. Areanorm, CPInorm, and thermalnorm

are terms for normalization. Most current floorplanning
solvers are based on simulated annealing (SA) algorithm [9]
[10], which is also used in this paper.

2.2 Microprocessor Performance
Due to the increasing clock rate, interconnect delay may

become longer than one clock cycle. In this case, intercon-
nect pipelining is a must and it affects CPI. However, CPI
with interconnect pipelining obtained by micro-architecture
level simulation is time-consuming. Here, we apply efficient
TPWL model from [2].

2.3 Power and Temperature
In this work, we assume the power is invariant over dif-

ferent floorplan for modules and different temperature, but
our work can be easily extended to consider leakage, tem-
perature, floorplanning interdependency [11].

3. STOCHASTIC THERMAL-AWARE
FLOORPLANNING

3.1 Deterministic Heat Diffusion Model



3.1.1 Deterministic model
According to [7], the heat diffusion between two adjacent

modules Mi and Mj can be represented as

h(Mi, Mj) = (PDi − PDj) · shared lengthij (2)

where PDi and PDj are the average power density over time,
shared lengthij is the shared length between Mi and Mj .

The total heat diffusion for module i is

Hi =
X

j adjacent to i

h(Mi, Mj) (3)

Although the heat diffusion model is a good representation
to estimate the lateral heat flow, this model is over simplified
since it ignores other factors described below.

3.1.2 Shortcomings
First of all, given a micro-architecture and a series of ap-

plications, power vectors over time for two modules may
be either positively or negatively correlated. Using average
power may underestimate the peak temperature for posi-
tively correlated modules as shown in Fig. 1.

Figure 1: Temporal correlation between M1 and M2, (a)

positively correlated, and (b) negatively correlated. M1 has

a higher transient temperature in (a) than in (b), although

the average power is same.

Second, the module next to the border of a die has extra
heat flow to the heat spreader or the ambient.

Third, the heat diffusion from some modules to the dead
space (shadow in Fig. 2) is much larger than that from one
module to another module as shown in Fig. 2.

Figure 2: Dead space effect: M1 has a lower temperature

in (a) than in (b)

Figure 3: M1 has a lower temperature in (b) since M3 and

M2 have same power density but M3 is larger than M2

Fourth, given four modules M1, M2, M3, and M4 with
power density PD1 > PD4 > PD2 = PD3 in Fig. 3, M1

may have a lower temperature with adjacency of M3 since
M1 can diffuse more heat to M3 than M2, which suggests
the heat diffusion should also consider the depth of the ad-
jacent module, as well. Considering this, we can predefine
a penetration window to enclose the target module. For
example, in Fig. 3 (a), M2 is inside the red window (dash
line), and we have to consider the area of M4 inside the red
window as well. Similarly, since M3 crosses the window, we
only consider the area of M3 inside the window. Details will
be described in the next section.

Finally, considering the hottest modules, just summing
their heat diffusion may not guarantee a good solution. We
should use the weighted sum of the heat flow for those
hottest modules to reduce peak temperature more effec-
tively.

3.2 Stochastic Modeling

3.2.1 Stochastic heat diffusion model
Based on the observations in Sub-section 3.1.2, we pro-

pose an accurate and efficient stochastic heat diffusion model
below. Given a micro-architecture floorplan with m mod-
ules, n dead spaces, and power vector Pi = [pi1, ..., piT ] over
T time steps for module Mi, 1 ≤ i ≤ m.

The mean power density PDi for module Mi is

PDi = E(PDi) =
1

Ai
· 1

T
·

TX

j=1

pij (4)

where Ai is the area for module Mi, PDi is the transient
power density vector, which equals Pi

Ai
. In this paper, E(X)

is the expectation value of vector X.
The power density covariance between any two modules

Mi and Mj is

cov(PDi, PDj) = E(PDi · PDj) − PDi · PDj (5)

Given x adjacent modules and y adjacent dead spaces,
and a penetration window size W × L, the heat diffusion
vector to the adjacent modules Hi adj and to the adjacent
dead spaces Hi dead for module Mi are defined as follows,
respectively.

Hi adj =

xX

j = 1

(PDi − PDj) · Lij (6)

Hi dead =

yX

j = 1

PDi · Cij (7)

where Lij is the shared length between Mi and Mj , Cij is
the shared length between Mi and dead space Nj

The heat diffusion vector to the border is

f(Bi) = PDi · Bi · Con lateral

Con adjacent
(8)

where Bi is the shared length between Mi and the border of
the die, Con lateral and Con adjacent are the unit lateral
conductance between the heat spreader and Mi and between
two adjacent modules, respectively, both of which can be
calculated according to [5].

The standard deviation of the total heat diffusion for mod-
ule Mi is

σi = sqrt(E((Hi adj + Hi dead + f(Bi))
2) −

(E(Hi adj + Hi dead + f(Bi)))
2) (9)



The stochastic heat diffusion model for Mi is

H̃i = E(Hi adj) + E(Hi dead) + E(f(Bi)) + 3 · σi (10)

where the first two terms are the mean heat diffusion to the
adjacent modules and dead space, respectively, the third
term is the mean heat diffusion to the lateral heat spreader,
and 3σi is the term for the correlation impact approximated
by Equation (9). The larger the standard deviation between
modules is, the smaller the correlation is.

If Nj or Mj are totally inside the penetration window, we
have to consider other modules which are partially inside
the window. Then PDj is modified to

PDj =

PK
k = 1

˜PDk · Dk · (K − k + 1)
Pk

k = 1 Dk · (K − k + 1)
(11)

where K is level number between the target block and the
window, the level contacting Mi is level 1 and the level con-
tacting the window is level K. ˜PDk is the average power
density in level k. Dk is the depth of each level k. In Fig.
4, the red window (dash line) defines the modules involved,
and the blue (slash) one defines the modules to calculate
modified PD1. The modified PD1 is derived from M1, M2,
and M3, and the first belongs to level 1 and the second and
the third belong to level 2. Also, the power density of level
1 ( ˜PD1) is just PD1 and the power density of level 2 ( ˜PD2)
is composed of PD2 and PD3.

Figure 4: Illustration of calculation of modified PDj

Considering Z potential hottest modules, the total stochas-
tic heat flow then becomes

Stochastic HeatDiff =

ZX

i = 1

Wi · H̃i (12)

where Wi is the weight proportional to PDi

3.2.2 Hierarchal clustering
We use K-mean clustering algorithm to find the right

number of potential hottest modules. In this paper, the
objective is to minimize variance V ar

V ar =
kX

i = 1

X

PDj∈Si

(|PDj − µi|)2 (13)

where PDj is power density of module Mj and µi is the av-
erage power density within cluster Si. We use a hierarchical
K-mean clustering to find the potential hottest modules.
First we set a threshold such as 30% of total modules as the
maximum number we have to consider. Then we run K-
mean to cluster modules into two clusters and perform the
same procedure to the cluster with the higher power den-
sity. The above recursive procedure stops when the num-
ber of modules in the recursively refined cluster with the
higher power density is less than the threshold. Using this

hierarchical method, we can find the optimal number to be
considered in the calculation of total heat diffusion.

3.2.3 New objective function
For the new objective function, we replace the term thermal

in Equation (1) by Stochastic HeatDiff , which is calcu-
lated from Sub-section 3.2.1 and Sub-section 3.2.2.

4. NUMERICAL EXPERIMENTS

4.1 Experiment Setting
Similar to [2], we assume two SuperScalar processors for

both 90nm and 65nm technologies. The settings are shown
in Table 1. We treat the blocks as soft and the aspect ratio
is between 0.33 and 3 and L2 is partition into three modules.

Table 1: Settings in 90nm and 65nm technology.
90nm 65nm

Issue Width 4 8
Die Area(mm2) 100 200

Die Thickness(mm) 0.5
Heat Spreader(mm2) 900 1600

Heat Sink(mm2) 2500 3600

We use PTscalar [11] to simulate the power consump-
tion for four integer applications bzip2, gcc, gzip, and mcf
and three floating applications art, equake, and mesa in
SPEC2000 [12]. With these power vectors, we calculate the
mean power density (w/mm2) and standard deviation for
each module.

1 Decode 2 Branch 3 RAT 4 RUU
5 LSQ 6 IALU1 7 IALU2 8 IALU3
9 IntReg 10 IL1 11 DL1 12 IALU4
13 FPAdd 14 FPMul 15 FPReg 16 L2 1
17 L2 2 18 L2 3

Figure 5: Temporal correlation matrix of power consump-

tion

Fig. 5 shows the correlation matrix for 90nm processor.
We can roughly partition all modules into three groups,
the first group is from Decode(1) to DL1(11), the second
is IALU4(12), which does not have strong correlation to any
module, and the last one is from FPAdd(13) to L2 right(18).
Modules in the same group are highly positive correlated and



the correlations between modules in the different groups are
either uncorrelated or negative correlated.

We use SA-based PARQUET [10] as our base floorplan
solver combined with the CPI model [2] and our stochastic
heat diffusion model and run the experiments on a Linux
workstation. After completing the whole flow with different
objectives, HOTSPOT [5] is used to calculate the temper-
ature for verification purposes only. For each objective, we
run ten iterations to acquire the best case and the average
case.

4.2 Comparison between Thermal Models
We compare our stochastic heat diffusion model (SHDM)

with [4], which calculates the maximal temperature for every
iteration in SA to estimate the cost for each new floorplan.
The objective function is area and thermal effect with weight
0.6 and 0.3, respectively. Table 2 summarizes the final re-
sult. From the table, SHDM can reduce Tmax by up to 3oC
(3.2%) with a 1.34% increase in the area. The above results
show our model is quite accurate while it is 27x faster for
90nm processor and 19x faster for 65nm processor.

Table 2: Comparison between our model and [4]
90nm 65nm

Tmax Area (WS) Time Tmax Area (WS) Time
(oC) (mm2)(%) (s) (oC) (mm2)(%) (s)

[4] 93 119 (4.7%) 2300 93.3 217 (4.3%) 2980
SHDM 90 121 (5.6%) 85 93.1 220 (5.8%) 155
impact -3.2% +1.34% 1/27x -0.2% +1.03% 1/19x

Table 3: Comparison of stochastic and deterministic heat

diffusion model between different objectives
90nm

Obj. CPI TmaxoC Area(mm2)WS(%)
Best Avg Best Avg Best Avg

AC 0.82 0.89 97.7 96.7 118.5(3.05) 122.4(6.89)
ACHd 0.99 1.00 92.0 92.2 122.0(6.67) 125.3(9.08)

+21.3% +12.4% -5.8% -4.7% +2.9% +2.3%
ACHs 0.88 0.95 88.8 88.9 121.1(6.10) 123.2(7.36)

+7.3% +7.2% -9.1% -8.1% +2.2% +0.0%

65nm

Obj. CPI TmaxoC Area(mm2)WS(%)
Best Avg Best Avg Best Avg

AC 0.73 0.77 102.8 105.6 217.8(4.37) 223.6(7.00)
ACHd 0.79 0.84 97.6 100.7 224.1(7.39) 221.5(6.42)

+8.3% +8.9% -5.0% -4.6% +2.9% -1.0%
ACHs 0.78 0.78 97.2 97.6 221.2(6.03) 223.0(6.98)

+6.6% +1.8% -5.4% -7.5 % +1.6% -0.0%

90nm 65nm

Obj. Time(s) AR Time(s) AR
Best Avg Best Avg

AC 212 1.10 1.08 483 1.01 1.08
ACHd 248 1.02 1.09 583 1.02 1.05
ACHs 298 1.00 1.06 634 1.04 1.02

4.3 Comparison between Different Objectives
In this section, we compare the thermal impact on the

floorplan with different objectives and we also compare the
results with [7]. We summarize the results in Table 3. Since
our model is stochastic, we denote our model with objec-
tives area, CPI, and heat diffusion as ACHs and [7] with
the same objectives as ACHd. The weight for area, CPI,
and heat diffusion is 0.6, 0.3, and 0.2, respectively, in the
objective function. We first compare the results with or
without considering thermal effect based on our stochastic
model. As shown in Table 3, considering the thermal effect
with objective AC in the best case, the maximal tempera-
ture is reduced by 9.1% from 97.7oC to 88.8oC for 90nm and
by 5.4% from 102.75oC to 97.2oC for 65nm with negligible
area overhead and increase of CPI up to 7.31%. Clearly,

there is a trade-off between lowering the temperature and
reducing CPI.

The work in [7], produced up to 2.9% area overhead and
up to 21.3% increase of CPI with similar or less temperature
reduction compared with our model, which shows that ours
is more accurate and robust. Although our runtime is longer
than that in [7], since the run time is just less than a few
minutes, it does not have much practical impact.

5. CONCLUSIONS
We have proposed a stochastic thermal-aware floorplan-

ning with consideration of micro-architecture level through-
put optimization. First, we have convincingly shown that
there are correlations between power for modules over differ-
ent microprocessor applications. Second, considering dead
space, border effect, and the geometry of modules, we have
developed a stochastic heat diffusion model and implemented
this model on microprocessor floorplanning. Compared with
the existing floorplanning using deterministic heat diffusion
model, our model obtains up to 3.2oC reduction of the on-
chip peak temperature, 1.25% reduction of the area, and
1.125x better CPI performance, respectively. Moreover, com-
pared with temperature aware floorplanning in the HOTSPOT
toolset that ignores interconnect pipelining, our algorithm
is up to 27x faster and reduces the peak temperature by up
to 3oC with a negligible area overhead.
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