

Prof. Lei He EE Department, UCLA LHE@ee.ucla.edu

Partially supported by NSF.

Outline

- Motivation for field programmability of dual-Vdd
- Circuit and architecture for Vdd programmability
- Device and architecture co-optimization
- Impact of Process variations
- References

FPGA Architecture Classes

Architecture Class	Logic Block	Interconnect
Class0 (baseline)	single-Vdd	single -Vdd
Class1	programmable dual-Vdd	programmable dual-Vdd, level converters in routing
Class2	programmable dual-Vdd	VddH and Vdd-gateable
Class3	programmable dual-Vdd	Class 1, but no level converters in routing

 High-Vt is applied to configuration SRAM cells for all the classes

Challenge of Device and Architecture Co-Optimization

 We consider the following architecture and device parameters during our co-optimization:

- Architecture parameters:
 - Cluster size (N)
 - LUT size (K)
- Device parameters:
 - Supply voltage (Vdd)
 - Threshold voltage (Vt)
- Hyper-architecture (hyper-arch) is the combination of the device and architecture parameters.
- Large number of hyper-arch combinations
- VPR and Psim are too slow to deal with such large number of experiments
- Need fast yet accurate power and delay estimation

Min-ED Hyper-Arch

Hyper-arch classes	Vdd (V)	CVt (V)	IVt (V)	(N, K)	ED (nJ·ns)	ED reduction %
Baseline	0.9	0.3	0.3	(8,4)	26.9	-
Homo-Vt	0.9	0.3	0.3	(6,7)	23.3	13.4
Hetero-Vt	0.9	0.2	0.25	(8,4)	21.4	20.5
Homo-Vt+G	0.9	0.25	0.25	(12,4)	11.1	58.9
Hetero-Vt+G	0.9	0.2	0.25	(8,4)	11	59.0

 To achieve the best energy and delay tradeoff, we find out the hyper-arch with the minimum energy and delay product (ED)

- Compared to the baseline, the min-ED hyper-arch of the conventional FPGA (Homo-Vt) reduces ED by 13.4%
- For the Hetero-Vt class, ED is reduced by 20.5%
- If power gating is applied, ED can be reduced by up to 59.0%

Dom-Archs under Different Device Settings

- For a given device setting architecture tuning changes delay and energy in a smaller range
- Device tuning has a much more impact on delay and energy

Models of Variations

- Source of variations
 - Threshold Voltage (V_{th}) due to doping variation
 - Effective channel length (L_{eff})
 - Oxide thickness (T_{ox})

Types of variations

- Die-to-die (global variations)
- Within-die (local variations)

Amount of variations

10% of nominal value as 3

Methodologies

v	Mea	un(W)	SD(%)			
(L_g, L_l)	(V_g, V_l)	(T_g, T_l)	M-C	Model	M-C	Model
(±3,0)	(±3,0)	(±3,0)	1.24	1.2	14	13
(±3,±1)	(±3,±1)	(±3,±1)	1.41	1.37	14	13
(±3,±2)	(±3,±2)	(±3,±2)	2.07	2	13	12

- A set of closed-form formula for leakage and timing variations
- Verified by Monte Carlo Simulation
 - 3% error for mean, and 1% error for standard deviation
- Integrated with Ptrace

Leakage Yield for Homo-Vt Class

ľ	FRS Vdd 0.80	V/Vt0.20V	7	Min ED Vdd0.90V/Vt0.30V				
Y (%)	Mean (W)	SD (%)	(N,K)	Y (%)	Mean (W)	SD (%)	(N,K)	
70	0.4	39	(6,5)	97	0.07	48	(6,4)	
68	0.5	40	(8,3)	97	0.08	48	(8,4)	
64	0.58	39	(10,3)	96	0.08	48	(10,4)	
43	0.56	34	(10,5)	88	0.11	49	(8,5)	
40	0.58	37	(3,6)	87	0.12	48	(3,6)	
39	0.62	53	(12,4)	86	0.12	49	(12,5)	
37	0.71	40	(8,6)	78	0.15	49	(6,6)	
37	0.78	39	(10,6)	76	0.16	49	(10,6)	
36	0.82	39	(12,6)	75	0.17	49	(12,6)	
25	1.32	46	(10,7)	68	0.25	49	(10,7)	
24	1.22	44	(12,7)	65	0.23	49	(12,7)	

- Device tuning can improve leakage yield by 39%
- Simultaneous device and architecture tuning can improve leakage yield by 73%

Leakage Yields for more Classes

			Homo -	Vt				Hete	ro-Vt				Н	omo-V	t+G	
(N,K)	Vdd	Vt	Y	Mean	SD	Vdd	CVt	IVt	Y	Mean	SD	Vdd	Vt	Y	Mean	SD
	(V)	(V)	(%)	(W)	(%)	(V)	(V)	(V)	(%)	(W)	(%)	(V)	(V)	(%)	(W)	(%)
(6,4)	0.9	0.3	97	0.07	48	0.9	0.3	0.35	99	0.06	46	0.9	0.3	99	0.04	48
(8,4)	0.9	0.3	97	0.08	48	0.9	0.3	0.35	99	0.06	46	0.9	0.3	99	0.04	48
(10,4)	0.9	0.3	96	0.08	48	0.9	0.3	0.35	98	0.06	46	0.9	0.3	99	0.04	48
(12,4)	0.9	0.3	89	0.11	49	0.9	0.3	0.35	96	0.08	45	0.9	0.3	99	0.05	48
(6,5)	0.9	0.3	96	0.08	49	0.9	0.3	0.35	98	0.06	46	0.9	0.3	99	0.05	48
(8,5)	0.9	0.3	88	0.11	49	0.9	0.3	0.35	95	0.08	46	0.9	0.3	98	0.05	48
(10,5)	0.9	0.3	87	0.11	49	0.9	0.3	0.35	95	0.08	46	0.9	0.3	98	0.05	48
(6,6)	0.9	0.3	78	0.15	49	0.9	0.3	0.35	86	0.11	46	0.9	0.3	92	0.08	48
(8,6)	0.9	0.3	78	0.15	49	0.9	0.3	0.35	85	0.12	46	0.9	0.3	91	0.08	48
(6,7)	0.9	0.3	72	0.17	49	0.9	0.3	0.35	77	0.14	47	0.9	0.3	83	0.11	48
Avg	0.9	0.3	88	0.11	49	0.9	0.3	0.35	93	0.08	46	0.9	0.3	96	0.06	48

Power gate improves yield more than hetero -Vt

 LUT 4 is always best for leakage yield rate (as well as area and leakage energy)

Timing Yield for Hetero-Vt+G

	Y (1.1X) (%)	Y (1.1X) (%)	Mean (ns)
(6,4)	69	86	39.9
(8,4)	70	86	40.7
(10,4)	69	86	41.5
(12,4)	71	88	38.3
(6,5)	75	91	36.4
(8,5)	74	90	34.6
(10,5)	74	90	34.7
(6,6)	77	93	30.8
(8,6)	78	94	29.9
(6,7)	79	95	27.7
Avg	75	90	35.4

LUT 7 is the best for timing yield rate (and performance)
Same for other classes

Leakage and Timing Combined	Yield

	ITRS	Min-ED						
(N,K)	Homo-Vt	Homo-Vt	Hetero-Vt	Homo-Vt+G				
	Y(%)	Y(%)	Y(%)	Y(%)	Area Inc(%)			
(6,4)	71	83	83	86	18			
(8,4)	67	81	81	86	14			
(10,4)	65	81	81	86	17			
(12,4)	48	77	81	87	20			
(6,5)	79	85	84	90	14			
(8,5)	55	81	86	89	15			
(10,5)	55	81	86	89	19			
(6,6)	49	77	82	88	15			
(8,6)	49	75	80	88	16			
(6,7)	45	73	77	86	10			
Avg	58	79	82	87	16			

LUT 5 is always best for combined leakage-delay yield rate

- Field programmability is a must for dual-Vdd to obtain power reduction without performance loss
- Field programmability can be achieved with little SRAM increase by programming Vdd path (rather than signal path)
- Simultaneous device and architecture tuning obtains largest gain
- FPGA architectures are NOT equal in terms of parametric yield
 - In addition to area, performance and power

