Reducing Power in an FPGA via Computer-Aided Design

Steve Wilton University of British Columbia

Power Reduction via CAD

How to reduce power dissipation in an FPGA:

- Create power-aware CAD tools
- Create power efficient architectures
- Use process enhancements
- Some combination of the above

In this part of the tutorial: Power-aware CAD tools

Key point: We can save a significant amount of power without modifying the FPGA architecture at all

FPGA CAD Flow

A typical FPGA CAD flow:

Bitstream

We'll talk about each of these independently and then put them together

Technology Mapping

To make this power-aware:

- 1. Choose a cut for each node intelligently:
 - For nodes on the critical path, choose "highest" cut to optimize depth
 - For other nodes, prefer cuts that cut signals with low estimated activity values

Li et al (U. South Florida)

Technology Mapping

2. Reduce node duplication (Anderson, Najm, U. Toronto)

Necessary to find delay-optimal mapping, but bad for power:

- higher the depth, the less activity
- node duplication increases fan-out of fan-in nodes
 - the fan-in nodes have higher activity

Technology Mapping

Combine these ideas into a single algorithm:

Phase 1:

- Construct a set of K-feasible cuts for each node

Phase 2:

For each node:

- If the node is on the critical path

- Choose a cut that is "min-height"

- If there is more than one, use a cost function

- Otherwise

- Choose the cut based on the cost function

Technology Mapping Results:

	LUTs	Connections	Activity	Energy (nJ)
CutMap	2576	10746	0.330	2.18
EMap	2441	9705	0.323	2.01
% Diff	-5.2	-9.7	-2.1	-7.6

For Emap, most of the savings come from minimizing unnecessary node duplication.

Clustering

Summary:

Technology Mapping:	7.6%	
Clustering:	12.6%	
Placement:	3.0%	
Routing:	2.7%	

Together, we got 22.6% reduction in energy. This is with <u>no modifications</u> to the FPGA at all

- For the most part, these are orthogonal to the techniques you are seeing in the rest of the tutorial