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Abstract—The increased variability of process parameters
makes it important yet challenging to extract the statistical char-
acteristics and spatial correlation of process variation. Recent
progress in statistical static-timing analysis also makes the ex-
traction important for modern chip designs. Existing approaches
extract either only a deterministic component of spatial variation
or these approaches do not consider the actual difficulties in
computing a valid spatial-correlation function, ignoring the fact
that not every function and matrix can be used to describe the
spatial correlation. Applying mathematical theories from random
fields and convex analysis, we develop: 1) a robust technique to ex-
tract a valid spatial-correlation function by solving a constrained
nonlinear optimization problem and 2) a robust technique to
extract a valid spatial-correlation matrix by employing a modified
alternative-projection algorithm. Our novel techniques guarantee
to extract a valid spatial-correlation function and matrix from
measurement data, even if those measurements are affected by
unavoidable random noises. Experiment results, obtained from
data generated by a Monte Carlo model, confirm the accuracy and
robustness of our techniques and show that we are able to recover
the correlation function and matrix with very high accuracy even
in the presence of significant random noises.

Index Terms—Extraction, modeling, nearest correlation matrix,
process variation, spatial correlation, valid spatial correlation
function.

I. INTRODUCTION

AGGRESSIVE scaling down of transistors and intercon-
nects has resulted in miraculous achievements in chip

performance and functionality. This deep scaling of semicon-
ductor technology, however, has introduced the problem of
uncontrollable process variations. That is, we are unable to
make transistors and interconnects with accurately predictable
characteristics, let alone to make transistors the same on dif-
ferent copies of the same chip and even at different locations
of the same chip. Thus, the only way to cope with variability
is to take it into account during chip designs in order to
maximize manufacturing yield. This consensus is supported
by the development of statistical-static-timing-analysis (SSTA)
tools capable of predicting statistical timing yield [1]–[3] of
designed chips.

Modern SSTA tools can handle both interchip and intrachip
random variations of process and environmental parameters.
The interchip variations represent global variations that are the
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same for all devices on a given chip. The intrachip variations
represent variations of devices within the same chip. The
intrachip variations include spatially correlated variations and
purely independent or uncorrelated variations. Spatial correla-
tion describes the phenomenon that devices close to each other
are more likely to have similar characteristics than devices far
apart.

It is of importance to characterize process variation because
that information is essential for any attempts to analyze or
optimize designs statistically. For example, it is necessary to
know the variations of device parameters in order to build
the statistical delay models for both devices and interconnects,
which are the inputs for both SSTA and robust circuit tun-
ing. Recent SSTA techniques considering spatially correlated
parameters [1], [4], [5], however, assume that the required
spatial-correlation information given as a correlation matrix is
known a priori and is always valid, i.e., the spatial-correlation
matrix is always positive semidefinite. In fact, the only way to
obtain these variation characteristics is to extract them from
silicon measurements. Because of unavoidable measurement
errors, there is no guarantee that the so-obtained correlation
coefficients can form a valid correlation matrix.

To the best of our knowledge, no existing work has provided
a detailed technique to extract that information properly from
measurements except some preliminary exploration in [6]–[8].
The extraction of the deterministic component of Leff variation
was considered in detail in [9] for the 0.18-µm CMOS tech-
nology. But that publication ignored the random component of
spatial variations, justifying its approach by the fact that for the
0.18-µm CMOS-technology random variations were not signif-
icant. Another two recent publications [10], [11] limited their
consideration by simple computation of the spatial-correlation
coefficient that is a function of distance, which is either a linear
[10] or piecewise linear function [11]. There is no verification,
however, that the extracted correlation function was a valid-
correlation function, i.e., any correlation matrix generated from
this function must be positive semidefinite. In fact, theoreti-
cally, as we will show in this paper, neither linear nor piecewise
linear functions are valid spatial-correlation functions.

The major contribution of this paper is as follows. We
provide the theoretical foundations for extracting the valid
spatial-correlation information from silicon measurements. We
develop a robust technique to extract a valid spatial-correlation
function by solving a constrained nonlinear optimization prob-
lem. We also develop a robust technique to extract a valid
spatial-correlation matrix by employing a modified alternative-
projection algorithm. Our techniques are based upon the math-
ematical theories of random fields and convex analysis, and
it is guaranteed that the resulting correlation function and
correlation matrix are not only valid but also the closest ones
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to the underlying model even if the data are distorted by sig-
nificant measurement noises. Experiment results based upon a
Monte Carlo model confirm the accuracy and robustness of our
techniques. We achieve less than 10% errors for the extracted
process variations, even if the measurement noise is more than
100% of the total process variations. Because of the promising
results, we plan to apply our techniques to real wafer data to
extract the spatial-correlation information in the future.

The rest of this paper is organized as follows. We first
describe how to model process variations in Section II, then
present our problem formulations in Section III, and provide
algorithms to solve the problems in Sections IV and V, respec-
tively. Experiment results are presented in Section VI, and we
draw conclusions in Section VII.

II. PRELIMINARY

A. Process-Variation Classification

There are two orthogonal ways to classify process variations.
The first one is to classify the variations according to the scope
of their occurrence [13]–[15] as follows: 1) Die-to-die (D2D)
variation, which is also called interdie variation or between-die
variation, describes the variation that affect parameters in differ-
ent dies differently, but affect parameters within a die equally.
2) Within-die (WID) variation, which is also called intradie
variation, across-chip variation, onchip variation, spatial vari-
ation, or spatial correlation,1 describes the variation that affects
process parameters at different locations of the same die dif-
ferently. According to the scale of their causes, process vari-
ations can also be classified into the following two categories
[14], [16]: 1) Systematic variation describes the deterministic
portion of the variation. The physical cause of this variation
is usually those identifiable deterministic features or patterns.
For example, process conditions may vary randomly from wafer
to wafer, but they may have a portion that is deterministi-
cally shared for all dies within the wafer. Similarly, process
conditions may vary randomly from die to die, but a portion
of them may be deterministically shared within a die. For
example, interlayer dielectric-thickness variation is systematic
and depends on layout density. 2) Random variation describes
the variation that is independent of any other conditions. The
physical cause of this variation is usually not well understood,
and thus, it behaves more like a stochastic process. For example,
discrete doping placement randomly changes MOSFET thresh-
old voltage.

Both systematic and random variations need to be considered
to accurately model the impact of process variations on designs.
For example, the systematic-transistor channel-length variation
can be more than 50% of its overall variations, and its root of
causes includes through-pitch variation due to proximity (pitch)
effects, through-process variation due to defocus condition,
topography variation, mask variation, and etching [17]. Because
systematic variations usually can be modeled accurately once a

1Spatial variation or spatial correlation is used more frequently in recent
literature than the others.

circuit’s physical layout is known [9], [18], it can be corrected
via techniques such as optical proximity correction, which
postprocesses mask data so that the distortion of printed image
caused by proximity environment of the designed shapes can
be reduced [19]. In contrast, random variations are more like
a stochastic process, and there is no clear trend or pattern to
be predicted. It is the random process variation that permits us
to treat designs statistically, including statistical timing analysis
and optimization [1], [2].

We denote F as the measurable process parameter of interest,
which can be either a physical parameter, like channel length,
channel width, silicon oxide thickness, and wire thickness, or a
parametric quantity, such as gate delay and threshold voltage.2

Because of manufacturing-process variations, these process
parameters are no longer fixed values. We model the parameter
as a random variable, which is a complicated function of D2D
systematic and random variations, and WID systematic and
random variations. Conceptually, we can represent it as

F = h(ZD2D, sys, ZD2D, rnd, ZWID, sys, ZWID, rnd) (1)

where ZD2D, sys models the D2D systematic variation,
ZD2D, rnd models the D2D random variation, ZWID, sys models
the WID systematic variation, and ZWID, rnd models the WID
random variation. All variation components are further com-
plicated functions of the manufacturing process, the feature’s
relative location in the wafer, the feature’s relative location in
the die, and the feature’s local geometry patterns, to name just
a few.

B. Process-Variation Decomposition

Assuming that the impact of each variation component is
linear, we write (1) as

F = h0 + h1(ZD2D, sys) + h2(ZD2D, rnd)

+h3(ZWID, sys) + h4(ZWID, rnd) +Xr (2)

where h0 is a function that models the nominal value of F
under nominal manufacturing conditions without any variation;
h1, h2, h3, and h4 are the functions that model the impact
of respective variation component (i.e., ZD2D, sys, ZD2D, rnd,
ZWID, sys, and ZWID, rnd) on F , and Xr is a residual part that
models the purely independent random variation that is not
explainable by other variation components. The sum of h1 and
h2 reflects the fluctuation of F caused by D2D variation, and
the sum of h3 and h4 reflects the fluctuation of F caused by
WID variation. The sum of h1 and h3 reflects the fluctuation
of F caused by systematic variation, and the sum of h2 and h4

reflects the fluctuation of F caused by random variation

Fs =h1(ZD2D, sys) + h3(ZWID, sys)

Fr =h2(ZD2D, rnd) + h4(ZWID, rnd) +Xr

2Without loss of generality, we use one generic-process parameter F in
the following discussion. But, it is understood that the same techniques to be
presented can be easily extended to multiple-process parameters.
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Fig. 1. Grid-based spatial-correlation models. (a) Uniform grids. (b) Nonuni-
form grids.

where Fs models the systematic variation of F , while Fr is a
zero-mean random variable that models the random variation
of F . Hence, we have

F = h0 + Fs + Fr. (3)

The variance of F , σ2
F , is also called the overall chip variance.

III. SPATIAL-CORRELATION MODELING AND

PROBLEM FORMULATIONS

It has been observed that devices that are physically close to
each other are more likely to have similar characteristics than
devices that are far apart. This phenomenon is captured by the
modeling of spatial correlation. In the following, we introduce
two ways to model the spatial correlation, each of which has its
own value and applies to different process-variation scenarios.

A. Grid-Based Model of Spatial Correlation

1) Modeling: In this model, a set of grid cells is super-
imposed on top of the chip area, as shown in Fig. 1. It is
assumed that the difference between process parameters only
occurs for process parameters at different grid cells, and all
process parameters within the same grid cell will have the
same characteristics. In other words, the spatial correlation for
process parameters within one grid cell is always one, and it is
only interesting to know the spatial correlation between process
parameters at different grid cells.

The grid-based spatial-correlation model can be adapted to
handle more complicated variation scenarios by varying the
number, size, and shape of grid cells. For example, it is believed
that process control at chip center area is better than at chip
boundaries; hence, spatial correlation at the chip center area is
more uniform than at the boundaries. In this case, we can apply
the gridding scheme, as shown in Fig. 1(b), where the center
grid cells are coarser and less, while the boundary grid cells are
finer and more. Hence, the grid-based model can easily capture
the nonuniform spatial-correlation phenomena across the whole
chip. Moreover, the shape of grids can be also nonrectangular,
and for different process parameters, the gridding schemes may
also be different.3

3The optimal way of gridding, including grid numbers, grid shapes, and grid
sizes, can be decided under the guidance of good knowledge of manufacturing
process, which is not addressed in this paper.

If we associate every grid cell i in the chip area with a
random variable Fi and denote its variance as σ2

Fi
, then for the

parameter of interests at two different grid cells i and j, the
overall covariance between them is given by

cov(Fi, Fj) ≡ ρi,j · σFi
· σFj

(4)

where ρi,j is the overall process correlation between process
parameters at grid cell i and j.

For M number of chosen grid cells on the chip, we assume
the joint-spatial variation F = (F1, F2, . . . , FM )T follows a
multivariate Gaussian process with respect to their respec-
tive physical locations on the chip. To fully characterize the
M -dimensional Gaussian distribution, we need to know the
variance σ2

Fi
for all grid cells and their corresponding corre-

lation matrix Ω, as shown in (5)

Ω =



1 ρ1,2 ρ1,3 · · · ρ1,M

ρ1,2 1 ρ2,3 · · · ρ2,M

ρ1,3 ρ2,3 1 · · · ρ3,M

· ·
ρ1,M ρ2,M ρ3,M · · · 1


 . (5)

A valid correlation matrix must be positive semidefinite by its
definition [20].

2) Problem Formulation: Based on the grid-spatial-
correlation model, we propose the following problem
formulation.

Formulation 1: Extraction of Spatial-Correlation Matrix:
Given M number of grid cells on a chip to model the spatial
correlation, and noisy measurement data for the parameter of
interest at these grid cells, extract the overall process variation
at every grid cell σ2

Fi
and their corresponding spatial-correlation

matrixΩ, as shown in (5), so that it not only accurately captures
the underlying process-variation model, but the extracted corre-
lation matrix Ω is always positive semidefinite.

Extracting a valid correlation matrix is of practical signifi-
cance. For example, SSTA tools such as [1], which are based
upon principle-component analysis, require that the spatial-
correlation matrix must be valid and known a priori.

Even though the grid-based spatial-correlation model is in-
tuitively simple and easy to use, it has its own limitations.
The foremost one is the inherent accuracy-versus-efficiency
issue because of its fundamental assumption, which states that
all parameters of interests within one grid cell have the same
characteristics. To justify such an assumption, the size of each
grid cell cannot be too large, which in turn increases the total
number of grid cells required for modeling. From extraction
point of view, on the one hand, the more number of grid
cells, the more number of measurement sites within each chip,
hence, the more expensive to extract such a model. On the
other hand, the physical limitation of measurement devices also
prevents the grid-cell size from being too small; otherwise, the
measurement probe would not fit into one grid cell. Because of
these inherent limitations of the grid-based modeling approach,
in the next section, we propose a more flexible approach to
model spatial correlation.
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B. Gridless-Based Model of Spatial Correlation

1) Modeling: Because the systematic variation is more like
a deterministic variation [14], we lump it with the nominal
value h0, i.e.,

f0 = h0 + Fs (6)

where f0 is the mean value of F with the systematic variation
considered. The extraction of the mean value f0 is relatively
easy and is essentially done through averaging. For example, [9]
has presented a methodology to extract the intradie systematic
variation of critical dimension (CD or effective channel length)
by averaging out measurement of CD at different locations of
the same die.

In the following, we mainly concern ourselves in extracting
the random variation parts Fr. This is a more challenging
task, because simply taking averaging of measurements would
not give us any useful information on the zero-mean random-
process variations’ characteristics. Towards this end, we rewrite
the random variation Fr as

Fr = Xg +Xs +Xr

where Xg models the interchip global variation that affects all
features within the same chip equally but is different among
different chips obtained from different lots, wafers, or even
the same wafer. In other words,Xg = h2(ZD2D, rnd). Intrachip
spatial correlation is modeled by Xs, which is different for
features at different locations within the same chip. In other
words, Xs = h4(ZWID, rnd). Therefore, we have

F = f0 + Fr = f0 +Xg +Xs +Xr. (7)

The three types of random variations, Xg , Xs, and Xr,
are independent by definition. Hence, the variance of Fr is
given by

σ2
Fr
= σ2

G + σ
2
S + σ

2
R (8)

where σ2
G, σ2

S , and σ2
R are the variances of Xg , Xs, and Xr,

respectively. When the systematic variation is excluded, the
overall chip variance is equivalent to the random variance, i.e.,
σ2

F = σ
2
Fr

.
We model the random part of process variation Fr as a ho-

mogeneous and isotropic random field, whose formal definition
is introduced as follows.

Definition 1: Random Field is a real random function
F (x, y) of position (x, y) in the two-dimensional space R2.

Definition 2: Homogeneous and Isotropic Random Field
is a random field F (x, y) whose mean and variance are con-
stants and whose correlation function ρ (xi, xj , yi, and yj)
between any two points depends only on the distance v between
them, i.e.,

ρ(xi, xj , yi, yj) = ρ(vi,j) (9)

where vi,j =
√
(xi − xj)2 + (yi − yj)2.

If the spatial variation follows a homogeneous and isotropic
random field, then the same distance vi,j always corresponds

Fig. 2. Monotonically decreasing function that is not a valid spatial-
correlation function.

to the same ρ(vi,j), regardless of their locations. Therefore, for
simplicity, we denote ρ(vi,j) as ρ(v) in the following whenever
there is no ambiguity.

Note that the overall process variationF , as shown in (3), that
includes both systematic variation and random variation, does
not necessarily follow a homogeneous and isotropic random
field. But, if we only look at the random-variation part, then the
physical properties of the random-variation part Fr would be
very likely to follow a homogeneous and isotropic random field,
particularly, when the manufacturing process becomes mature
and stable.

2) Valid Spatial-Correlation Function: Formally, a valid
spatial-correlation function ρ(v) is a function such that the
correlation matrix generated from ρ(v) for arbitrary number
of points on the two-dimensional space is always positive
semidefinite.

In its simplest way, a valid spatial-correlation function should
satisfy the following necessary but not sufficient conditions4:

ρ(0) = 1 (10)

0 ≤ ρ(v) ≤ 1 (11)

ρ′(v) ≤ 0. (12)

Equations (10) and (11) are required by the definition of cor-
relation coefficient [20]. The interpretation of (12) is that the
spatial correlation is a monotonically decreasing function of
distance, i.e., as devices become further apart, the correlation
between them becomes smaller. The correlation distance v is
the distance beyond which the spatial correlation ρ(v) becomes
sufficient small and can be approximated as zero, i.e., ρ(v) ≈ 0
for all v ≥ v. For simplicity, in the following, when we describe
the correlation function, we only give the function form for any
v ∈ [0, v] whenever there is no ambiguity. For example, Fig. 2
shows a piecewise monotonically decreasing function, and the
function form is ρ(v) = −v2 + 1 for any v ∈ [0, v] with v = 1.

Contrary to the common wisdom, we show that not all
monotonically decreasing functions qualify for the spatial-
correlation function. For example, for the function as shown in

4In the context of process variation, we are only interested in the spatial
correlation that is nonnegative.
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Fig. 3. Any three points on the die.

Fig. 2, if we assume ρ(v) is a valid spatial-correlation function,
then the correlation matrix Ω between any three points on the
die as shown in Fig. 3 can be built as

Ω =


 1 ρ(d1) ρ(d3)
ρ(d1) 1 ρ(d2)
ρ(d3) ρ(d2) 1


 . (13)

If d1 = 31/32, d2 = 1/2, and d3 = 1/2, under ρ(v) =
−v2 + 1, we obtain a correlation matrix5

Ω =


 1 0.0615 0.75
0.0615 1 0.75
0.75 0.75 1


 . (14)

However, it is easy to show that the resulting matrix is not
a valid correlation matrix, as the smallest eigenvalue of this
matrix is −0.0303, implying that this matrix is not positive
semidefinite.

Recall that a matrix is a positive semidefinite matrix if and
only if its every principal submatrix has a nonnegative determi-
nant, whereas the principal submatrices are formed by remov-
ing row–column pairs from the original symmetric matrix [21].
Therefore, in order for Ω, in (13), to be a positive semidefinite
matrix, we require the following two equations to hold:

1− ρ(d1)2 ≥ 0 (15)

1 + 2ρ(d1)ρ(d2)ρ(d3) ≥ ρ(d1)2 + ρ(d2)2 + ρ(d3)2. (16)

Equation (15) is automatically satisfied following (11).
Therefore, we only need to check (16). Plugging the values of
d1 = 31/32, d2 = 1/2, and d3 = 1/2 with ρ(v) = −v2 + 1
into (16), we can see that it violates the constraints of (16).
This explains why function ρ(v) = −v2 + 1 is not a valid
spatial-correlation function.

This leads us to the question of “what type of monotonic
decreasing functions qualify to be a valid spatial-correlation
function?” To answer this question, we introduce the following
theorem.

Theorem 1: A necessary and sufficient condition for the
function ρ(v) to be a valid spatial-correlation function of a
homogeneous and isotropic random field is that it can be
represented in the form of

ρ(v) =

∞∫
0

J0(ωv)d (Φ(ω)) (17)

5The three points form a triangle, which imposes constraints on the possible
choices of d1, d2, and d3, i.e., d1 + d2 > d3, d2 + d3 > d1, and d1 +
d3 > d2.

where J0(t) is the Bessel function of order zero and Φ(ω) is
a real nondecreasing function on [0,∞) such that for some
nonnegative p

∞∫
0

dΦ(ω)
(1 + ω2)p

<∞. (18)

Proof: See [22] for the proof. �
Based on the above theorem, we derive the following two

corollaries.
Corollary 1: The monotonically decreasing exponential

function (19) and double exponential function (20), i.e.,

ρ(v) = exp(−bv) (19)

ρ(v) = exp(−b2v2) (20)

are valid spatial-correlation functions. The constant b is a
parameter that regulates the decaying rate of the correlation
function with respect to distance v. The correlation distance for
the two functions are infinity, i.e., v =∞.

Proof: By way of construction, we find that Φ(ω) = 1−
(1/
√
1 + ω2/b2) and Φ(ω) = 1− exp(−ω2/4b2) satisfy the

conditions as specified in Theorem 1. Plugging them into (17),
we obtain the corresponding correlation functions as (19) and
(20), respectively. In other words, the exponential function
(19) and double exponential function (20) are valid spatial-
correlation functions [23]. �

Corollary 2: The monotonically decreasing linear function
in the form of

ρ(v) = −av + b, ∀v ∈ [0, v] (21)

with v ≤ b/a is not a valid spatial-correlation function, where
a and b are two positive numbers.

Proof: To prove that (21) is not a valid spatial-correlation
function, all we need to do is to find a counter example, by
which a correlation matrix generated from it is not positive
semidefinite. One such counter example was given in [24],
which convincingly shows that the monotonically decreasing
linear function as shown in (21) is not a valid spatial-correlation
function. �

The implication of Corollary 2 is interesting to note, because
intuitively people may think that the monotonically decreasing
linear function is valid for spatial-correlation modeling, and the
work, as shown in [10], did apply it to real wafer data. But,
Corollary 2 tells us that such a practice is not correct.

In general, it is difficult to check whether an arbitrary func-
tion form is a valid correlation function [24]. For example,
for an arbitrary piecewise linear function, i.e, with arbitrary
number of linear segments and each with arbitrary slopes, we
cannot provide (and fail to find) any theoretical proof showing
whether or not it is valid. But, we at least can say for sure that
not all piecewise linear function is valid, because, as shown in
[24], for some particular piecewise linear function, the spatial-
correlation matrix generated from it is not valid. In the work of
[11], the authors proposed to use a piecewise linear function
to model the spatial-correlation function. However, there is
no guarantee that the so-obtained piecewise linear function is
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valid. The authors of [11] also did not provide any theoretical
justification for their approach.

3) Problem Formulation: When the spatial variation follows
a homogeneous and isotropic random field, we propose the
following second problem formulation.

Formulation 2: Extraction of Spatial-Correlation Func-
tion: Given noise-measurement data for the parameter of
interest with possible inconsistency, extract the interchip
global-variation component σ2

G, the intrachip spatial-variation
component σ2

S , the random-variation component σ2
R, and the

spatial-correlation function ρ(v), so that the extracted variation
components accurately capture the underlying variation model,
and the spatial-correlation function is always a valid correlation
function satisfying condition (17).

If the spatial variation is modeled as a homogeneous and
isotropic random field in a two-dimensional space R2, then for
the parameter of interest at arbitrary two different points, their
covariance is

cov(Fi, Fj) = cov(Xg,Xg) + cov(Xs,i,Xs,j) (22)

=σ2
G + ρ(v)σ

2
vS (23)

where ρ(v) is the spatial-correlation coefficient between two
locations that are v distance apart. In other words, we can
characterize the process variation by extracting the interchip
global variation σ2

G, intrachip spatial variation σ2
S , and the

correlation function ρ(v).
For the parameter of interest at two different locations with

distance of v, the overall process correlation between them is
thus given by

ρv ≡ cov(Fi, Fj)
σFi
σFj

(24)

=
σ2

G + ρ(v)σ
2
S

σ2
G + σ

2
S + σ

2
R

. (25)

Because the spatial correlation ρ(v) is a function of the dis-
tance v so is the overall process correlation ρv . As ρ(v) is
homogeneous and isotropic so is ρv . Because of the one-to-
one correspondence between spatial correlation ρ(v) and the
overall process correlation ρv , extracting the spatial-correlation
function ρ(v) is equivalent to extracting the overall process
correlation function ρv .

In Fig. 4, we show a possible curve for the overall correlation
ρv as a function of the distance v, as given by (25). According
to Fig. 4, the total correlation can be divided into three parts:
Part G is the correlation caused by the interchip global vari-
ation; part S is the correlation caused by the intrachip spatial
correlation; and part R is caused by the purely uncorrelated
random variation. We can see that the overall process corre-
lation ρv starts to settle at a constant value when the distance
becomes large enough (greater than the correlation distance v),
which means that even for devices from the same chip that are
far apart, there is still some correlation between them due to
their shared global variations. We can also see that there is a
sudden drop from one for ρv at distance zero. The cause for that
drop is the purely uncorrelated random variation, such that even

Fig. 4. Possible curve for the overall process correlation according to (25) in
the absence of measurement noise (theoretically ideal case).

for devices that are very close to each other, they are still not
perfectly correlated. Perfect correlation (ρv = 1) only occurs
when the two devices are in fact the same device.6

C. Extraction Setup

To experimentally characterize the process variation, we
obtain N samples of a chip, and choose M number of sites
on each chip, where measurement is conducted. The sites are
denoted as (xi, yi), and the distance between any two sites is
denoted as vi,j . We denote each measurement of the parameter
of interest F as fk,i for the kth chip on the ith site.

Note that in order to obtain these measurement data, it
usually requires careful design of test structures, placement of
test structures spanning a range of areas on the die, and mea-
surement procedures to collect data. Those details are beyond
the scope of this paper, and interested readers are referred to
[16] for more information.

In the following, we present techniques to solve the above
two problem formulations as discussed in Sections III-A and
III-B, respectively. We first solve the extraction of spatial-
correlation function in Section IV, then solve the extraction of
spatial-correlation matrix in Section V.

IV. EXTRACTION OF VALID

SPATIAL-CORRELATION FUNCTION

A. Global Variation Extraction

We treat each measurement of the parameter of interest F
as a sampling of the quantity in (7). Given N samples of
a chip and M number of measurement sites on each chip,
we group the measured data fk,i by their chip locations as
follows: fk,. = [fk,1, . . . , fk,M ] for k = 1 to N , or by their
site locations as follows: f.,i = [f1,i, . . . , fN,i] for i = 1 to M .
For better presentation, we denote the actual variance as σ2

6Note that a similar plot showing the trend of the overall process correlation
with respect to distances has also been empirically observed in [11] based on
wafer-scale measurements. But, the authors of [11] did not provide a theoretical
explanation of this phenomena as we do in this paper.
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with an upper case letter in subscript, like σ2
G for the global-

variation component, and denote the extracted variance as σ2

with a lower case letter in the subscript, like σ2
g for the extracted

global-variation component.
We approximate the overall chip variance σ2

F by computing
the unbiased sample variance [20] of fk,i as follows7:

σ2
F ≈ σ2

f =
1

M(N − 1)
∑

i

(∑
k

f2
k,i −

(
∑

k fk,i)
2

N

)
.

(26)

For all samples of the parameter of interest F within a
particular chip c, because the interchip global variation Xg

changes the value of parameter for all samples with the same
chip by the same amount, the overall within-chip variance is,
thus, given by

σ2
Fc
= σ2

S + σ
2
R. (27)

We estimate the overall within-chip variation by computing the
unbiased sample variance [20] of fk,. as follows8:

σ2
Fc

≈ σ2
fk
=

1
M − 1

(∑
i

f2
k,i −

(
∑

i fk,i)
2

M

)
. (28)

For different fk,., we may get different estimation of σ2
Fc

caused by inconsistent measurement. To improve the accuracy,
we estimate the overall within-chip variance by taking the
average value of σ2

fk
. We denote the resulting average value as

σ2
fc

≈ σ2
Fc

.
Knowing the estimation of the overall chip variance σ2

f and
the overall within-chip variance σ2

fc
, we extract the interchip

global variation by

σ2
G = σ

2
F − σ2

Fc
≈ σ2

g = σ
2
f − σ2

fc
. (29)

B. Spatial-Correlation Extraction

For any two different sets of f.,i and f.,j at two different sites
that are v distance apart, we estimate the covariance of Fi and
Fj by computing the unbiased sample covariance [20] of f.,i

and f.,j as follows:

cov(Fi, Fj) ≈ cov(f.,i, f.,j) (30)

=
∑

k fk,ifk,j

N − 1 −
∑

k fk,i

∑
k fk,j

N(N − 1) . (31)

For simplicity, we also denote cov(f.,i, f.,j) as cov(v) to
show that it is a function of two points that are v distance apart.

7The advantage of using the unbiased sample variance over sample variance
is that it will not over or under-estimate the true quantity. In practice, the true or
exact variance of a population is not known a priori and has to be computed
based on samples. Unbiased sample variance is good at estimating the true
variance in this case. In contrast, the sample variance merely measures the
variance for the given finite number of samples, hence, it is a biased estimator
of the true variance. For more information about unbiased sample variance and
variance, please refer to [20].

8Note, to use (28) for unbiased sample variance, we need to choose measure-
ment data from a subset of sites i whose spatial correlation is zero. Otherwise,
without using (28) and (29), we need to treat σ2

g as an unown in solving (33).

According to (23) and (29), we estimate the product of spatial
variation σ2

S and spatial correlation ρ(v) as follows:

σ2
S · ρ(v) = cov(Fi, Fj)− σ2

G ≈ cov(v)− σ2
g . (32)

Because ρ(v) is a function of v, we need to compute ρ(v)
for different pairs of sites with different distances in order to
obtain the full description of ρ(v). But, there are two challenges
in doing that: 1) We do not know the exact value of spatial
variation σ2

S . 2) Because of unavoidable measurement errors,
the data set computed as above may not be consistent. There-
fore, in the following, we propose a robust technique to find the
spatial-correlation function ρ(v) and σ2

S accurately. Moreover,
the resulting ρ(v) is guaranteed to be a valid spatial-correlation
function.

Given the data set [v, cov(v)] as computed from (31), we
formulate the robust spatial-variation extraction problem as the
following optimization problem:

min
Φ,σ2

s

:

∥∥∥∥∥∥σ2
s

∞∫
0

J0(ωv)d (Φ(ω))− cov(v) + σ2
g

∥∥∥∥∥∥
s.t. σ2

s ≤ σ2
fc
,

∞∫
0

dΦ(ω)
(1 + ω2)p

<∞. (33)

In other words, we find a valid spatial-correlation function
by solving a constrained nonlinear optimization problem, so
that the resulting spatial-correlation function minimizes the
total error with respect to measurement data. After obtaining
Φ(ω), we plug it into (17) to obtain the valid spatial-correlation
function ρ(v).

The previous problem formulation is very general and applies
to any real nondecreasing function Φ(ω). For practical use,
however, there is no need to enumerate all possible choices
of Φ(ω) in order to find the optimal ρ(v). Moreover, as we
have discussed in Section III-B2, it is also difficult to check
the validity of an arbitrary spatial-correlation function.

Therefore, to make the problem tractable, we can approxi-
mate the experimentally measured correlation function with a
function selected from a family of functions that are proved to
be valid spatial-correlation functions. To serve such a purpose,
it is sufficient to chose a family of functions Φ(ω) so that the
ρ(v) obtained from (17) contains a rich set of functions for the
purpose of modeling spatial correlation.

It has been shown in [23] that by choosing a proper family
function of Φ(ω), we obtain a very general family of spatial-
correlation functions

ρ(v) = 2
(
bv

2

)s−1

Ks−1(bv)Γ(s− 1)−1 (34)

where K is the modified Bessel function of the second kind,
Γ is the gamma function, and b and s are two real parameter
numbers that regulate the shape of the function. By varying
b and s, we obtain different spatial-correlation functions.
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Fig. 5. Correlation functions generated from (34).

For example, the exponential function, as shown in (17), can
be generated from (34) by choosing s = 3/2.

To show that the function of (34) indeed provides us a rich set
of correlation functions that suffice for our spatial-correlation
modeling, we plot the function of (34) under different para-
meters of b and s. Fig. 5 shows a few samples of correlation
functions generated from (34) by setting b to be 0.1, 1, and 10,
and varying s from 2 to 10 with a step size of two. From the
figure, it is shown that the correlation function (34) indeed can
generate a rich gamut of correlation functions for the purpose
of spatial-correlation modeling.

Without loss of generality, in the following, (34) will be used
as the candidate9 correlation function in (33). Moreover, two-
norm is used as a measure of the objective function in (33).
Therefore, we rewrite the optimization problem as given in (33)
as follows:

min
b,s,σ2

s

:
∑[

2σ2
s

(
bv

2

)s−1

Ks−1(bv)Γ(s−1)−1−cov(v)+σ2
g

]2

s.t. σ2
s ≤ σ2

fc
. (35)

This is a constrained nonlinear least square problem, and we
can solve it efficiently via any nonlinear least square technique
[25]. Note that problem (35) is not a convex problem in
general; hence, we cannot guarantee to find a global optimal
solution. But as this kind of least square minimization problem
is well-studied in the literature, good solvers are available to
find a solution with high quality. Our experimental results to
be presented also confirms this argument. Moreover, as all
nonlinear minimization engines are sensitive to the initial guess,
obtaining a high-quality solution sometimes may require us to
try different initial guesses.

9Function (34) is chosen over the exponential (19) or double exponential (20)
function as a candidate spatial-correlation function in this paper. The reason is
that it has more parameters (b and s) and contains the exponential function as
a special case (with s = 3/2). This gives us considerably more flexibility to
fit the data but still with reasonable complexity. Apparently, other choices of
candidate functions are possible. But, we have to be careful in assuring that
the candidate functions are valid spatial correlation function. As pointed out
by [24], it is always simpler and safer to use those “approved” valid spatial-
correlation functions, as testing the validity of an arbitrary function form (such
as linear and piecewise linear) is almost always time consuming and difficult.

Fig. 6. Algorithm for characterization of process variation.

After solving the above problem, we obtain the estimated
spatial-variation component σ2

S ≈ σ2
s and the parameter b and

s. By plugging b and s into (34), we obtain the estimated
spatial-correlation function ρ(v) ≈ ρ(v). Therefore, we have
obtained all information about the spatial-variation component:
both the variance of spatial variation and the spatial-correlation
function.

C. Overall Algorithm

The overall algorithm for characterizing the process variation
is summarized, as shown in Fig. 6.

We first extract the global-variation component σ2
g by using

(29). We then solve the nonlinear least square optimization
problem as defined in (35) to obtain the spatial-variation com-
ponent σ2

s and the parameter of b and s that define the spatial-
correlation function for a homogeneous and isotropic random
field, as shown in (34). According to (8), we extract the random-
variation component by using the following formula:

σ2
R = σ

2
F − σ2

G − σ2
S ≈ σ2

r = σ
2
f − σ2

g − σ2
s . (36)

By plugging all variation components into (25), we obtain the
overall process correlation at any distance.

V. EXTRACTION OF SPATIAL-CORRELATION MATRIX

A. Overall Algorithm

We are given measurement data with possible inconsistency
(e.g., missing measurement data and noisy measurement) for
a number of points on each chip and some samples of the
same chip. We extract the overall process spatial correlation as
follows.

We first estimate the covariance between any two points that
have measurements on the same set of N chips by (31). We
then estimate the variance of each point with N measurements
by computing its unbiased sample variance [20] as follows:

σ2
Fi

≈ σ2
fi
=

1
N − 1

(∑
k

f2
k,i −

(
∑

k fk,i)
2

N

)
. (37)

By plugging the estimated σ2
fi

and σ2
fj

and cov(f.,i, f.,j) from
(31) into (24), we obtain the estimated overall process correla-
tion coefficient

ρi,j =
cov(Fi, Fj)
σFi
σFj

≈ cov(f.,i, f.,j)
σfi
σfj

. (38)

For the given M points of interest, we have M(M − 1)/2
number of pairs of points Fi and Fj and the corresponding
M(M − 1)/2 number of estimated correlation coefficients ρi,j .
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Fig. 7. Algorithm for extracting a valid spatial-correlation matrix.

Putting all ρi,j into (5), we obtain the estimated overall process
spatial-correlation matrix A ≈ Ω.

Note that in order for the above estimated A to qualify
for a correlation matrix, it has to be a positive semidefinite
matrix. But, we cannot guarantee that such a property would
hold automatically for the resulting A due to the unreliable
(or inconsistent) measurement data. We solve this problem
by employing the modified alternative-projection algorithm
to be presented in the next section to robustly extract a valid
correlation matrix Ω from the unreliable measurement data.

The overall algorithm for extracting a valid spatial-
correlation matrix is summarized as follows in Fig. 7.

B. Modified Alternative-Projection Algorithm

The robust extraction of a consistent correlation matrix prob-
lem can be formulated as the following optimization problem.
For a given symmetrical matrix A with elements ai,j between
zero and one, find a correlation matrix Ω that is mostly close
to A. Mathematically, the closeness can be measured via the
distance between two matrices, i.e.,

min
Ω
: ‖A− Ω‖ (39)

s.t. : Ω ∈ correlation matrix. (40)

We use the weighted Frobenius norm to measure the distance
between two matrix. Recall that the Frobenius norm is defined
as ‖A‖2

F =
∑
a2

i,j . One of the weighted Frobenius norms is the
W -norm as defined by

‖A‖W = ‖W 1/2AW 1/2‖F (41)

where W is a symmetric positive definite matrix.
This problem is also called the nearest correlation matrix

problem [26], or the least squares covariance-adjustment prob-
lem [27]. As a proof of concept, we solve this problem by em-
ploying the modified alternative-projection algorithm proposed
in [26] because of its ease of implementation. The idea is to
iteratively project the symmetric matrix A onto two convex
sets alternatively, and at the end of the iteration, the final
projected matrix is the solution to the optimization problem as
defined in (39).

We first define the sets

U = {Y = Y T ∈ Rn×n : yii = 1} (42)

S = {Y = Y T ∈ Rn×n : Y ≥ 0} (43)

where the notation Y ≥ 0means that Y is positive semidefinite.
Our desired correlation matrix Ω, as shown in (39), is a matrix

Fig. 8. Modified alternative-projection algorithm.

that is in the intersection of U and S and has the shortest
distance to A in a weighted Frobenius norm. Since S and U
are both closed convex sets, so is their intersection. It thus
follows from standard results in approximation theory that the
minimum Ω in (39) is obtainable and unique.

Moreover, for a symmetric matrix A ∈ Rn×n with spectral
decomposition (or eigenvalue decomposition) A = QDQT,
where D = diag(λi) and Q is orthogonal, we introduce the
following notations:

A+ = Qdiag (max(λi, 0))QT. (44)

We denote PU (A) and PS(A) as the projections of A onto U
and S, respectively. Then, for a given W -norm, PU (A) can be
computed analytically via

PU (A) = A−W−1diag(θi)W−1 (45)

where θ = [θ1, . . . , θn]T is the solution of the linear system

(W−1 ◦W−1)θ = diag(A− I) (46)

where ◦ denotes the Hadamard product: A ◦B = (ai,jbi,j),
i.e., elementwise matrix multiplication.

For a given W -norm, PS(A) can also be computed analyti-
cally via

PS(A) =W−1/2
(
(W 1/2AW 1/2)+

)
W−1. (47)

When the W -norm is taken as the identity I , i.e., the un-
weighted Frobenius norm, PU (A) is simply as

PU (A) = (pij) (48)

with pij = aij for all i �= j and pij = 1 for all i = j. For
PS(A), it is simply as

PS(A) = A+ = Qdiag (max(λi, 0))QT. (49)

The following modified alternative-projection algorithm, as
shown in Fig. 8, can be used to solve the nearest correlation-
matrix problem, as defined in (39).

It has been proven that when k → ∞, both Xk and Yk con-
verge to the desired correlation matrix Ω. Moreover, it has been
theoretically shown that the convergence of the alternative-
projection algorithm is linear [26]. This conclusion has also
been experimentally verified in Section VI-B.
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Among many possible choices, the following convergence
condition can be used in Fig. 8 to stop the loop

max
{‖Xk −Xk−1‖

‖Xk‖ ,
‖Yk − Yk−1‖

‖Yk‖ ,
‖Yk −Xk‖

‖Yk‖
}

≤ ε

where ε is a small tolerance number (say ε = 10−8).

VI. EXPERIMENT RESULTS

We employ a Monte Carlo model of measurement to verify
the robustness and accuracy of our extraction algorithms in this
paper. One of the advantages of using Monte Carlo simulation
is that it allows us to simulate different variation scenarios
and measurement settings that are difficult to control in reality.
By comparing the extracted variation components with the
known variation components used in the Monte Carlo model,
we can quantitatively examine how robust and how accurate our
extraction algorithms are in the presence of different amount of
measurement errors. Such a study is useful, because it provides
us the confidence in applying the algorithms to real wafer
measurement.

A. Extraction of Valid Spatial-Correlation Function

In this paper, the Monte Carlo model is based on a valid cor-
relation function ρ(v) that follows a homogeneous and isotropic
random field, but with different variation amounts for the three
variation components (σ2

G, σ2
S , and σ2

R). We simulate the mea-
surement process by generating a set of measurement data from
N number of sample chips and M number of measurement
sites on each chip. To model the reality due to measurement
error, we add a Gaussian noise with different variation amounts
during the Monte Carlo sampling. By applying the algorithm, as
shown in Fig. 6, we extract the global-variation component σ2

g ,
random-variation component σ2

r , spatial-variation component
σ2

s , and parameter of b and s that define the spatial-correlation
function ρ(v) for a homogeneous and isotropic random field, as
shown in (34). By plugging all variation components into (25),
we obtain the overall process correlation at any distance. We
measure the accuracy of our extraction algorithm for the global
variation and spatial variation, but not the random variation as
it is indistinguishable from the added measurement noise. For
the global-variation component, the relative error is given by

err
(
σ2

G

)
=
σ2

g − σ2
G

σ2
G

. (50)

For the spatial-variation component, the relative error is
given by

err
(
σ2

S

)
=
σ2

s − σ2
S

σ2
S

. (51)

Moreover, for the spatial-correlation function, the relative error
is given by

err (ρ(v)) =

∥∥∥ρ(v)− ρ(v)∥∥∥
‖ρ(v)‖ . (52)

TABLE I
PROCESS-VARIATION EXTRACTION

From statistical theories, we know that if we have more
measurement data, we have more confidence in the accuracy
of statistics obtained from measurements. In reality, however,
measurement of chips is usually very time-consuming and
expensive. Therefore, it is desirable to attain similar accuracy
yet with as few number of measurement data as possible. A
robust extraction algorithm helps to achieve that goal.

We report experimental results in Table I, where N is the
number of sample chips,M is the number of measurement sites,
noise is the amount of random noise added into the Monte Carlo
model in terms of the total variation (σ2

G + σ
2
S + σ

2
R). The

product of N and M gives the total number of measurements.
According to Table I, we see that our algorithm is very

accurate in extracting different variation components, yet very
robust to different amount of random noise. For example, with
N = 2000, M = 60, and Noise = 10%, our extracted results
have about 0.4% error for the global variation, 1.9% error for
the spatial variation, and 2.0% error for the spatial-correlation
function. When the noise amount changes from 10% to 100%,
the accuracy of our results almost does not change at all.
This convincingly shows that our extraction algorithm is very
resilient to the measurement noise.

We further test the robustness of our algorithm by reducing
the number of chip samples N from 2000 to 1500, 1000,
and 500. We see that when there are reasonable number of
chip samples (1500 and 1000), our algorithm still gives quite
accurate results, and the maximum error for the global variation
is no more than 10%, and the maximum error in either the
spatial variation or spatial-correlation function is less than 5%.
When the chip samples drop to 500, we start to see a larger error
(but no more than 20%) in the extracted global variation. These
observations are expected, because according to the statistical
sampling theories, there is a lower bound on the number of
samples in order to obtain reasonably accurate statistics.

Moreover, we observe that because of the optimization
procedure used to extract the spatial variation and spatial-
correlation function, as shown in (35), the extraction of those
two parts is not as sensitive to the number of sample chips as
the global-variation extraction does.
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Fig. 9. Experiment on extracting the overall process correlation function.

We further fix the number of sample chips N to be 1000 and
vary the number of measurement sitesM on the chip from 60 to
50 and 40 to study how the accuracy of our algorithm changes.
From Table I, we see that our algorithm still gives quite accurate
results. When M changes from 60 to 40, we only see slight
increase of errors for all extracted variation components, and
none of them has more than 10% error.

We further plot one of the extracted overall process corre-
lation functions in Fig. 9, where the (red) triangle points are
the model data from the Monte Carlo model and the (blue)
dotted points are data from our measurements with noise added.
Obviously, the measurement data are noisy, not consistent,
and are quite difficult to use directly. But after applying our
algorithm, we obtain a very robust yet consistent results as
shown in the (black) continuous curve, which not only cap-
tures the underlying process model, but also provide consistent
extrapolation results for those data points that are not even
available from measurement.

B. Extraction of Valid Spatial-Correlation Matrix

In the second experiment, we obtain the measurement data
forM number of grids of interest on the chip based on a Monte
Carlo model with some intentionally generated inconsistency
(either through missing measurement data or adding Gaussian
noise). We want to obtain the overall process correlation matrix
for the M number of grids. We apply the algorithm, as shown
in Fig. 7, to achieve this goal.

We show experimental results in Table II. According to the
algorithm, as shown in Fig. 7, we compute individual pairwise
correlations and, then, put them together to obtain an estimated
correlation matrix A. Because of measurement noise, the re-
sulting correlation matrix may not be positive semidefinite as
illustrated by the second row in Table II, where the smallest
eigenvalue λleast of A is shown. For example, when we have
200 points, the measured correlation matrix has the smallest
eigenvalue −2.38. The negative eigenvalue indicates that the
measured correlation matrix is not positive semidefinite. On
the contrary, after applying the modified alternative project
algorithm, as shown in Fig. 8, we can always find a “closest”

TABLE II
OVERALL PROCESS-CORRELATION-MATRIX EXTRACTION

Fig. 10. Change of the least eigenvalue of Yk in the alternative-projection
algorithm, as shown in Fig. 7.

yet valid correlation matrix Ω. Moreover, the resulting matrix
Ω has all nonnegative eigenvalues, as shown in the third row
in Table II. Moreover, the difference between Ω and A is very
small (no more than 10%).

We also report the number of iterations needed for the
algorithm, as shown in Fig. 7, to converge. We find that the
algorithm converges reasonable fast, and it takes only 41 iter-
ations for the largest test case with M = 200. We further plot
the change of the least eigenvalue of Yk (which is negative)
in each iteration in Fig. 10, where the y axis is the log-plot
of the negative of the least eigenvalue of Yk, and y axis is
the iteration numbers. According to Fig. 10, we see that the
least eigenvalue of Yk are improved quickly in the first two
iterations, and then its improvement becomes relative stable in
the following iterations.

According to the definition of rate of convergence [28],
we have

lim
k

|λ(Yk+1)least|
|λ(Yk)least| = µ (53)

where the number µ is called the rate of convergence, and it
should be between zero and one. If µ = 0, then the sequence
of λ(Yk)least converges superlinearly. Otherwise, the sequence
converges linearly with the rate of convergence of µ. We plot
the estimated rate of convergence in each iteration in Fig. 11.
We observe that the alternative-projection algorithm indeed has
a linear convergence, which is in agreement with the theoretical
results given by [26]. The rate of convergence in this particular
example as shown in Fig. 11 is approximately 0.72.
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Fig. 11. Estimated rate of convergence of the alternative-projection algorithm,
as shown in Fig. 7.

In summary, our experiment results convincingly show that
our proposed extraction algorithms can accurately extract dif-
ferent variation components and are robust to the unavoidable
measurement noise. Moreover, it is guaranteed that our algo-
rithms always produce a valid spatial-correlation function or
spatial-correlation matrix, which warrants the validity of further
operations on these extracted variation data.

VII. CONCLUSION AND DISCUSSION

Robust extraction of statistical characteristics of process
parameters is essential to achieve the benefits provided by
statistical timing analysis and robust circuit optimization. In
this paper, we have developed a novel technique to robustly
extract the statistical characteristics of process variation from
experimental measurements. Our technique guarantees that
the resulting spatial-correlation function and spatial-correlation
matrix are always valid and are the closest to the measurement
data even if the data are inconsistent or distorted by some
measurement noise.

In this paper, we have assumed that the spatial correlation
follows a Gaussian random process, hence, only second-order
moments are enough to characterize the variation. In the future,
we will remove such an assumption and develop techniques
that apply to more general random processes. We also plan
to apply this technique to real wafer data and use the ex-
tracted process characteristics for robust mixed-signal-circuits
tuning with consideration of correlated process variations in the
future.
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