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Probabilistic Transitive-Closure Ordering and Its
Application on Variational Buffer Insertion

Jinjun Xiong and Lei He

Abstract—We propose a provably transitive-closure ordering rule with
theoretical foundations to prune suboptimal design solutions in the pres-
ence of process variations. As an example, this probabilistic ordering rule is
applied to develop an efficient variational buffering algorithm. Compared
to the conventional deterministic approach, variational buffering improves
the parametric timing yield by 15.7% on average. This transitive-closure
ordering rule may be leveraged to solve other computer-aided-design
problems considering process variation effects.

Index Terms—Buffering, closure, probabilistic ordering, process
variation, transitive ordering, variation metric comparison.

I. INTRODUCTION

As we move into the ultradeep submicrometer era, integrated cir-
cuits exhibit substantial performance variability because of manu-
facturing process variations. To combat this phenomenon, statistical
design analysis and optimization has thus become a major research
focus in recent years, such as in [1]–[3].

In the presence of process variation, the conventional design met-
rics, such as timing and power, are no longer a constant number
but a random variable. This makes it challenging to compare the
quality of different design solutions, as under different process space,
the same design may result in different design metrics. How do we
compare different metrics so that one solution is always better than
the other in the statistical sense? Is it always possible to compare two
solutions with its design metric represented as a distribution? Does
the variational comparison guarantee the transitive-closure property
as usual deterministic comparison? In other words, if solution one is
better than solution two, solution two is better than solution three, can
we say for sure that solution one is also better than solution three?
Although there are some works in literature [4]–[7] that have tried to
compare different variational solutions, they are all based on heuristics
and no definite answer is available yet.

The major contribution of this paper is to provide some theoretical
foundations to answer the above questions. Based on the normal
distribution assumption, we propose a probabilistic transitive-closure
ordering rule that makes variational evaluation of different solutions
possible. To show the usefulness of this rule, we apply it to the
variation-aware-buffer-insertion (vawBuf) problem, the same as in
[4] and [5], and show an efficient implementation of the algorithm.
Compared to the conventional deterministic buffering, our buffering
algorithm considering correlated process variations improves the para-
metric timing yield by 15.7%, on average. We believe, although not
verified, that this transitive-closure ordering rule can be leveraged to
solve other computer-aided-design problems in the presence of process
variation effects.
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II. PROBABILISTIC TRANSITIVE-CLOSURE ORDERING RULE

We observe that for deterministic ordering, the following two prop-
erties hold: 1) For any two given deterministic design metrics corre-
sponding to two different design solutions, there exists an ordering
property between them, i.e., T1 is either greater than T2 or less than T2.
2) There exists a transitive ordering property between different design
metrics, i.e., if T1 > T2 and T2 > T3, then T1 > T3.

The above two properties, however, are not necessarily true when
design metrics are given as random variables. But it is easy to see that
any ordering rule that ensures the above two properties can be used
to evaluate different solutions in the presence of process variations.
Toward this goal, we first extend the deterministic ordering relation
between T1 and T2 by enforcing

P (T1 > T2) = 1 (1)

i.e., solution T1 has 100% probability (almost always) to result in a
larger value when compared to solution T2. We have the following
lemma.
Lemma 1: Given T1, T2, and T3 as three correlated random vari-

ables with arbitrary distributions, ifP (T1 > T2)=1,P (T2 > T3)=1,
then P (T1 > T3) = 1.

Proof: Let X = T1 − T2 and Y = T2 − T3 and the joint
probability density function (JPDF) of X and Y be f(x, y).
As P (T1 > T2) = P (X > 0) =

∫ +∞
0

dx
∫ +∞
−∞ f(x, y)dy = 1, we

have
∫ 0

−∞ dx
∫ +∞
−∞ f(x, y)dy = 1 − ∫ +∞

0
dx
∫ +∞
−∞ f(x, y)dy = 0.

Because f(x, y) ≥ 0 for all x and y, we have f(x, y) = 0 for x < 0.
Similarly, from P (T2 > T3) = P (Y > 0) = 1, we have f(x, y) =

0 for y < 0. Therefore, we have
∫ +∞
0

dy
∫ +∞
0

f(x, y)dx = 1.

Then, P (T1 > T3)=P (X + Y > 0) =
∫ +∞
−∞ dy

∫ +∞
−y

f(x, y)dx=∫ +∞
0

dy
∫ +∞
−y

f(x, y)dx ≥ ∫ +∞
0

dy
∫ +∞
0

f(x, y)dx = 1. As we

know P (T1 > T3) ≤ 1, we must have P (T1 > T3) = 1. �
Lemma 1 shows that comparison between T1 and T2 based upon

P (T1 > T2) = 1 enforces the transitive ordering property between
solutions. However, for any two given solutions, it is not always pos-
sible to compare them. Moreover, in practice, such a 100% probability
requirement is too restrictive. Therefore, we relax such a requirement
so that T1 is said to be greater than T2 if the following condition holds:

P (T1 > T2) ≥ pT = 0.5. (2)

In other words, it is likely that T1 is greater than T2 in the
probabilistic sense. We have the following lemma.
Lemma 2: Given T1 and T2 as two correlated but different random

variables with arbitrary distributions, we have either P (T1 > T2) ≥
0.5 or P (T1 < T2) ≥ 0.5.

Proof: The proof follows directly from the fact that P (T1 >
T2) + P (T1 < T2) = 1. �

Lemma 2 shows that comparison based upon P (T1 > T2) ≥ 0.5
results in a proper ordering between two design metrics. But for
arbitrary distributions, we can show that it does not preserve the
transitive ordering property, in general. In the following, we prove
that when the random solutions follow a joint normal distribution, both
properties indeed hold simultaneously.
Lemma 3: Given T1, T2, and T3 as three correlated but different

random variables with joint normal distributions, if P (T1 > T2) ≥
0.5, P (T2 > T3) ≥ 0.5, then P (T1 > T3) ≥ 0.5.

Proof: According to [8], the probability of T1 > T2 is given by
P (T1 > T2) = Φ[(µ1 − µ2)/σ1,2], where Φ is the cumulative density
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function (CDF) of a standard normal distribution; µ1 and µ2 are the
mean values of T1 and T2, respectively. σ1,2 can be computed by

σ1,2 =
(
σ2

1 − 2 · ρ1,2σ1σ2 + σ2
2

)1/2
(3)

where σ2
1 and σ2

2 are variance of T1 and T2, respectively, and ρ1,2 is
the correlation coefficient of T1 and T2. Because any CDF function
is a nondecreasing function, and for the standard normal distribution
Φ(0) = 0.5, then we have Φ(x) ≥ 0.5 for any x ≥ 0. Therefore, to
have P (T1 > T2) ≥ 0.5 is equivalent to have (µ1 − µ2)/σ1,2 ≥ 0.
Because σ1,2 is positive according to (3), hence we have µ1 ≥ µ2.
Knowing P (T1 > T2) ≥ 0.5 and P (T2 > T3) ≥ 0.5, we have µ1 ≥
µ2 and µ2 ≥ µ3. Therefore, we have µ1 ≥ µ3, which is equivalent to
P (T1 > T3) ≥ 0.5. �

Next, we discuss the extension of the above transitive-closure order-
ing rule for other choices of pT . We have the following theorem which
proves that for pT between 0.5 and 1, the transitive ordering property
always holds.
Theorem 1: Given T1, T2, and T3 as three correlated but different

random variables with joint normal distributions, if P (T1 > T2) >
pT , P (T2 > T3) > pT , then P (T1 > T3) > pT for any pT between
0.5 and 1.

Proof: Define X = T1 − T2 and Y = T2 − T3, then we have
X + Y = T1 − T3. Therefore, P (T1 > T2) = P (X > 0), P (T2 >
T3) = P (Y > 0), and P (T1 > T3) = P (X + Y > 0). Because T1,
T2, and T3 are joint normal, then X and Y are also normal. Denote
the probability density function (pdf) of X as N(µx, σx) and the pdf
of Y as N(µy, σy), where µx and σx (similarly µy and σy) are the
mean and standard deviation for X (similarly Y ), respectively. Hence,
we can obtain the pdf of X + Y , which is also a normal distribution,
as N(µx + µy,

√
σ2

x + σ2
y + 2ρσxσy) with ρ being the correlation

coefficient between X and Y . We have

P (X > 0) = P
(
X − µx

σx

> −µx

σx

)
= 1 − Φ

(
−µx

σx

)
. (4)

According to the property of the standard normal distribution Φ(−t) =
1 − Φ(t) we have

P (T1 > T2) = P (X > 0) = Φ
(
µx

σx

)
. (5)

As we already know P (T1 > T2) > pT , we hence have Φ(µx/σx) >
pT . Since any CDF function is also a nondecreasing function, we have

µx

σx

> t (6)

where Φ(t) = pT . Moreover, for 0.5 ≤ pT ≤ 1, we have t > 0.
Similarly, we have

µy

σy

> t. (7)

From (6) and (7), we have

µx + µy > (σx + σy)t (8)

µx + µy√
σ2

x + σ2
y + 2ρσxσy

>
(σx + σy)t√

σ2
x + σ2

y + 2ρσxσy

. (9)

Because −1 ≤ ρ ≤ 1, it is easy to show that

(σx + σy)√
σ2

x + σ2
y + 2ρσxσy

≥ 1. (10)

As t > 0, by multiplying both sides of (10) by t > 0 and then combin-
ing it with (9), we have

µx + µy√
σ2

x + σy2 + 2ρσxσy

>
(σx + σy)t√

σ2
x + σy2 + 2ρσxσy

≥ t. (11)

Therefore, by the fact that Φ is a nondecreasing function and (11),
we finally have

P (T1 > T3) =P (X + Y > 0)

=Φ

(
µx + µy√

σ2
x + σ2

y + 2ρσxσy

)

>Φ(t) = pT . (12)

�

III. APPLICATION ON BUFFER INSERTION

The above transitive-closure ordering rule has many potential appli-
cations in design automation in the presence of process variation. As a
proof of concept, we illustrate its use by solving the vawBuf problem
[4]–[6].
Formulation 1—vawBuf Problem: Given a routing tree with para-

sitic capacitance and resistance, legal buffer positions, and required
arrival times and loading capacitances specified at all sinks, determine
the placement of buffers in the routing tree such that the probability of
the required arrival time at the root meeting the design specification
is maximized with the consideration of process variations for both
interconnect and devices. When there are multiple valid solutions at
the root, as a secondary objective, we choose the one with minimum
number of buffers.

Two figures-of-merit are associated with every legal buffer position
t in the tree, i.e., the downstream loading capacitance Ct and the
required arrival time Tt. We characterize a device (buffer) in terms of
its gate capacitance (Cb), intrinsic delay (Tb), and output resistance
(Rb). For a given interconnect segment, we characterize it by its
lumped resistance Rw and capacitance Cw.

As in [2], we employ the first-order canonical form to model
all characteristics of interests as a random variable. Take Tb as an
example, we have Tb = Tb0 + γT

b X , where Tb0 is the mean value
of Tb; X is a normalized random vector that includes the interchip
variation, spatial correlation, and uncorrelated random variation; γb is
the corresponding coefficient vector of X . All random variables in X
are mutually independent and follow a standard normal distribution,
i.e., X ∼ N(0, I). In the following, we denote Cb = Cb0 + ηT

b X ,
Rb = Rb0 + ζT

b X , Cw = Cw0 + ηT
wX , and Rw = Rw0 + ζT

wX .
We follow the same deterministic buffering algorithm (detBuf)

based on dynamic programming [9] to solve the vawBuf problem.
Under the Elmore delay model, at each node t, new solutions are gener-
ated by the following three key operations: 1) adding a wire; 2) adding
a buffer; and 3) merging two solutions. The atomic operations involved
are addition (subtraction), minimum, and multiplication.

It has been shown in block-based statistical timing analysis [1], [2]
that addition (subtraction) and minimum operations on two canonical
forms can be easily represented as a new canonical form. Hence, the
new Ct and Tt are still in canonical form when only those operations
are involved. But Tt after adding a wire or buffer also involves mul-
tiplication operation. In the following, we propose an approximation
technique that keeps Tt after multiplication operations still in the
first-order canonical form. For example, Tt after adding a wire for
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solution (Tn, Cn) with Tn = Tn0 + βTX and Cn = Cn0 + αT
nX is

computed by

Tt =Tn −Rw · Cn − 1

2
·Rw · Cw

=Tt0 + δT
t ·X −XT ΓX (13)

where Tt0 =Tn0 −Rw0 · Cn0 − (1/2) ·Rw0 · Cw0, δt =βn − Cn0 ·
ζw −Rw0 · αn − (1/2)(·Rw0 · ηw + Cw0 · ζw), and Γ = ζw · αT

n +
(1/2)ζw · ηT

w . It is obvious that Tt in (13) is not a canonical form
because of the quadratic term XT ΓX . To represent Tt as a canonical
form, we introduce the following theorems.
Theorem 2: Given random variables in vector form X that follow a

standard multivariate Gaussian distribution as N(0,I), for any vector δ
and matrix Γ, we have [10]

E(XT ΓX) = tr(Γ) (14)

E(XT ΓXδTX) = 0 (15)

E
(
(XT ΓX)2

)
=2tr(Γ2) + tr(Γ)2 (16)

whereE(·) is the expectation operation of a random variable, and tr(·)
is the trace operation of a matrix which takes the sum of diagonal
elements of the matrix.
Theorem 3: Given Γ = αβT + ζηT , we have

tr(Γ) =βTα+ ηT ζ (17)

tr(Γ2) = (βTα)2 + (ηT ζ)2 + 2(βT ζ)(ηTα) (18)

where α, β, ζ, and η are all vectors.
With the aid of the above two theorems, the mean and variance of

Tt in (13) can be computed as follows:

µ(Tt) =E(Tt) = Tt0 − tr(Γ) (19)

σ2(Tt) =E(T 2
t ) −E(Tt)

2 = δT
t δ + 2tr(Γ2). (20)

We then approximate (13) by the following canonical form that
matches its exact mean and variance1:

Tt = (Tt0 − tr(Γ)) +

√
1 +

2tr(Γ2)

δT
t δ

· δT
t ·X. (21)

Knowing the above three key operations, the dynamic
programming-based buffer insertion can be solved by recursively
applying the above three operations to obtain new solutions as we
traverse the routing tree bottom-up. Moreover, because we always
keep solutions in first-order canonical form after each operation, we
can apply the same technique recursively to compute all new solutions
while traversing the routing tree bottom up.

To make the dynamic programming-based buffering algorithm
tractable, [9] proposed to define the dominance relationship (or prun-
ing rule) between two solutions such that solution (C1, T1) dominates
solution (C2, T2) if condition C1 < C2 and T1 > T2 are satisfied.

In the presence of process variation, we propose the following
variation-aware pruning rule, i.e., solution (C1, T1) is said to dominate
solution (C2, T2) if the following two conditions hold:

P (C1 < C2) ≥ 0.5, P (T1 > T2) ≥ 0.5. (22)

1By simply ignoring the quadratic term, [6] approximates (13) as a canonical
form, thus losing accuracy even on the second-order term.

TABLE I
RUNTIME COMPARISON IN SECONDS

In other words, it is likely that C1 is less than C2 and T1 is greater
than T2 in the probabilistic sense. We call the pruning rule as defined
by (22) as transitive-closure-based pruning rule.

According to Lemmas 2 and 3, we can compare and sort random
solutions based on their respective mean values. Hence, for two sets
of sorted random solutions, the pruning can be done in linear time
based on a merge-sort like operation. Following similar arguments as
in [9] and [11], we conclude that our variation aware buffer insertion
algorithm has the same complexity as the deterministic algorithm as
O(B ·N2) with B types of buffers and N number of legal buffer
locations.

IV. EXPERIMENT RESULTS

Two sets of benchmarks are obtained from the public domain for
our experiments [12]. Without loss of generality, the 65-nm BSIM
technology is assumed with one buffer type in the library. We budget
the 3-sigma random device variation, interdie global variation, intradie
spatial variation, and interconnect variation all to be 5% of its nominal
value, respectively.

We compare our approach with [5], in which a two-side threshold-
based pruning rule (denoted as T2P) is proposed and it relates the dom-
inance relationship of solutions to designers’ willingness of accepting
uncertainty. A threshold value πα gives a measure of a designer’s
preference for certainty in choosing the design parameter x in the
presence of variations, such that the final design would have x less
than πα with (100α)% certainty, i.e., α =

∫ πα

−∞ f(x)dx, where f(x)
is the pdf of x. Given two different thresholds for either Ct and Tt,
for example παl

and παu for Ct, and πβl
and πβu for Tt, such that

0 ≤ αl < αu ≤ 1 and 0 ≤ βl < βu ≤ 1, solution (C1, T1) is said to
dominate solution (C2, T2) if the following conditions are satisfied:

π(1)
αu

< π(2)
αl
, π

(1)
βl

> π
(2)
βu
. (23)

In other words, C1’s upper threshold π
(1)
αu is smaller than C2’s lower

threshold π
(2)
αl , while T1’s lower threshold π

(1)
βl

is larger than T2’s

upper threshold π(2)
βu

.
We compare the efficiency of the two different pruning rules2 in

Table I. We see that the T2P algorithm only finishes the first benchmark
and fails for the rest of the benchmarks due to exceeding either
memory capacity (2G) or tolerable time limit (4 h in our setting). This
observation is expected, because the two-side threshold-based pruning
rule only imposes partially ordering between solutions, rendering the

2To compute the JPDF of Ct and Tt explicitly with the assumption of
independence between device and interconnect variations, [5] employed a
numerical integration method. For a fair comparison, we reimplemented the
algorithm of [5] under the same process variation model as used in this paper
with αl = βl = 0.2 and αu = βu = 0.8.
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TABLE II
COMPARISON BETWEEN DETBUF AND VAWBUF

complexity of merging and pruning very high. In contrast, by using
the transitive-closure pruning rule, our vawBuf algorithm can easily
run through all benchmarks and for the largest benchmark r5, the
runtime is about 3 min. This significant runtime speedup is achieved
because the transitive-closure pruning rule as discussed in Section II
enforces a relatively strict ordering between solutions, thus enabling
an efficient implementation for both merging and pruning. Compared
to the runtime for the conventional detBuf with projected mean plus
3-sigma values, we find that our vawBuf algorithm runs slower than
detBuf. But this is expected because of the additional computation
needed to handle correlated process variations.

We compare the solution quality between detBuf and vawBuf
algorithms in Table II. Monte Carlo simulation is used as a golden
test to obtain the delay distribution at the root for both cases. We
employ the 3-sigma delay in the distribution as a figure-of-merit to
compare the results. We further define the 3-sigma delay (D3σ) of
vawBuf as 100% timing yield point and use it to find the timing
yield for the deterministic design. The difference between these two
indicates the potential timing yield loss. We observe that compared
to the deterministic buffering, our variation aware buffer insertion
improves, on average, the 3-sigma timing by 0.6%, and the parametric
timing yield by 15.7%, respectively. This highlights the importance
of developing efficient algorithms for IC designs to actively attack
process variation effects.

Interestingly, we observe that, for some relatively small bench-
marks, the improvement for 3-sigma delay and yield is almost neg-
ligible, while for some large benchmarks, the improvement is quite
significant. These observations to some degree agree with what has
been reported in [13] for infinity long two-pin nets. There is a need,
however, to look into the theoretical explanation to the observations.

We also report the number of buffers inserted for both algorithms
in Table II. We see that our variation aware buffering algorithm tends
to put more buffers into the design to combat the correlated process
variations than the deterministic design.

V. CONCLUSION AND DISCUSSION

We have proposed a provably transitive-closure ordering rule and
applied it to buffer insertion considering process variations. We con-
clude that process variation must be considered to achieve high para-
metric timing yield. This ordering rule is based on normal distribution
assumption, and we plan to extend it to other distributions (such as
exponential distribution) in the future. We envision that the transitive-
closure ordering rule may be applicable to other design automation
algorithms in the presence of process variations.

ACKNOWLEDGMENT

The authors would like to thank L. Cheng at the University of
California, Los Angeles, for his helpful discussion and suggestions on
this paper.

REFERENCES

[1] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal,” in Proc. Int. Conf.
Comput.-Aided Des., Nov. 2003, pp. 621–625.

[2] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proc.
Des. Autom. Conf., Jun. 2004, pp. 331–336.

[3] M. Mani, A. Devgan, and M. Orshansky, “An efficient algorithm for
statistical minimization of total power under timing yield constraints,” in
Proc. Des. Autom. Conf., Jun. 2005, pp. 309–314.

[4] V. Khandelwal, A. Davoodi, A. Nanavati, and A. Srivastava, “A proba-
bilistic approach to buffer insertion,” in Proc. Int. Conf. Comput.-Aided
Des., Nov. 2003, pp. 560–567.

[5] J. Xiong, K. Tam, and L. He, “Buffer insertion considering process
variation,” in Proc. Des. Autom. Test Eur., 2005, pp. 970–975.

[6] A. Davoodi and A. Srivastava, “Variability-driven buffer insertion con-
sidering correlations,” in Proc. IEEE Int. Conf. Custom Integr. Circuits,
Oct. 2005, pp. 425–430.

[7] ——, “Probabilistic evaluation of solutions in variability-driven optimiza-
tion,” in Proc. Int. Symp. Phys. Des., Apr. 2006, pp. 17–24.

[8] M. Cain, “The moment-generating function of the minimum of bivari-
ate normal random variables,” Amer. Stat., vol. 48, no. 2, pp. 124–125,
May 1994.

[9] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-
works for minimal Elmore delay,” in Proc. IEEE Int. Symp. Circuits Syst.,
1990, pp. 865–868.

[10] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. C.-P. Chen, “Correlation-
preserved non-Gaussian statistical timing analysis with quadratic timing
model,” in Proc. Des. Autom. Conf., Jun. 2005, pp. 83–88.

[11] Z. Li and W. Shi, “An o(bn2) time algorithm for optimal buffer
insertion with b buffer types,” in Proc. Des. Autom. Test Eur., Mar. 2005,
pp. 1324–1329.

[12] W. Shi and Z. Li, “An o(nlogn) time algorithm for optimal buffer
insertion,” in Proc. Des. Autom. Conf., Jun. 2003, pp. 580–585.

[13] L. Deng and M. D. Wong, “Buffer insertion under process variations
for delay minimization,” in Proc. Int. Conf. Comput.-Aided Des., 2005,
pp. 317–321.


