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Abstract—Microarchitecture configurations and floorplanning
are keys to boost throughput, and they are strongly related.
In this paper we propose a new method to optimize them
simultaneously. We first concentrate on floorplanning under given
microarchitecture configurations. In addition to the objectives of
conventional floorplanning methods, we minimize the throughput
degradation caused by pipelined global interconnects based on
efficient yet accurate models for microarchitecture throughput
over pipeline stages of global interconnects. Our results show that
an accurate trajectory piecewise-linear (TPWL) model incurs
more offline setup time to obtain 13% better throughput than a
rough access ratio based model, and both models lead to much
better throughput (up to 64% higher) compared to conventional
floorplanning methods. We then build a unified throughput model
parameterized for pipelined global interconnects and microarchi-
tecture configurations based on the TPWL method, and apply this
model to efficiently explore over one million microarchitecture
configurations and corresponding floorplan variations. We obtain
microarchitecture configurations and floorplans with throughput
26.9% better than manually chosen microarchitecture followed
by automatic floorplanning in a very recent paper[1].

Index Terms—Floorplanning, pipeline, interconnect, piecewise-
linear, performance

I. INTRODUCTION

THE throughput of a common computer system is the
product of average instruction-per-cycle (IPC) and clock

rate. To boost throughput, both microarchitecture configu-
ration and floorplanning that are strongly related need to
be optimized. The microarchitecture configuration, including
choosing issue width, branch prediction method, cache/TLB
sizes and the number of functional units directly determines
IPC. For example, as shown in [2], resizing critical compo-
nents improves throughput over 20% for Power5 processors.
Microarchitecture configuration also decides the area of com-
ponents in physical layout and thus affect the floorplan of
the microarchitecture. The floorplan of a microarchitecture,
on the other hand, not only determines the clock rate of the
microarchitecture but also has a significant impact to IPC due
to pipelining of global interconnects[1], [3], [4]

The traditional design flow, however, separates microarchi-
tecture tuning and floorplan optimization. IPC was improved
by the means of microarchitecture configuration alone without
considering floorplanning, and floorplanning was employed
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only to determine the clock rate. Consequently, this separation
may lead to inferior designs. Because it is imperative that
multiple stages for global interconnects will be adopted in
the future[5], [6], [7], [8], it is necessary to optimize mi-
croarchitecture configuration and floorplanning simultaneously
in order to avoid the throughput degradation caused by the
separation of the design flow.

In this paper we develop a method to optimize microar-
chitecture configuration and floorplanning simultaneously to
maximize throughput for SuperScalar-like [9], [10] microar-
chitecture. Firstly, we concentrate on floorplanning under
given microarchitecture configurations. In addition to the
objectives of conventional floorplanning methods, we mini-
mize the throughput degradation caused by pipelined global
interconnects as well. The key is to develop efficient yet
accurate models for microarchitecture throughput over pipeline
stages of global interconnects during floorplanning. Note that
the accurate evaluation of throughput for a microarchitecture
requires cycle-accurate simulations over a set of benchmarks
and one simulation lasts for hours. A fast throughput model is
essential during floorplanning. For this purpose we propose the
trajectory piecewise-linear (TPWL) model for CPI (cycle-per-
instruction)1 over pipeline stages of global interconnects. Our
results show that the TPWL model needs more offline setup
time but obtains 13% higher throughput than a rough access
ratio based model. The floorplanning approach based on the
two models can improve the throughput of microarchitecture
by up to 64.7% (for the TPWL model) than conventional
floorplanning methods without considering the influence of
pipelining global interconnects.

Secondly, we build a unified throughput model parame-
terized for pipelined global interconnects and microarchitec-
ture configurations based on the TPWL method, and then
applied this model to efficiently explore over one million
microarchitecture configurations and corresponding floorplan
variations. This is in sharp contrast with existing works [11],
[1], which enumerated a limited number of microarchitecture
configurations. Our experiments show that the average error of
the TPWL model is about 3.0% compared to cycle-accurate
estimations. We obtain microarchitecture configurations and
corresponding floorplans less than 20.0% from the ideal IPC.
Also, our solutions are 26.9% better than the manually chosen
configurations in [1].

The idea of the TPWL model, as originally proposed in [12]
to model nonlinear dynamic systems, is to build a piecewise-

1By practical consideration we assume clock rate to be concrete and explore
them one by one. Under each clock rate, CPI fully represents throughput. On
average, we assume CPI = 1/IPC.
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linear model along the trajectory of a typical system response
excited by a “training input”. This model is particularly
accurate to model system responses that have a trajectory close
the one of the “training input”. In Section III we will show that
the floorplanning optimization based on simulated annealing
(SA) can be mathematically described by a form similar
to nonlinear systems described as state space approaches in
[12]. We will also show that multiple SA runs starting with
different initial floorplans have close trajectories which enables
a highly accurate TPWL model. Moreover, we have improved
the original TPWL model from [12] for higher accuracy.

Related to our work, the floorplanning for interconnect
optimization has been studied for ASIC and System-On-Chip
(SOC) designs. Early work on interconnect-driven floorplan-
ning [13], [14], [15], [16] for ASIC chips focus on buffer
block planning without considering interconnect pipelining.
More recently, [17] minimizes the degradation of throughput
caused by pipelined interconnects by adding throughput as
one of the objectives during floorplanning in SOC designs.
In [17], the throughput of SOCs are normalized values rather
than specified throughput values in this paper.

The floorplanning optimization for microarchitecture has
also been studied. [11] developed a primitive co-optimization
method for microarchitecture configuration and floorplanning
without considering interconnect pipelining. Specifically, the
IPC values of 32 microarchitecture configurations are ob-
tained by cycle-accurate simulations and then stored in a
look-up table. The best configuration is obtained by com-
paring throughput of these configurations and corresponding
floorplans. Microarchitecture floorplanning with interconnect
pipelining was studied by [1] and the earlier version [3]
of this paper. [1] profiled module-to-module communication
and solved an interconnect-pipelining aware floorplanning us-
ing mixed integer non-linear programming (MILP). Iterations
between profiling and MILP are needed to guarantee the
convergence of the overall design flow. Again, the micro-
architecture configurations were limited as only four candi-
dates were considered in the paper. [18] evaluated a bus-
driven floorplanning method to optimize the routability and
timing of buses in a given microarchitecture configuration.
To solve the microarchitecture floorplanning problem, [3] has
proposed a TPWL model for interconnect pipelining, which
has been summarized in this paper. Also, in this paper we
propose a unified TPWL model parameterized with respect
to interconnect pipelining and microarchitecture configuration,
which enables us to optimize microarchitecture configuration
and floorplanning simultaneously. More recent related work
after the development of the method proposed in this paper
will be summarized in conclusion.

In the rest of this paper, we introduce background knowl-
edge in Section II, and present the TPWL model in Section
III. We develop methods for microarchitecture floorplanning
considering pipelined interconnects and present experiment
results in Section IV. We present the co-optimization of
microarchitecture configuration and floorplanning with exper-
iment results in Section V, and conclude the paper in Section
VI.

II. BACKGROUND

A. Bus Latency Vectors

We assume an out-of-order SuperScalar implementation of
the MIPS instruction set. For microarchitecture floorplanning
under a given configuration, we summarize the configuration
in Table I, which is similar to the Alpha 21264 with an issue
width of four. We group the modules in this implementation
into blocks that are each treated as an independent unit during
floorplanning. We assume that interconnects between modules
within the same block will not be pipelined.

Generation 100nm
ISA MIPS

SuperScalar Width 4
3 Integer ALU

Functional Units 1 Integer Mult.
1 FP Adder
1 FP Mult.

Register Update Unit 64 Instructions
Load Store Queue 32 Instructions

Fetch Queue 8 Instructions
Clock Frequency 3 GHz

FF Insertion Length 2000µm

TABLE I
THE CONFIGURATION SIMILAR TO ALPHA 21264 IS USED FOR

MICROARCHITECTURE FLOORPLANNING.

Blocks that are composed of multiple modules are the RUU
block including Register Update Unit and Load Store Queue,
Decode block including Fetch Queue and the Decoder, Branch
block including Fetch Unit and Branch Predictor, DL1 block
including the Level 1 Data Cache and the DTLB, and the IL1
block including the Level 1 Instruction Cache and the ITLB.
The L2 unified cache and all functional units are treated as
independent blocks. We summarize the block area in Table
II, which is obtained by scaling the area of corresponding
components in Alpha 21264 to the ITRS[8] 100nm generation.

Block Area (mm2) Block Area (mm2)
IALU 1.00 IMULT 1.00

F_ADD 1.94 F_MULT 2.07
RUU 3.04 Decode 1.44

Branch 2.27 L2 75.6
IL1 8.99 DL1 10.03

TABLE II
AREA OF LOGICAL BLOCKS IN THE 100NM GENERATION.

The lengths of interconnects between two blocks in Table II
are computed according to the Manhattan distance between the
centers of two blocks in the floorplan2. We treat the latency of
each such interconnect as an independent variable. Changing
the latency of one of these interconnects is effectively a change
in the microarchitecture and will impact the performance. In
Table III we specify these interconnects with respect to their
terminal blocks3.

2Note that our method can be applied to the exact bus length and forked
bus if such design information is provided.

3L2 cache is composed by three banks in our experiment and we consider
the worst case latency.
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Bus id Terminal blocks Access ratio
1 IALU, RUU 0.953
2 IMULT, RUU 0.002
3 FPAdd, RUU 0.137
4 FPMul, RUU 0.078
5 LSQ, DL1 0.409
6 IL1, L2 0.001
7 DL1, L2 0.046
8 Branch, IL1 0.391
9 Decode, Branch 0.390

10 Decode, RUU 0.390

TABLE III
BUSES THAT AFFECT CPI.

We summarize all the interconnects that affect CPI in Table
III and form them into a vector ~B, called as bus latency vector,
which is used to characterize a floorplan. For example, in a
floorplan if Bus 1 has a latency of 3, Bus 2 has a latency
of 4, Bus 3 has a latency of 7 etc, the ~B for the floorplan
would be ~B = {3, 4, 7, ...}. The latency of each interconnect is
obtained by dividing the total wire length of the interconnect,
measured from the floorplan, by a constant value called flip-
flop (FF) insertion length, which is computed based on the
simultaneous buffer and FF insertion algorithm proposed in
[7].

B. Cycle accurate simulations and CPI metrics

To measure the impact of pipelining stages of global in-
terconnects to CPI we use out-of-order issue, cycle-accurate
simulations in the SimpleScalar 3.0 [19] framework. The
latencies (stages) of various global interconnects, which are
obtained from the floorplan and recorded in the bus latency
vector ~B, are first specified in SimpleScalar. In some cases
these latencies can be specified by simply modifying the
configuration file of SimpleScalar. The interconnect between
L1 and L2 data cache is a good example. Note that because
the interconnect lengths are different for L2 instruction cache
and L2 data cache the miss penalties for them are different. In
more complicated cases we insert queues between modules to
buffer data to realize these latencies. These cases include the
buses for instruction L1 cache, fetch to dispatch, and dispatch
to issue. Specifically, the L1 instruction cache interconnect
latency is modeled by a FIFO queue placed between the
fetch unit and the cache. A branch cannot be identified by
the fetch unit until it moves through the queue, therefore
prefetching proceeds speculatively to consecutive memory
locations. When a branch is taken the prefetched contents
of the queue are flushed and fetch proceeds from the target
location. The latencies between the fetch and dispatch units
and between the dispatch and issue units are modeled by a
FIFO queue between the fetch and dispatch units with length
equal to the sum of the latencies of the two buses. This is
because the dispatch stage is completely self contained and
the effect of latency that comes immediately before dispatch
is identical to that of latency that comes immediately after
dispatch.

After all interconnect latencies in a bus latency vector ~B
are specified in SimpleScalar, the CPI value of this vector is

computed by the arithmetic mean of the CPI of ten bench-
marks, including equake, mesa, gzip, art, bzip2, parser, vpr,
gcc, go and mcf, representing both integer and floating-point
workloads. The CPI value of each benchmark is obtained
by cycle-accurate simulations, where the first 200 million
instructions are fast-forwarded4 and the next 100 million in-
structions are actually simulated. Fast-forwarding the first 200
million instructions is to skip the initial false setup stage and
warm up the architecture structure such as caches and branch
predictors, which improves the accuracy of CPI measurement.
Simulating the next 100 million instructions only is to improve
the efficiency of the measurement because it is long enough
to obtain a steady-state estimation.

C. Floorplanning

The method for microarchitecture floorplanning used in this
paper is based on traditional floorplanning approaches. The ob-
jective of traditional floorplanning is to determine the positions
and shapes of blocks in a chip subject to the minimization of
a cost function, which is usually a combination of area and
total wire length. This is usually presented in the form

α ·
area

areanorm
+ β ·

wire_length

wire_lengthnorm
, (1)

where area and wire_length are the area and total wire
length of the floorplan, respectively, α and β are user-defined
weights. Because the metrics of area and wire are in different
magnitude, they are normalized by typical values (areanorm

and wire_lengthnorm) in the objective function.
A widely used floorplanning approach is based on simulated

annealing (SA)[20], [21], [22]. SA starts with an initial floor-
plan and moves to a new one by changing the positions or
shapes of blocks. In each iteration the cost of the new floorplan
is evaluated and the move is unconditionally accepted if the
cost of the new floorplan is smaller than the old one. The
move may also be accepted if the cost increases but with
a probability dictated by the simulated “temperature” of the
annealing. A move that increases the cost is more likely to be
accepted at a higher temperature. The temperature is decreased
throughout the annealing based upon a schedule so that by the
end only moves that reduce the cost are likely to be accepted.

III. TRAJECTORY PIECEWISE-LINEAR MODEL

A. Overview of the TPWL model

The TPWL model was originally proposed to model nonlin-
ear dynamic systems [12] such as the following one described
by a state-space approach

{

dg(x(t))
dt = f(x(t)) + B(x(t))u(t)

y(t) = CT x(t)
(2)

where x(t) ∈ RN is a vector of states at time t, f : RN → RN

and g : RN → RN are nonlinear vector-valued functions. B
is a state-dependent N ×M input matrix, u : R → RM is an
input signal, C is an N×K output matrix and y : R → RK is

4Fast-forwarding is an option provided by SimpleScalar which skips a
specified number of instructions by using functional simulation before starting
cycle-accurate simulations to reduce runtime.
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the output signal. In essence, the TPWL model is a weighted
combination of linear models at different linearization points
in the state space, say x0, ..., xs−1, where the key is how to
find these linearization points.

By Taylor’s expansion, it is clear that the weighted com-
bination of linear models at linearization points of x0, ...,
xs−1 would be accurate for a given state x, which needs to
be evaluated, if it is close to any of x0, ..., xs−1. However,
it is difficult to obtain linearization points x0, ..., xs−1 to
guarantee that there is a “close” point for any given state x.
Therefore, [12] proposed to perform a single simulation of the
nonlinear system for a fixed “training input”, u(t), and initial
state x0, and find the linearization points x0, ... xs−1 along
the trajectory of this simulation. The reasoning is that system
responses may have similar trajectories and the trajectory of
a “training input” can guide us to find linearization points
x0, ..., xs−1 that are close to the points on the trajectories
of other inputs. Experiment results show that this TPWL
model is highly accurate, especially for trajectories close to
the trajectory of the “training input”.

In this paper we adopt the TPWL approach to model
CPI over pipelining stages of global interconnects during
floorplanning. Similar to the state-space approach, the SA
optimization process could be described as

{

~B(n + 1) = ~B(n) + ∆ ~B(n) + u(n)

CPI(n) = g( ~B(n))
(3)

where the moves in SA are labeled by numbers of 1, 2, ...,
and, ~B(n) is the bus latency vector of the floorplan after n
moves, ∆ ~B(n) is the change to ~B(n) in the n + 1 move
which is caused by the change to the floorplan, u(n) is the
initial floorplan where u(0) is the bus latency vector of the
initial floorplan before SA starts and u(n) = 0, ∀n > 0. The
CPI value of the floorplan after n moves is a function of ~B(n),
which is represented by g( ~B(n)). Similar to [12], we perform
a single-start SA run for a fixed initial floorplan, which is
the “training input”, to obtain linearization points ~B0, ..., ~Bs−1

along the trajectory by treating each move in SA as a state
in the nonlinear system. The weighted combination of linear
models at these linearization points ~B0, ..., ~Bs−1 is the TPWL
model for floorplanning. We can see that this TPWL model
would be accurate if the trajectories of SA starting from other
initial floorplans are close to the trajectory of the “training
input”.

Fortunately, the trajectories starting from different initial
floorplans are close to each other in floorplanning. We illus-
trate the trajectory of SA for microarchitecture floorplanning
in Fig. 1 (a). We are particularly interested in the trajectory of
latencies for buses because these latencies impact the through-
put. We represent these latencies by the distance between the
corresponding bus latency vector (as ~B defined in Section
II-A) and the original point 5 in the Y axis. Although this
distance metric cannot fully represent bus latency vectors6, it
serves as a good example to illustrate the trend of bus latency

5The original point means that all bus latencies are zero.
6Two different bus latency vectors may have the same distance to the

original point.

vector changes in the SA procedure. The X axis shows the
process of SA procedure, where 0% and 100% represents the
beginning and end of the SA procedure, respectively. Fig. 1
(a) shows that the trajectory becomes greatly concentrated at
the end of SA. This is because the temperature of SA is low
at the end and there are smaller number of moves accepted
to change the floorplan compared to a high temperature at
the beginning stage of the SA procedure. This point has been
further demonstrated in Fig. 1 (b), which shows the distribution
of latencies in the SA trajectory. The latencies are heavily
concentrated in a relatively small range. As shown in the
figure, 86% of them fall between the value of 8 and 16.
Because the SA procedure at the lower temperature explores
a relatively small and concentrated solution space as shown
above, employing the TPWL model to build a model just in
the vicinity of the solution space explored by SA is likely
more effective than models targeting at the whole solution
space such as design of experiments in [4]7.
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Fig. 1. (a) The trajectory of SA. (b) Distribution of latencies of buses. 86%
of them have total bus latencies between 8 and 16.

In this work we improve the original TPWL model by
introducing a TPC problem and iterations. The TPC problem
reduces the cost of building the piecewise-linear model by
sampling the trajectory, then collecting key points among those
sampled points as discussed in the following section. The
strategy to build the TPWL model based on several trajectories
from multiple SA starts of floorplanning optimization, called

7Note that the TPWL and design of experiments are orthogonal to each
other and can be combined.
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as iteration, is used because the trajectory of floorplanning
is subject to small changes when the CPI metric is added
into the objective function of floorplanning. This improves
the accuracy of the CPI model is improved (Please refer to
Section IV-B for the details of iterations).

B. Construction of the TPWL model

The TPWL model is built in three phases.
1) Sampling: Each move in SA explores a new floorplan

by a small change to the current one, and these explored
floorplans define a trajectory in the solution space. We capture
the trajectory by sampling one floorplan in every n (n ≥ 1)
consecutive moves in SA. By sampling it is meant that the bus
latency vector ~B is extracted from the floorplan and will be
used in the next phase. Note that a large n reduces the costs
but may lose the details of the trajectory. In order to obtain
a good trade-off between cost and performance we assume
n = 2 or 3 depending on the size of the floorplan.

2) Collecting: To capture the trend of the trajectory with
as few as possible sampling points we perform the collecting
phase. Intuitively we describe this phase as using as few
as possible “balls”, which are defined as spherical areas in
the solution space where any point inside these areas has a
distance to the center smaller than a given radius, to cover all
the bus latency vectors obtained in the sampling phase. The
center points of these balls are used to represent all others in
the same ball and will be used in the simulation phase while
all others are discarded. We formulate the problem as follows.

Formulation 1: Trajectory points collecting (TPC): Given
a set of points P ⊂ I

n and radius r ∈ I, find C ⊂ P with
minimum |C| while satisfying

min
cj∈C

‖ pi − cj ‖≤ r, ∀pi ∈ P . (4)

Note that cj is the center of a ball and the minimum |C|
leads to the smallest number of balls. The TPC problem can
be rephrased as follows.

Formulation 2: Given a set of points P ⊂ I
n and radius

r ∈ I, Pi for each pi ∈ P contains all points pj satisfying

‖ pj − pi ‖≤ r, ∀pj ∈ P , (5)

find the smallest number of sets Pi to cover all points in P .
One can see that the re-phrased TPC problem falls into the

category of set-cover problem. We adopt the greedy algorithm
proposed in [23], [24] to solve the TPC problem. The idea is
to iteratively find a ball c which covers as many points in P
as possible. The implementation details are similar to those in
[23], [24].

The TPC problem was not explicitly presented in [12].
As one of the contributions of this paper to improve the
TPWL approach, the introduction of the TPC problem can
significantly improve the efficiency of the model.

3) Simulation: From the collecting phase, we obtain a set
of bus latency vectors C ⊂ I

n, which are the center points of
the “balls” representing the trend of the trajectory. Each point
cj ∈ C is a bus latency vector ~B and the corresponding CPI can
be estimated by cycle-accurate simulations (See Section II-B).
We call the phase to simulate all these bus latency vectors in

C to obtain corresponding CPIs the simulating phase. These
bus latency vectors and corresponding CPI values form a table,
called CPI table, which is used to evaluate the CPI value for
any given bus latency vector ~B described in the following
sub-section.

C. CPI estimation under the TPWL model

By Taylor’s expansion, the CPI value of any given bus
latency vector ~B could be estimated from each entry in the
CPI table

CPI i
~B

= CPIi +
−−−−→
∇CPIi · ( ~B − ~Bi), (6)

where ~Bi stands for the ith entry in the CPI table and

−−−−→
∇CPIi =









∂CPI

∂ ~B(1)

...
∂CPI

∂ ~B(n)









|~B= ~Bi

, (7)

and ∂CPI

∂ ~B(j)
is computed as follows

∂CPI

∂ ~B(j)
=

CPI( ~Bi + ∆) − CPI( ~Bi)

∆
. (8)

Note that CPI( ~Bi + ∆) should be obtained from cycle-
accurate simulation. However, it is time-consuming to compute
−−−−→
∇CPI for each entry in the CPI table. In this paper, we
compute the average −−−−→

∇CPI and use it for all entries in the
CPI table. The average −−−−→

∇CPI is obtained as follows:

∆max(j) = CPI( ~Bmax−min(j)) − CPI( ~Bmax),

∆min(j) = CPI( ~Bmin) − CPI( ~Bmin−max(j))),

−−−−→
∇CPI(j) =

∆max(j) + ∆min(j)

2 · D
, j = 1, · · · , n, (9)

where ~Bmax and ~Bmin is the bus latency vector with maxi-
mum and minimum latency on all buses, respectively. In this
paper, we assume the maximum and minimum latency of a bus
is 10 and 0, respectively, and denote the difference between
them as D, i.e. D = 10. Also, ~Bmax−min(j) is the same as
~Bmax except that the latency of the jth bus is the minimum.
Similarly, ~Bmin−max(j) is the same as ~Bmin except that the
latency of the jth bus is the maximum. It can be seen from
above that −−−−→∇CPI(j) actually represents the sensitivity of the
bus.

The final estimation is computed as the weighted sum of
CPI i

~B
,

CPI~B =

m
∑

i=1

wi · CPI i
~B
. (10)

To determine the weight wi for each entry in the CPI table
we follow the method adopted in [12]. We first compute
the distance between each entry and ~B, and then employ an
exponential function of the distance as a weight to compute
the average estimation. The distance di between ~B to each ~Bi

is computed as as

di =‖ ~B − ~Bi ‖2, i = 1, · · · , m, (11)
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where m is the size of the CPI table. Then, we compute the
weight of each entry by di:

ŵi = e−βdi/d, i = 1, · · · , m, (12)

where
d = min di, i = 1, · · · , m. (13)

Note that β is a positive constant and is set to 25 [12].
Afterward, we compute the normalized weights as

wi = ŵi/

|C|
∑

k=1

ŵk, k = 1, · · · , m. (14)

For convenience, we summarize the computations to esti-
mate CPI for a bus vector ~B in Fig. 2.

Computing CPI for ~B

di =‖ ~B − ~Bi ‖, i = 1, · · · , m.
d = min di, i = 1, · · · , m.

ŵi = e−βdi/d, i = 1, · · · , m., β = 25.

CPIi
~B

= CPIi +
−−−−→
∇CPI · ( ~B − ~Bi)

CPI( ~B) = CPI~B =
Pm

i=1
wi · CPIi

~B
.

Fig. 2. CPI estimation under the TPWL model.

As stated in [12], computing the weights based on an ex-
ponential function of distance is a simple heuristic. However,
it is suitable for CPI which is a strong nonlinear function of
bus latencies. The estimation based on the Taylor’s expansion
from a CPI table entry which is not close to the target bus
latency vector can be error-prone because of this nonlinearity.
Therefore, the exponential weight function is more accurate
than others such as linear functions, because table entries that
are close to the target bus latency vector contribute to the
estimation.

IV. MICROARCHITECTURE FLOORPLANNING
CONSIDERING PIPELINED INTERCONNECTS

In this section, we study microarchitecture floorplanning
to minimize the impact of interconnect pipelining to CPI
for given microarchitecture configurations. In order to model
the impact of interconnect pipelining on CPI we employ the
TPWL and access ratio based model to be presented in this
section and then compare them.

A. Microarchitecture floorplanning

As shown in Section II-C, the objective of traditional
floorplanning is the weighted sum of area and total wire
length. To consider the microarchitecture performance during
floorplanning, we add CPI to the objective function and obtain

α ·
area

areanorm
+ β ·

wire_length

wire_lengthnorm
+ γ ·

CPI

CPInorm
,

(15)
where area and wire_length are the area and total wire length
of the floorplan, respectively, α and β are user-defined weights,
CPI , CPInorm, and γ are the CPI value of the floorplan, the
normalization value of CPI, and user-defined weights for CPI,
respectively. For simplicity, we denote the objective combining

area and total wire length as AL, and combining all area, total
wire length and CPI as ALC.

The CPI value in (15) is computed by the TPWL model
as shown in Section III and via an access ratio based ap-
proach. Access ratio of an interconnect (bus) is defined as
the number of bus access over the total clock cycles for a
benchmark. Intuitively, the latency of a bus has more impact
on performance if it is accessed more frequently. Therefore,
the access ratio metric is an indicator of the impact of a bus.
The data of bus access numbers are collected from cycle-
accurate simulations and we present the arithmetic mean of
the data over all benchmarks in Table III. In the access ratio
based approach to compute the “CPI” term in (15) we use
the access ratio weighted sum of the pipelining stages for all
interconnects in Table III. Note that a similar idea has been
used in an independent study [1].

B. Microarchitecture floorplanning with the TPWL model

We develop the microarchitecture floorplanning with the
TPWL model based on the Parquet package [22]. Fig.
3 shows the overview of the flow. It starts with an ini-
tial floorplanning optimization with an objective function of
weighted sum of area and total wire length (as in traditional
floorplannings) to obtain an SA trajectory. This trajectory is
sampled, collected and simulated to build an initial CPI table
(refer to Section III). This initial CPI table constructs a TPWL
model which makes CPI estimation possible. Thereafter, a few
iterations of above processes may be needed to expand the CPI
table and improve the accuracy of the model. Note that the
initial SA trajectory is obtained without CPI included in the
objective function. But CPI is added into the objective function
after the first round. The iterations stop when the change on
the estimated CPI is smaller than a given threshold, which is
corresponding to the condition for ’accurate CPI estimation’
at the bottom of Figure 3.

Typically the iterations converge in two to three iterations
and our experiment results show that these extra iterations can
improve accuracy significantly. Note that the idea of using
iterations to improve the accuracy of the TPWL model is
proposed in this paper for the first time.

Regarding implementation details, we describe the way to
add CPI into the objective function in [22] as follows. As
shown in [22], the objective of AL is a linear combination
of area and total wire length. In [22], after each move in
SA, ∆ of the objective is computed as the weighted sum of
the changes of area and total wire length. In this paper, we
optimize ALC in the floorplanning by changing the objective
function. Similar to [22], in our floorplanning, we compute ∆
of the objective as the weighted sum of the changes in area,
total wire length and CPI after each move, i.e.,

∆area =
areanew − areaold

∑

areablock
(16)

∆wire =
wirenew − wireold

wireold
(17)

∆CPI =
CPInew − CPIold

CPIold
(18)

∆ = warea · ∆area + wwire · ∆wire + wCPI · ∆CPI , (19)
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Fig. 3. Overview of the microarchitecture floorplanning.

where
∑

areablock is the area of all blocks in the floorplan,
and warea, wwire and wCPI are the weights for area, total
wire length and CPI, respectively. Note that in SA, a move is
accepted if and only if

{

∆ < 0
R < exp(−∆·ti

tc
) ∆ ≥ 0

(20)

where R is a random value between 0 and 1, ti and tc are
initial temperature and current temperature, respectively.

C. Experiment results

We have implemented the proposed methods for microar-
chitecture floorplanning based on the Parquet package [22].
According to [7], below we assume that the interconnect
distance between two adjacent flip-flops is 2000µm under
3GHz clock and 1200 µm under 5GHz in the ITRS 100nm
generation.

1) Validation of the TPWL model: The procedure to build a
TPWL model follows the procedure outlined in Section III-B.
Specifically, We conduct SA to minimize an objective function
of combining area and total wire length (AL) and build up an
initial CPI table for the TPWL model by sampling this SA
procedure and running cycle-accurate simulations. Then, SA
is repeated for a couple more times with CPI added to the
objective function (ALC), where the CPI value is evaluated
by the TPWL model that has been already established. Each
time, we add more entries to the CPI table to improve the
accuracy.

The total number of cycle-accurate simulations for building
a TPWL model is controlled by two factors. The first one is
the radius r of the “balls” in the sampling phase. A small value
of r leads to a large number of cycle-accurate simulations in
the SA procedure. The second factor is the total number of
SA procedures performed. In our experiment, we choose r to
be five and perform three times of SA. This setting ends up

with 90 simulations. Fig. 4 shows the accuracy of the TPWL
model against the total number of simulations. As we can see
from Fig. 4, the maximum error decrease from 15% to 4% and
average error decrease from 4% to 1% as the total number of
cycle-accurate simulations increase from 15 to 90.

The total number of simulations to build a TPWL model
is scalable as shown in Fig. 4. However, the accuracy of
the TPWL model indeed affects the quality of the floorplans
obtained by SA. For example, using a CPI model with 15%
error, SA could obtain a floorplan anywhere between 0%
and 30%8 from the optimum even if the SA procedure is
optimal. Considering that the SA procedure is sub-optimal
and cycle-accurate simulations are time-consuming, we believe
that using 90 cycle-accurate simulations to build a TPWL
model with 4% maximum error is a good balance between
cost and quality. Note that each cycle-accurate simulation
includes 10 benchmarks and takes 3-4 hours in a 2.8GHz Xeon
machine. Comparing to cycle-accurate simulations, the cost of
floorplanning optimization is negligible (2-3 minutes for each
run). Applying the TPWL to evaluate CPIs is highly efficient
and almost has no impact on the speed of floorplanning
optimization once the TPWL tables are built because the
evaluation is based on formulae.
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Fig. 4. Accuracy of the TPWL model versus total number of cycle-accurate
simulations

2) Comparison of floorplanning with different objectives:
We compare the floorplans obtained by SA subject to the
objective functions of AL (area, total wire length) and ALC
(area, total wire length and CPI), respectively. Note that the
AL objective is used by the traditional floorplanning with
throughput degraded by pipelined global interconnects. The
area of each block in the floorplan could be found in Table
II. We summarize the results of floorplanning using these
objectives in Table IV. For each objective in Table IV we
run floorplanning optimizations ten times as the floorplanning
algorithm in [22] is not deterministic. We show both best and
average results from these ten runs for comparison in the table.

We first present the white space rate of these floorplans in

8For the model that has 15% error, a solution 30% worse than the optimal
solution could be 15% overestimated according to the model. If the optimal
solution is 15% underestimated by the model, the 30% worse solution could
be choosen by SA to become the “optimal” solution.
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µp in 3GHz µp in 5GHz
best avg best avg

Metrics AL ALC AL ALC AL ALC AL ALC

White Space(%) 3.62 7.12 9.87 13.2 16.59 16.59 10.10 12.98
CPI 1.79 0.78 (-56.4%) 1.73 0.81 (-46.8%) 1.90 0.82 (-56.8%) 2.66 0.94 (-64.7%)

TWL(102 mm) 4.61 5.35 (+16.1%) 4.84 5.19 (+7.2%) 4.00 4.36 ( +9.0%) 5.08 5.30 ( +4.33%)
Total/Max. #FF 53/6 42/6 54/8 40/7 84/17 42/13 88/16 54/11

Area(102 mm2) 1.18 1.23 (+4.2%) 1.27 1.32 (+3.9%) 1.37 1.37 ( -0.0%) 1.27 1.31 ( +3.1%)

TABLE IV
COMPARISON BETWEEN FLOORPLANS OBTAINED BY DIFFERENT OBJECTIVES.
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Fig. 5. Comparison between floorplanning without (a) and with (b) CPI minimization.

the first row. The low rate indicates the good quality of these
floorplans. We then present the CPI of floorplans in the second
row. The ALC and AC solutions can reduce CPI over AL by
up to 64.7%, which is corresponding to a 183.0% increase in
throughput. The results on total wire length show that there is
no strong correlation between CPI and total wire length. This
indicates that the objective of minimizing total wire length
in traditional floorplanning does not maximize performance.
Instead, latency of pipelined interconnects in CPI-critical paths
should be considered to maximize performance. Similarly, the
results in the fourth row show that minimizing total wire length
does not necessarily reduce the total number of flip-flops and
the maximum number of flip-flops in a single bus. We present
the area in the fifth row. The ALC results in the lowest CPI
with only a small area overhead of less than 5.0% over AL.

To demonstrate how CPI minimization affects the final
floorplan, we compare the floorplan obtained without CPI
minimization and with CPI minimization in Fig. 5. In our
experiment, the aspect ratio of the die is fixed but those of
blocks are flexible. As shown in Fig. 5 (b), with consideration
of CPI minimization during floorplanning, the length of critical
buses that have high access ratios and intuitively significant
effect on CPI is generally shorter than that in (a). For example,
in (b) the “RUU” module is placed close to the modules of
“IALU”, “FPAdd” and “FPMul”. Note that the buses between
these modules are critical buses based on the access ratio in
Table III.

3) Comparison of floorplans under different CPI models:
In terms of computational time to setup, the access ratio model
is more efficient than the TPWL model. As discussed above, it
takes 90 simulations to build an accurate TPWL model while
access ratio data can be collected in one simulation. However,
because both models use formulae to evaluate CPI, they are

equally efficient when used in floorplanning once the TPWL
tables are built.

To compare the two models, we choose the best and average
results among ten optimization results and show them in Table
V. We compare the floorplans with an ALC objective function
under both 3GHz and 5GHz. Metrics of white space ratio, CPI,
total wire length (TWL), total/max number of flip-flops and
area are shown in the table for comparison. As shown in the
table, in terms of objective function, the TPWL model is 7.8%
and 5.5% better than the access ratio model under 3GHz and
5GHz, respectively, on average. In terms of CPI, the TPWL
model is 10.0% and 13.0% better. We have also shown the
real throughput in the Table in BIPS, too. From the table we
can see that although IPC is degraded when the clock rate is
increased, throughput is still significantly improved.

This result can be explained as follows. As we discussed in
footnote 8, in an ideal SA procedure a CPI model with X%
error leads to a floorplan anywhere between 0% and 2X%
away from the optimum. Because the access ratio model can
be treated as a rough CPI model and the TPWL model is more
accurate, the floorplan obtained by the TPWL model should
be better on average.

V. CO-OPTIMIZATION OF MICROARCHITECTURE
CONFIGURATION AND FLOORPLANNING

To develop the co-optimization method for microarchi-
tecture configuration and floorplanning we build a unified
throughput model to pipelined interconnects and microarchi-
tecture configurations based on the TPWL approach. This
model is then integrated in the SA engine to efficiently
explore over 1 million microarchitecture configurations and
corresponding floorplan variations for each of them. Below
we first introduce the TPWL model for pipelined interconnects
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µp in 3GHz µp in 5GHz
best avg best avg

Metrics AR TPWL AR TPWL AR TPWL AR TPWL

White Space(%) 15.13 7.12 15.21 13.2 5.84 16.59 14.00 12.98
CPI 0.78 0.78 (-0.0%) 0.90 0.81 (-10.0%) 0.96 0.82 (-14.6%) 1.08 0.94 (-13.0%)

Throughput (BIPS) 3.85 3.85 (-0.0%) 3.33 3.70 (+11.0%) 5.21 6.10 (+17.1%) 4.63 5.32 (+14.9%)
TWL(102 mm) 4.95 5.35 (+8.0%) 5.83 5.19 (-11.0%) 5.84 4.36 (-25.3%) 5.30 5.30 (-0.0%)
Total/Max. #FF 25/5 42/6 54/8 26/6 33/8 42/13 41/11 54/11

Area(102 mm2) 1.35 1.23 (-8.9%) 1.35 1.32 (-2.2%) 1.21 1.36 (+12.4%) 1.34 1.32 (-1.5%)
Objective 3.00 2.88 (-4.0%) 3.33 3.07(-7.8%) 3.18 2.95 (-7.2%) 3.45 3.26 (-5.5%)

TABLE V
COMPARISON BETWEEN TPWL AND ACCESS RATIO BASED APPROACH.

and microarchitecture configurations and then discuss the co-
optimization method based on the SA engine. Finally we
present our experiment results.

A. TPWL model for pipelined interconnects and microarchi-
tecture configurations

To build a TPWL model for pipelined interconnects, the
interconnects that have a large impact on throughput have been
first identified and then recorded into the Bus latency vector, as
shown in Section II-A. To build a unified TPWL model on both
pipelined interconnects and microarchitecture configurations,
not only these interconnects but also the components in
configurations that affect throughput need to be identified.
These components are described as follows:

1) Issue width: Issue width, also called machine width, is
one of the most important parameters determining IPC. It is
defined as the number of instructions that can be issued to the
execution stage of the pipeline in a single cycle. As shown in
[25], CPI can be approximated as

CPI = CPIss +CPIbrmiss +CPIimiss +CPIdmiss, (21)

where CPIss is the maximum performance sustainable in the
ideal case, and CPIbrmiss, CPIimiss, and CPIdmiss are the
additional CPI caused by branch misprediction, instruction
miss and data cache miss, respectively. Note that (21) shows
that the upper bound of IPC is 1/CPIss.

It is observed in [26] that the total number of instructions
that can issue per cycle is roughly the square root of the
number of instructions in the issue window. Therefore, issue
width determines the size of RUU (Register Update Unit [27])
and LSQ. In this paper, we explore three issue width values
of 2, 4 and 8. This range covers most current architectures.

2) Branch prediction: Equation (21) shows that branch
miss-events increase CPI. A branch misprediction event causes
fetching of useless instructions into pipeline with five to ten
cycles misfetch delay penalty in a pipeline and with five to
nine front-end depth, as shown in [25].

The missing rate of branch prediction depends on the
prediction method. We assume a combination of bimodal
and 2-level method [28] in this study. [28] shows that this
combinational method has a good performance in practice. The
BTB size of the bimodal and 2-level methods are parameters
of our model. In general, a larger size of BTB leads to a more
accurate prediction.

3) Cache and TLB size: The cache-missing event is another
major factor that increases CPI, as shown in (21). Cache-
missing events cause stalling of the pipeline to bring data from
next level caches and introduce delay penalties. For example,
the L1 instruction missing penalty is about eight cycles in a
pipeline with five to nine front-end depth[25]. The occasion
of cache-missing events depends on the size and organization
of caches. In this study, we assume a smaller associativity for
small cache/TLB sizes and a larger one for large cache sizes,
and treat the cache/TLB size as model parameters. The range
of cache/TLB size is from 4K to 2048K in this study.

The physical size of cache/TLB in the floorplan is calculated
by Cacti[29] under the ITRS 100nm generation. Cacti takes the
size and organization of a cache/TLB as input and estimates
the physical size of the cache/TLB with a high accuracy.

4) Number of functional units: Insufficient number of func-
tional units can significantly affect performance. Our study
shows that one less or more integer ALU can cause over 20%
difference in IPC. However, redundant functional units waste
area and power. To a certain degree, the purpose of exploring
the number of functional units is to find the appropriate
number of functional units that just satisfies the requirement
for computation resources based on other parameters such as
issue width, cache/TLB size and so on. Because the number of
functional units cannot exceed issue width, in this study it is
limited between one and eight. Also, we consider four types
of functional units: integer ALU (IALU), integer multiplier
(IMult), floating point ALU (FPALU), and floating point
multiplier (FPMult).

Together with pipeline interconnects in Table III, these
configuration components are recorded in a vector, which is
similar to a bus latency vector. To build a TPWL model
for throughput with respect to this vector, we use the same
procedure described in Section III-B. Specifically, we sample
an SA trajectory, collect the sample points in as few as
possible “balls”, and then simulate the center points of these
“balls” to build a CPI table. Note that here SA optimizes both
floorplans and microarchitecture configurations. Moves in SA
may modify the floorplanning as well as the microarchitecture
configurations. The details of the SA engine will be discussed
in the following Section V-B.

B. SA based co-optimization method

In floorplanning the solution space is explored by moves in
SA that change the shape, position, or orientation of a module
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in the floorplan. To additionally explore the solution space of
microarchitecture configurations, we use new moves including
resizing branch predictor and cache/TLB, and changing the
number of functional units. We assign around 15% of the
total number of moves in SA to moves for micro-architecture
configurations and these moves are evenly distributed into each
type mentioned above.

At first glance, changing issue width can also be a new
move. However, to achieve high performance, most parameters
should stay in a suitable range with respect to issue width. As
observed in our experiment, in most cases a change of issue
width in SA brings in inconsistency among parameters and
degrades the quality of the solution. To explore the solution
space more efficiently, we propose to employ multiple starts
for issue width. In each start, issue width is fixed and the best
case is selected among all starts.

The explored microarchitecture configurations are summa-
rized in Table VI. Note that each row in the table represents an
independent variable and the total number of microarchitecture
configurations in this table is over one million, which is in
sharp contrast with previous work of [1], [11] to enumerate
no more than 32 candidates.

Table VI is built by allowing each parameter to change
within a range around the baseline configuration, which is
in bold font and close to those appeared in the literature
[1]. We find that the microarchitecture throughput is sensitive
to changes in these ranges. Specifically, we start with the
baseline configuration and then scan one parameter each
time to determine the range for the parameter. Note that as
suggested by [25], the RUU and LSQ size are deterministic
for the given issue width.

C. Experiment results

1) IPC versus area: We have integrated the TPWL model
and the methodology to explore micro-architecture configura-
tions into Parquet. Because the metric of total wire length has
no strong relation with throughput (as shown in Section IV-C)
we use SA minimizing the objective function AC , i.e., area
and CPI.

We show the curve of IPC versus area in Figure 6 for the
purpose of validating the TPWL model. The data points are
obtained by executing multiple SA runs with different weights
assigned to area and IPC in the objective function. We also
choose the best IPC value for solutions with close area values.

We first validate the TPWL model by comparing the IPC
value obtained by the model and by cycle-accurate Sim-
pleScalar simulation in Figure 6. The data points in the
figure indicate that the average error of TPWL model is
around 3.3%. We then show the trend of IPC with respect
to increasing area. The dotted lines in the figure represent
the ideal IPC value with no performance loss caused by
insufficiency of instruction parallelism, missing events, lack of
functional units and interconnect pipelining. We approximate
the ideal IPC value for each issue width by providing large
enough branch predictors, caches, TLBs and enough number
of functional units in the micro-architecture configurations and
conduct SimpleScalar simulations. As shown in the figure, the
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Fig. 6. IPC versus area (under TPWL model and cycle-accurate simulation).

optimization results are less than 20% away from ideal IPC.
We also compare our IPC value with the IPC value of the first
three configurations enumerated in [1], which is also shown
in Table VII as the last value. These three configurations are
for issue width 2, 4 and 8, respectively. We show the IPC
value of these three configurations but without considering
interconnect latency. Therefore, shown in the figure is ideal
IPC for [1]. Also, we obtain the area of each configuration by
mapping configuration parameters to corresponding physical
size used in this paper. As we can see from the figure, the
co-optimization methodology proposed in this paper leads to
much better designs (26.9% higher IPC) than configurations
manually chosen in [1]. Note that the case of issue width 8 in
[1] experiences a major performance degradation because its
cache size is too small.

As shown in Figure 6, increasing chip area helps to increase
IPC mainly because of the increase in cache size and the
number of functional units. However, there is a diminishing for
the same issue width, as it is difficult to improve performance
by increasing the chip area when IPC is close to the ideal.
This trend holds for different issue widths, too. In addition,
compared to issue width 4, issue width 8 is less effective
to improve IPC by the same amount of area increase. The
primary reason is that there is not enough instruction level
parallelism (ILP) when issue width increases. Note that the
increase in global interconnect latency with the increase in area
also contributes to this diminishing return. On the other hand,
a too small area may lead to significant degradation in IPC.
The leftmost data point from the issue width 4 in the TPWL
model is a good example. It has the smallest area among all
data points in the issue width 4, but the IPC value is much
smaller than that from the issue width 2 with a similar area
(the rightmost data point from the issue width 2).

2) Configuration details: To reveal the micro-architecture
configuration details, we show all micro-architecture config-
uration parameters for average and best cases of multiple
SA runs in Table VII. All the IPC values in the table are
obtained from cycle-accurate simulations with global inter-
connect latencies extracted from corresponding floorplans. As
shown in the Table, average values are fairly close to the best
case value, indicating a good convergence of SA optimization.
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µ-arch issue width issue width issue width
modules 2 4 8

RUU size 32 64 256
LSQ size 16 32 128

Bpred (KB) 1, 2,4, 8, 16 1, 2, 4, 8, 16 1, 2, 4, 8, 16
L1 Icache (KB) 4, 8, 16, 32, 64 8, 16, 32, 64, 128 32, 64, 128, 256, 512
L1 Dcache (KB) 4, 8, 16, 32, 64 8, 16, 32, 64, 128 32, 64, 128, 256, 512
L2 Ucache (KB) 16, 32, 64 , 128, 256 32, 64, 128, 256, 512 64, 128, 256, 512, 1024

ITLB (entry) 16, 32, 64, 128, 256 16, 32, 64, 128, 256 32, 64, 128, 256, 512
DTLB (entry) 16, 32, 64, 128, 256 16, 32, 64, 128, 256 32, 64, 128, 256, 512

IALU 1, 2,3,4 1,2,3,4 4, 5, 6, 7, 8
FPALU 1, 2, 3 1, 2,3,4 1, 2 3, 4
IMult 1, 2, 3 1, 2, 3 1, 2 3, 4

FPMult 1, 2, 3 1, 2, 3 1, 2 3, 4

TABLE VI
THE RANGES OF CONFIGURATION VARIABLES.

µ-arch issue width issue width issue width
modules 2 4 8
Bpred 4.1KB/8KB/128 4.2KB/8KB/512 3.2K/8K/512

L1 Icache (KB) 12.8/16/8 27.2/64/64 129.9/256/8
L1 Dcache (KB) 12.8/4/8 31.5/8/64 97.0/32/8
L2 Ucache (KB) 60.4/32/64 60.8/64/512 209.5/128/128

ITLB (Entry) 32.0/32/32 46.9/32/128 62.1/32/128
DTLB (Entry) 26.3/32/32 42.1/128/128 68.9/32/128

IALU 1.7/2/1 1.9/4/3 5.8/7/3
FPALU 1.5/1/1 1.7/2/1 1.9/4/1
IMult 1.5/1/1 1.8/1/1 2.3/4/1

FPMult 1.5/2/1 1.7/2/1 2.2/2/1
Area(mm2) 29.8/32.9/29.4 51.2/59.0/71.2 100.7/108.6/91.5

IPC 0.95/1.05/0.72 1.50/1.77/1.75 2.11/2.15/1.25

TABLE VII
CONFIGURATION DETAILS (AVG/BEST/[1]).

Also, the obtained configuration by the proposed method has
a significant performance advantage over the upper bound of
designated configurations used in [1] without considering the
impact of global interconnects.

VI. CONCLUSIONS AND DISCUSSIONS

Considering the impact of interconnect pipelining on
throughput, we have developed methods for microarchitecture
floorplanning to minimize CPI (cycles-per-instruction) for a
given microarchitecture configuration. Compared to the con-
ventional floorplanning minimizing area and wire length tech-
niques, the new floorplanning formulation obtains a floorplan
with CPI reduced by 64.7% with a small area overhead that
is less than 5.0%.

CPI optimization during floorplanning is achieved by short-
ening the lengths of CPI-critical buses. At first glance, the set
of CPI-critical buses is a subset of all global interconnects
and the traditional floorplanning objective of minimizing total
wire length should lead to a floorplan with optimized system
performance. However, we have shown that minimizing total
wire length does not necessarily lead to minimization of CPI.
Yet, using the bus access ratio as weight and minimizing the
weighted interconnect length is shown to be a good heuristic
for microarchitecture floorplanning.

We have developed a TPWL model for CPI to consider
micro-architecture configurations and interconnect pipelining,
and further developed co-optimization of microarchitecture

configuration and floorplanning based on it. We explore over
one million configurations candidates and find microarchi-
tecture configurations and corresponding floorplans with an
IPC (instructions per cycle) less than 20.0% away from the
ideal IPC. Our solutions are 26.9% better than [1] that was
able to consider only a limited number of micro-architecture
configurations.

There is a trade-off between quality and simulation runtime
to build the TPWL model. Tracing SA reduces the simulation
runtime without sacrificing the accuracy around the SA trajec-
tory. In addition, cycle-accurate simulation may be replaced
by traced based simulation [25], or incremental simulation to
reduce model building time. Note that once models are built,
the runtime is virtually the same for TPWL model and access
ratio based approach. The TPWL model is a general model
and can be expanded to consider more design freedoms and
objectives, such as power, and still maintain high quality.
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