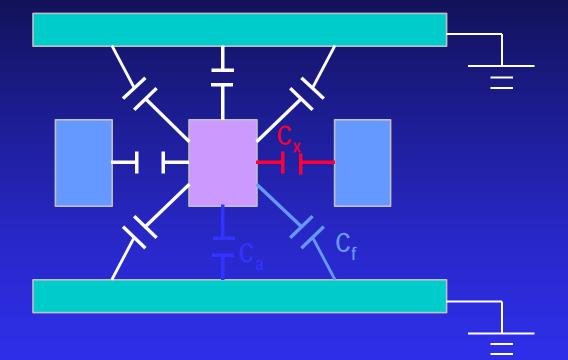
Signal Integrity for Gigascale SOC Design

Professor Lei He ECE Department University of Wisconsin, Madison he@ece.wisc.edu http://eda.ece.wisc.edu

Outline

Capacitive noise

- ♦ Technology trends
- ◆ Capacitance model and characteristics
- ♦ Layout optimization

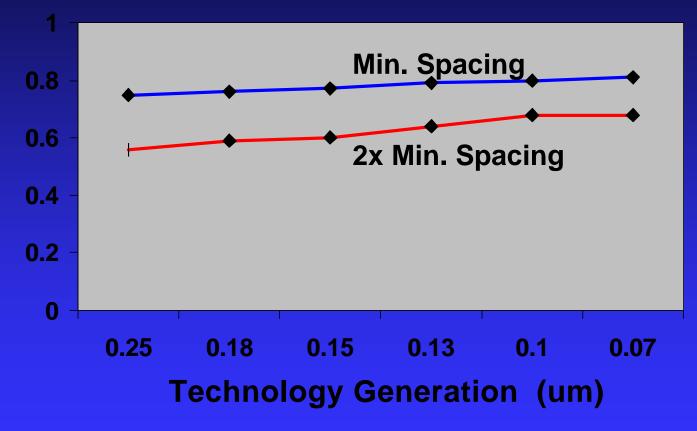

□ Inductive noise

- When inductance become important
- ♦ Inductance model and characteristics
- ♦ Layout optimization
- □ Automatic algorithm
 - ♦ SINO algorithm for both Cx and Lx noise

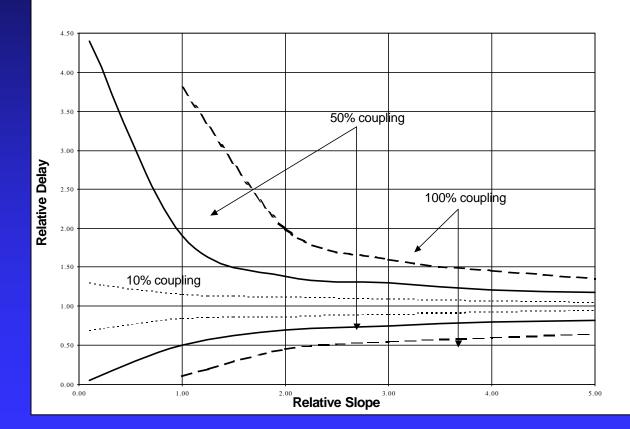
Interconnect Parameters from NTRS'97

Technology (um)	0.25	0.18	0.15	0.13	0.10	0.07
Res. r (uWcm)	3.3	2.2	2.2	2.2	2.2	1.8
Dielectric constant	3.55	2.75	2.25	1.75	1.75	1.5
Min. wire width	0.25	0.18	0.15	0.13	0.10	0.07
Min. wire spacing	0.34	0.24	0.21	0.17	0.14	0.10
Metal aspect ratio	1.8:1	1.8:1	2.0:1	2.1:1	2.4:1	2.7:1
Via aspect ratio	2.2:1	2.2:1	2.4:1	2.5:1	2.7:1	2.9:1
Vdd (V)	2.15	1.65	1.35	1.35	1.05	0.75

Interconnect Capacitance



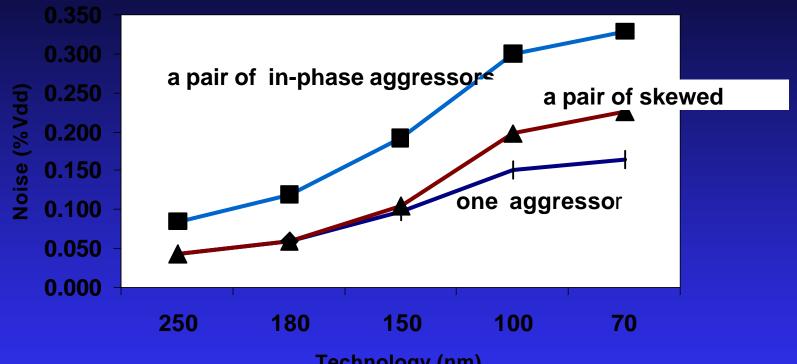
Derived Interconnect & Device Parameters


Techno	ology (um)	0.25	0.18	0.15	<i>0.13</i>	0.10	0.07
2X min.	Ca (aF/um)	29.0	21.2	16.2	12.0	14.4	8.56
width &	Cf (aF/um)	41.8	30.2	24.8	18.3	14.1	14.8
spacing	Cx(aF/um)	71.0	58.3	49.4	42.8	45.3	41.6
5X min.	Ca (aF/um)	73.5	53.6	40.6	30.0	26.6	19.5
width &	Cf (aF/um)	63.5	47.3	38.4	28.5	28.2	23.6
spacing	Cx(aF/um)	18.3	16.9	15.4	14.8	16.5	16.7
Buffer input cap. (fF)		0.17	0.12	0.11	0.085	0.070	0.042
Buffer Rd (x10KW)		1.71	1.86	2.26	2.25	2.39	2.42
Buffer intrin. delay (ps)		70.5	51.1	48.7	45.8	39.2	21.9

Significance of Coupling Capacitance

Cx/Ctotal

Delay Variations Due to Coupling Capacitance


Delay Relative to Delay with no Crosstalk for different amounts of coupling

9/19/00

ASIC/SOC 2000 Prof. Lei He http://eda.ece.wisc.edu

Coupling Noise

Technology (nm)

Coupling noise from two adjacent aggressors to the middle victim wire with 2x min. spacing. Rise time is 10% of project clock period.

•Capacitive coupling depends strongly on both spatial and temporal relations!

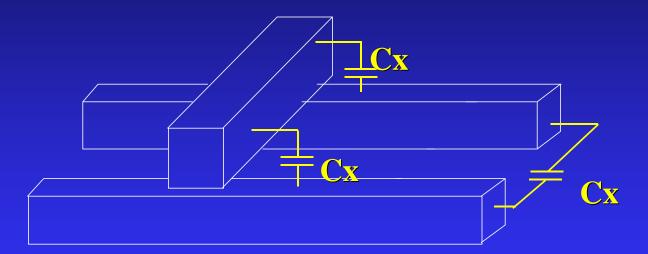
9/19/00

ASIC/SOC 2000

Prof. Lei He http://eda.ece.wisc.edu

Solution to Capacitance Computation

□ Accurate solution to small structure


- Numerical method based on Maxwell's equations
- ◆ Raphael RC3, FastCap [Nabors-White, TCAD'91]

□ Efficient solution to full chip

- ♦ Using tables or empirical formulas
 - 2.5-D capacitance model [Cong-He-Kahng-et al,DAC'97]
- ◆ Capacitance is **not** simply *A*/*d*
 - A: area
 - d: distance

Characteristics of Coupling Capacitance

Coupling capacitance virtually exists only between adjacent wires or crossing wires

Capacitance can be pre-computed for a set of (localized) interconnect structures

□ 2D or 2.5D capacitance model

9/19/00

ASIC/SOC 2000

Prof. Lei He http://eda.ece.wisc.edu

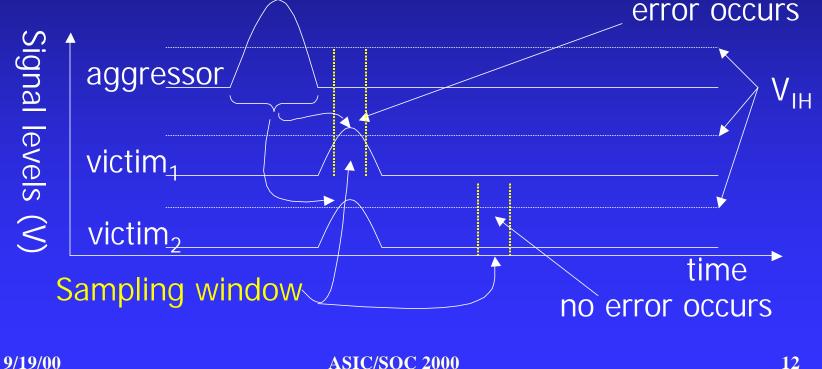
Layout to reduce impact of Cx

Coplanar parallel interconnect structures with pre-routed Vdd and Gnd

□ Noise avoidance technique:

♦ Shield insertion

• Shield is a wire directly connected to Vdd or Gnd



ASIC/SOC 2000 Prof. Lei He http://eda.ece.wisc.edu

9/19/00

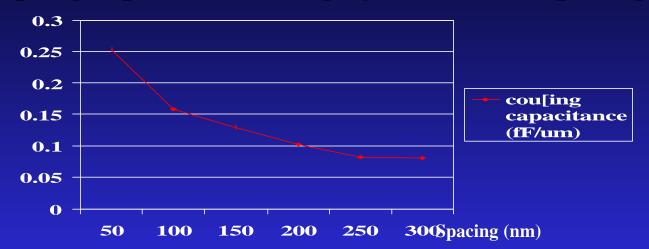
Timing Sensitivity

□ Two nets are considered sensitive if a switching event on signal s₁ happens during a sample time window for s₂

Layout to reduce impact of Cx

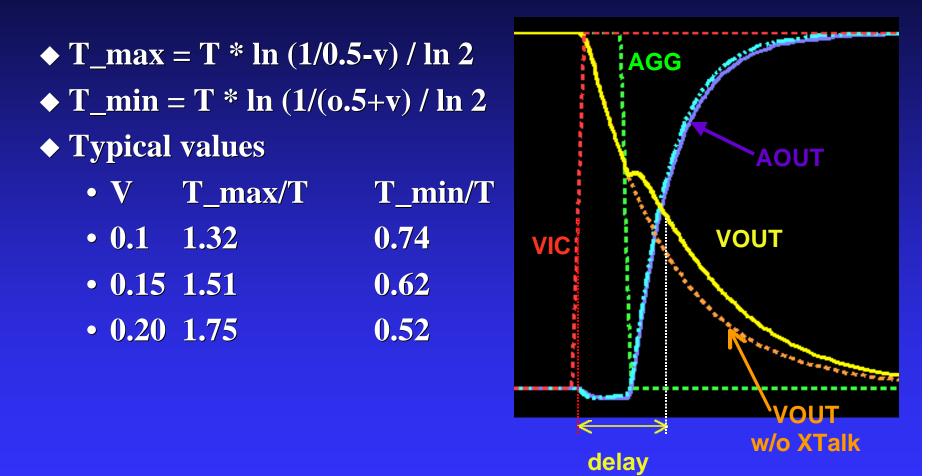
Coplanar parallel interconnect structures with pre-routed Vdd and Gnd

□ Noise avoidance techniques:


Net ordering (track assignment / net placement)

ASIC/SOC 2000 Prof. Lei He http://eda.ece.wisc.edu

Characteristics of Coupling Capacitance


□ Coupling capacitance is highly sensitive to spacing

Proper wire sizing and spacing may limit the impact of Cx by changing the ratio Cx/Ctotal

Relation between Delay and Noise

Noise estimation and filtering

• Rule of thumb:

- Cx/C < threshold
- ◆ Devgan, ICCAD'97
 - V < (Rv + Rint / 2) * Cx / (1.25 Tr)
 - Tr: rising time for the aggressor

◆ Vittal et al, TCAD'99 (more accurate)

• V = (Rv + Rint / 2) * Cx / {0.63Tr + Ra (Ca + Cx) + Rv (Cv + Cx) + Rint * Cx}

♦ To reduce Cx impact

- Increase the driver size of victim
- Decrease the driver size of aggressor
- Or buffering
- Need a global device size solution coupled with Time Analysis

9/19/00

ASIC/SOC 2000

Mini-Summary

♦ Capacitive crosstalk is localized

Capacitive crosstalk affects both delay and signal integrity

♦ Capacitive crosstalk can be minimized by

- Spacing (and wire sizing)
- Device sizing
- Net ordering
- Shielding
- Buffering

Outline

Capacitive noise

- ♦ Technology trends
- ◆ Capacitance model and characteristics
- ♦ Layout optimization

□ Inductive noise and layout optimization

- ♦ When inductance become important
- ♦ Inductance model and characteristics
- ♦ Layout optimization

Example: SINO algorithm for both Cx and Lx noise

Is RC Model still Sufficient?

□ Interconnect impedance is more than resistance

- Z µ R +jwL
- wµ $1/t_r$

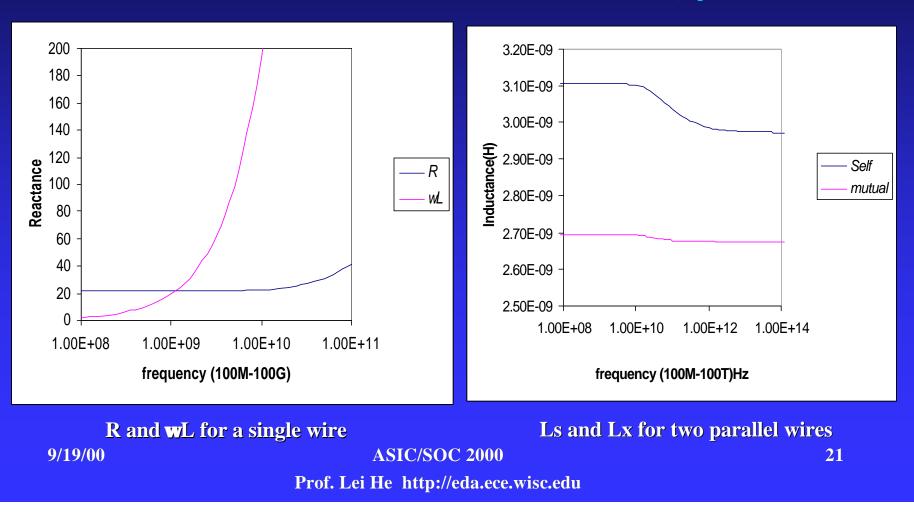
□ On-chip inductance should be considered

• When wL becomes comparable to R as we move towards Ghz+ designs

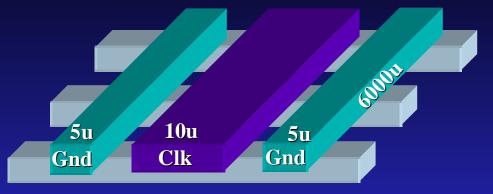
Candidates for On-Chip Inductance

□ Wide clock trees

◆ Skews are different under RLC and RC models

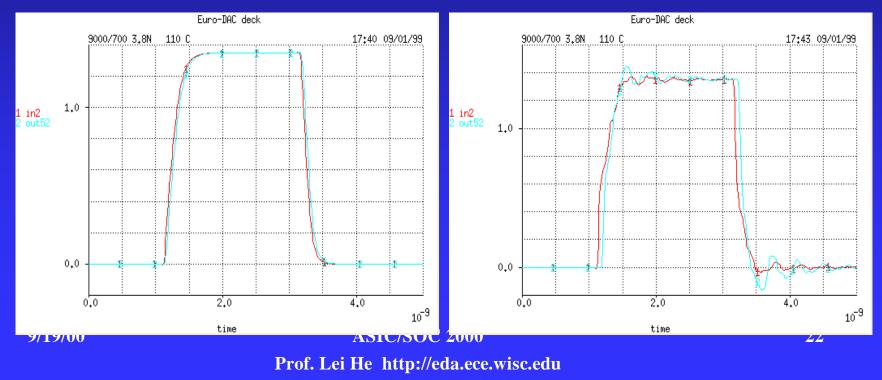

Neighboring signals are disturbed due to large clock *di/dt* noise

□ Fast edge rate (~100ps) buses
 ◆ RC model <u>under-estimates</u> crosstalk


P/G grids (and C4 bumps)
 di/dt noise might overweight IR drop

Resistance vs Inductance

Length = 2000, Width = 0.8 Thickness = 2.0, Space = 0.8



Impact of Inductance

RC model

RLC model

Inductance Extraction from Geometries

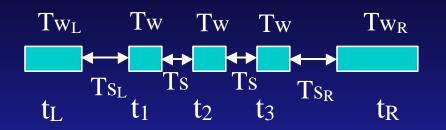
□ Numerical method based on Maxwell's equations

 Accurate, but way too slow for <u>iterative</u> physical design and verification

□ Efficient yet accurate models

- Coplanar bus structure [He-Chang-Shen-et al, CICC'99]
- Strip-lines and micro-strip bus lines [Chang-Shen-He-et al, DATE'2K]
- ♦ Used in HP for state-of-the-art CPU design

Definition of Loop Inductance



□ The loop inductance is

$$L_{ij} = \frac{\boldsymbol{m}}{4\boldsymbol{p}} \bullet \frac{1}{a_i a_j} \bullet \frac{1}{I_i I_j} \oint_{loop_i a_i} \int_{a_i} \int_{loop_j a_j} \frac{1}{r_{ij}} dI_i dI_j da_i da_j$$

ASIC/SOC 2000 Prof. Lei He http://eda.ece.wisc.edu

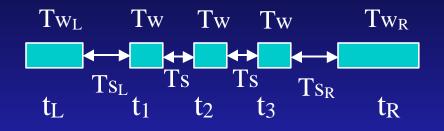
Loop Inductance for N Traces

1.731.150.531.151.941.240.531.241.92

Assume edge traces are AC-grounded

 leads to 3x3 loop inductance matrix

 Inductance has a long range effect


 non-negligible coupling between t₁ and t₃, even with t₂ between them
 It is not sufficient to consider only a single net,

as did by most interconnect modeling and optimization works

9/19/00

ASIC/SOC 2000

Table in Brute-Force Way is Expensive

1.73	1.15	0.53
1.15	1.94	1.24
0.53	1.24	1.92

Self inductance has nine dimensions:

 (n, length, location,TwL,TsL,Tw,Ts,TwR,TsR)

 Mutual inductance has ten dimensions:

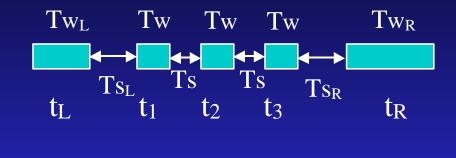
 (n, length, location1, location2,TwL,TsL,Tw,Ts,TwR,TsR)

 Length is needed because inductance is not linearly scalable

Definition of Partial Inductance V_i V_j V_j

 b_i

Partial inductance is the portion of loop inductance for a segment when its current returns via the infinity


◆ called partial element equivalent circuit (PEEC) model
 □ If current is uniform (no skin effect), the partial inductance is

$$L_{ij} = \frac{\boldsymbol{m}}{4\boldsymbol{p}} \bullet \frac{1}{a_i a_j} \bullet \int_{b_i}^{c_i} \int_{a_j}^{c_j} \int_{a_j}^{c_j} \frac{dl_i dl_j}{r_{ij}} da_i da_j$$

9/19/00

ASIC/SOC 2000 Prof. Lei He http://eda.ece.wisc.edu

Partial Inductance for N Traces

6.17	5.43	5.12	4.89	4.66
5.43	6.79	6.10	5.48	5.04
5.12	6.10	6.79	6.10	5.33
4.89	5.48	6.10	6.79	5.77
4.66	5.04	5.33	5.77	6.50

Treat edge traces same as inner traces

 lead to 5x5 partial inductance table

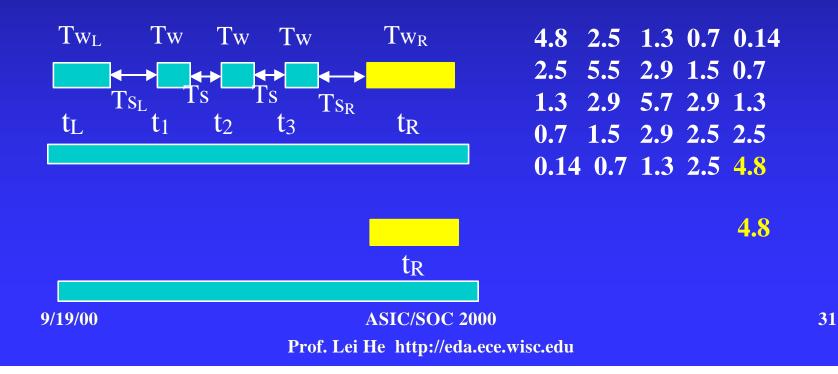
 Partial inductance model is more accurate compared to loop inductance model

 Without pre-setting current return loop

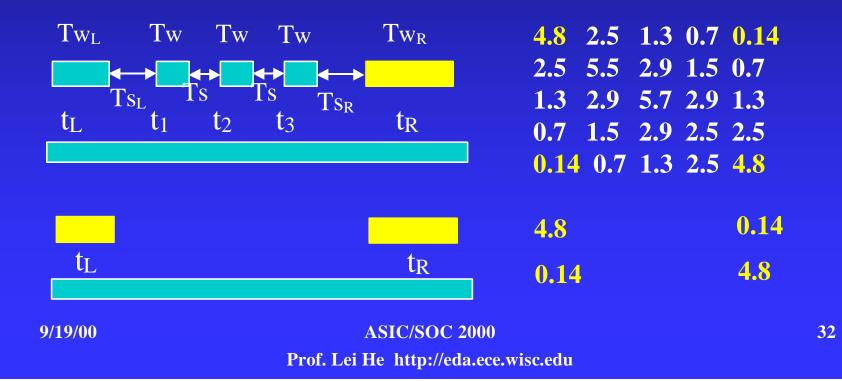
Foundation I

The self inductance under the PEEC model for a trace depends only on the trace itself (w/ skin effect for a given frequency).

Foundation II


The mutual inductance under the PEEC model for two traces depends only on the traces themselves (w/ skin effect for given frequency).

Prof. Lei He http://eda.ece.wisc.edu


Foundation III

The self loop inductance for a trace on top of a ground plane depends only on the trace itself (its length, width, and thickness)

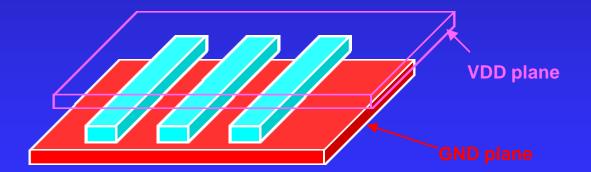
Foundation IV

The mutual loop inductance for two traces on top of a ground plane depends only on the two traces themselves (their lengths, widths, and thickness)

Validation and Implication of Foundations

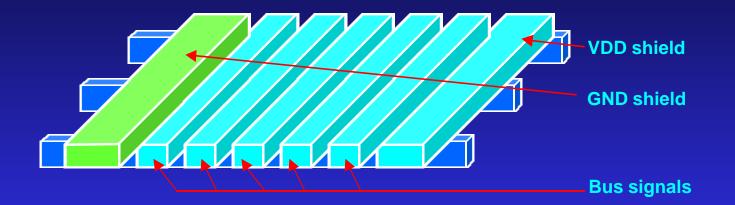
- Foundations I and II can be validated theoretically
- Foundations III and IV were verified experimentally
- Problem size of inductance extraction can be greatly reduced w/o loss of accuracy
 - ♦ Solve 1-trace problem for self inductance
 - Reduce 9-D table to 2-D table
 - **♦** Solve 2-trace problem for mutual inductance
 - Reduce 10-D table to 3-D table

ASIC/SOC 2000


More Recent Results

- Extension from parallel bus to random nets
 Arbitrary locations, lengths, thickness, and etc.
 Typically within 3% of numerical computation
 Developed as a web-based tool
 - <u>http://eda.ece.wisc.edu/WebHenry</u>

Inductance Minimization


□ **Reference plane**

• wiring layers sandwiched between power planes

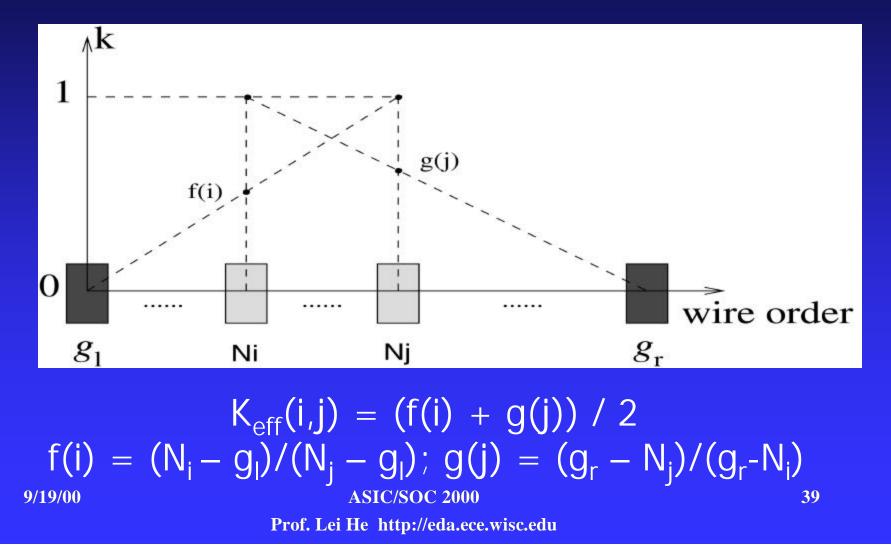
Inductance Minimization

Coplanar shields

Characteristics of Coupling in 18-Bit Bus

# of Shields	Noise (% of Vdd)		
0 (a)	0.71V (55%)		
2 (b)	0.38V (29%)		
5 (c)	0.17V (13%)		

Figure of Merit of Inductive Coupling


□ Inductive coupling coefficient defined as

$$K = Lij / \sqrt{L_i \bullet L_j}$$

A formula-based Keff model has been developed

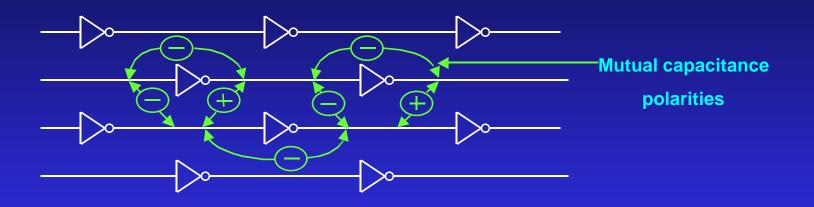

 High fidelity between formula and noise voltage [He-Xu, 2000]

Illustration of K_{eff} Computation [XuHe,2000]

Inductance Minimization

□ Staggered inverters/buffers

Differential signals

- Nets with opposite switching signals can be placed adjacent to each other
 - Decrease Lx noise at the cost of a higher Cx noise

ASIC/SOC 2000 Prof. Lei He http://eda.ece.wisc.edu

Mini-Summary

♦ Inductive crosstalk is globalized

◆ Inductive crosstalk affects both delay and signal integrity

◆ Inductive crosstalk is not sensitive to

- Spacing (and wire sizing)
- Net ordering

◆ Inductive crosstalk can be minimized by

- Shielding
- Buffering
- Ground plane
- Differential signal
- Signal termination

Outline

Capacitive noise

- ♦ Technology trends
- ◆ Capacitance model and characteristics
- ♦ Layout optimization

□ Inductive noise and layout optimization

- ♦ When inductance become important
- ♦ Inductance model and characteristics
- ♦ Layout optimization

Example: SINO algorithm for both Cx and Lx noise

SINO Problem [He-Lepak, ISPD2K]: Simultaneous Shield Insertion and Net Ordering

Coplanar parallel interconnect structures with pre-routed Vdd and Gnd

□ Noise avoidance techniques:

- Net ordering (track assignment / net placement)
- ♦ Shield insertion

• Shield is a wire directly connected to Vdd or Gnd

ASIC/SOC 2000 Prof. Lei He http://eda.ece.wisc.edu

9/19/00

SINO/NF Problem

□ Given: An initial placement P □ Find: A new placement P' via simultaneous shield insertion and net ordering such that: ◆ P' is capacitive noise free Sensitive nets are not adjacent to each other ◆ P' is inductive noise free • Sensitive nets do not share a block ♦ P' has minimal area **Equivalent** to one-shield-one-signal ◆ When all nets are sensitive to one another

ASIC/SOC 2000

SINO/NB Problem

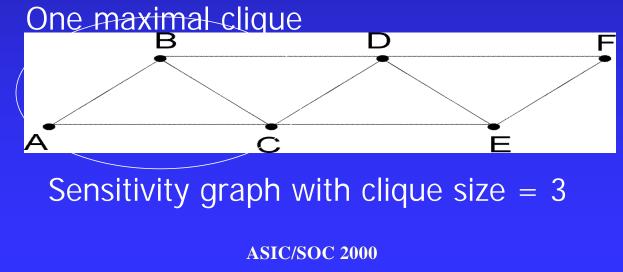
□ Given: An initial placement P

- Find: A new placement P' via simultaneous shield insertion and net ordering such that:
 - ♦ P' is capacitive noise free
 - ♦ All nets in P' have inductive noise less than a given value
 - ♦ P' has minimal area

Properties of SINO Problems

□ Theorem: The optimal SINO/NF problem is NP-hard

□ Theorem: The optimal SINO/NB problem is NP-hard


Theorem: The maximum clique in the sensitivity graph is a lower bound on the number of blocks required for all SINO/NF solutions

9/19/00

ASIC/SOC 2000

Sensitivity Graph for SINO Problem

□ Graph indicating which nets are sensitive to oneanother (vertices=nets, edges=nets are sensitive)

Prof. Lei He http://eda.ece.wisc.edu

9/19/00

Greedy Shield Insertion

Shield Insertion (SI)
 Insert shield when a Cx or Lx violation occurs
 Results depend strongly on the initial placement
 Net Ordering + Shield Insertion (NO+SI)
 First remove Cx coupling by net ordering, then perform shield insertion for Lx
 Results depend weakly on the initial placement

Separated NO+SI—simultaneous algorithm works better

9/19/00

ASIC/SOC 2000

Prof. Lei He http://eda.ece.wisc.edu

Graph Coloring SINO (GC)

Our implementation: Greedy-based GC
 Can solve with other GC methods as well
 Main contributions of SINO-GC:
 Provide lower bound measurements for SINO/NF
 Comparative reference point

Simulated Annealing SINO (SA)

□ Cost Function is a weighted sum of:

- ♦ Number of Cx violations
- Number of Lx violations
- ◆ Inductance Violation Figure (quantizes level of inductive noise)
- ♦ Area of Placement

Random Moves

- Combine two random blocks in placement P
- Swap two (arbitrary) random s-wires in P
- Move a single random s-wire in P
- ♦ Insert a shield wire at a random location in P

Quality of SINO/NB Solutions

	SINO/NF	SINO/NB					
K _{thresh}	Graph Coloring	Greedy SI	NO+SI	GC	SA		
Net Sensitivity Rate: 10%							
1.0	3.2 🖌	5.0	2.8	2.0	1.8		
2.0	(2.0)	4.2	1.2	2.0	1.0		
Net Sensitivity Rate: 30%							
1.0	6.0	13.2	4.4	4.2	3.0		
2.0	(3.8)	13.2	2.8	3.8	2.0		
Net Sensitivity Rate: 60%							
1.0	13.6	22.4	5.4	8.2	5.0		
2.0	(8.2)	22.4	4.0	8.2	3.4		

Max. clique size in the sensitivity graph

9/19/00

of shields is fewer than lower bound for SINO/NF CPU time is much less than existing net ordering algorithms

Prof. Lei He http://eda.ece.wisc.edu

Mini-Summary

□ SINO is effective to achieve signal integrity

Ongoing work:

◆ Post-routing (GR) optimization for signal integrity

• Considering net ordering, shielding, differential signals, staggered inverters, and etc.

Progress can be found at <u>http://eda.ece.wisc.edu</u>