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ABSTRACT
In the nanometer manufacturing region, process variation
causes significant uncertainty for circuit performance verifi-
cation. Statistical static timing analysis (SSTA) is thus de-
veloped to estimate timing distribution under process vari-
ation. However, most of the existing SSTA techniques have
difficulty in handling the non-Gaussian variation distribu-
tion and non-linear dependency of delay on variation sources.
To solve such a problem, in this paper, we first propose a
new method to approximate the max operation of two non-
Gaussian random variables through second-order polyno-
mial fitting. We then present new non-Gaussian SSTA algo-
rithms under two types of variational delay models: quadratic
model and semi-quadratic model (i.e., quadratic model with-
out crossing terms). All atomic operations (such as max and
sum) of our algorithms are performed by closed-form formu-
las, hence they scale well for large designs. Experimental
results show that compared to the Monte-Carlo simulation,
our approach predicts the mean, standard deviation, and
skewness within 1%, 1%, and 5% error, respectively. Our
approach is more accurate and also 20x faster than the most
recent method for non-Gaussian and nonlinear SSTA.

1. INTRODUCTION
With the CMOS technology scaling down to the nanometer
region, process variation becomes a major limiting factor for
integrated circuit design. These variations introduce signif-
icant uncertainty for both circuit performance and leakage
power. It has been shown in [1] that even for the 180nm
technology, process variation can lead to 1.3X variation in
frequency and 20X variation in leakage power. Such impact
will become even larger for the future technology genera-
tions. Statistical static timing analysis (SSTA) is developed
for full chip timing analysis under process variation. By per-
forming SSTA, designers can obtain the timing distribution
and its sensitivity to various process parameters.

There have been two types of SSTA techniques studied
in the literature: path-based [2, 3] and block-based [4, 5,
6, 7, 8, 9, 10]. Because the number of paths is exponential
with respect to the circuit size, the path-based SSTA is in
general not scalable to large circuits. In order to solve such
a problem, the block-based SSTA was proposed. The goal of
block-based SSTA is to parameterize timing characteristics
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of the timing graph as a function of the underlying sources of
process parameters which are modeled as random variables.

The early SSTA methods [4] modeled the gate delay as
linear functions of variation sources and assumed all the
variation sources are mutually independent Gaussian ran-
dom variables. Based on such assumption, [4] presented
closed-form formulas for all atomic operations (max and
sum), hence such method is efficient. However, when the
amount of variation becomes larger, the linear delay model
is no longer accurate [11]. In order to capture the non-linear
dependence of delay on the variation sources, a higher-order
delay model is thus needed [5, 6].

As more complicated or large-scale variation sources are
taken into account, the assumption of Gaussian variation
sources is no longer valid. For example, the via resistance
has an asymmetric distribution [8], while dopant concentra-
tion is more suitably modeled as a Poisson distribution [7]
than Gaussian. Some of the most recent works on SSTA [7,
8, 9, 10] took non-Gaussian variation sources into account.
For example, [7] applied independent component analysis
to de-correlate the non-Gaussian random variables, but it
was still based on a linear delay model. [8] computed the
tightness probability of the max operation through multi-
dimensional numerical integration. Recently, [10] approxi-
mated the probability density function (PDF) of max results
as Fourier series, but it lacks the capability to handle cross-
ing term effects on timing.

In this paper, we introduce a time efficient non-linear
SSTA for arbitrary non-Gaussian variation sources. The
major contribution of this work is two-fold. (1) We pro-
pose a new method to approximate the max of two non-
Gaussian random variables as a second-order polynomial
function based on least-square-error curve fitting. Experi-
mental results shows that such approximation is much more
accurate than the linear approximation based on tightness
probability [4, 5, 8]. (2) Based on the new approxima-
tion of the max operation, we present our SSTA technique
for two different delay models: quadratic delay model and
semi-quadratic model (i.e., quadratic delay model without
crossing terms). In our method, only the first few moments
are required for different distributions.All atomic operations
in our approach are performed by closed-form formulas, so
they are very time efficient. For the semi-quadratic delay
model, the computational complexity of our method is lin-
ear in both the number of variation sources and circuit size.
For the quadratic delay model, the computational complex-
ity is cubic (third-order) to the number of variation sources
and linear to the circuit size. Experimental results show



that compared to the Monte-Carlo simulation, our approach
predicts the mean, standard deviation, and skewness within
1%, 1%, and 5% error, respectively. Our approach is more
accurate and also 20x faster than the most recent method
for non-Gaussian and nonlinear SSTA [10].

The rest of the paper is organized as follows: Section 2
introduces the approximation of the max operation using
second-order polynomial fitting. With the approximation of
max, Section 3 presents a novel SSTA algorithm for quadratic
delay model with non-Gaussian variation sources. We fur-
ther apply this technique to handle semi-quadratic delay
model in Section 4. Experimental results are presented in
Section 5, with conclusion in Section 6.

2. SECOND-ORDER POLYNOMIAL FITTING
OF MAX OPERATION

2.1 Review and Preliminary
According to [4], given two random variables, A and B,
the tightness probability is defined as the probability of A
greater than B, i.e., TA = P{A > B} = P{A − B > 0}.
Then the max operation is approximated as:

max(A, B) ≈ TA · A + (1 − TA) · B + c, (1)

where c is a term used to match the mean and variance of
max(A, B). Because (1) can be further written as max(A, B) =
max(A − B, 0) + B, we arrive at:

max(A − B, 0) ≈ TA · (A − B) + c. (2)

According to (2), we can see that the max operation in [4]
is in fact approximated by a linear function subject to cer-
tain constrains (such as matching the exact mean and vari-
ance). When both A and B are Gaussian, such a linear ap-
proximation is reasonably accurate, and the coefficients can
be computed easily as both TA and E[max(A, B)] can be ob-
tained by closed-form formulas. However, when A and B are
non-Gaussian random variables, the tightness probability
TA and E[max(A, B)] are hard to obtain. For example, TA

in [8] has to be computed via expensive multi-dimensional
numerical integration, thus preventing its scalability to large
designs. Moreover, because the max operation is an inher-
ently non-linear function, linear approximation would be-
come less and less accurate, particularly when the amount
of variation increases and the number of non-Gaussian vari-
ation sources increases. To overcome these difficulties, we
develop a more efficient and accurate approximation method
in the next section.

2.2 New Fitting Method for Max Operation
In this section, we introduce a new fitting method to ap-
proximate the max operation. Instead of using the linear
function, we propose to use a second-order polynomial func-
tion to approximate the max operation, i.e.,

max(V, 0) ≈ h(V, Θ) = θ2V 2 + θ1V + θ0, (3)

where Θ = (θ0, θ1, θ2)
T are three coefficients of the second-

order polynomial h(v, Θ). The problem thus becomes how to
obtain the fitting parameters of Θ. Different from the linear
fitting method through tightness probability, we compute Θ
by matching the mean of the max operation while min-
imizing the square error between h(V, P ) and max(V, 0)
within the ±3σ range of V . Mathematically, this problem
can be formulated as the following optimization problem:

Θ = arg min
E[h(V,Θ)]=µm

Z
µv+3σv

µv−3σv

`
h(v, Θ) − max(v, 0)

´2dv (4)

where µv and σ2
v are the mean and variance of the random

variable V , respectively; while µm and E[h(V, Θ)] are the
exact and approximated mean of max(V, 0), respectively. In
other words,

µm = E[max(V, 0)], E[h(V, Θ)] = θ2(σ2
v + µ2

v) + θ1µv + θ0. (5)

In order to solve the problem, we first need to compute
µm. When V is a non-Gaussian random variable, exact com-
putation of µm is difficult in general. Therefore, we propose
to use the following two-step procedure to approximately
compute µm. In the first step, we approximate the non-
Gaussian random variable V as a quadratic function of a
standard Gaussian random variable W similar to [12], i.e.,

V ≈ g(W ) = c2 · W 2 + c1 · W + c0. (6)

The coefficients c2, c1, and c0 can be obtained by match-
ing g(W ) and V ’s mean µv, variance σ2

v , and skewness γv

simultaneously, i.e.,

E[c2 · W
2

+ c1 · W + c0] = µv

E[(c2 · W 2 + c1 · W + c0 − µv)2] = σ2
v

E[(c2 · W 2 + c1 · W + c0 − µv)3] = γv · σ3
v (7)

As shown in [12], the above equations can be solved via
closed-form formulas efficiently.

After obtaining the coefficients c2, c1, and c0 by solving
(7), we then approximate the exact mean of max(V, 0) by
the exact mean of max(g(W ), 0), i.e.,

µm ≈ E[max(g(W ), 0)]

Without details, we can further show that

E[max(g(W ), 0)] =8>>>>>><
>>>>>>:

(c2 + c0)
`
1 + Φ(t1) − Φ(t2)

´
+

(c1 + t1)
`
φ(t2) − φ(t1)

´
c2 > 0

(c2 + c0)
`
Φ(t1) − Φ(t2)

´
+

(c1 + t1)
`
φ(t2) − φ(t1)

´
c2 < 0

c0 · Φ(c0/c1) + c1 · φ(c0/c1) c2 = 0 ∧ c1 > 0

c0 · `
1 − Φ(c0/c1)

´ − c1 · φ(c0/c1) c2 = 0 ∧ c1 < 0

(8)

where

t1 = (−c1 −
q

c21 − 4c2c0)/2c2, t2 = (−c1 +
q

c2
1 − 4c2c0)/2c2

with Φ(·) and φ(·) as the cumulative density function (CDF)
and PDF of the standard normal distribution, respectively.
According to (8), we can compute µm easily through ana-
lytical formulas.

After obtaining µm, we need to find Θ in (3) by solving the
constrained optimization problem of (4). In the following,
we show that (4) can be solved analytically as well. We first
write the constraint in (4) as follows:

θ0 = µm − θ2(µ
2
v + σ

2
v) − θ1µv . (9)

By replacing θ0 in (4) by (9), the square error in (4) can be
written as:Z 0

l1

`
θ2(v

2 − µ2
v − σ2

v) + θ1(v − µv) + µm

´2dv +

Z l2

0

`
θ2(v

2 − µ2
v − σ2

v) + θ1(v − µv) + µm − v
´2dv, (10)

where l1 = µv − 3σv and l2 = µv + 3σv. By expanding the
square and integral, we can transform the constrained opti-
mization of (4) to the following unconstrained optimization
problem, which is a quadratic form of Θ′ = (θ1, θ2)

T :

Θ
′
= arg min Θ

′T
SΘ

′
+ QΘ

′
+ t, (11)

where S = (sij) is a 2×2 matrix, Q = (qi) is a 1×2 vector,
and t is a constant. The parameters of S, Q, and t can be



computed as:

s11 = (l32 − l31)/3 + (l2 − l1)µ
2
v − (l22 − l21)µv

s22 = (l52 − l51)/5 + (l22 − l21)(µ2
v + σ2

v)2 − 2(l32 − l31)(µ2
v + σ2

v)/3

s12 = s21 = (l42 − l41)/4 + (l2 − l1)µv(µ2
v + σ2

v) +

(l32 − l31)µv/3 − (l22 − l21)(µ2
v + σ2

v)/2

q1 = l22µv + (l22 − l21)µm − 2l32/3 − 2(l2 − l1)µvµm

q2 = l
2
2(µ

2
v + σ

2
v) + 2(l

3
2 − l

3
1)µm/3 − 2l

3
2/3 − 2(l2 − l1)(µ

2
v + σ

2
v)µv

t = l32/3 + (l2 − l1)µ
2
m − l22µm (12)

Because the square error is always positive no matter what
value the Θ′ is, S is a positive definite matrix. Therefore,
(11) is to minimize a second-order convex function of Θ′

without constraints. Then the optimum of Θ′ can be ob-
tained by setting the derivation of (11) to zero, resulting
a 2 × 2 system of linear equations. Such a system of lin-
ear equations can be solved efficiently to obtain Θ′. With
Θ′ = (θ1, θ2)

T , we can compute θ0 from (9).
From the above discussion, we see that for a random vari-

able V with any distribution, if we know its mean µv, vari-
ance σ2

v , and skewness γv, we can obtain the fitting param-
eters Θ for max(V, 0) through closed-form formulas.

To show the accuracy of our second-order fitting approach
to the max approximation, we compare the results obtain
from our approach, the linear fitting approach, and the ex-
act (or Monte Carlo) approach. For example, when V ∼
N(0.7, 1), results from these three approaches in computing
max(V, 0) are shown in Fig. 1(a), where the x-axis is V , and
y-axis is the results of max(V, 0). The corresponding PDFs
of the three approaches are shown in Fig. 1(b). From the fig-
ures, we see that our proposed second-order fitting method
is more accurate than the linear fitting method. In particu-
lar, our second-order fitting method predicts the impulse of
the exact PDF well as shown in Fig. 1(b). In contrast, the
linear fitting method can only give a smooth PDF, which is
very different from the exact max result.
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Figure 1: (a)Comparison of exact computation, lin-
ear fitting, and second-order fitting for max(V, 0). (b)
PDF comparison

3. QUADRATIC SSTA

3.1 Quadratic Delay Model
In Section 2, we introduce the second-order fitting of max
operation. Here we will apply such fitting in SSTA. In this
section, we assume that the delay is a quadratic function of
variation sources:

D = d0 + AX + XT BX + rR (13)

where d0 is the nominal delay, X = (X1, X2, . . . Xn)T are
n variation sources, A = (a1, a2, . . . , an) are the linear delay
sensitivity coefficients of the variation sources, B = (bij) are
the second-order sensitivity coefficients, which is an n × n

matrix, R is the random variation, and r is the delay sen-
sitivity coefficient of the random variation. Without loss
of generality, it is assumed that all Xi and R are mutually
independent with mean=0 and variance=1. We allow the
variation Xis to be any arbitrary distribution, and the ran-
dom variation R is modeled as a Gaussian random variable.
In the rest of this paper, we use mi(k) and mr(k) to rep-
resent the kth moment for Xi and the kth moment for R,
respectively.

To compute the arrival time in a block-based SSTA frame-
work, two atomic operations, max and sum, are needed.
That is, given D1 and D2

D1 = d01 + A1X + XT B1X + r1R1,

D2 = d02 + A2X + XT B2X + r2R2, (14)

we want to compute

Dm = max(D1, D2) = dm0 + AmX + X
T

BmX + rmRm,

Ds = D1 + D2 = ds0 + AsX + XT BsX + rsRs. (15)

The sum operation is straightforward, as the coefficients
of Ds can be computed by adding the correspondent coeffi-
cients of D1 and D2, i.e.,

ds0=d01 + d02 As=A1 + A2 Bs=B1 + B2 rs=
q

r2
1 + r2

2. (16)

3.2 Max Operation
The max operation is the most difficult operation for block-
based SSTA. Based on the second-order polynomial fitting
method as discussed in Section 2.2, we propose a novel tech-
nique to compute the max of two random variables. The
overall flow of the max operation is illustrated in Figure 2.
Considering

Dm = max(D1, D2) = max(D1 − D2, 0) + D2. (17)

Denote Dp = D1 − D2, and without loss of generality, we
assume E[Dp] > 0. We first compute the mean and vari-
ance of Dp. Because in (4) we try to minimize the mean
square error within the ±3 sigma range, when µDp > 3σDp ,
we have Dm = D1. Otherwise, we compute the joint mo-
ments between Dp and Xis and the skewness of Dp. Know-
ing the mean, variance, and skewness of Dp, we apply the
method as shown in Section 2.2 to find the fitting coefficients
Θ = (θ0, θ1, θ2) for max(Dp, 0). Finally, we use the moment
matching method to reconstruct the quadratic form of Dm.

Input: Quadratic form of D1 and D2
Output: Quadratic form of Dm

1. Let Dp = D1 − D2, compute µDp and σDp

if µDp ≥ 3σDp {
2. Dm = D1

}
else {

3. Compute joint moments between D2
p and Xi

4. Compute γDp

5. Get fitting coefficients Θ
6. Compute joint moments between Dm and Xi

7. Reconstruct the quadratic form of Dm

}

Figure 2: Algorithm for computing max(D1,D2).

3.2.1 Mean and Variance
In order to compute the mean and variance, we first obtain
the quadratic form of Dp as follows:

Dp = D1 − D2 = dp0 + Ap · X + XT BpX + r1 · R1 − r2 · R2

dp0 = d01 − d02 Ap = A1 − A2 Bp = B1 − B2 (18)



Because Xis, R1, and R2 are mutually independent random
variables with mean 0 and variance 1, the mean and variance
of Dp can be computed as:

µDp = E[Dp] = dp0 +
Xn

i=1
bpii

σ2
Dp

= E[(Dp − µDp )2]

= r
2
1 + r

2
2 +

Xn

i=1
(a

2
pi + bpiimi,4 + 2apibpiimi,3) +

X
i<j

2(b2pij + bpiibpjj) − (
Xn

i=1
bpii)

2 (19)

3.2.2 Joint Moments and Skewness
From the definition of Dp as shown in (18), the joint mo-
ments between D2

p and Xi, X2
i , and R can be computed

as:

E[XiD
2
p] = 2dp0api + (a2

pi + 2dp0bpii)mi,3 + 2apibpiimi,4 +

b2
piimi,5 + 2 ·

X
j �=i

`
apibpjj + 2apjbpij +

(bpiibpjj + 2b
2
pij)mi,3 + 2bpijbpjjmj,3

´
(20)

E[R1D
2
p] = r

2
1mr,3 + 2r1µDp E[R2D

2
p] = r

2
2mr,3 − 2r1µDp (21)

E[X2
i D2

p] = d2
p0 + r2

1 + r2
2 + 2dp0apimi,3 + 2apibpiimi,5 +

(a2
pi + 2dp0bpii) · mi,4 + b2piimi,6 +X

j �=i

`
a2

pj + 2dp0bpjj + 2(apibpjj + 2apjbpij)mi,3 +

2apjbpjjmj,3 + 2(bpiibpjj + 4b
2
pij) · mi,4 +

b2pjjmj,4 + 4bpjjbpijmi,3mj,3
´

+

2 ·
X

j,k �=i,j<k
(bpjjbpkk + 2b2pjk) (22)

E[XiXjD2
p] = 2apiapj + 4dp0bpij + 2 · (2apibpij + apjbpii)mi,3 +

4bpiibpijmi,4 + 2 · (2apjbpij + apibpjj)mj,3 +

4bpjjbpijmj,4 + 2 · (2b2pij + bpiibpjj)mi,3mj,3 +

4 ·
X

k �=i,j
bpijbpkk (23)

With the joint moments computed above, the raw moments,
central moments, and skewness of Dp is computed as:

E[D2
p] = µ2

Dp
+ σ2

Dp

E[D3
p] = E[Dp · D2

p]

= E[(dp0 + ApX + XT BpX + r1R1 − r2R2)D
2
p]

= dp0 · E[D2
p] + r1 · E[R1D2

p] − r2 · E[R2D2
p] +Xn

i=1

`
api · E[XiD

2
p] + bpii · E[X

2
i D

2
p]

´
+

X
0≤i<j≤n

bpijE[XiXj · D2
p]

mDp (3) = E[(D − µD)3] = E[D3
p] − 3µDp · E[D2

p] + 2µ3
Dp

γDp = mDp (3)/σ3
Dp

(24)

3.2.3 Reconstruction of Quadratic Form
Knowing µDp , σDp , and γDp , we apply the second-order fit-
ting method to compute the fitting parameters Θ = (θ0, θ1, θ2)
for max(Dp, 0). Then Dm can be represented as:

Dm = max(D1, D2) = max(Dp, 0) + D2

≈ θ2 · D2
p + θ1 · Dp + θ0 + D2

= θ2 · D2
p + Dq + θ0

Dq = θ1 · Dp + D2 (25)

The above equation gives the closed-form formula of Dm.
However, because Dp and Dq are in quadratic form as (13),

the representation of Dm in (25) is a 4th order polynomial
of Xis. In order to reconstruct the quadratic form for Dm,
we first compute the the mean of Dm, and joint moments
between Dm and variation sources:

E[Dm] = p2 · E[D2
p] + E[Dq ] + p0

E[XiDm] = p2 · E[XiD
2
p] + E[XiDq ]

E[X
2
i Dm] = p2 · E[X

2
i D

2
p] + E[X

2
i Dq] + p0

E[XiXjDm] = p2 · E[XiXjD2
p] + E[XiXjDq ]

E[R1Dm] = p2 · E[R1D2
p] + E[R1Dq ]

E[R2Dm] = p2 · E[R2D2
p] + E[R2Dq ] (26)

The joint moments between D2
p and Xis are computed in

(20), (21), (22), and (23). The joint moments between Dq

and variation sources are:

E[Dq ] = dq0 +
Xn

i=1
bqii

E[XiDq ] = aqimi,2 + bqiimi,3

E[X2
i Dq ] = dq0 + aqimi,3 + bqiimi,4 +

X
j �=i

bqjj

E[XiXjDq ] = 2bqij

E[R1Dq ] = p1 · r1

E[R2Dq ] = (1 − p1) · r2 (27)

Because we want to reconstruct Dm in the quadratic form,
as shown in (15), by applying the moment matching tech-
nique similar to [6], we have:

E[Dm] =
Xn

i=1
bmii + dm0

E[XiDm] = ami + bnii · mi,3

E[X2
i Dm] = ami · mi,3 + bnii · mi,4 +

X
j �=i

bmjj

E[XiXjDm] = 2bmij (28)

With E[Dm], E[XiDm], E[X2
i Dm], and E[XiXjDm] com-

puted in (27), the sensitivity coefficients Am = (ami) and
Bm = (bmij) can be obtained by solving the linear equations
above.

Finally, we consider the random term of Dm. Because the
random term in Dm comes from the random terms in D1
and D2, we assume rmRm = rm1R1 + rm2R2. Because the
random variation sources Rm, R1, and R2 are Gaussian ran-
dom variables, by applying the moment matching technique
similar to (28), we have:

rm1=E[R1 · Dm] rm2=E[R2 · Dm] rm=
q

r2
m1 + r2

m2 (29)

where E[R1 · Dm] and E[R2 · Dm] are computed in (26).

3.3 Complexity of Quadratic SSTA
For each max operation in SSTA based on a quadratic delay
model, we need to calculate n2 joint moments between Dp

and XiXjs; and for each joint moment, we need to compute
the sum of n numbers; hence the computational complex-
ity is O{n3}, where n is the number of variation sources.
For the sum operation, we need to compute the sum of two
n×n metric, hence the computational complexity is O{n2}.
Because the total number of max and sum operations is lin-
ear with respect to circuit sizes N , the total complexity is
O{n3N}.

4. SEMI-QUADRATIC SSTA

4.1 Semi-Quadratic Delay Model
It has been argued that the impact of the crossing terms
may be ignored under certain circumstances [6, 9]. In such



cases, we may further speed up our SSTA algorithm without
affecting the accuracy too much. In other words, the delay
model without crossing terms becomes

D = d0 + AX + BX2 + rR, (30)

where d0, A, r, and R are defined in the similar way as the
quadratic delay model in (13); X2 = (X2

1 , X2
2 , . . . , X2

n)T are
the square of variation sources; and B = (b1, b2, . . . , bn) are
the second order sensitivity coefficients for the square terms.
We defined such quadratic model without crossing terms as
Semi-Quadratic Delay Model.

A straightforward way of performing SSTA under the semi-
quadratic delay model is to use the same algorithm as dis-
cussed for the quadratic delay model by setting the coeffi-
cients of all crossing terms as zero. However, by exploiting
the special property of this new delay model, we can achieve
a more efficient algorithm as shown in the following. As the
sum operation is still the same, we will only present the max
operation for the semi-quadratic delay model in the rest of
this section.

4.2 Max Operation
The overall flow of the max operation of semi-quadratic de-
lay model is similar to that of quadratic delay model as il-
lustrated in Figure 2. The only difference is that we do not
need to compute the joint moments between the crossing
terms and Dm.

4.2.1 Moments
We defined Dp = D1 −D2 in a similar way as (18). In order
to compute the central moments of Dp, we first rewrite Dp

as the following form:

Dp = d′
p0 +

Xn

i=1
Ypi + r1R1 − r2R2

d′
p0 = dp0 +

Xn

i=1
bpi, Ypi = apiXi + bpiX

2
i − bpi (31)

Because Xis are mutually independent random variables
with mean 0 and variance 1, Ypis are independent random
variables with zero mean. Therefore, the first three central
moments of Dp are:

µDp = d′
p0 σ2

Dp
= r2

1 + r2
2 +

Xn

i=1
E[Y 2

pi]

mDp (3) = E[(Dp − µDp )3] = r3
1 + r3

2 +
Xn

i=1
E[Y 3

pi] (32)

where

E[Y 2
pi] = b2pi(mi(4) − 1) + 2apibpimi(3) + a2

pi

E[Y 3
pi] = 3apib

2
pi

`
mi(5) − 2mi(3)

´
+ 3a2

pibpi

`
mi(4) − 1

´
+

a3
pimi(3) + b3pi

`
mi(6) − 3mi(4) + 2

´
(33)

With the central moments of Dp, the raw moments and
skewness can be computed easily.

4.2.2 Reconstruction of Semi-quadratic Form
Similar to the quadratic SSTA, by knowing the mean, vari-
ance and skewness of Dp, the fitting coefficients Θ can be
obtained. Then the joint moments between Xis and Dm

can be computed in the similar ways as (26). Here the joint
moments between Xis and D2

p, Dq are:

E[XiD
2
p] = E[XiY

2
pi] + 2d

′
0E[XiYpi]

E[X
2
i D

2
p] = E[X

2
i Y

2
pi] + 2d

′
0E[X

2
i Ypi] + E[X

2
i ]E[(Dp − Ypi)

2
]

E[XiDq ] = E[XiYqi] E[X2
i Dq ] = E[X2Yqi] (34)

where E[Y 2
pi] are computed in (32), E[(Dp −Ypi)

2] = σ2
Dp

−
E[Y 2

pi], and Yqis are defined in the similar way as Ypis. The

joint moments between Xis and Ypis are:

E[X
2
i Y

2
pi] =

`
a
2
pi − 2b

2
pi

´
mi(4) + b

2
pi

`
mi(6) − 1

´
+

2apibpi

`
mi(5) − mi(3)

´
E[X2

i Ypi] = apimi(3) + bpi

`
mi(4) − 1

´
E[XiY

2
pi] = b2pimi(5) + 2apibpi

`
mi(4) − 1

´
+

`
a2

pi − 2b2
pi

´
mi(3)

E[XiYpi] = api + bpimi(3) (35)

The joint moments between Xis and Yqis can be computed
in the same way.

Knowing the joint moments between Xis and Dm, by ap-
plying the moment matching technique, we will have similar
equations as (28). And then Am and Bm can be obtained
by solving such equations. Finally, we can compute the ran-
dom term of Dm in the same way as the quadratic model,
as shown in (29).

From the discussion above, it is easy to see that for the
semi-quadratic SSTA, the computational complexity for both
max and sum operation is O{n}, while the total complex-
ity of the algorithm is O{nN}, where where n is the num-
ber of variation sources and N is the circuit size. Com-
pared to the straightforward application of the algorithm
under quadratic-delay model, which has total complexity of
O{n3N}, the new approach has much lower complexity, and
this will be further confirmed in our experiments.

5. EXPERIMENTAL RESULT
We have implemented our SSTA algorithm in C for both
the quadratic delay model (Quad SSTA) and semi-quadratic
delay model (Semi-Quad SSTA). We also define three com-
parison cases: (1) our implementation of the linear SSTA
for Gaussian variation sources in [4], which we refer to as
Lin Gau; (2) our implementation of the non-Gaussian SSTA
with Fourier Series in [10], which we refer to as Fourier
SSTA; (3) 100,000-sample Monte-Carlo simulation (MC ).
We apply all the above methods to the ISCAS89 suite of
benchmarks in TSMC 90nm technology.

In our experiment, we consider two types of variation
sources Leff and Vth. For each type of variation source,
inter-die, intra-die spatial, and intra-die random variation
are considered. We use the grid-based model in [13] to model
the spatial variation. The number of grids (the number of
spatial variation sources) is determined by the circuit size
and larger circuits have more variation sources. We also
assume that the 3σ value of the inter-die, intra-die spatial,
and intra-die random variation are 10%, 10%, and 5% of the
nominal value, respectively. In our experiment, we assume
that Leff has a normal distribution and Vth has a Poisson
distribution.

Fig. 3 illustrates the PDF comparison for circuit s15850.
From the figure, we find that, compared to the Monte-Carlo
simulation, the Quad SSTA is the most accurate, the Semi-
Quad SSTA and Fourier SSTA have similar accuracy, and
Lin Gau is the least accurate. Such result is expected, be-
cause the Quad SSTA captures all the second-order effects;
the Semi-Quad SSTA and Fourier SSTA both use semi-
quadratic delay model and capture only partial second order
effects; while the Lin Gau captures only linear effects and
ignores all non-linear effects.

Table 1 compares the run time in second (T ), and the
error percentage of mean (µ), standard deviation (σ), and
skewness (γ). In the table, the error percentage of mean
is computed as 100 × (µMC − µSSTA)/σMC , the error per-



bench G N Quad SSTA Semi-Quad SSTA Fourier SSTA Lin Gau MC
name µ σ γ T µ σ γ T µ σ γ T µ σ γ T T
s444 119 25 -0.605 -0.809 3.269 0.16 -0.522 -0.955 -22.4 0.13 -0.671 -1.865 -23.3 3.4 -0.565 -1.284 -65.1 0.07 41.76
s832 262 33 -0.362 -0.263 -3.256 0.3 -0.37 -0.344 -23.5 0.14 -0.546 -1.295 -25.2 3.9 -0.546 -1.295 -66.93 0.07 102.28
s1494 588 68 -0.601 -0.798 1.715 1.3 -0.534 -1.374 -16.85 0.15 -0.773 -2.276 -17.2 4.5 -0.266 -1.611 -58.35 0.1 320.35
s9234 2027 99 -0.135 -0.944 2.529 10.9 0.325 -1.873 -12.46 0.31 0.009 -3.112 -13.2 7.5 1.853 -2.518 -68.95 0.19 2803
s15850 3448 135 0.831 -0.552 0.415 39.9 1.66 -0.875 -12.15 0.54 1.398 -2.02 -15.5 12.5 3.573 -1.93 -66.45 0.35 6742
s38417 8709 176 0.775 -0.215 4.598 204 0.928 -0.435 -6.091 1.11 0.691 -1.571 -9.5 22.1 1.568 -1.3 -63.88 0.65 19129
s38584 11448 176 -0.766 -0.587 -3.414 219 -0.384 -1.224 -14.71 1.2 -0.684 -2.383 -18.8 23.7 0.645 -2.282 -65.32 0.7 19423
Ave - - 0.467 0.553 3.469 1/107 0.56 0.963 15.37 1/12179 0.548 2.017 64.37 1/568 1.062 1.624 64.47 1/20512 -

Table 1: Percentage of relative error comparison for mean, variance, and skewness, as well as runtime
comparison.
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Figure 3: PDF comparison for circuit s15850

centage of standard deviation is computed as 100× (σMC −
σSSTA)/σMC , and the error percentage of skewness is com-
puted as 100× (γMC −γSST A)/γMC . Moreover, the average
error in the table is average of the absolute value; and the
average runtime is the average runtime ratio between SSTA
and Monte-Carlo simulation. For each benchmark, G refers
to the number of gates; and N refers to the total number of
variation sources. From the table, we see that for the Quad
SSTA the error of mean and standard deviation is within 1%,
and the error of skewness is within 5%. Semi-Quad SSTA
and Fourier SSTA result similar error, but run time of Semi-
Quad SSTA is 20X faster than Fourier SSTA. And all the
non-linear SSTA give better results than Lin Gau, especially
for skewness. This is because the Lin Gau ignores all non-
linear effects which significantly affect the skewness. More-
over, we also find that Semi-Quad SSTA has similar run time
as Lin Gau, but the run time of Quad SSTA is longer espe-
cially when the number of variation sources is large. This is
because the computational complexity of Semi-Quad SSTA
and Lin Gau is the same, but Quad SSTA has higher com-
plexity than the other SSTA methods. But the run time
of all the SSTA methods is significantly shorter than the
Monte-Carlo simulation (more than 100× speed-up).

6. CONCLUSION AND DISCUSSION
In this paper, we have proposed a new method to approxi-
mate the max operation of two non-Gaussian random vari-
ables using second-order polynomial fitting. It has been
shown that such approximation is more accurate than the
approximation using linear fitting through tightness proba-
bility. By applying such approximation, we present a new
SSTA algorithm for two different delay models, i.e., quadratic
and semi-quadratic models. All atomic operations of this al-
gorithm are performed by closed-form formulas, hence they

are very time efficient. The computational complexity of the
semi-quadratic delay model is linear to the number of vari-
ation sources and that of the quadratic delay model is cubic
(third-order) to the number of variation sources. Moreover,
the computational complexity is linear to the circuit size
for both delay models. Compared to Monte-Carlo simula-
tion for non-Gaussian variation sources and quadratic delay
models, the error of mean, standard deviation, and skewness
of our approach is within 1%, 1%, and 5%, respectively. Our
approach is more accurate and also 20x faster than the most
recent method for non-Gaussian and nonlinear SSTA.
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