Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs

> Lei He he@ece.wisc.edu http://eda.ece.wisc.edu

Outline

n Background and overview

n LR-based STIS optimization

- u LR -- local refinement
- **u** STIS -- simultaneous transistor and interconnect sizing

n Conclusions and future works

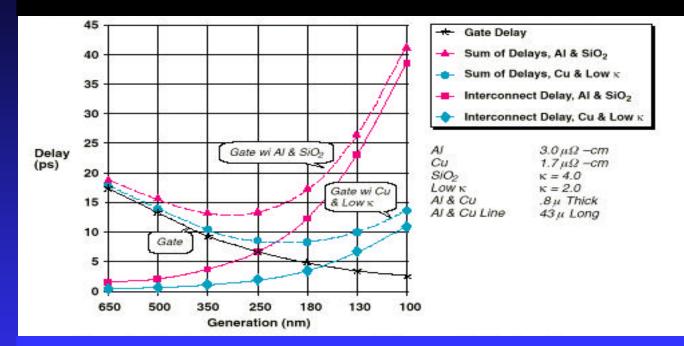
Upcoming Design Challenges

n Microprocessors for server computers

- u 1998 -- 0.25um, 7.5M FETs, 450MHz
- u 2001 -- 0.18um, ~100M FETs, >1GHz
 - ▶ close to tape-out
- u 2005 -- 0.10um, ~200M FETS, ~3.5GHz
 - ▶ launch design in 2003
 - ▶ begin developing design tools in 2001
 - ▶ start research right now

We are moving faster than Moore's Law

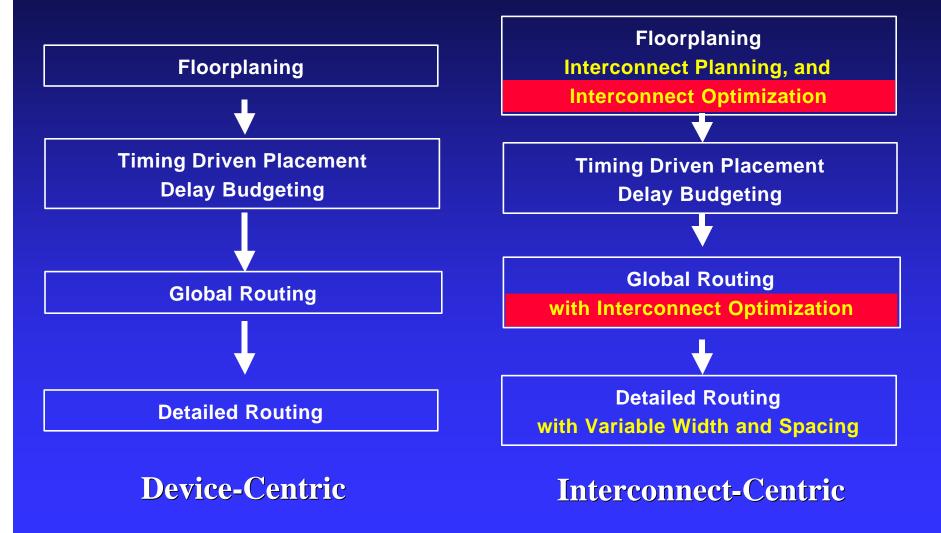
Critical Issue: Interconnect Delay



- n Starting from 0.25um generation, circuit delay is dominated by interconnect delay
- **n** Efforts to control interconnect delay
 - u Processing technology: Cu and low K dielectric
 - u Design technology:

interconnect-centric design

Layout Design: Device-Centric versus Interconnect-Centric

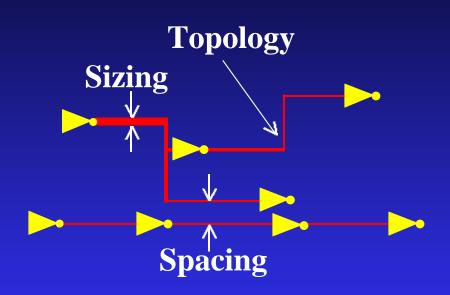


Interconnect Optimization

Device locations and constraints:

- Delay
- Power
- Signal integrity
- Skew

...



- Other critical optimizations: buffer insertion, simultaneous device and interconnect sizing ...
- Automatic solutions guided by accurate interconnect and device models

UCLA TRIO Package

n Integrated system for interconnect design

u http://cadlab.cs.ucla.edu/~trio

n Efficient polynomial-time optimal/near-optimal algorithms

- u Interconnect topology optimization
- u Optimal buffer insertion
- u Optimal wire sizing
- u Wire sizing and spacing considering Cx
- u Simultaneous device and interconnect sizing
- u Simultaneous topology generation with buffer insertion and wiresizing

n Accurate interconnect models

- u 2 -1/2 D capacitance model
- u 2 -1/2 D inductance model
- **u** Elmore delay and higher-order delay models
- **•** Improve interconnect performance by up to 7x !
 - u Used in industry, e.g., Intel

Contributions to UCLA TRIO Package

n Integrated system for interconnect design

u http://cadlab.cs.ucla.edu/~trio

n Efficient polynomial-time optimal/near-optimal algorithms

- u Interconnect topology optimization
- u Optimal buffer insertion
- u Optimal wire sizing [ICCAD'95, TODAES'96]
- u Wire sizing and spacing considering Cx [ICCAD'97, TCAD'99]
- **U** Simultaneous device and interconnect sizing [ICCAD'96, ISPD'98, TCAD'99]
- u Simultaneous topology generation with buffer insertion and wiresizing
- n Accurate interconnect models
 - u 2 -1/2 D capacitance model [DAC'97] (with Cadence)
 - u 2 -1/2 D inductance model [CICC'99] (with HP Labs)
 - **U** Elmore delay and higher-order delay models
- **•** Improve interconnect performance by up to 7x !
 - u Used in industry, e.g., Intel

Outline

n Background and overview

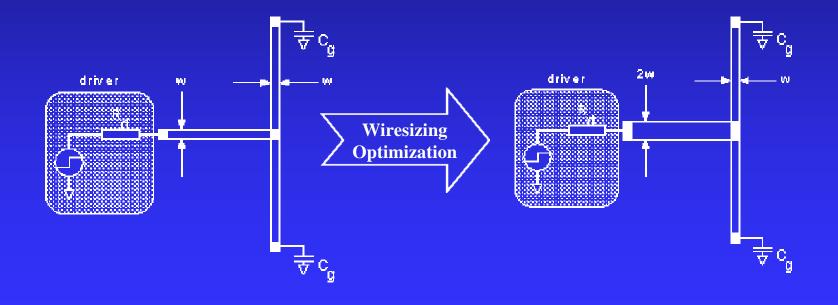
n LR-based STIS optimization u Motivation for LR-based optimization

n Conclusions and future works

Discrete Wiresizing Optimization

[Cong-Leung, ICCAD'93]

- n Given: A set of possible wire widths { $W_1, W_2, ..., W_r$ }
- n Find: An optimal wire width assignment to minimize weighted sum of sink delays



Dominance Relation and Local Refinement



Dominance Relation u For all E_j , $w(E_j)^{\mathfrak{s}}w'(E_j)$ **B** *W* dominates *W'* (*i.e.*, $W^{\mathfrak{s}}W'$)

n Local refinement (LR)

- LR for E₁ to find an optimal width for E₁, assuming widths for other wires are fixed with respect to current width assignment
- U Single-variable optimization can be solved efficiently

Dominance Property for Discrete Wiresizing [Cong-Leung, ICCAD'93]

n If solution W dominates optimal solution W* W' = local refinement of W Then, W' dominates W*

n If solution W is dominated by optimal solution W* W' = local refinement of W Then, W' is dominated by W*

A highly efficient algorithm to compute tight lower and upper bounds of optimal solution

Bound Computation based on Dominance Property

- **n** Lower bound computed starting with minimum widths
 - **u** LR operations on all wires constitute a pass of bound computation
 - u LR operations can be in an arbitrary order
 - **u** New solution is wider, but is still dominated by the optimal solution

- O Upper bound is computed similarly, but beginning with maximum widths
- **n** We alternate lower and upper bound computations
 - **u** Total number of passes is linearly bounded by size of solution space
- **n** Optimal solution is often achieved in experiments

Other Problems Solved by LR operation

Why does LR operation work?

- n Multi-source discrete wiresizing [Cong-He, ICCAD'95]/
 - u Bundled-LR is proposed to speed up LR by a factor of 100x
- n Continuous wiresizing [Chen-Wong, ISCAS'96]
 - **u** Linear convergence is proved [Chu-Wong, TCAD'99]
- n Simultaneous buffer and wire sizing [Chen-Chang-Wong, DAC'96]
 - **u** Lagrangian relaxation is proposed to minimize max delay
 - **via a sequence of weighted delay minimizations**
 - u Extended to general gates and multiple nets [Chu-Chen-Wong, ICCAD'98]

Outline

n Background and overview

n LR-based STIS optimization
 u Motivation of LR-based optimization
 u Simple CH-program and application to STIS problem

n Conclusions and future works

Simple CH-function [Cong-He, ICCAD'96, TCAD'99]

n
$$f(X) = \sum_{p=0}^{m} \sum_{q=0}^{m} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \left(\frac{a_{pi}}{x_{i}^{p}}\right) \cdot \left(b_{qj} \cdot x_{j}^{q}\right)$$

is a simple CH-function

- **U** Variables x_i and x_j are positive, either continuous or discrete
- U Coefficients a_{pi} and b_{qi} are positive constants
- **n** Examples:

$$= ax^{2} + \frac{b}{x} + cy^{3}, g = \sum (a_{ij} \cdot \frac{x_{i}}{x_{j}})$$

n It includes the objective functions for a number of works

- U Discrete or continuous wire sizing [Cong-Leung, ICCAD'93][Cong-He, ICCAD'95][Chen-Wong,ISCAS'96]
- U Simultaneous device and wire sizing [Cong-Koh, ICCAD'94][Chen-Chang-Wong, DAC'96][Cong-Koh-Leung, ILPED'96][Chu-Chen-Wong, ICCAD'98]

Dominance Property for Simple CH-Program

- Optimization problem to minimize a simple CHfunction is a simple CH-program.
- n The dominance property holds for simple CH-program w.r.t. the LR operation.
 - If X dominates optimal solution X*
 X' = local refinement of X
 Then, X' dominates X*
 - If X is dominated by optimal solution X*
 X'=local refinement of X
 Then, X' is dominated by X*
- **n** LR operation can be used for all simple CH-programs

Simple CH-function [Cong-He, ICCAD'96, TCAD'99]

n
$$f(X) = \sum_{p=0}^{m} \sum_{q=0}^{m} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \left(\frac{a_{pi}}{x_i^p}\right) \cdot \left(b_{qj} \cdot x_j^q\right)$$

is a simple CH-function

- U Variables x_i and x_j are positive
- U Coefficients a_{pi} and b_{qj} are positive constants

n Examples:

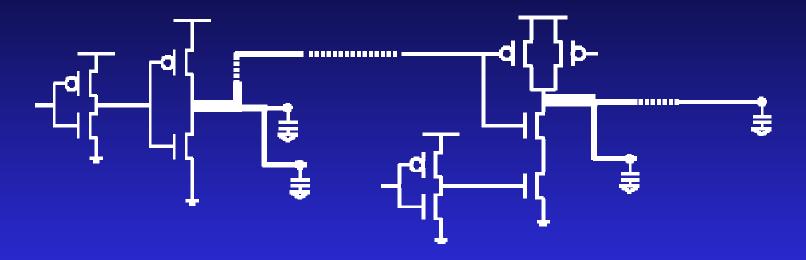
$$U \quad f = ax^{2} + \frac{b}{x} + cy^{3}, g = \sum \left(\frac{a_{ij} \cdot \frac{x_{i}}{x_{j}}}{x_{j}} \right)$$

Unified and efficient solution

n It includes the objective functions for a number of works

- U Discrete or continuous wire sizing [Cong-Leung, ICCAD'93][Cong-He, ICCAD'95][Chen-Wong,ISCAS'96]
- U Simultaneous device and wire sizing [Cong-Koh, ICCAD'94][Chen-Chang-Wong, DAC'96][Cong-Koh-Leung, ILPED'96][Chu-Chen-Wong, ICCAD'98]

General Formulation: STIS Simultaneous Transistor and Interconnect Sizing



- Given: Circuit netlist and initial layout design
- **Determine:** Discrete sizes for devices/wires
- Minimize: **a** Delay + **b** Power + **g**Area
- It is the first publication to consider simultaneous device and wire sizing for complex gates and multiple paths

STIS Objective for Delay Minimization

$$f(X) = \sum_{i,j} F(i,j) \bullet \frac{R_0(i)}{x_i} \bullet C_0(j) \bullet x_j + \sum_{i,j} F(i,j) \bullet \frac{R_0(i)}{x_i} \bullet C_1(j)$$

$$+ \sum_i G(i) \bullet \frac{R_0(i)}{x_i} + \sum_i H(i) \bullet \frac{R_0(i)}{x_i} \bullet C_1(i)$$

$$u R_0: \qquad \text{unit-width resistance}$$

$$u C_0: \qquad \text{unit-width area capacitance}$$

$$u C_1: \qquad \text{effective-fringing capacitance}$$

$$u X = \{x_1, x_2, ..., x_n\}: \quad \text{discrete widths and variables for optimization}$$

- **n** It is a simple CH-function under simple model assuming R_0, C_0 and C_1 are constants
- n STIS can be solved by computing lower and upper bounds via LR operations
 - u Identical lower and upper bounds often achieved

SPICE-Delay reduction of LR-Based STIS

- n STIS optimization versus manual optimization for clock net [Chien-et al.,ISCC'94]:
 - u 1.2um process, 41518.2 um wire, 154 inverters
- **n** Two formulations for LR-based optimization
 - u sgws simultaneous gate and wire sizing
 - u stis simultaneous transistor and interconnect sizing

	manual	sgws	stis
max delay (ns)	4.6324	4.34 (-6.2%)	3.96 (-14.4)
power(mW)	60.85	46.1 (-24.3%)	46.3 (-24.2%)
clock skew (ps)	470	130 (-3.6x)	40 (-11.7x)

- n Runtime (wire segmenting: 10um)
 - uLR-basedsgws 1.18s, stis 0.88suHSPICE simulation~2100s in total

STIS Objective for Delay Minimization

$$t(X) = \sum_{i,j} F(i,j) \bullet \frac{R_0(i)}{x_i} \bullet C_0(j) \bullet x_j + \sum_{i,j} F(i,j) \bullet \frac{R_0(i)}{x_i} \bullet C_1(j)$$

$$+ \sum_i G(i) \bullet \frac{R_0(i)}{x_i} + \sum_i H(i) \bullet \frac{R_0(i)}{x_i} \bullet C_1(i)$$

$$U = R_0:$$

$$U = C_0:$$

$$U = C_0:$$

$$U = \{x_1, x_2, ..., x_n\}:$$

Over-simplified for DSM (Deep Submicron) designs

It is a simple CH-function under simple model assuming R_0 , C_0 and C_1 are constants

R₀ is far away from a Constant!

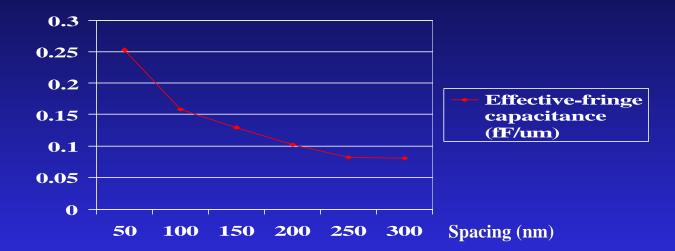
effective-resistance	R	for unit-width n-transistor

size = 100x			size = 400x				
$\mathbf{c}_{\mathbf{l}} \setminus \mathbf{t}_{\mathbf{t}}$	0.05ns	0.10ns	0.20ns	$\mathbf{c}_{\mathbf{l}} \setminus \mathbf{t}_{\mathbf{t}}$	0.05ns	0.10ns	0.20ns
0.225pf	12200	12270	19180	0.501pf	12200	15550	19150
0.425pf	8135	9719	12500	0.901pf	11560	13360	17440
0.825pf	8124	8665	10250	1.701pf	8463	9688	12470

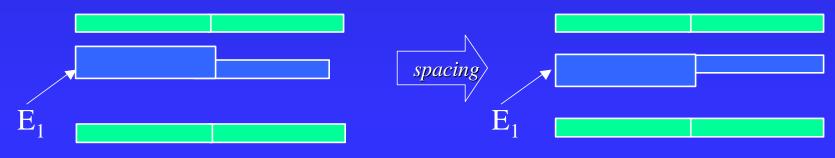
- N Using more accurate model like the table-based device model has the potential of further delay reduction.
 - U But easy to be trapped at local optimum, and to be even worse than using simple model [Fishburn-Dunlop, ICCAD'85]

Neither C₀ nor C₁ is a Constant

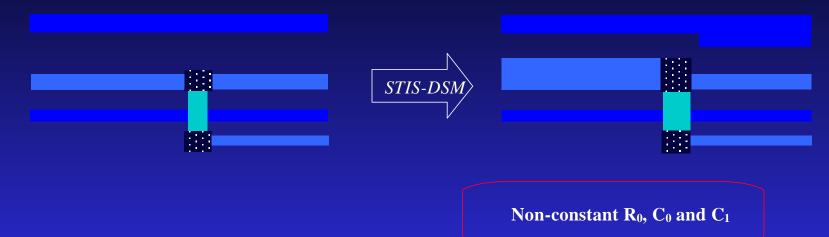
- **n** Both depend on wire width and spacing
 - **u** Especially $C_1 = C_f + C_x$ is highly sensitive to spacing



- n C_x accounts for >50% capacitance in DSM
 - **u** Proper spacing may lead to extra delay reduction
 - **But no existing algorithm for optimal spacing**



STIS-DSM Problem to Consider DSM Effects



n STIS-DSM problem

uFind:device sizing, and wire sizing and spacing solutionoptimal w.r.t. accurate device model and multiple nets

n Easier but less appealing formulation: single-net STIS-DSM

- u Find: device sizing, and wire sizing and spacing solution optimal w.r.t. accurate device model and <u>a single-net</u>
- u Assume: its neighboring wires are fixed

Outline

n Background and overview

n LR-based STIS optimization

- u Motivation: LR-based wire sizing
- **u** Simple CH-program and application to STIS problem
- u Bounded CH-program and application to STIS-DSM problem
- **n** Conclusions and future works

Go beyond Simple CH-function

$$f(X) = \sum_{p=0}^{m} \sum_{q=0}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{a_{pi}(X)}{x_i^p}\right) \cdot \left(b_{qj}(X) \cdot x_j^q\right)$$

n It is a simple CH-function if a_{pi} and b_{qj} are positive constants

n It is a bounded CH-function if

- u a_{pi} and b_{qj} are arbitrary functions of X
- u *a_{pi}* and *b_{qj}* are positive and bounded

$$a_{pi}^{L} \leq a_{pi}(X) \leq a_{pi}^{U} \text{ and } b_{qj}^{L} \leq b_{qj}(X) \leq b_{qj}^{U}$$

n Examples:

$$u \quad f(x_1, x_2) = \frac{1}{\ln x_1} \cdot x_1 + \frac{x_2}{x_1}, x_1 > e$$

u Objective function for STIS-DSM problem

Extended-LR Operation

n Extended-LR (ELR) operation is a relaxed LR operation

- u Replace a_{pi} and b_{qj} by its lower or upper bound during LR operation.
- u Make sure that the resulting lower or upper bound is always correct

> but might be conservative.

- n **Example:** $f(x) = a(x) \cdot x + \frac{b(x)}{x}$
 - U ELR for a lower bound is $x_{ELR}^L = \sqrt{\frac{b^L}{a^U}}$

U ELR for an upper bound is $x_{ELR}^U = \sqrt{b^U/a^L}$

$$x_{ELR}^{L} \le x^{*} \le x_{ELR}^{U}$$

ົ

General Dominance Property

n Theorem ([Cong-He, ISPD'98, TCAD'99])

u Dominance property holds for bounded CH-program with respect to ELR operation

General Dominance Property

n Theorem ([Cong-He, ISPD'98, TCAD'99])

u Dominance property holds for bounded CH-program with respect to ELR operation

n **To minimize**
$$f(X) = \sum_{p=0}^{m} \sum_{q=0}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (\frac{a_{pi}(X)}{x_i^p}) \cdot (b_{qj}(X) \cdot x_j^q)$$

u If X dominates optimal solution X*
 X' = Extended-LR of X
 Then, X' dominates X*

If X is dominated by optimal solution X*
 X'= Extended-LR of X
 Then, X' is dominated by X*

Solution to STIS-DSM Problem

n STIS-DSM can be solved as a bounded CH-program

- u Lower bound computed by ELR starting with minimum sizes
- **u** Upper bound computed by ELR starting with maximum sizes
- u Lower- and upper-bound computations are alternated to shrink solution space
- **u** Up-to-date lower and upper bounds of \mathbf{R}_0 , \mathbf{C}_0 and \mathbf{C}_1 are used
 - ▶ Uncertainty of R₀, C₀ and C₁ is reduced when the solution space is shrunk
- n There exists an optimal solution to the STIS-DSM problem between final lower and upper bounds
 - u How large is the gap?

Gaps between Lower and Upper Bounds

- **n** Two nets under 0.18um technology: *DCLK* and *2cm line*
 - u STIS-DSM uses table-based device model and ELR operation
 - u STIS uses simple device model and LR operation
- **n** We compare average lower-bound width / average gap

	Tra	nsistors	Wires		
DCLK	STIS	STIS-DSM	STIS	STIS-DSM	
sgws	5.39/0.07	13.0/1.91	2.50/0.003	2.78/0.025	
stis	17.2/1.53	21.6/2.36	2.69/0.017	2.82/0.030	
2cm line	STIS	STIS-DSM	STIS	STIS-DSM	
sgws	108/0.108	112/0.0	4.98/0.004	4.99/0.106	
stis	126/0.97	125/1.98	5.05/0.032	5.11/0.091	

- n Gap is almost negligible
 - **u** About 1% of lower-bound width in most cases

Delay Reduction by Accurate Device Model

n STIS-DSM versus STIS

- **u** STIS-DSM uses table-based device model and ELR operation
- u STIS uses simple device model and LR operation

DCLK	STIS	STIS-DSM
sgws	1.16 (0.0%)	1.08 (-6.8%)
stis	1.13 (0.0%)	0.96 (-15.1%)
2cm line	STIS	STIS-DSM
2cm line sgws	STIS 0.82 (0.0%)	STIS-DSM 0.81 (-0.4%)

- **n** STIS-DSM achieves up to 15% extra reduction
- n Runtime is still impressive
 - Total optimization time ~10 seconds

Delay Reduction by Wire Spacing

- n Multi-net STIS-DSM versus single-net STIS-DSM
 - u Test case:
 - ▶ 16-bit bus

▶ each bit is 10mm-long with 500um per segment

pitch-spacing		runtime	
	single-net	multi-net	multi-net
1.10um	1.31	0.79 (-39%)	2.0s
1.65um	0.72	0.52 (-27%)	2.4 s
2.20um	0.46	0.42 (-8.7%)	2.3 s
2.75um	0.38	0.36 (-5.3%)	4.9 s
3.30um	0.35	0.32 (-8.6%)	7.7s

Multi-net STIS-DSM achieves up to 39% delay reduction

E Single-net STIS-DSM has a significant delay reduction if we compare it with previous wire sizing formulations

Conclusions

- n Interconnect-centric design is the key to DSM and GHz IC designs
- Interconnect optimization is able to effectively control interconnect delay Valid for general problems
 Problem formulations should consider DSM effects
 I.e.g., LR-based optimization for STIS-DSM problem
- n More is needed to close the loop of interconnectcentric design
 - u Interconnect planning
 - u Interconnect optimization for inductance and noise
 - Interconnect verification, especially for patterndependent noise and delay

U