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ABSTRACT
We propose a block structure preserving model reduction (BSMOR),
which generalizes the structure preserving model order reduction
(SPRIM). The blocks can be derived based on specific applications
such as block current characterization of the substrate. Increas-
ing block numbers leads to more matched poles or moments using
the same Krylov space and also increases the sparse ratio of the
state matrices of the resulting macro-model. Experiment shows
that BSMOR has a 20X smaller reduction time than PRIMA does
under a same error bound. To efficiently analyze the resulting
macro-model with a large number of ports, we further propose
a bordered-block diagonal (BBD) partitioning with a bottom-up
hierarchical clustering (BBDC) where the macro-model is parti-
tioned into a number of subset-port models, each with a manage-
able model size. With a similar accuracy, BBDC obtains 30X
speedup compared to the original macro-model.

1. INTRODUCTION
VLSI circuits contain a number of highly structured compo-

nents such as bus, power ground grid and substrate. These com-
ponents can be modeled by passive networks with tremendous
amount of circuit elements and large numbers of ports. To ana-
lyze such network efficiently, model order reduction [1–3] has been
studied and used extensively in the past. Based on the Krylov
subspace projection and congruence transformation, PRIMA [3]
is the one widely used to efficiently generate an order reduced
macro-model with preserved passivity. However, the produced
macro-model by PRIMA is not compact as the order is usu-
ally “too high” [4] to achieve the specified accuracy. Further-
more, when the macro-model is represented by a multiple-input-
multiple-output (MIMO) transfer function, it is usually dense and
becomes inefficient to analyze when there are a large number of
ports [5].

Alternative methods include the truncated balanced realiza-
tion (TBR) [4], where the singular value decomposition (SVD) is
used to truncate less dominant states and achieve a more com-
pact model. However, it may be slow as several computationally
expensive numerical techniques are used to diagonalize the overall
state matrix and guarantee the passivity. Recently, a structure-
preserving model reduction (SPRIM) is proposed in [6]. This ap-
proach partitions the state matrix in the MNA (modified nodal
analysis) form into a natural 2 × 2 block matrices, i.e., conduc-
tance, capacitance, inductance, and adjacent matrices. Accord-
ingly the projection matrix is partitioned and the number of its
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columns is doubled. As a result, SPRIM matches the twice poles
of the models by using the projection matrix given by PRIMA.
In addition, the block structure of state matrices is preserved and
it facilitates the realization of the reduced model. However, such
a simple 2 × 2 partition does not leverage the regularity of the
aforementioned passive networks. As to reducing the complex-
ity introduced by large number of ports, the explicit hierarchical
decomposition of the network is usually applied [5, 7, 8]. The ca-
pacity of these methods need to be improved further.

In this paper, we propose a block structure preserving model
reduction (BSMOR) method, which generalizes the structure-
preserving model order reduction (SPRIM) [6]. The blocks can
be derived based on specific applications such as block current
characterization of the substrate in this paper. We show that
increasing the block number leads to more matched poles or mo-
ments using the same Krylov space. In other words, BSMOR
can lead to more efficient reduction under the same accuracy. In
addition, BSMOR can also preserve the sparsity for the reduced
block matrices, which gives further efficiency boost to construct-
ing a MIMO macro-model. Note that the macro-model consists
of order-reduced blocks, where each reduced block contains a sub-
set of ports. To efficiently analyze a macro-model with a large
number of ports, we further propose a bordered-block diagonal
(BBD) partitioning and hierarchical and bottom-up clustering of
reduced blocks. We call it as BBDC analysis.

The experiment shows that under the same accuracy, the re-
duction of our approach is 20X times faster than PRIMA for a
circuit with 1M elements. Moreover, with a similar accuracy, the
BBDC analysis is 30X faster compared to analyzing the original
macro-model.

The rest of the paper is organized as follows. We present
BSMOR and BBDC in Sections II and III, respectively. In Sec-
tion IV, we apply our method to the substrate macro-modeling
and noise analysis, and discuss how to find the block structure
from the characterization of the block current. We present the ex-
perimental results in Section V, and conclude the paper in Section
VI. Proofs of theorems will be included in a technical report.

2. BLOCK STRUCTURE PRESERVING MODEL
REDUCTION

In this section, we present a block structure preserving model
reduction (BSMOR) that implicitly uses the block structure in-
formation of the matrix during the reduction. We show that by
increasing the block number, we can match more poles or mo-
ments using the same Krylov subspace, which is also confirmed
by our experimental results. On top of this, we introduce the
concept of the structured Krylov subspace to summarize our con-
tribution.

2.1 Preliminary
Consider a modified nodal formulation (MNA) of the circuit



equation in the frequency domain:

Gx(s) + sCx(s) = Bip(s)

vp(s) = BT x(s) (1)

where x(s) is the state variable vector, G and C (∈ RN×N ) are
state matrices. B (∈ RN×np ) is

B = [B 0]T , (2)

a port incident matrix. Eliminating x(s) in (1) gives

vp(s) = H(s)ip(s)

H(s) = BT (G + sC)−1B, (3)

where H(s) is a multiple-input multiple-output (MIMO) transfer
function. PRIMA finds a projection matrix V (∈ RN×qnp ) such
that its columns span the q-th block Krylov subspace K(A,R, q),
i.e.,

spanV = K(A,R, q), (4)

where A = (G + s0C)−1C, R = (G + s0C)−1B, and s0 is the
expansion point that ensures G+s0C is nonsingular. The resulting
reduced transfer function is

Ĥ(s) = B̂T (Ĝ + sĈ)−1B̂, (5)

where
Ĝ = V TGV, Ĉ = V T CV, B̂ = V T B̂, (6)

has the identical expanded first q-th moments with H(s). It is

called as the Grimme’s projection theorem [9]. Note that Ĝ, Ĉ

are ∈ Rqnp×qnp , and B̂ is ∈ Rqnp×np .
In [6], a structure-preserving reduced model order reduction

technique, SPRIM, is proposed. The primary observation is that
instead of using the Krylov subspace K(A,R, q) for the projec-

tion matrix eV , one can use any projection matrix such that the

space spanned by the column in eV contains the q-th block Krylov
subspace. i.e.

K(A,R, q) ⊆ eV (7)

In SPRIM, a 2 × 2 partition is naturally used as a linear state
matrix in the MNA form shows a 2 × 2 block structure

G =

»
G AT

−A 0

–
,C =

»
C 0
0 L

–
, (8)

where G (∈ Rn1×n1 ), C (∈ Rn1×n1 ), L (∈ Rn2×n2) are conduc-
tance, capacitance and inductance matrix, and A (∈ Rn2×n1)
is the adjacent matrix indicating the branch current flow at the
inductor. Note that n1 + n2 = N .

Therefore, a structured projection vector eV is constructed by
partitioning the projection vector V obtained from the q-th PRIMA
iteration

V =

»
V1

V2

–
→ eV =

»
V1 0
0 V2

–
. (9)

where V1 is ∈ Rn1×qnp , V2 is ∈ Rn2×qnp , and hence eV is ∈

RN×2qnp . As a result, the number of columns in eV is twice of
that in V . Accordingly the new reduced state matrices are

eG =

» eG eAT

− eA 0

–
, eC =

» eC 0

0 eL,

–
(10)

where eG = V1
T GV1, eA = V2

T AV1 and eC = V1
T CV1 and eL =

V2
T LV2. Similarly, the size of eG, eC (∈ R2qnp×2qnp ), and eB (∈

R2qnp×np) is twice than that of Ĝ, Ĉ, and B̂ reduced by using V .
Therefore, the moments of the reduced model with state matrices:
eG and eC are twice than those of the reduced model with state
matrices: Ĝ and Ĉ. In other words, the reduced model by eV
matches 2q moments of the original model instead of q moments
as the reduced model by V .
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Figure 1: Frequency responses of the BSMOR,
PRIMA, and original model at one port of a uni-
form mesh (256x256) after 10 iterations.

Since the reduced model is written in the first order form in
(10), the model reduced by SPRIM is twice larger than that pro-
duced by PRIMA. But the reduced model produced by SPRIM
preserves the structure of the original model and can be further
reduced into the second-order form using node elimination base

on Schur’s decomposition [10]: eGNA = eG+s eC+ 1
s

eAT eL−1 eA where
eGNA is the reduced state matrix in NA form, which has the same
size of the reduced matrix by using V . But the difference is that

each element in eGNA become second-order rational function of s
instead of first-order polynomial of s.

Hence SPRIM algorithm essentially consists of two reduction
steps: the first step is the structure-preserving projection-based
reduction and the second step is block node elimination based
on Schur’s decomposition. As a result, SPRIM can match more
poles than PRIMA, which uses V as the projection matrix, and
they result in a same size of the reduced model.

If we just look at the first step, SPRIM simply matches more

moments by using more columns in the projection matrix eV , thus
produces larger reduced state matrices in the first-order form.

2.2 BSMOR Method
SPRIM essentially is based on a 2× 2 partitioning of the state

matrices. If we use more partitions (each partition called a block),

we can add more columns into the project matrix eV , thus match
more moments given the same Krylov space K(A,R, q).

Specifically, we assume that the conductance matrix G can be
distinguished in m blocks

G =

2
66664

G1,1(n1×n1)
G1,2(n1×n2)

. . . G1,m(n1×nm)

G2,1(n2×n1) G2,2(n2×n2) . . . G2,m(n2×nm)

.

.

.
.
.
.

. . .
.
.
.

Gm,1(nm×n1)
Gm,2(nm×n2)

. . . Gm,m(nm×nm)

3
77775

,

(11)

where each block has the size nk (
Pm

k=1 nk = N). A similar
block structure can be found for C matrix. Then, B becomes

B = [B1(n1×np), B2(n2×np), . . . Bm(nm×np)]
T (12)

where each basic block contains user specified npk ports (np =Pm
k=1 npk). Note that these blocks can be derived based on spe-

cific applications such as block current characterization of the
substrate as discussed in Section 4.

Accordingly, we further partition the projection matrix V ob-
tained from PRIMA according to the block structure in state
matrices from (11)



V =

2
66664

V1(np×n1)

V2(np×n2)

.

.

.
Vm(np×nm)

3
77775

→ eV =

2
66664

V1(np×n1) 0 . . . 0

0 V2(np×n2) . . . 0

.

.

.
.
.
.

. . . 0
0 0 . . . Vm(np×nm)

3
77775

. (13)

We call this as an m × m Block Structure preserving Model Re-
duction (BSMOR), where m is the number of blocks.

We can obtain the order reduced state matrices by projecting
eV :

eG = (eV )T G eV , eC = (eV )T C eV , eB = (eV )T B. (14)

Element wise, we have

eGi,j = Vi
T Gi,jVj

eCi,j = Vi
T Ci,jVj

eBi = Vi
T Bi (15)

where eGi,j represents the blocks at i block row and j block column

in reduced matrix eG. So do eCi,j and eBi. Let Vi = Vi(np×ni)
to

simplify notations. Using such a matrix eV , we define a reduced-
order model with the following transfer function

eH(s) = eBT ( eG + s eC)−1 eB. (16)

As a result, we have the following theorem regarding the block
structure preserving model reduction

Theorem 1. Let eV be a matrix that satisfies K(A,R, q) ⊆

span(eV ) and eV is defined in Eq.(13). eH(s) will match the first
mq moments in the expansion of H(s) about s0.

This result is the natural extension of 2 × 2 case given by
SPRIM. If the number of columns in V is k, then the number

of columns in eV is mk. As a result, eG is m times larger than

G. Conceivably, eH(s) has m times more eigenvalues than that of

Ĥ(s). Based on the Grimme’s projection theorem, eH(s) should

match m times more moments than Ĥ(s).
Similar to SPRIM, the reduced model of passive network ob-

tained by Krylov-subspace projection preserves passivity:

Theorem 2. The reduced order model eH(s) by BSMOR is
passive.

Based on the Theorem 1, one important observation is that,
introducing more partitions or blocks can archive the same re-
duction accuracy by using smaller Krylov subspace, which can
in turn improve the reduction efficiency. On the other hand, we

observes that the partitioned projection matrix eV leads to lo-
calized projection as shown by (15). In other words, the block

projection matrix eVi is used only for matrix blocks Gi,x and Gx,i,

(x = 1, ...m). In this sense, Krylov subspace given by eV becomes

a structured Krylov subspace in eV .

Each structured block projection matrix eVi will lead to the
localized model order reduction for block i, which is represented
by Gx,i and Gi,x matrix blocks (x = 1, ...m). Conceivably, the

order reduced block eGi,x and eGx,i will match Gi,x and Gx,i to the
first q moments. But the whole system consisting of the m blocks
will match mq moments.

In summary, by introducing the structured Krylov subspace,
one can obtain order reduced models with more accurate for each
structure block by using the same Krylov subspace base vec-
tors, or get the same order reduced model (same accuracy) using
a smaller Krylov subspace. Therefore, BSMOR provides much
more flexibility and trade-off between efficiency and model accu-
racy for reducing linear dynamic system models than PRIMA.
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Figure 2: Maximum errors of the frequency re-
sponse of the BSMOR and PRIMA for increasing
order models of a uniform mesh (256x256) up to
20GHz.
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Figure 3: Non-zero patterns for G, C matrices of a
uniform RC-mesh (256x256) after a 16× 16 BSMOR
reduction with 8 iterations, where NZ is the number
of non-zero.

For a 256x256 RC-mesh (320K circuit elements), Fig. 1 com-
pares frequency responses at one port between the original circuit
and reduced models by PRIMA, 2×2 BSMOR, and 8×8 BSMOR.
Clearly, with 10th iteration the 8 × 8 BSMOR is identical to the
original circuit response but PRIMA and 2 × 2 BSMOR are still
not converged. Fig. 2 further compares the maximum error of
frequency responses by PRIMA, 2× 2, and 8× 8 BSMOR vs. the
iteration number during the reduction. In the same iteration, it
shows that using more partitions (block number) to construct the
projection matrix can have better accuracy than using less par-
titions as PRIMA does. In other words, BSMOR can generate
more compact model with improved pole matching ability.

Moreover, due to the structured construction of eV by (13),

BSMOR preserves the structure and sparsity of eG, eC matrices
even after the reduction. For example, for the 256x256 RC-mesh
above, Fig. 3 shows the structure of these two state matrices be-

fore and after a 16 × 16 BSMOR reduction. The eG, eC matrices
show 72% and 93% sparsification ratio, respectively. It is another
advantage to use BSMOR other than PRIMA, as PRIMA gener-
ates a fully dense state matrices after the reduction. Moreover,
the sparsification ratio increases when increasing the block num-
ber. It is not surprising as conceptually when a block contains
only one element, the “reduced” state matrices become exactly
the same as the original sparse state matrices.

3. BORDERED-BLOCK DIAGONAL PAR-
TITIONING WITH HIERARCHICAL CLUS-
TERING

In this section, we first describe the presentation of the flat
macro-model generated by the reduced state matrices from Sec-
tion 2.2. To efficiently handle the flat macro-model with large
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Figure 4: An example of 4-port admittance with 2
reduced blocks. (a) realization in branch admittance
network; (b) represented by 2 reduced blocks with
an additional coupling block.

number of ports, we present the bordered-block diagonal (BBD)
partitioning to solve each block individually. Moreover, we discuss
a hierarchical clustering method to further improve the efficiency.

3.1 Flat Macro-model
It is usually inconvenient to directly stamp back the reduced

eG, eC matrices. Moreover, for the frequency-dependent application
in the analog/RF simulation like the substrate noise analysis,
an Y -parameter based multiple port macro-model is widely used
instead. An np × np MIMO admittance matrix Y ′(s) can be

obtained by taking the eigen-decomposition of eA = ( eG+s0
eC)−1 eC

Y
′(s) =

2
664

Y ′

1,1 · · · Y ′

1,np

.

.

.
. . .

.

.

.
Y ′

np,1 · · · Y ′

np,np

3
775 , (17)

with

Y ′
i,j = ci,j +

qX

n=1

ki,j
n

s − pn

, (18)

where kn and pn are the residues and poles. Note that eigen-

values of eA(q) represent the reciprocal poles of Y ′(s) [3]. Due to
the preserved sparsity, the eigen-decomposition becomes more ef-

ficient when using the eG and eC from the BSMOR other than using
those from PRIMA. Furthermore, as the reduction preserves the
structure, it results in additional preservations: i) the reciprocity
of the network is also preserved, i.e., the Y ′(s) is symmetrical. In
contrast, PRIMA does not preserve this property; ii) the block
structure is preserved as well. It means the reduced block can
be distinguished by a subset of ports specified before BSMOR.
Due to the preserved block structure , we can further apply an
additional port-partitioning, precisely, bottom-up port clustering
to handle the large number of ports as discussed later on.

Note that the runtime and memory requirement to solve a
linear system is primarily determined by the size, sparsity, and
structure of the matrix. As shown in (17), the reduced model
is represented by a np × np admittance matrix. Each entry rep-
resents the coupling between a pair of two ports and there are
O(n2

p) of such couplings. As a result, the model reduction re-
sults in a large admittance matrix such that the efficiency of
the reduced model degrades and the available memory of com-
puting resources becomes insufficient as the sparse matrix solu-
tion becomes unavailable. In the following, we further discuss a
partitioned solution to handle the admittance matrix with large
number of ports. Using partitioning, the large coupled network
is divided into subnetworks with manageable size and solved by
blocks individually [11]. Moreover, partitioning can also be em-
ployed when network consists of repetitive identical subnetworks
so that only one equation needs to be stored.

To partition a given network, we need first realize the admit-
tance matrix Y ′(s). We give the realization theorem below

Theorem 3. If the nodal admittance matrix Y ′(s) has reci-
procity, it can be realized by a branch admittance network using
following transformation:

Yii =

npX

j=1

Y ′
ij , Yij = −Y ′

ij . (19)

With such a nodal-to-branch transformation, the flat macro-model
consists of m order reduced blocks, where each reduced block con-
tains npk ports with ground and coupling branch admittances.
There are also exist coupling branch admittances between any
pair of reduced blocks. A realized branch admittance network
for a 4-port admittance matrix is shown in Fig. 4 (a). To parti-
tion the branch admittance network Y , one natural approach is
to reserve each reduced block, and pack all the coupling branch
admittances into one block, called as couping block, that connects
all reduced blocks. An example of such a partitioning (or repre-
sentation of the macro-model from BSMOR) is shown in Fig. 4
(b) for a 4-port admittance matrix.

3.2 Bordered-Block Diagonal Matrix
For the kth reduced block, we have

Ykvk = ik +eik, (20)

where

(Yk)ii =

npkX

j=1

Y ′
ij , (Yk)ij = −Y ′

ij (j ∈ npk), (21)

and vk , ik are the port voltage and current vectors, where ik is

part of ip: ik = ip(. . . ik1 . . .
| {z }

npk

. . .). Moreover, eik is the correlation

current from the other reduced block through the coupling block.
The branch equation for the coupling block is

(Y0)−1i0 = v0, (22)

where Y0 is the branch admittance matrix describing the branches
in the coupling block. It is a diagonal matrix such that its in-
version is easily obtained as 1/(Y0)ii. Note that its size depends
on the number of couplings among reduced blocks, and it can be
efficiently implemented with the sparse matrix data structure. v0

and i0 are branch voltage and current vectors. They relate to the
port voltage/current vectors vk/ik at kth block by

eik = Ck0i0, v0 = −
mX

k=1

(Ck0)T vk, (23)

where Ck0 is the cut matrix composed by {0, 1,−1} to indicate
the direction of branch currents between kth reduced block and
the coupling block. For example, the Ck0 for reduced blocks in
Fig. 4 are

C(1,0): C(2,0):
1 1 0 0 -1 0 -1 0

0 0 1 1 0 -1 0 -1

Combine (21) - (23), we have the following hybrid matrix equa-
tion

2
666664

Y1 0 . . . 0 C10

0 Y2 . . . 0 C20

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 . . . Y

m(l) Cm0

(C10)
T (C20)

T . . . (Cm0)
T

−(Y0)
−1

3
777775

2
666664

v1

v2

.

.

.
vm

i0

3
777775

=

2
666664

i1
i2

.

.

.
im

0

3
777775

.

This hybrid matrix shows a bordered-block-diagonal (BBD) struc-
ture. It enables the following algorithm (Algorithm 1) to solve
each reduced block individually without using the explicit inver-
sion. Each reduced block matrix is fist solved individually with
LU factorization and substitution (1.1-1.5), the results from each
reduced block are then used further to solve the coupling block
(2.1-2.4), and the final vk of each reduced block is updated (3.1-
3.4) with the result from the coupling current i0.



Algorithm 1 Analysis of bordered-block-diagonal (BBD)
matrix

1.Solve Yk individually

for every k in m do

(1.1) input: Yk, Ck0, ik;
(1.2) factor: Yk = LkUk ;

(1.3) solve: LkΦk = Ck0 for Φk, ΨkUk = (Ck0)
T for Ψk, and

Lkξk = ik for ξk;
(1.4) form: Fk = ΦT

k Ψk, and Gk = ΨT
k ξk

(1.5) output: Fk , Gk.
end for

2.Solve Y0

(2.1) input: Y0, Fk , Gk;

(2.2) form: F = Y
−1
0 +

Pm
k=1 Fk , G =

Pm
k=1 Gk;

(2.3) solve: Fi0 = G for i0;
(2.4) output: i0.
3.Update Yk individually

for every k in m do

(3.1) input: i0, Φk , ξk, Uk ;
(3.2) form: ξk = ξk − Φki0;
(3.3) solve: Ukvk = ξk for vk;
(3.4) output: vk .

end for
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Figure 5: The hierarchical tree structure of clus-
tered blocks.

Typically, LU factorization requires n3/3 multiplications and
back/forward substitution requires n2/2 multiplications. The
computational cost of Algorithm 1 is therefore,

Pm
k=1(np

3
k
/3 +

np
2
k
/2) + (n3

0/3 + n2
0/2) , where npk is the port number (reduced

block size) of each reduced block, and n0 is the size of the coupling
block. Note that if the parallel execution is used, the summation
becomes the maximum execution time among blocks. To reduce
the computational cost even without using the parallel execution,
we need control the cost of from both the individual reduced block
and the coupling block as discussed below.

3.3 Hierarchical Clustering
As the factorization cost decreases with the size of the reduced

block, apparently the computation cost will be small when the
network is directly partitioned based on the reduced basic block
from BSMOR. However, the size of Y0 increases with the re-
duced block number, and it will increase the computation cost.
To wisely arrange this trade-off, a hierarchical tree structure is
used as shown in Fig. 5. In this tree, each node represents an
abstract block. There are links connecting each pair of correlated
blocks, representing inter-block couplings. The tree is constructed
by iteratively clustering the reduced blocks from the bottom. The
degree and the level is chosen to bound the size of the coupling
block below a threshold. At the leaf level, a cluster of reduced
blocks are siblings of a parent node, an abstract block. A cluster-
coupling block is introduced to model the coupling between sib-
lings. There is no direct coupling between abstract blocks not in
a same cluster, but their coupling is modeled by cluster-coupling
blocks for parent nodes. Therefore, we can maintain a constant
link number (couplings) at each tree level. Note that the fol-
lowing merge operation is operated when two blocks k and l are
clustered

inew = [ik, il], vnew = [vk, vl],
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Figure 6: (a) The non-uniform substrate mesh net-
work characterized by the switching current density;
(b) The corresponding block structure of conduc-
tance/capacitance matrices.

and
(Ynew)ii =

X

j∈npk
∪npl

Y ′
ij , (Ynew)ij = −Y ′

ij .

At the bottom level, we solve each clustered block using Algo-
rithm 1. It would be inefficient to calculate vk directly on the
higher levels since the block size get larger and larger. Fortunately
this is not necessary, because one can use the already calculated
vk of the children, same as to attach the voltage sources to the
coupling block at parent node. To do this we need to update i0
from (l − 1)th level to lth level by

v
(l−1)
0 = −

m(l−1)X

k=1

(C
(l)
k0 )T

v
(l−1)
k

, i
(l−1)
0 = Y

(l)
0 v

(l−1)
0 ,

(24)

and then solve vk at lth level by (3.1)-(3.4). Moreover, with the
hierarchical tree structure, vk is recursively updated by a bottom-
up depth-first traversal of the tree, described below:

HPtree{Ai){

if (Ai is leaf)
return;

for (each child k of Ai) {
HPtree(Ai.k);

}
Update(Ai);

}

where we assume that the cut matrices and block branch admit-
tance are pre-computed and stored hierarchically. Note that the
factorization cost of large matrix at the top level is large. We
further apply an error-bounded sparsification technique similar
as [7] to the branch admittance matrix. As the sparsification is
performed at the top level, this error is bounded. For simplicity
of presentation, we call BBD analysis with hierarchical clustering
as BBDC analysis.

4. APPLICATION
In this section, we discuss the application of BSMOR and

BBDC analysis to the substrate macro-modeling and noise anal-
ysis. The substrate outside of active/contact areas can be treated
as a uniformly doped layer, where an electrostatic Maxwell’s equa-
tion is:

ε
∂

∂t
(∇ · E) +

1

ρ
(∇ · E) = 0. (25)

The Eddy current term (the primary cause of substrate loss) can
be ignored if the substrate is highly doped, where the conduction
current is dominant. Note that (25) can be discretized in differen-
tial form using finite-difference [12] or integral form using bound-
ary element (BEM) methods. Because the BEM method needs



to find a numerically stable multi-layer Green’s function [13], it
is not trivial to be constructed in general when the layout geom-
etry becomes arbitrary. In this paper, the finite-difference based
discretization is used to generate the RC mesh/grid as the sub-
strate circuit model. As the electric field varies nonlinearly as
a function of the distance, the finite-difference method approxi-
mates this variation as a piecewise constant function by carefully
choosing the pitch of the mesh according to the current density,
i.e., the strength of the electrical field.

For leading-edge integrated circuits, the count of gate is typi-
cally in millions. The number of possible locations to place con-
tacts of sensitive analog/RF circuits is large as well. Therefore, a
flat multi-port description of each individual substrate noise in-
jector and receptors is impractical. We assume that the chip is
partitioned into smaller circuit, i.e., blocks based on the switching
current density. As a result, within a block all noise current injec-
tions can be clustered into one independent current source at one
single injection port. Such a block maximum current spectrum
envelope is studied in [14, 15] to characterize the injection noise
sources in a bottom-up fashion. The noise current injected by
the gate G at frequency fp is denoted iG(fm), and fm = m × f0

(m = 0, 1, 2, ...M), where f0 is the clock frequency and M is the
sampling bound. Then, the total noise current of cN gates in kth
block is

iCk =

CNX

k=1

iGk(fm), (26)

and by a library-based characterization of the primary input tran-
sition vp, the block current envelope spectrum is found by

imax
k (fm) = max

vp
|iCk(fm)|. (27)

Therefore, if there are m characterized blocks, each block would
contain npk user specified ports, including one input port repre-
senting the injecting current noise source according to the above
block current assumption, and (npk − 1) output ports represent-
ing all possible contact locations for analog/RF modules. There
are total np (np =

Pm
k=1 npk) specified ports. The port current

vector ip becomes

ip = [imax
1 ...0

| {z }
np1

imax
k ...0

| {z }
npk

imax
m ...0

| {z }
npm

], (28)

where all ignored entries are zeros standing for probing output
ports. Note that the propagated noise is observed from vp.

However, with the use of the power management technique
like the clock gating, the iCk(fm) can be very non-uniform for
each block across the chip. For the block with the high current
density, the electric field tends to vary largely, and a finer grids
are necessary for the accurate approximation. Otherwise, coarse
grid is used instead. For example, the substrate plane in Fig. 6
(a) have 4 parts with different switching current densities and it
results in a non-uniform mesh structure.

For the RC mesh/grid, we have

G = G, C = C, B = B. (29)

As a result, they demonstrate a block structure according to the
block current density. For example, Fig. 6 (b) shows such a block
structure for the block current distribution in Fig. 6 (a).

After specifying the block structure according to the switching
current density with the specified port information, the BSMOR
can be applied to obtain a order-reduced MIMO macro-model.
When the port number is large, the BBDC can be further applied
to solve each reduced block individually

Note that with a given spectrum of the maximum current en-
velope for injection sources, and an efficient macro-model of the
substrate, we can calculate the maximum noise spectrum effi-
ciently at the victim. Because the G, C matrices are symmetric
and positive definite (s.p.d.), the substrate RC-network shows
the monotonity. Therefore, it is obvious to observe that the spec-
trum of the maximum noise voltage in the frequency domain can
be obtained by examining each probing output port. Its impact
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Figure 7: Frequency responses of the BSMOR by
the non-uniform partition, uniform partition, and
original model at one port of a nonuniform mesh
(64x64-64x64-256x256-256x256).

on analog/RF victim, therefore, can be obtained by adding an
equivalent noise voltage source. The time-domain voltage profile
can be obtained by IFFT (inverse fast Fourier transformation)
with sufficient sampling points.

5. EXPERIMENT
We implement the BSMOR and BBDC analysis on a Linux

workstation (P4 2.66GHz, 1G RAM). The mesh structures of the
substrate are generated from the typical mixed signal circuit ap-
plication. In this section, we first investigate the accuracy of
BSMOR and BBDC analysis, then study their scalabilities by in-
creasing the circuit size and number of ports. As an example, we
also present the noise map for a 256-contact array injected by a
frequency-varying ring oscillator at dc and 10GHz.

5.1 Accuracy Comparison
We present the result of a reduced non-uniform mesh com-

posed by 4 submeshes with different sizes (64x64-64x64-256x256-
256x256). As shown in Fig. 7, after 10 iterations, the responses
are visually identical for the original model, the reduced model
from BSMOR by a non-uniform partition with two block size (16,
64) (resulting in 16 blocks), and the one by a uniform partition
with the block size 16 (resulting in 40 blocks). But the one by a
uniform partition with the block size 40 (resulting in 16 blocks)
does not converge. It shows that the accurate reduced model
needs to be generated from a projection matrix with the parti-
tion according to the structure of the original matrix, rather than
a general 2×2 partition as SPRIM does, Moreover, the reduction
time of BSMOR by the non-uniform partition is similar to the
one by the uniform partition with the block size 40, and is 4X
(4.17s vs. 20.38s) faster than using the uniform partition with
the block size 16.

In Fig. 8, we compare frequency responses of the flat macro-
model, partitioned macro-model without consideration of the cor-
relation update from the coupling block (2.1-3.4 in Algorithm 1),
and partitioned macro-model with consideration of the correlation
update. Clearly, shown in Fig. 8 for a 256x256 RC-mesh (320K
circuit elements) with 16 ports, the partitioned model with cor-
relation update is as accurate as the flat macro-model, but the
partitioned model without the correlation update has the non-
negligible error at the high frequency region.

5.2 Scalability Study
We first study the efficiency of the reduction convergence by

BSMOR and PRIMA. Different block numbers are used according
to the different circuit size. We set an error bound as shown
in Table 5.2, defined by the maximum error of the frequency
response at one port up to 20GHz. We then perform reductions of
BSMOR and PRIMA by increasing their iterations until that their
accuracies meet the bound. As shown in Table 5.2, BSMOR uses
less iterations (≤ 8) to meet the error bound than PRIMA does.
As a result, the reduction time of BSMOR is also smaller than
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that of PRIMA. For example, for a largest mesh circuit with 1M
elements, BSMOR achieves 20X (240.22s vs. 4982.76s) speedup
under the error bound 1e-4. Note that a relative small block
number (64) is chosen for the largest circuit (1M) here. This is due
to the fact that BSMOR needs additional steps to construct the
projection matrix, and it results in a little bit larger state matrix
that introduce the cost of matrix-vector multiplication. Hence the
increase of the speedup is slowed if we choose large block number.
In general, the result shows that with more partitions to construct
a project matrix, BSMOR can match more poles than PRIMA
does and hence the reduction time can be significantly reduced
under the same accuracy.

We further study the simulation time scalability of the parti-
tioned macro-model by BBDC in Table 5.2. PRIMA is used to
generate the flat macro-model, BSMOR is used to generate the
partitioned macro-model with hierarchy, and different block num-
bers are used to generate the macro-model according to the port
number. Each reduced block contains 10 ports. The original, flat
and partitioned models are all simulated in frequency domain up
to 20GHz. The maximum error of the frequency response (rela-
tive to the original model) up to 20GHz at a selected port is used
for comparison. We observe that when the port number is less
than 50 ports the simulation time of the partitioned macro-model
is up to 30X times faster than the flat macro-model with a similar
accuracy. This speedup comes from two aspects: i) the cost of the
eigen-decomposition to construct flat macro-model is reduced by
BSMOR as the sparsity of reduced state matrices is reserved; On
the other hand, PRIMA produces a dense reduced state matrices
that are computation expensive during the eigen-decomposition;
ii) the partitioned solution further reduces the simulation time as
no expensive computation is involved for the large system matrix.

To achieve a similar efficiency for the circuits with the large
number of ports (≥ 100), we further use the hierarchical clus-
tering (degree 10) with the sparsification (5% error bound) to
control the size and sparsity of the coupling blocks. For 1-level
and 2-level hierarchical solution, we sparsify the admittance ma-
trices at bottom level, and second level, respectively. Since the
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Figure 10: A noise map with 16x16 contacts array
injected by frequency-controllable ring oscillators at
f0=100MHz and f0=1GHz.

error at local matrix can propagate up, we find the solution by
sparsification at 1-level partition is less accurate than that at 2-
level partition. Moreover, we find that the flat macro-model can
not be completed for a 400-port circuit. A clear scalability trend
is shown in Fig. 9. We find that the simulation time of the
flat macro-model grows up quickly. It shows the similar trend as
the original model. This is due to the fact that the dense matrix
structure degrades the overall performance when compared to the
original larger but sparser matrix. In contrast, with the use of
the BBDC analysis, the simulation time grows much slower than
the flat macro-model.

5.3 Map of Substrate Noise Spectrum
We then apply the partitioned macro-model to generate a map

of substrate noise spectrum. The injection current of a frequency-
varying ring oscillations is characterized at f0 = 100MHz, 1GHz.
The maximum currents are characterized in time domain and
then FFT (2048 samplings) is used to obtain the current enve-
lope in frequency domain. The substrate considered here is a
3mm × 3mm plane with a 200um thick p-type substrate (σ =
0.1[Ωcm]−1). We assume that the contacts are in a 16×16 array,
and all the noise-current injection sources (ring oscillators) are
placed diagonally in the array. The original substrate circuit is
a 256x256 RC-mesh with 320K elements, and we apply 32 × 32
BSMOR to obtain a 256-port macro-model, representing a 16×16
contact array. The reduction time is about 120s. A 2-level hierar-
chical partition is used to generate a port-matrix response within
90s. Fig. 10 shows the map of the noise envelope (voltage bounce
magnitude) at dc and 10GHz. Clearly, reducing the central clock
frequency from 1GHz to 100MHz can reduce 25db peak noise at
the high frequency (10GHz), but the noise envelope at dc is not
reduced. Moreover, the substrate noise coupling is localized at
dc but it can diffuse across the contact array at 10GHz. As we
assume a high conductivity substrate, the use of the guard ring
is effective for this type of substrate. A p+-guard ring is used for
the isolation with the conductivity σ = 100.0[Ωcm]−1. We model
the effect of this isolation by changing the surrounding resistance
of the contact for each ring oscillator. As shown in Fig. 11, by
using a guard ring at 10GHz for f0 = 1GHz, the substrate noise
is confined around the injection sources at the diagonal of the
contact array.



Ckt elements err-bound BSMOR PRIMA
block# iter# time iter# time

mesh1 1K 1e-8 2x2 4 0.03s 10 0.09s
mesh2 10K 1e-8 8x8 6 0.07s 20 0.28s
mesh3 80K 1e-6 16x16 6 0.42s 30 3.82s
mesh4 160K 1e-6 16x16 6 5.14s 40 46.98s
mesh5 320K 1e-4 32x32 6 10.27s 60 104.62s
mesh6 1M 1e-4 64x64 8 240.22s 80 4982.76s

Table 1: Comparison of the reduction time of BSMOR and PRIMA under the same accuracy up to 20GHz.

Ckt Port# SPICE3 flat macro-model H-partitioned-macro-model
1-level 2-level

time time error time error time error

mesh2 20p 22.12s 1.23s 1e-6 0.04s 1e-6 0.04s 1e-6
mesh3 50p 139.80s 14.83s 3e-6 1.53s 4e-6 0.72s 3e-6
mesh4 100p 757.12s 76.98s 3e-6 5.13s 1e-3 3.92s 5e-4
mesh5 200p 2556.54s 360.39s 3e-6 16.09s 2e-2 10.27s 3e-3
mesh6 300p NA 1674.98s NA 120.03s NA 89.23s NA
mesh6 400p NA NA NA 317.34s NA 220.87s NA

Table 2: Simulation efficiency comparison by the original model, flat macro-model (PRIMA), partitioned
macro-model with hierarchy (BSMOR).
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Figure 11: A noise map at high frequency 10GHz
(f0=1GHz) with/without guard rings.

6. CONCLUSION
In this paper, we have proposed a block structure preserving

model reduction (BSMOR), which generalizes the structure pre-

serving model order reduction (SPRIM) [6]. We found that in-

creasing block number leads to more matched poles or moments

than PRIMA using the same iteration. It in turn improves the

model reduction efficiency compared to PRIMA under the same

error bound. For a circuit with 1M elements, BSMOR has a

20X smaller reduction time than PRIMA does. As BSMOR pre-

serves the structure of state matrices, it generates sparse reduced

state matrices. For a circuit with 320K elements, the reduced

state matrices (G, C) has 72% and 93% sparsification ratio after a

16×16 BSMOR reduction. It leads to an efficient construction of a

MIMO macro-model when using eigen-decomposition. To be able

to handle the resulting macro-model with large number of ports,

we further used bordered-block diagonal partition with hierarchi-

cal clustering (BBDC) to decompose the macro-model into blocks

with the manageable size. The experiment shows that BBDC re-

duces 30X simulation time than the original macro-model. In the

future, we plan to study how to find the optimum block num-

ber for BSMOR to generate a order-reduced state matrix that is

sparse yet small.
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