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Abstract. Reducing the ever-growing leakage current is critical to high
performance and power efficient designs. We present an in-depth study of
high-level leakage modeling and reduction in the context of a full custom
design environment. We propose a methodology to estimate the circuit
area, minimum and maximum leakage current, and maximum power-up
current, introduced by leakage reduction using sleep transistor insertion,
for any given logic function. We build novel estimation metrics based
on logic synthesis and gate level analysis using only a small number of
typical circuits, but no further logic synthesis and gate level analysis
are needed during our estimation. Compared to time-consuming logic
synthesis and gate level analysis, the average errors for circuits from a
leading industrial design project are 23.59% for area, 21.44% for maxi-
mum power-up current. In contrast, estimation based on quick synthesis
leads to 11x area difference in gate count for an 8bit adder.

1 Introduction

As VLSI technology advances, leakage power becomes an ever growing power
component. Dynamic power management via power gating at system and cir-
cuit levels is effective to reduce both leakage and dynamic power. Figure 1 (a)
shows a system with a multi-channel voltage regulation module (VRM). The
VRM channels can be configured to supply power independently for individual
modules. Therefore, modules can be turned on or off at appropriate times for
power reduction. Power gating at the circuit level is also called MTCMOS (see
Figure 1 (b)). A PMOS sleep transistor with a high threshold voltage connects
the power supply to the virtual Vdd. The sleep transistor is turned on when
the function block is needed, and is turned off otherwise.1 We use MTCMOS to
study power gating in this paper and the idea can be extended to VRM.

Key questions in applying power gating include: (i) How to estimate the
leakage reduction by power gating and how to decide the area overhead of power
� This research was partially supported by the NSF CAREER Award 0093273, SRC

grant 2002-HJ-1008 and a grant from Intel Design Science and Technology Commit-
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1 Instead of the PMOS sleep transistor, an NMOS sleep transistor can be inserted
between the ground and virtual ground and Ip to be presented later becomes the
discharging current in this case. For simplicity of presentation, we assume PMOS
sleep transistors in this paper.
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Fig. 1. Power gating at (a) system level and (b) circuit level.

gating? The answer determines whether power gating is worthwhile for a given
design, and (ii) How to answer the above question at an early design stage
without performing time-consuming logic synthesis and gate level analysis. Early
decision making is needed to deal with time-to-market pressure. This paper
presents an in-depth study of high-level leakage modeling and reduction by using
commercial synthesis tools such as Design Compiler.

In Section 2, we propose a method to estimate the gate count for a given logic
function without performing logic synthesis. We show that the quick synthesis
leads to 11x difference for a simple adder, and further validate and improve
an area estimation technique that was originally developed for a library with
limited number of cells [1]. The improved estimation method has an average
error of 23.59%. As shown in [2], all nodes in a power-gated module are at logic
“0” state, and must be brought to valid logic states by power-up current (Ip)
before useful computation can begin. Further, Ip depends on the input vector.
Its maximum value must be known to design reliable sleep transistors and VRM.
In Section 3, we propose a high-level metric to estimate the maximum Ip without
performing logic synthesis and gate-level Ip analysis. We verify this metric by
a newly developed gate-level analysis for accurate Ip. In all sections, we use
the design environment of a leading industrial high-performance CPU design
project. There are hundreds of cells with various sizes (1x to 65x) in the library.
All experiments are carried out on a number of typical circuits. The circuits are
specified in Verilog and synthesized by Design Compiler to verify our high-level
estimations. Due to the need of IP protection, we report normalized current
value in this paper.

2 Area Estimation

2.1 Overview

Table 1 presents synthesis results for adders where synthesis 1 uses logic func-
tions with intermediate variables, and synthesis 2 uses equivalent logic functions
without intermediate variables. 11x difference in gate count is observed for an



Circuit Synthesis 1 Synthesis 2

1bit adder 3 3
4bit adder 20 16
8bit adder 42 490

Table 1. Area count based on quick synthesis

8bit adder. It shows that quick synthesis using Verilog specified at a higher ab-
straction level does not necessarily lead to a good estimation. Instead of using
quick synthesis, we apply and improve the high-level area estimation in [1].

We summarize the estimation flow from [1] in Figure 2. It contains a one-
time pre-characterization, where gate-count A is pre-characterized as a function
F of the linear measure L and output entropy H. Then, a multi-output function
(MOF) is transformed into a single output function (SOF) by adding a m-to-1
MUX, where m is the number of outputs in the original MOF. L and H are
calculated for the SOF to look up the pre-characterized table and obtain gate
count. Removing MUX from this gate count leads to A for the original MOF.

We improve the original estimation method in two ways. First, it is claimed
in [1] that SOFs with the same output entropy H and same linear measure L
have the same A. However, we find that it may not be true for VLSI functions
implemented with a rich cell library. Functions with smaller output probabil-
ity of logic ‘1’ have fewer gate count under the same linear measure. There-
fore, we have pre-characterized A as a function F(L,P), where P is the output
probability. Since complementary probabilities lead to the same entropy, our
pre-characterization is more detailed compared to that in [1]. Further, we have
developed an output clustering algorithm to partition the original MOF into
sub-functions (called sub-MOFs) with minimum support set overlap, and have
improved the efficiency and accuracy of the high-level estimation. We summarize
our estimation flow with the difference highlighted in Figure 2, and describe each
step and our implementation details in the following sections.

2.2 Linear Measure

Linear measure L is determined by on and off-sets of an SOF as L = L1 + L0,
where L1 and L0 are the linear measure for the on-set and off-set, respectively.
L1 is further defined as L1(f) =

∑N
i=1 cipi (L0 can be defined similarly). N is the

number of different sizes of all the prime implicants in a minimal cover of function
f . The size of a prime implicant is the number of literals in it. ci is one distinct
prime implicant size. pi is a weight of prime implicants with size ci and can be
computed in the following way. Suppose all the input vectors to the logic function
can occur with the same probability. Let c1, c2, . . . , cN be sorted in a decreasing
order, and weight pi be the probability that one random input vector matches
all the prime implicants with size ci but not by the prime implicants with size
from c1 to ci−1, 1 < i ≤ N . For i = 1, p1 is just the probability that one random
input vector matches prime implicants with size c1. Here “a matching” means



Estimation of gate count A in [1]:
Pre-characterization
1. Pre-characterize A as F(L,H) using randomly generated
SOFs. H is the output entropy.
Mapping
1. Partition the MOF into sub-MOFs randomly;
2. Transform each sub-MOF into an SOF by adding MUX;
3. Compute L and H;
4. Obtain gate count A′ of transformed SOF from F(L,H);
5. Remove MUX from A′ to get gate count of original MOF;
6. Obtain final estimate by adding up gate-count for all the
sub-MOFs.

Estimation of gate count A in this paper:
Pre-characterization
1. Pre-characterize A as F(L,P) using randomly generated
SOFs. P is the output probability.
Mapping
1. Partition the MOF to minimize support-set overlap;
2. Transform each sub-MOF into an SOF by adding MUX;
3. Compute output probability P and linear measure L;
4. Obtain gate count A′ of transformed SOF from �(���);
5. Remove MUX from A′ to get gate count of original MOF.
6. Obtain final estimate by adding up gate-count for all the
sub-MOFs.

Fig. 2. Estimation of gate count A

that the intersection operation between the vector and the prime implicant is
consistent. Note that pi satisfies the equation

∑N
i=1 pi = P(f), where P(f) is

the probability to satisfy function f .
The minimum cover of an SOF can be obtained by two-level logic minimiza-

tion [3]. To compute the weight pi, a straightforward approach is to make the
minimum cover disjoint and compute the probability exactly. However, in prac-
tice, this exact approach turns out to be very expensive. In our experiments,
when the number of inputs is larger than 10, the program using the exact ap-
proach does not finish within reasonable time. But with pi defined as the proba-
bility, L1(f) can be viewed as a random variable L′

1(f) with certain probability
distribution. For each random input vector, the variable L′

1(f) takes a certain
value ‘randomly’. With probability of 1−P (f), L1(f) takes the value ‘0’. Then,
L1(f) becomes the mean of the random variable L′

1(f). By assuming that the
variable L′

1(f) takes a Gaussian distribution, we use Monte Carlo simulation
technique to estimate the mean value efficiently.

2.3 Output Probability and Gate-count Recovery

The output probability can be obtained as a by-product of Monte Carlo simu-
lation. Since weight pi satisfies

∑N
i=1 pi = P (f), we can keep record of all the pi

during the Monte Carlo simulation. When simulation process satisfies the stop-
ping criteria, the output probability can be obtained easily. To recover the gate
count of the original MOF, the estimated gate count for the transformed SOF
is subtracted by αAmux. Amux is the gate count of the complete multiplexer we
have inserted, and α is the coefficient to get the reduced multiplexor gate count
due to the logic optimization.



2.4 Output Clustering

As the number of primary outputs increases, the time to calculate the minimum
cover of a function increases non-linearly. To make the two-level optimization
more efficient, one may partition the original MOF into sub-MOFs by output
clustering, and then estimate for each sub-MOF individually. The gate-count
of the original MOF is the sum of gate-counts for all the sub-MOFs. However,
estimation errors may be introduced due to the overlap of the support sets of
the sub-MOFs. We propose to partition the outputs with minimum support set
overlap (see Figure 3). A PO-graph is constructed with vertices representing the
Primary Outputs (POs). If two POs have support set overlap, there is an edge
connecting the two corresponding vertices. The edge weight is the size of the
common support set. The vertex weight is the sum of the weights of all edges
connected to this vertex. There are two loops in the algorithm. In each iteration
of the inner loop, the vertex with the minimum weight is deleted and the weights
are updated for edges and vertices that connect the deleted vertex. It continues
until the number of remaining vertices is less or equal to the pre-specified cluster
size. The PO-graph is then re-constructed with all the POs that have not been
clustered. The algorithm continues until all the outputs are clustered and the
PO-graph becomes empty.

Output Clustering Algorithm:
Construct the PO-graph;
While (PO-graph is not empty)
begin

While (# of remaining vertices > CLUSTER SIZE)
begin

Delete the vertex v with the minimum weight;
Update weights for edges and vertices connecting v ;

end
Obtain one cluster of POs using remaining vertices;
Re-construct PO-graph excluding POs already in clusters;

end

Fig. 3. Output clustering algorithm

2.5 Experimental Results

We compare area estimation methods in Figure 4, where x-axis is the circuit
ID number and y-axis is the gate count. During the Monte Carlo simulation to
calculate the linear measure, we choose the parameters of confidence and error
as 96% and 3%, respectively. The actual gate count is obtained by the synthesis
using Design Compiler. The method with random output clustering has an av-
erage absolute error of 39.36%. By applying our output clustering algorithm to
minimize support set overlap, we reduce the average absolute error to 23.59%.
Such estimation errors are much smaller compared to the 11x gate-count differ-
ence in Table 1. Note that different descriptions of a given logic function do not
change the L and P , and therefore do not affect the estimation results by our



approach. High-level estimation costs over 100x less runtime compared to logic
synthesis.

Fig. 4. Comparison between actual and predicted gate-count.

3 Power-Up Current Estimation

Given the Boolean function f of a combinational logic block and the target cell
library, our high-level estimation finds the maximum power-up current Ip(f)
when the logic block is implemented with the given cell library for power gating.
A Boolean function can be implemented under different constraints, but we
assume the min-area implementation in this paper.

We propose the following high-level metric Mp for Ip(f):

Ip(f) ∝ Mp(f) = Iavg · A (1)

where A is the gate count estimated using the method in Section 2, and Iavg

is the weighted average Ip to be discussed in Section 3.2. Because an accurate
gate-level estimator is required for the calculation of Iavg and verification of
M(f), we introduce our gate-level estimation in the next section.

3.1 Gate-Level Estimation

Background Knowledge Power-up current (Ip) is different from the normal
switching current (Is). Is depends on two successive circuit states S1 and S2,
which are determined by two successive input vectors V1 and V2 for combina-
tional circuits. As discussed in Section 1, Ip can be viewed as a special case of
Is where the state S1 before power-up is logic “0” for all the nodes. Because no
input vector leads to a circuit state with all nodes at logic “0” for non-trivial
circuits, the maximum Ip is in general different from the maximum Is. Moreover,
the Ip of a circuit is solely decided by the circuit state S2, and therefore decided



by a single input vector when the circuit is powered up. To illustrate that Ip

depends on the input vectors, we present the Ip obtained by SPICE simulation
for an 8-bit adder under two different input vectors in Table 2. The difference
of the maximum Ip is about 24%. It is obvious that Ip is greatly affected by the
input vector when the circuit is powered up. We refer Ip element to be the power-
up current generated by an individual gate, and give the following observation
related to timing:

Observation 1 If a set of gates are controlled by one single sleep transistor,
all these gates are powered up simultaneously. I.e., all the Ip elements for these
gates have the same starting time.

Circuit vector1 vector2 difference

Adder8 1830 2260 23.50%
Table 2. Maximum Ip of an 8bit adder.

ATPG-based algorithms have been proposed in [2]. It is assumed that the
power-up current is proportional to the total charge in the circuit after power-
up, and the charge for one single gate with output value “1” is proportional to
its fanout number. Therefore, the gate fanout number is used as the figure of
merit of the power-up current (Ip) for the gate with output value “1”. ATPG
algorithm is performed to find the logic vector that maximizes the figure of merit.
However, this algorithm does not take the current waveform in the time domain
into account. The vector obtained by ATPG algorithm has to be further used in
SPICE simulation to obtain the Ip value.

To achieve more accurate estimation and obtain Ip value directly, we need a
current model that can capture the current waveform. We apply the piece-wise
linear (PWL) function to model the Ip element. SPICE simulation is used to
get the power-up current waveform and the waveform is linearized at different
regions to build the PWL model for each cell in the library. Our PWL model
considers the following four dimensions: gate type, input pin number, gate size,
and post-powerup output logic value. Note that a much simplified PWL model,
the right-triangle current model has been successfully used in [4] for maximum
switching current estimation.

Genetic Algorithm Since exhaustive search for the input vector that generates
the maximum Ip is infeasible, we apply Genetic Algorithm (GA) in our gate-level
estimation. We encode the solution, input vector, into a string so that the length
of the string is equal to the number of primary inputs. Each bit in the string is
either ‘1’ or ‘0’. The initial population is randomly generated. The population
size is proportional to the number of primary inputs. The fitness value is chosen
as the maximum Ip value under the input vector represented by the string. The
Ip value is obtained by waveform simulation with PWL current model.



Tournament selection is used in our selection process. From the current gen-
eration, we randomly pick two strings and select the one with the higher fitness
value. After that, the two strings are removed from the current generation. We
repeat this procedure until the current generation becomes empty. By doing this,
we divide the original strings into inferior and superior groups. We keep record
of the strings in the superior group and put these two groups together to carry
out tournament selection again. The two superior groups generated in the two
tournaments are combined to go through crossover and mutation, and produce
the new generation. The string with the highest fitness will be selected twice so
that the best solution so far will stay in the next generation. Since strings with
lower fitness have higher probability of being dropped, the average fitness tends
to increase by each generation.

The crossover scheme we use is the one-point crossover algorithm. One bit
position is randomly chosen for two parent-strings and they are crossed at that
position to get the two child-strings. After crossover, we further use a simple
mutation scheme that flip each bit in the string with equal probability. The
new generation is produced after crossover and mutation, and is ready to go
through a new iteration of natural selection. The algorithm stops after the num-
ber of generations exceeds a pre-defined number. We summarize the algorithm
in Figure 5.

GenerationNumber = 1;
Randomly generate the initial generation;
While (GenerationNumber < MAX GENERATION)
begin

Evaluate the fitness value of each string;
Apply tournament selection to get parent-strings;
Apply crossover and mutation to get child-strings;
Produce the new generation with the child-strings;
GenerationNumber++;

end
return the peak Ip and its correspondent input vector

Fig. 5. Generic algorithm for gate-level estimation.

We carry out experiments and compare the results of Genetic Algorithm to
that of simulations with 5000 random vectors. Under the same PWL current
model, GA achieves up to 27% estimation improvement to approach the upper
bound of power-up current, The average improvement for all the circuits is 6%.

3.2 Calculation of I��� and Experimental Results

Iavg is not simply the average Ip element for all cells in a library. The frequency
of cells used in logic synthesis should be taken into account. We assume that the
logic synthesis results for a few typical circuits (or random logic functions) are
available. We calculate Iavg in a regression-based way as follows: We compute
the average maximum Ip per gate for n typical circuits by applying the gate-level
estimation. We then increase n until the resulting value becomes a “constant”.



We treat this constant value as Iavg. In Figure 6 (a), we plot Iavg with respect to
the number of circuits used to calculate Iavg. The figure shows that the change
of the Iavg value is relatively large when the number of circuits is small (less
than 10 in the figure). After the number of circuits increases to 20, the value of
Iavg becomes very stable and can be used as our high-level metric Mp.

To validate our regression-based Iavg, we use the computed value of Iavg

under PWL model and the accurate gate count to get the high-level metric
Mp. We compare the gate-level estimation Ip(ckt) by Genetic Algorithm to the
metric Mp in Figure 6 (b). The average absolute error between Ip(ckt) and Mp

is 12.02%. Note that the circuits in Figure 6 (b) are different from those used to
compute Iavg for the purpose of the verification of metric Mp.

0 5 10 15 20 25 30

50

100

150

200

250

300

total # of circuits

Ia
vg

Iavg: avg power−up current per gate

0 0.5 1 1.5 2

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

gate−level estimation I
p
(ckt)

h
ig

h
−

le
ve

l m
e

tr
ic

 M
p
(f

)

(a) (b)

Fig. 6. (a) Iavg(PWL) w.r.t. number of circuits. (b) Comparison between gate-level
estimation Ip(ckt) and high-level metric Mp.

Furthermore, we compare the maximum Ip using estimated Iavg and A to
the maximum Ip obtained via logic synthesis followed by gate-level analysis.
As shown in Table 3, shows that the average estimation error is 21.44%. We
measure gate-level analysis runtime as the time for logic synthesis and Genetic
Algorithm, and measure the high-level estimation runtime as the time for area
estimation and application of the formula Mp(f) = Iavg ·A (pre-characterization
only has one-time cost and is ignored in the runtime comparison). Our high-level
estimation achieves more than 200x run-time speedup for large test circuits.

4 Conclusions and Discussions

Using design examples and design environment of a leading industrial CPU
project, we have presented an improved high-level area estimation method. The
estimation has an average error of 23.59% for designs using a rich cell library.
We have also proposed a high-level metric to estimate the maximum power-up
current due to power gating for leakage reduction. Compared to time-consuming



PWL current model
circuit gate-level high-level Abs.

id est. Ip(ckt) est. Ip(ckt) Err(%)
1 12234.00 14626.98 19.56
2 11756.12 13857.14 17.87
3 150437.28 133374.96 11.34
4 143767.61 87569.42 39.09
5 193818.20 175523.76 9.44
6 92024.79 58700.38 36.21
7 28170.35 24442.45 13.23
8 13975.08 15589.28 11.55
9 16349.61 18283.73 11.83
10 30964.78 15011.90 51.52
11 16687.65 12702.38 23.88
12 18577.41 13664.68 26.44
13 42565.20 33488.08 21.33
14 25710.94 15781.74 38.62
15 49502.92 45420.62 8.25
16 94697.20 91418.62 3.46
17 113573.73 121442.42 6.93
18 124298.63 93343.23 24.90
19 100798.74 80833.31 19.81
20 18907.54 16166.66 14.50
21 21486.25 14049.60 19.81
22 85981.01 96422.59 12.14
23 12599.41 10970.23 12.93
24 41482.89 28676.58 30.87
25 92199.21 61009.90 33.83
26 40449.54 49847.21 23.23

Average 21.44
Table 3. Results of high-level Ip estimation.

logic synthesis followed by gate-level analysis, our high-level estimation has an
average error of 21.44% for power-up current.

Our high-level estimation method can be readily applied to estimating the
area overhead due to the sleep transistor insertion in power gating. There is
reliability constraint for sleep transistors, i.e., avoidance of damaging the sleep
transistor by a large transient current. We can obtain the maximum transient
current as the bigger one between the maximum power-up current and max-
imum switching current, and size the sleep transistor to satisfy the reliability
constraint.
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