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Abstract— We propose a block structure preserving model
reduction (BSMOR), which generalizes the structure preserving model
order reduction (SPRIM). The blocks can be derived based on specific
applications such as block current characterization of the substrate.
Increasing block numbers leads to more matched poles or moments
using the same Krylov space and also increases the sparse ratio of
the state matrices of the resulting macro-model. Experiment shows
that BSMOR has a 20X smaller reduction time than PRIMA does
under a same error bound. To efficiently analyze the resulting macro-
model with a large number of ports, we further propose a bordered-
block diagonal (BBD) partitioning with a bottom-up hierarchical
clustering (BBDC) where the macro-model is partitioned into a
number of subset-port models, each with a manageable model size.
With a similar accuracy, BBDC obtains 30X speedup compared to
the original macro-model.

I. INTRODUCTION
VLSI circuits contain a number of highly structured components

such as bus, power ground grid and substrate. These components
can be modeled by passive networks with tremendous amount of
circuit elements and large numbers of ports. To analyze such net-
work efficiently, model order reduction [1]–[3] has been studied
extensively. Based on the Krylov subspace projection and congruence
transformation, PRIMA [3] is widely used to generate the reduced
macro-model with preserved passivity. However, the macro-model
produced by PRIMA is not compact as the order is usually “too
high” to achieve the specified accuracy. Furthermore, the macro-
model is represented by a multiple-input-multiple-output (MIMO)
transfer function, and is usually dense and inefficient to analyze for
a large number of ports.

To improve upon PRIMA, a structure-preserving model reduction
(SPRIM) is proposed in [4]. It partitions the state matrix in the MNA
(modified nodal analysis) form into a natural 2 × 2 block matrices,
i.e., conductance, capacitance, inductance, and adjacent (G, C, L, Es)
matrices. Accordingly the projection matrix is partitioned and the
number of its columns is doubled. As a result, SPRIM matches the
twice poles of the models by using the projection matrix given by
PRIMA. In addition, the block structure of state matrices is preserved,
which facilitates the realization of the reduced model. However,
such a simple 2 × 2 partition does not leverage the regularity of
the substrate network. On the other hand, the explicit hierarchical
decomposition [5], [6] is proposed to handle a large number of ports.
The capacity of these methods [4]–[6] need to be improved further.

In this paper, we propose a block structure preserving model
reduction (BSMOR) method, which generalizes SPRIM [4] in the
sense that the G, C, L and Es matrices are further partitioned into
blocks. The blocks can be derived based on specific applications such
as block current characterization of the substrate in this paper. We
show that increasing the block number leads to more matched poles
or moments using the same Krylov space. Compared to PRIMA,
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BSMOR can lead to more efficient reduction under the same accuracy.
In addition, BSMOR can also preserve the sparsity for reduced
block matrices, which gives further efficiency boost to constructing a
macro-model. The resulting macro-model consists of order-reduced
blocks, each containing a subset of ports. To analyze a macro-model
with a large number of ports, we further propose a bordered-block
diagonal (BBD) partitioning and hierarchical clustering of reduced
blocks. We call it BBDC analysis. The experiment shows that under
the same accuracy, the reduction of our approach is 20X times faster
than PRIMA to reduce a circuit with 1M elements, and the BBDC
analysis is 30X faster compared to analyzing the original macro-
model.

The rest of the paper is organized as follows. We present BSMOR
and BBDC in Sections II and III, respectively. In Section IV, we apply
our method to the substrate macro-modeling and noise analysis, and
discuss how to find the block structure from the characterization of
the block current. We present the experimental results in Section V,
and conclude the paper in Section VI.

II. BLOCK STRUCTURE PRESERVING MODEL REDUCTION
In this section, we present a block structure preserving model re-

duction (BSMOR) that implicitly uses the block structure information
of the matrix during the reduction. We show that by increasing the
block number, we can match more poles or moments using the same
Krylov subspace, which is also confirmed by our experimental results.
On top of this, we introduce the concept of the structured Krylov
subspace to summarize our contribution.

A. Preliminary
Consider a modified nodal formulation (MNA) of the circuit

equations in the frequency domain:

Gx(s) + sCx(s) = Bip(s)

vp(s) = BT x(s) (1)

where x(s) is the state variable vector, G and C (∈ RN×N ) are state
matrices. B (∈ RN×np ) is

B = [B 0]T , (2)

a port incident matrix. Eliminating x(s) in (1) gives

vp(s) = H(s)ip(s)

H(s) = BT (G + sC)−1B, (3)

where H(s) is a multiple-input multiple-output (MIMO) transfer
function. PRIMA finds a projection matrix V (∈ RN×q) such that
its columns span the q-th block Krylov subspace K(A,R, q), i.e.,

spanV = K(A,R, q), (4)

where A = (G + s0C)−1C, R = (G + s0C)−1B, and s0 is the
expansion point that ensures G + s0C is nonsingular. The resulting
reduced transfer function is

Ĥ(s) = B̂T (Ĝ + sĈ)−1B̂, (5)

where
Ĝ = V TGV, Ĉ = V TCV, B̂ = V T B̂, (6)
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has the identical expanded first q-th moments with H(s). It is called
as the Grimme’s projection theorem [7]. Note that Ĝ, Ĉ ∈ Rq×q , and
B̂ ∈ Rq×np .

SPRIM [4] observes that instead of using the Krylov subspace
K(A,R, q) for the projection matrix eV , one can use any projection
matrix such that the space spanned by the column in eV contains the
q-th block Krylov subspace. i.e.

K(A,R, q) ⊆ eV (7)

In SPRIM, a 2 × 2 partition is naturally used as a linear state
matrix in the MNA form has a 2 × 2 block structure

G =

»
G ET

s

−Es 0

–
, C =

»
C 0
0 L

–
, (8)

where G (∈ Rn1×n1 ), C (∈ Rn1×n1 ), L (∈ Rn2×n2 ) are conduc-
tance, capacitance and inductance matrix, and Es (∈ Rn2×n1 ) is the
adjacent matrix indicating the branch current flow at the inductor.
Note that n1 + n2 = N .

Therefore, a structured projection vector eV can be constructed by
partitioning the projection vector V obtained from the q-th PRIMA
iteration

V =

»
V1

V2

–
→ eV =

»
V1 0
0 V2

–
. (9)

where V1 ∈ Rn1×q , V2 ∈ Rn2×q , and eV ∈ RN×2q . As a result, the
number of columns in eV is twice of that in V . Accordingly the new
reduced state matrices are

eG =

» eG eET
s

− eEs 0

–
, eC =

» eC 0

0 eL,

–
(10)

where eG = V1
T GV1, eEs = V2

T EsV1 and eC = V1
T CV1 and eL =

V2
T LV2. Similarly, the size of eG, eC (∈ R2q×2q), and eB (∈ R2q×np )

is twice than that of Ĝ, Ĉ, and B̂ reduced by using V . Therefore, the
moments of the reduced model with state matrices eG and eC are twice
than those of the reduced model with state matrices Ĝ and Ĉ. In other
words, the reduced model by eV matches 2q poles or moments of the
original model instead of q poles or moments by V .

Since the reduced model is written in the first order form in (10),
the model reduced by SPRIM is twice larger than that produced
by PRIMA. However, the reduced model by SPRIM preserves the
structure of the original model and can be further reduced into
the second-order form using node elimination base on the Schur’s
decomposition: eGNA = eG + s eC + 1

s
eAT eL−1 eA where eGNA is the

reduced state matrix in NA form, which has the same size of the
reduced matrix by using V . Note that the difference is that each
element in eGNA become second-order rational function of s instead
of first-order polynomial of s.

Hence SPRIM algorithm essentially consists of two reduction
steps: the first step is the structure-preserving projection-based re-
duction and the second step is block node elimination based on
Schur’s decomposition. As a result, SPRIM can match more poles
than PRIMA, which uses V as the projection matrix, but both result
in a same size of the reduced model. If we just look at the first step,
SPRIM simply matches more moments by using more columns in
the projection matrix eV , thus produces larger reduced state matrices
in the first-order form.

B. BSMOR Method

SPRIM essentially is based on a 2 × 2 partitioning of the state
matrices. If we use more partitions (each partition called a block),
we can add more columns into the project matrix eV , thus match more
poles given the same Krylov space K(A,R, q).

Specifically, we assume that the conductance matrix G can be
written in m blocks

G =

2
66664

G1,1(n1×n1) G1,2(n1×n2) . . . G1,m(n1×nm)

G2,1(n2×n1)
G2,2(n2×n2)

. . . G2,m(n2×nm)

...
...

. . .
...

Gm,1(nm×n1) Gm,2(nm×n2) . . . Gm,m(nm×nm)

3
77775

, (11)

where each block has the size nk (
Pm

k=1 nk = N ). A similar block
structure can be found for C matrix. Then, B becomes

B = [B1(n1×np), B2(n2×np), . . . Bm(nm×np)]
T (12)

where each basic block contains user specified npk ports (np =Pm

k=1 npk). Note that these blocks can be derived based on specific
applications such as block current characterization of the substrate as
discussed in Section IV.

Accordingly, we further partition the projection matrix V obtained
from PRIMA according to the block structure in state matrices from
(11)

V =

2
66664

V1(n1×q)

V2(n2×q)

...
Vm(n1×q)

3
77775

→ eV =

2
66664

V1(n1×q) 0 . . . 0
0 V2(n2×p) . . . 0

...
...

. . .
...

0 0 . . . Vm(nm×p)

3
77775

. (13)

where eV ∈ RN×mq . We call this as an m × m Block Structure
preserving Model Reduction (BSMOR), where m is the number of
blocks.

We can obtain the order reduced state matrices by projecting eV :
eG = (eV )TG eV , eC = (eV )T C eV , eB = (eV )TB. (14)

Elementwise, we have
eGi,j = Vi

TGi,jVj
eCi,j = Vi

T Ci,jVj
eBi = Vi

TBi (15)

where eGi,j represents the blocks at i block row and j block column in
reduced matrix eG. So do eCi,j and eBi. Let Vi = Vi(ni×q) to simplify
notations. Using such a matrix eV , we define a reduced-order model
with the following transfer function

eH(s) = eBT ( eG + s eC)−1 eB. (16)

This result extends 2 × 2 case given by SPRIM. If the number
of columns in V is k, then the number of columns in eV is mk.
As a result, eG is m times larger than G. Conceivably, eH(s) has m
times more eigenvalues than that of Ĥ(s). Based on the Grimme’s
projection theorem, eH(s) should match m times more poles or
moments than Ĥ(s). Similar to SPRIM, the reduced model of passive
network obtained by Krylov-subspace projection preserves passivity.

One important observation is that, if the couplings among blocks
are weak, introducing more partitions or blocks can archive the same
reduction accuracy by using smaller Krylov subspace, which can in
turn improve the reduction efficiency. On the other hand, we observe
that the partitioned projection matrix eV leads to localized projection
as shown by (15). In other words, the block projection matrix eVi is
used only for matrix blocks Gi,x and Gx,i, (x = 1, ...m). In this sense,
Krylov subspace given by eV becomes a structured Krylov subspace
in eV . Each structured block projection matrix eVi will lead to the
localized model order reduction for block i, which is represented by
Gx,i and Gi,x matrix blocks (x = 1, ...m). Conceivably, the order
reduced block eGi,x and eGx,i will match Gi,x and Gx,i to the first
q moments. But the whole system consisting of the m blocks will
match mq poles instead q poles by PRIMA.

For a 256x256 RC-mesh (320K circuit elements), Fig. 1 compares
the maximum error of frequency responses by PRIMA, 2×2, and 8×8
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Fig. 1. Maximum errors of the frequency response of the BSMOR and
PRIMA for increasing order models of a uniform mesh (256x256) up to
20GHz.
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Fig. 2. Non-zero patterns for G, C matrices of a uniform RC-mesh (256x256)
after a 16×16 BSMOR reduction with 8 iterations, where NZ is the number
of non-zero.

BSMOR vs. the iteration number during the reduction. At the same
iteration number, it shows that using more partitions (block number)
to construct the projection matrix can have better accuracy than using
less partitions as PRIMA does. In other words, BSMOR can generate
more compact model with improved pole matching ability.

Moreover, due to the structured construction of eV by (13), BSMOR
preserves the sparsity of eG, eC matrices even after the reduction. For
example, for the 256x256 RC-mesh above, Fig. 2 shows the structure
of these two state matrices after a 16 × 16 BSMOR reduction. The
eG, eC matrices show 72% and 93% sparsification ratio, respectively. It
is another advantage to use BSMOR other than PRIMA, as PRIMA
generates a fully dense state matrices after the reduction. Moreover,
the sparsification ratio increases when increasing the block number.
It is not surprising as conceptually when a block contains only one
element, the “reduced” state matrices become exactly the same as the
original sparse state matrices.

III. BORDERED-BLOCK DIAGONAL PARTITIONING WITH
HIERARCHICAL CLUSTERING

In this section, we first describe the flat macro-model generated by
the reduced state matrices from Section 2.2. To efficiently handle the
flat macro-model with large number of ports, we present a bordered-
block diagonal (BBD) partitioning to solve each block individually.
Moreover, we discuss a hierarchical clustering method to further
improve the efficiency.

A. Flat Macro-model
For the frequency-dependent application in the analog/RF sim-

ulation like the substrate noise analysis, an Y -parameter based
multiple port macro-model is widely used instead. An np × np

MIMO admittance matrix Y ′(s) can be obtained by taking the eigen-
decomposition of eA = ( eG + s0

eC)−1 eC

Y
′(s) =

2
664

Y ′

1,1 · · · Y ′

1,np

...
. . .

...
Y ′

np,1 · · · Y ′

np,np

3
775 , (17)

(b )(a )

red u ced  b lo ck  2r ed u ced  b lo ck  1R ea li z ed  bra n ch  a dm i t t a n ce   n e two r k co u p li n g  b lo ck

Fig. 3. An example of 4-port admittance with 2 reduced blocks. (a) realization
in branch admittance network; (b) represented by 2 reduced blocks with an
additional coupling block.

with
Y ′

i,j = ci,j +

qX

n=1

ki,j
n

s − pn

, (18)

where kn and pn are the residues and poles. Note that eigenvalues of
eA(q) represent the reciprocal poles of Y ′(s) [3]. Due to the preserved
sparsity, the eigen-decomposition becomes more efficient when using
the eG and eC from the BSMOR other than using those from PRIMA.
Furthermore, as the reduction preserves the structure, it results in
additional preservations: i) the reciprocity of the network is also
preserved, i.e., the Y ′(s) is symmetrical. In contrast, PRIMA does
not preserve this property; ii) the block structure is preserved as
well. It means the reduced block can be distinguished by a subset
of ports specified before BSMOR. As a result, we can further apply
an additional port-partitioning, precisely, bottom-up port clustering
to handle the large number of ports as discussed later on.

To partition a given network, we first transform the nodal admit-
tance (17) into a branch admittance network:

Yii =

npX

j=1

Y ′

ij , Yij = −Y ′

ij . (19)

Note that the flat macro-model consists of m order reduced blocks,
where each reduced block contains npk ports with ground and
coupling branch admittances. There also exist coupling branch ad-
mittances between any pair of reduced blocks. A transformed branch
admittance network for a 4-port admittance matrix is shown in Fig.
3 (a). To partition the branch admittance network Y , one natural
approach is to reserve each reduced block, and pack all the coupling
branch admittances into one block, called as couping block that
connects all reduced blocks. An example of such a partitioning (or
representation of the macro-model from BSMOR) is shown in Fig.
3 (b) for a 4-port admittance matrix.

B. Bordered-Block Diagonal Matrix
For the kth reduced block, we have

Ykvk = ik +eik, (20)

where

(Yk)ii =

npkX

j=1

Y ′

ij , (Yk)ij = −Y ′

ij (j ∈ npk
), (21)

and vk, ik are the port voltage and current vectors, where ik is part
of ip: ik = ip(. . . ik1 . . .| {z }

npk

. . .). Moreover, eik is the correlation current

from the other reduced block through the coupling block.
The branch equation for the coupling block is

(Y0)
−1i0 = v0, (22)

where Y0 is the branch admittance matrix describing the branches in
the coupling block. It is a diagonal matrix such that its inversion is
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easily obtained as 1/(Y0)ii. Note that its size depends on the number
of couplings among reduced blocks, and it can be efficiently imple-
mented with the sparse matrix data structure. v0 and i0 are branch
voltage and current vectors. They relate to the port voltage/current
vectors vk/ik at kth block by

eik = Ck0i0, v0 = −
mX

k=1

(Ck0)
T vk, (23)

where Ck0 is the cut matrix composed by {0, 1,−1} to indicate
the direction of branch currents between kth reduced block and the
coupling block.

Combine (21) - (23), we have the following hybrid matrix equation

2
666664

Y1 0 . . . 0 C10

0 Y2 . . . 0 C20

...
...

. . .
...

...
0 0 . . . Y

m(l) Cm0

(C10)
T (C20)T . . . (Cm0)

T
−(Y0)−1

3
777775

2
666664

v1

v2

...
vm

i0

3
777775

=

2
666664

i1
i2

...
im

0

3
777775

.

This hybrid matrix shows a bordered-block-diagonal (BBD) struc-
ture. It enables the below Algorithm 1 [8] to solve each reduced
block individually without using the explicit inversion. Each reduced
block matrix is first solved individually with LU factorization and
substitution (1.1-1.5), the results from each reduced block are then
used further to solve the coupling block (2.1-2.4), and the final vk

of each reduced block is updated (3.1-3.4) with the result from the
coupling current i0.

Algorithm 1 Solve bordered-block-diagonal (BBD) matrix
1.Solve Yk individually
for every k in m do

(1.1) input: Yk, Ck0, ik ;
(1.2) factor: Yk = LkUk ;
(1.3) solve: LkΦk = Ck0 for Φk , ΨkUk = (Ck0)T for Ψk , and Lkξk = ik

for ξk ;
(1.4) form: Fk = ΦT

k Ψk , and Gk = ΨT
k ξk

(1.5) output: Fk, Gk .
end for
2.Solve Y0

(2.1) input: Y0, Fk , Gk ;
(2.2) form: F = Y

−1
0 +

P
m
k=1 Fk , G =

P
m
k=1 Gk ;

(2.3) solve: Fi0 = G for i0 ;
(2.4) output: i0 .
3.Update Yk individually
for every k in m do

(3.1) input: i0, Φk , ξk, Uk ;
(3.2) form: ξk = ξk − Φki0 ;
(3.3) solve: Ukvk = ξk for vk ;
(3.4) output: vk .

end for

Typically, LU factorization requires n3/3 multiplications and
back/forward substitution requires n2/2 multiplications. The compu-
tational cost of Algorithm 1 is therefore,

Pm

k=1(np
3
k/3 + np

2
k/2) +

(n3
0/3+n2

0/2) , where npk
is the port number (reduced block size) of

each reduced block, and n0 is the size of the coupling block. Note
that if the parallel execution is used, the summation becomes the
maximum execution time among blocks. To reduce the computational
cost without using the parallel execution, we need control costs for
reduced blocks and the coupling block as discussed below.

C. Hierarchical Clustering
As the factorization cost decreases with the size of the reduced

block, apparently the computation cost will be small when the net-
work is partitioned based on the reduced basic block from BSMOR.
However, the size of Y0 increases with the reduced block number,
and it increases the computation cost. To wisely arrange this trade-off,
a hierarchical tree structure is used as shown in Fig. 4. In this tree,
each node represents an abstract block. There are links connecting
each pair of correlated blocks, representing inter-block couplings. The
tree is constructed by iteratively clustering the reduced blocks from

A (0 )

A1
(1 ) A2

(1 ) A3
(1 ) A4

(1 )

A1
(2 ) A2

(2 ) A3
(2 ) A4

(2 )
A5

(2 ) A6
(2 ) A7

(2 ) A8
(2 )

Fig. 4. The hierarchical tree structure of clustered blocks.

the bottom. The degree and the level is chosen to bound the size of
the coupling block below a threshold. At the leaf level, a cluster of
reduced blocks are siblings of a parent node, an abstract block. A
cluster-coupling block is introduced to model the coupling between
siblings. There is no direct coupling between abstract blocks not in
a same cluster, but their coupling is modeled by cluster-coupling
blocks for parent nodes. Therefore, we can maintain a constant link
number (couplings) at each tree level. Note that the following merge
operation is operated when two blocks k and l are clustered

inew = [ik, il], vnew = [vk, vl],

and
(Ynew)ii =

X

j∈npk
∪npl

Y ′

ij , (Ynew)ij = −Y ′

ij .

At the bottom level, we solve each clustered block using Algorithm
1. It is inefficient to calculate vk directly on the higher levels since
the block size get larger and larger. Fortunately this is not necessary,
because one can use the already calculated vk of the children, same
as to attach the voltage sources to the coupling block at parent node.
To do this we need to update i0 from (l − 1)th level to lth level by

v
(l−1)
0 = −

m(l−1)X

k=1

(C
(l)
k0 )

T
v
(l−1)
k

, i
(l−1)
0 = Y

(l)
0 v

(l−1)
0 ,

(24)

and then solve vk at lth level by (3.1)-(3.4) in Algorithm 1. Moreover,
with the hierarchical tree structure, vk is recursively updated by a
bottom-up depth-first traversal of the tree, where we assume that
the cut matrices and block branch admittance are pre-computed and
stored hierarchically. For simplicity of presentation, we call BBD
analysis with hierarchical clustering as BBDC analysis. Note that
when the factorization cost of large matrix at the top level is large,
we further apply an error-bounded sparsification technique similar as
[5] to the branch admittance matrix. As the sparsification is performed
at the top level, this error is bounded.

IV. BLOCK SPECIFICATION IN SUBSTRATE
NOISE ANALYSIS

In this section, we discuss the application of BSMOR and BBDC
analysis to the substrate macro-modeling and noise analysis. The
substrate outside of active/contact areas can be treated as a uniformly
doped layer, where an electrostatic Maxwell’s equation is:

ε
∂

∂t
(∇ · E) +

1

ρ
(∇ · E) = 0. (25)

The Eddy current term (the primary cause of substrate loss) can
be ignored if the substrate is highly doped, where the conduction
current is dominant. Note that (25) can be discretized in differential
form using finite-difference [9] or integral form using boundary
element (BEM) methods. Because the BEM method needs to find a
numerically stable multi-layer Green’s function [10], it is not trivial to
construct in general when the layout geometry becomes arbitrary. In
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Fig. 5. (a) The non-uniform substrate mesh network characterized by
the switching current density; (b) The corresponding block structure of
conductance/capacitance matrices.

this paper, the finite-difference based discretization is used to generate
the RC mesh/grid as the substrate circuit model. As the electric field
varies nonlinearly as a function of the distance, the finite-difference
method approximates this variation as a piecewise constant function
by carefully choosing the pitch of the mesh according to the current
density, i.e., the strength of the electrical field.

For leading-edge integrated circuits, the count of gates is typically
in millions. The number of possible locations to place contacts
of sensitive analog/RF circuits is large as well. Therefore, a flat
multi-port description of each individual substrate noise injector and
receptors is impractical. We assume that the chip is partitioned into
smaller circuit, i.e., blocks based on the switching current density. As
a result, within a block all noise current injections can be clustered
into one independent current source at one single injection port. Such
a block maximum current spectrum envelope is studied in [11] to
characterize the injection noise sources in a bottom-up fashion. The
noise current injected by the gate G at frequency fp is denoted
iG(fm), and fm = m × f0 (m = 0, 1, 2, ...M ), where f0 is the
clock frequency and M is the sampling bound. Then, the total noise
current of cN gates in kth block is iCk =

PCN

k=1 iGk(fm), and
by a library-based characterization of the primary input transition
vp, the block current envelope spectrum is found by imax

k (fm) =
maxvp |iCk(fm)|.

Therefore, if there are m characterized blocks, each block would
contain npk user specified ports, including one input port representing
the injecting current noise source according to the above block
current assumption, and (npk − 1) output ports representing all
possible contact locations for analog/RF modules. There are total
np (np =

Pm

k=1 npk) specified ports. The port current vector ip
becomes: ip = [imax

1 ...0| {z }
np1

imax
k ...0| {z }

npk

imax
m ...0| {z }

npm

], where all omitted entries

are zeros standing for probing output ports. Note that the propagated
noise is observed from vp.

However, with the use of the power management technique like
the clock gating, the iCk(fm) can be very non-uniform for each
block across the chip. For the block with the high current density, the
electric field tends to vary largely, and a finer grids are necessary for
the accurate approximation. Otherwise, coarse grid is used instead.
For example, the substrate plane in Fig. 5 (a) has 4 parts with different
switching current densities and it results in a non-uniform mesh
structure. As a result, it demonstrates a block structure according
to the block current density. For example, Fig. 5 (b) shows such a
block structure for the block current distribution in Fig. 5 (a).

V. EXPERIMENT

We implement the BSMOR and BBDC analysis on a Linux work-
station (P4 2.66GHz, 1G RAM). The mesh structures of the substrate
are generated from the typical mixed signal circuit application. In this
section, we study their scalabilities by increasing the circuit size and
number of ports. As an example, we also present the noise map for
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Fig. 6. The scalability trend of simulation time for the original model, flat
macro-model, partitioned models with different hierarchical levels.

Ckt elements err-bound BSMOR PRIMA
block# iter# time iter# time

mesh1 1K 1e-8 2x2 4 0.03s 10 0.09s
mesh2 10K 1e-8 8x8 6 0.07s 20 0.28s
mesh3 80K 1e-6 16x16 6 0.42s 30 3.82s
mesh4 160K 1e-6 16x16 6 5.14s 40 46.98s
mesh5 320K 1e-4 32x32 6 10.27s 60 104.62s
mesh6 1M 1e-4 64x64 8 240.22s 80 4982.76s

TABLE I
COMPARISON OF THE REDUCTION TIME OF BSMOR AND PRIMA UNDER

THE SAME ACCURACY UP TO 20GHZ.

a 256-contact array injected by a frequency-varying ring oscillator at
dc and 10GHz.

A. Scalability Study under Same Accuracy
We first study the efficiency of the reduction convergence by

BSMOR and PRIMA. Different block numbers are used according to
the different circuit size. We set an error bound as shown in Table I,
defined by the maximum error of the frequency response at one port
up to 20GHz. We then perform reductions of BSMOR and PRIMA by
increasing their iterations until that their accuracies meet the bound.
As shown in Table I, BSMOR uses less iterations (≤ 8) to meet the
error bound than PRIMA does. As a result, the reduction time of
BSMOR is also smaller than that of PRIMA. For example, for the
mesh circuit with 1M elements, BSMOR achieves 20X (240.22s vs.
4982.76s) speedup under the error bound 1e-4. Note that a relative
small block number (64) is chosen for the circuit (1M) here. This is
due to the fact that BSMOR needs additional steps to construct the
projection matrix, and it results in a little bit larger state matrix that
increases the cost of matrix-vector multiplication. Hence the increase
of the speedup is slowed if we choose a large block number. In
general, the result shows that with more partitions to construct a
project matrix, BSMOR can match more poles than PRIMA does
and hence the reduction time can be significantly reduced under the
same accuracy.

We further study the simulation time scalability of the partitioned
macro-model by BBDC. PRIMA is used to generate the flat macro-
model, BSMOR is used to generate the partitioned macro-model
with hierarchy, and different block numbers are used to generate
the macro-model according to the port number. Each reduced block
contains 10 ports. The original, flat and partitioned models are all
simulated in frequency domain up to 20GHz. The maximum error of
the frequency response (relative to the original model) up to 20GHz
at a selected port is used for comparison.

We observe that when the port number is less than 50 ports the
simulation time of the partitioned macro-model is up to 30X times
faster than the flat macro-model with a similar accuracy. This speedup
comes from two aspects: i) the cost of the eigen-decomposition to
construct flat macro-model is reduced by BSMOR as the sparsity
of reduced state matrices is reserved; On the other hand, PRIMA
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Fig. 7. A noise map with 16x16 contacts array injected by frequency-
controllable ring oscillators at f0=100MHz and f0=1GHz.

produces a dense reduced state matrices that are computation ex-
pensive during the eigen-decomposition; ii) the partitioned solution
further reduces the simulation time as no expensive computation is
involved for the large system matrix. To achieve a similar efficiency
for the circuits with the large number of ports (≥ 100), we further
use the hierarchical clustering (degree 10) with the sparsification
(5% error bound) to control the size and sparsity of the coupling
blocks. For 1-level and 2-level hierarchical solution, we sparsify the
admittance matrices at bottom level, and second level, respectively.
Since the error at local matrix can propagate up, we find the solution
by sparsification at 1-level partition is less accurate than that at 2-
level partition. Moreover, we find that the flat macro-model can not
be completed for a 400-port circuit. A clear scalability trend is shown
in Fig. 6. We find that the simulation time of the flat macro-model
grows up quickly. It shows the similar trend as the original model.
This is due to the fact that the dense matrix structure degrades the
overall performance when compared to the original larger but sparser
matrix. In contrast, with the use of the BBDC analysis, the simulation
time grows much slower than the flat macro-model.

B. Map of Substrate Noise Spectrum
We then apply the partitioned macro-model to generate a map

of substrate noise spectrum. The injection current of a frequency-
varying ring oscillations is characterized at f0 = 100MHz, 1GHz.
The maximum currents are characterized in time domain and then
FFT (2048 samplings) is used to obtain the current envelope in
frequency domain. The substrate considered here is a 3mm× 3mm
plane with a 200um thick p-type substrate (σ = 0.1[Ωcm]−1). We
assume that the contacts are in a 16 × 16 array, and all the noise-
current injection sources (ring oscillators) are placed diagonally in
the array. The original substrate circuit is a 256x256 RC-mesh with
320K elements, and we apply 32× 32 BSMOR to obtain a 256-port
macro-model, representing a 16×16 contact array. The reduction time
is about 120s. A 2-level hierarchical partition is used to generate a
port-matrix response within 90s. Fig. 7 shows the map of the noise
envelope (voltage bounce magnitude) at dc and 10GHz. Clearly,
reducing the central clock frequency from 1GHz to 100MHz can
reduce 25db peak noise at the high frequency (10GHz), but the noise
envelope at dc is not reduced. Moreover, the substrate noise coupling
is localized at dc but it can diffuse across the contact array at 10GHz.
As we assume a high conductivity substrate, the use of the guard ring
is effective for this type of substrate. A p+-guard ring is used for the
isolation with the conductivity σ = 100.0[Ωcm]−1 . We model the
effect of this isolation by changing the surrounding resistance of the
contact for each ring oscillator. As shown in Fig. 8, by using a guard
ring at 10GHz for f0 = 1GHz, the substrate noise is confined around
the injection sources at the diagonal of the contact array.
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Fig. 8. A noise map at high frequency 10GHz (f0=1GHz) with/without
guard rings.

VI. CONCLUSION

In this paper, we have proposed a block structure preserving model
reduction (BSMOR). We found that increasing block number leads
to more matched poles or moments than PRIMA using the same iter-
ation. It in turn improves the model reduction efficiency compared to
PRIMA under the same error bound. For a circuit with 1M elements,
BSMOR has a 20X smaller reduction time than PRIMA does. As
BSMOR preserves the structure of state matrices, it generates sparse
reduced state matrices. For a circuit with 320K elements, the reduced
state matrices (G, C) has 72% and 93% sparsification ratio after
a 16 × 16 BSMOR reduction. It leads to an efficient construction
of a MIMO macro-model when using eigen-decomposition. To be
able to handle the resulting macro-model with large number of ports,
we further used bordered-block diagonal partition with hierarchical
clustering (BBDC) to decompose the macro-model into blocks with
the manageable size. The experiment shows that BBDC reduces 30X
simulation time than the original macro-model. In the future, we plan
to study the optimal partitioning for BSMOR to generate an accurate
order-reduced state matrix that is sparse yet small.
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