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Abstract

Existing layout optimization methods for RLC crosstalk reduction assume a set of interconnects with a priori

given crosstalk bounds in a routing region. RLC crosstalk budgeting is critical for effectively applying these

methods at the full-chip level. In this paper, we formulate a full-chip routing optimization problem with

RLC crosstalk budgeting, and solve this problem with a multi-phase algorithm. In phase I, we solve an

optimal RLC crosstalk budgeting based on linear programming to partition crosstalk bounds at sinks into

bounds for net segments in routing regions. In phase II, we perform simultaneous shield insertion and net

ordering to meet the partitioned crosstalk bounds in each region. In phase III, we carry out a local refinement

procedure to reduce the total number of shields. Compared to the best alternative approach in experiments,

the proposed algorithm reduces the total routing area by up to 5.71% and uses less runtime. To the best of

our knowledge, this work is the first in-depth study on full-chip routing optimization with RLC crosstalk

constraints.

1 Introduction

As the clock frequency continues to increase and the minimum feature size keeps shrinking, signal integrity

becomes one of the primary design constraints for high performance VLSI chip design [1]. Because RLC

crosstalk gains a growing importance for GHz+ IC design [2], net ordering [3, 4] and spacing [5] under RC

crosstalk model are no longer sufficient to reduce the long range inductive coupling. Several recent studies
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on interconnect synthesis have considered RLC crosstalk reduction, utilizing uniform shielding [6], simul-

taneous shield insertion and net ordering [7], staggered buffers [8], twisted bundle layout structure [9], and

differential signaling [10]. However, all these methods assume a set of parallel interconnects with a priori

given crosstalk bounds, and can only be applied within a routing region. In practice, the crosstalk bounds

are usually specified at sinks. In order to apply the above region-based interconnect synthesis techniques to

the full-chip level optimization, a crosstalk budgeting problem should be solved to distribute the crosstalk

bounds at sinks into crosstalk bounds for net segments in routing regions. A good crosstalk budgeting

algorithm may reduce the routing congestion and routing area.

The crosstalk budgeting problem has been studied for net ordering and shielding insertion under capaci-

tive crosstalk constraints in [11]. The algorithm is based on iterations between the following two procedures:

crosstalk risk estimation and crosstalk bound partitioning. Crosstalk risk estimation computes the number

of shields needed to meet the partitioned crosstalk bounds for a given region with consideration of net or-

dering. It is formulated and solved approximately as an NP-hard graph optimization problem. Crosstalk

bound partitioning is a two-phase integer linear programming (ILP) optimization problem, minimizing the

number of shields for the current global routing solution. Rip-up and re-route can be carried out to adjust the

global routing to further reduce the total number of shields. However, the assumption that coupling exists

only between adjacent wires no longer holds for inductive coupling, which exists between both adjacent and

non-adjacent wires. Furthermore, the algorithm complexity is high as ILP is used.

In this paper, we study the full-chip routing optimization problem considering simultaneous shield in-

sertion and net ordering (SINO) with RLC crosstalk constraints. We propose a simple yet effective LSK

model for the long-range RLC crosstalk at the full-chip level, develop a closed-form formula to estimate the

number of shields needed by the min-area SINO solution, and formulate the crosstalk budgeting as a linear

programming (LP) problem that is more efficient than ILP formulation in [11]. We finally solve the full-chip

routing optimization problem by a multi-phase algorithm. In phase I, we solve the full-chip crosstalk bud-

geting problem. In phase II, we perform SINO to meet the partitioned crosstalk bounds in each region. In

phase III, we carry out a local refinement procedure to reduce the total number of shields.

The rest of the paper is organized as follows: Section 2 presents the background knowledge. Section

3 formulates the full-chip routing optimization problem, and presents our multi-phase routing optimization

algorithm including LP-based crosstalk budgeting. Section 4 reports experiment results using MCNC bench-

marks, and also presents further tuning of the crosstalk budgeting formulation. Section 5 concludes the paper

with discussions of the future work.
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2 Background

2.1 Preliminaries

To make the presentation simple, we assume two routing layers, one for horizontal wires and the other

for vertical wires. The routing layers are divided by pre-routed power/ground (P/G) networks into routing

regions. A route for a net contains a sequence of net segments in different routing regions. A shield is a wire

directly connected (without through devices) to P/G networks. We also assume that all signal and shield

wires (except for P/G wires which are often wider) have the same width and spacing. We summarize the

notations frequently used in this paper in Table 1.

According to [7], two signal nets �� and �� are logically sensitive (or in short, sensitive) to each other

if, through logic synthesis or timing analysis [12], a switching event on � � causes �� to malfunction (due

to extraordinary crosstalk or delay variation). In this case we call � � an aggressor for �� and �� a victim

of �� . The logic sensitivity rate (or in short, sensitivity rate) of �� is defined as the ratio of the number of

aggressors for �� to the total number of signal nets. During the global routing stage, however, two logically

sensitive net segments are considered to be physically sensitive to each other only if they are routed within

the same region, because we assume no crosstalk (coupling) between different regions separated by P/G

wires 1. Therefore, the physical sensitivity rate of net segment � �� in region �� is defined as the ratio of the

number of aggressors in �� for ��� to the total number of net segments in ��.

2.2 SINO Problem

Given a set of parallel interconnects with a uniform wire length, the SINO problem [7] finds a minimum

area shield insertion and net ordering (SINO) solution such that all interconnects are capacitive crosstalk

free (i.e., no physically sensitive net segments are adjacent to each other) and have inductive crosstalk less

than the given bounds. It has been shown that the SINO problem is NP-hard, therefore a simulated annealing

algorithm is developed to obtain a high-quality solution. The reader is suggested to learn details of the

SINO formulation and algorithm in [7] for better understanding of the full-chip routing optimization to be

presented.

Since the set of parallel interconnects is equivalent to net segments in a routing region, SINO problem

assumes that a global routing solution and RLC crosstalk bounds for net segments in routing regions are

given a prior. In order to utilize SINO in the context of global routing, the following problems must be

solved: (1) How to model the long-range RLC crosstalk at the full-chip level in an effective and efficient

fashion; (2) How to partition RLC crosstalk bounds specified at sinks into bounds for net segments so that

1This assumption is compatible with the Keff model to be presented in Section 2.3

3



�� routing regions in a chip

� set of all routing regions

��� total number of routing regions

��� set of horizontal routing regions in a column

��� set of all ��� ’s

��� set of vertical routing regions in a row

��� set of all ��� ’s

�� length of region ��

�� total number of tracks in region ��

�� total number of tracks occupied by obstacles in region ��

�� set of net segments in region ��

���� total number of net segments in region ��

	� set of shield segments in region ��

�	�� total number of shield segments in region ��


� signal net

� set of all signal nets

�� � total number of signal nets

��� source pin of net 
�

��� ��� sink of net 
�

�
��� routing length from ��� to ���

�� set of all sinks for net 
�

���� total number of sinks for net 
�


�� net segment of net 
� in region ��

�� total number of net segments in the route for net 
�

��� physical sensitivity rate of 
�� in region ��

��� set of regions containing the route for sink ��� of net 
�

��� total inductive coupling for net segment 
��

��� bound of ���

�	��� �	� value of sink ��� of net 
�

�	��� bound of �	� at sink ��� of net 
�

Table 1: Notations that are frequently used in this paper. They will be explained in detail when they are first

used.

the area overhead due to SINO can be minimized.

We propose an efficient RLC crosstalk model to address the first problem in Section 2.3, and formulate

an LP-based RLC crosstalk budgeting problem to address the second problem. The LP-based budgeting
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formulation is made possible by a simple yet accurate formula to estimate the number of shields needed

by the min-area SINO solution without actually carrying out the SINO algorithm. We discuss shielding

estimation in Section 2.4 and budgeting formulation in Section 3.

2.3 LSK Model for RLC Crosstalk

It is proposed in [13] that the coupling coefficient between two net segments � �� and ��� can be used to

characterize the inductive coupling effect between them. The coefficient is defined as

������ �
�������
��� � ���

(1)

where ������ is the mutual inductance between ��� and ���, and ��� and ��� are self inductance for ��� and

��� under the loop inductance model, respectively. Extensive experiments have shown that � ����� is rela-

tively independent of such technology parameters as wire width, thickness, length, spacing, and frequency,

and a formula-based � model has been developed to compute � ����� [13]. When ��� and ��� are in dif-

ferent “blocks” separated by shield segments, ������ = 0 or a small constant. When the two net segments

are in the same block, we first consider the following two special cases: as shown in Figure 1 where � ��

and ��� are track ordering numbers for net segments � �� and ���, respectively, and ��� and ��� are track

ordering numbers for the two edge shield segments, when � ��=���, the mutual inductance is reduced to self

inductance and ������ � � by definition; when ��� (or ���) becomes ��� (or ���), ������ � � because it is

now defined for two segments of a same current loop and should be 0 under the loop inductance model. In

general, �������� ������� should be between 0 and 1, and can be approximated by a linear interpolation of

the above two special cases. Therefore, we have

������ �
���	
 �� � ��

 ���

�
(2)

where ��	
 �� � ���������
���������

and ��

 �� �
���������
���������

are both linear interpolation of 0 and 1.

The � model is reasonably accurate – within +20% to -10% error range compared to the three-dimensional

field solver FastHenry [14] – and tends to be conservative. Further, an effective � model (or in short, � 	



model) is proposed to use the weighted sum of coupling coefficients (� ��) as the figure of merit for the total

amount of inductive noise induced on the net segment � ��. The ��� can be calculated by

��� �
�

� ���

��� ������� (3)

where ��� = 1 for all net segments ��� that are sensitive to ���, otherwise ��� = 0.

It has been shown in [7] that the �	

 model has a high fidelity versus SPICE calculated RLC noise for

a SINO solution with a fixed wire length. I.e, a signal net in a SINO solution with a higher � value given by
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Figure 1: Illustration of ������ computation in a given block. ��� and ��� are track ordering numbers for net

segment ��� and ���, and ��� and ��� are track ordering numbers for the edge shield segments of the block.

��	
 �� and ��

 �� are two linear interpolation functions as shown by the dotted slope lines. The mutual

inductive coupling is given by the mean of ��	
 �� and ��

 ��. Subscript � is used to indicate the routing

region ��.

the �	

 model also has a higher SPICE-computed voltage under the distributed RLC circuit model. Such

fidelity holds under the assumption that no sensitive nets are adjacent to each other in a SINO solution, and

therefore there is no capacitive noise. The �	

 model is computationally simple and convenient to use in

early design stages.

Note that the �	

 model is proposed for wires with a fixed length. To consider the effect of interconnect

length and the general case where the total coupling is not uniform in all routing regions, we propose a

length-scaled �	

 (LSK) model, where the ��� value for a net �� at its 
�� sink is defined as

����� �
�

�����

�� ���� (4)

where �� is the length of �� and ��� is the total coupling for ���. This model can be justified by the following

experiments. We randomly choose 4 SINO solutions, assign different wire lengths to all four SINO solutions,

and generate the distributed RLC circuit models. SPICE simulation is then carried out to find the worst case

noise according to the algorithm proposed in [15] for all SINO solutions with different wire lengths. From

Figure 2, we observe that the worst case noise is nearly proportional to the interconnect length.

A similar length scaled approach has been adopted in the early work by [16, 11] to model the capacitive

crosstalk by the product of the coupling length and the coupling capacitance. However, no SPICE simulation

results were shown in [16, 11] to verify the linear relationship between the length and the RC crosstalk

coupling.
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Figure 2: Linear scalability of SPICE computed worst case noise versus the length for four min-area SINO

solutions.

2.4 Shield Estimation

In this paper, we consider the SINO formulation under � 	

 model, i.e., the inductive noise bounds are

given as ���. The following formula has been developed in [17] to estimate the number of shields in a

min-area SINO solution within region ��. The formula is given as:

���� �
��
����

�
�


�����

��� �
�


�����

���� � �� �
�


�����

���� �
��

����
� �
�


�����

��� �
�


�����

���� �
��
����

�
�


�����

����

�
��
����

�
�


�����

��� �
�


�����

��� � �	 �
�


�����

��� �
�


����
� �
�


�����

��� �
�


�����

��� �
��
����

�
�


�����

���

� �� �
�


�����

��� � ��
 � �����
���
����

�
�


�����

��� � ��� (5)

where notations from Table 1 are used, and �� to ��� are constant coefficients.

We propose to use an estimation formula different from (5). The formula newly developed in this paper

has the following form:

���� � �� �
�


�����

��� � ��� � �� �
�


�����

��� (6)

where �� and �� are constant coefficients. The reasons for adopting this new shield estimation formula will

become clear after we show how to compute the constant coefficients in (5) and (6).

In order to obtain the coefficients in (5) and (6) for a given routing region, we generate ��
 ��� routing

solutions with different combinations of the number of net segments, sensitivity rate � �� (ranging from 20%
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to 80%), and ��� values. After running SINO algorithm for all cases, the number of shields in each SINO

solution is collected. The data are then evenly divided into five groups. A multi-variable curve-fitting

process that minimizes the least square error [18, 19, 20] is employed to obtain the coefficients in (5) and

(6) under different groups. As shown in Table 2, the values of the coefficient of determination (� �) under

I II III IV V Æ

�� -0.26806 -0.40766 -0.03988 -0.85798 -0.70735 0.72337

�� 1.01418 1.59382 0.67660 2.74040 2.76210 0.54896

�� 0.68241 -1.25205 0.78929 1.35848 0.85998 2.06415

�� -2.21778 2.57886 -1.59408 -3.09895 -2.92099 1.60659

�� 0.20536 0.485102 -0.00088 1.05309 0.88727 0.84514

�� -0.60561 -1.63289 -0.49800 -3.22059 -3.49498 0.74809

�� -1.10653 -0.48731 -0.84777 -2.37823 -1.98626 0.58277

�	 3.43140 2.53806 2.91279 6.80146 7.27214 0.49249

�
 -0.061256 -0.16475 -0.03141 -0.36545 -0.31620 0.79443

��� 0.21836 0.57123 0.29208 1.17813 1.35860 0.71619

��� 0.11256 0.33975 0.06822 0.76353 0.65881 0.80852

��� -0.42311 -1.27649 -0.67789 -2.48691 -2.83667 0.0489

�� 0.8048 0.8015 0.8382 0.8712 0.8959 -

�� -0.10956 -0.10408 -0.09781 -0.10605 -0.10795 0.04337

�� 0.50339 0.47515 0.47025 0.49420 0.51500 0.03832

�� 0.8186 0.8071 0.8419 0.8711 0.8972 -

Table 2: Coefficients for shield estimation equation (5) and (6). The last column Æ are the absolute values of

the standard deviation over the mean among five groups. Æ value can be used to measure the variation of the

parameters. The larger the Æ, the bigger the variation.

all groups show a very nice goodness-of-fit for both (5) and (6) in terms of estimation accuracy 2. However,

the coefficients obtained from different groups are only consistent for � � and �� in (6), but varies drastically

for �� to ��� in (5), as indicated by the smaller Æ for �� and ��, but larger Æ for �� to ���. The better

consistency of �� and �� implies that (6) is more robust than (5). In addition, (6) is much simpler than (5).

Another observation from Table 2 is that the coefficient of � � are negative across all groups. This property

will ensure that all coefficients of ��� in (6) are negative as well. The physical meaning of this property

is that increasing crosstalk bound will reduce the number of shields needed for a min-area SINO solution.

Therefore, ensuring the negative sign of � ��’s coefficient is very important to maintain shield estimation

2The higher the coefficient of determination (��), the better the goodness-of-fit.
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(6) physically correct. In contrast, it is very difficult to maintain such physical meaning for (5) due to

the divergence of the coefficients. Because of these nice properties, (6) instead of (5) is employed in this

paper. The coefficients finally used in this paper are obtained by merging all data from the above five groups

together and re-doing the curve-fitting process, leading to � � � ������	� , �� � ���	
	� with �� � ����.

Note that the number of net segments ���� and physical sensitivity rates ���’s are fixed in a region �� for

the given global routing solution, hence (6) can be further simplified as a linear combination of the given

coupling bounds:

���� �
�


�����

��� ���� � �� (7)

where ��� = �� � ��� and �� = �� �
�


�����
��� according to (6). Because �� is negative, so are all coefficients

(���’s) of ���’s.

3 Problem Formulations and Algorithms

3.1 Full-chip Routing Optimization Problem

Formulation 1 (Full-chip routing optimization) Given a global routing solution and the RLC crosstalk

bound for each sink, the full-chip routing optimization problem determines the RLC coupling bound for each

net segment and finds a min-area SINO solution within each region, such that the RLC crosstalk bound is

satisfied at each sink and the total routing area is minimized.

Full-chip routing optimization algorithm overview

Given global routing solution and RLC crosstalk bound

for each sink

Phase I: Crosstalk budgeting at the full-chip level.

Phase II: SINO within each region.

Phase III: Local refinement.

Figure 3: Overview of the three-phase algorithm for full-chip routing optimization.

The full-chip routing optimization problem has a high complexity, as its sub-problem to find a SINO

solution within a region is already NP-hard [7]. Therefore, we develop the following three-phase heuristic

algorithm (see Figure 3). In Phase I we find the crosstalk bound for each net segment in all regions, which

we call crosstalk budgeting problem. The input to the crosstalk budgeting problem is the crosstalk bound (in

LSK value in this paper) for each sink and the output of the coupling bound for each net segment (in K value)
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is the input to the Phase II algorithm. In Phase II we perform SINO in each region by using the algorithm

developed in [7]. In Phase III, we carry out a local refinement (LR) procedure to completely eliminate the

remaining (but very limited) RLC crosstalk violations and further reduce the number of shields. Below we

discuss Phase I and Phase III algorithms in detail.

3.2 RLC Crosstalk Budgeting

3.2.1 Common Constraints

In this work, we present an optimal RLC crosstalk budgeting scheme based on linear programming (LP).

There are three common design constraints that must be satisfied: (i) crosstalk bound constraint — the ���

value should be less than the given crosstalk bound ��� at each sink; (ii) positive shield number constraints

— the number of estimated shields should be positive at each region; and (iii) worst case upper bound —

for net segment ��� in region ��, the budgeted bound ��� should not exceed a maximum value ����
�� that

it may suffer under the worst case. ����
�� can be obtained as follows: assuming there is no shield in � �, the

victim ��� is placed at the center of the region, and all ���’s aggressors are placed as close to it as possible.

Figure 4 illustrates this scenario where a victim (V) has three aggressors (A) in a region of 7 tracks. The

victim ���’s ��� value obtained in this case is ����
�� .

���
���
���

���
���
���

����
����
����

����
����
����

Q VA A AQ QP/G P/G

Figure 4: Illustration on how to obtain the maximum ����
�� for a victim net segment ��� (V) with three

aggressors (A) and three quite signals (Q) or empty tracks for a given routing region � �. The leftmost and

the rightmost are power/ground networks.

The three constraints can be expressed formally as follows:
�

������

�� ���� � ����� ���� � �� ��� ��� � � (8)

�


�����

��� ���� � �� � � ��� � 	 (9)

��� � ����
�� ���� � �� ��� ��� � 	 (10)

Because all the above constraints should be considered for any LP-based budgeting scheme to be presented,

we will not repeat them explicitly later on.

3.2.2 One-Dimension Optimal Budgeting

Without loss of generality, we call the global routing within a row of regions that allow only horizontal

wires as one-dimension routing. We also call the number of tracks occupied by net segments, shields and/or
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obstacles in region �� as its height ��, and the maximum height ���� among all regions as the height of

the routing solution. Further, let critical regions be routing regions that define ����. We then formulate the

following 1D problem:

Formulation 2 (One-dimension crosstalk budgeting (1D) problem) For a given one-dimension routing

solution, the 1D problem partitions crosstalk bounds among regions such that the maximum height ���� is

minimized.

The 1D problem can be mathematically stated as:

minimize ����

s.t.

�


�����

�� ���� � �� � ������� � ���� ��� � 	 (11)

where the left hand side of new constraint (11) computes the estimated height of region � �, and the ���� is

the maximum height of the whole row. All constraints in (11) together enforce that the height of any routing

region should be less than the maximum height of the whole row. Further, � �� are the unknowns that we

need to solve for the 1D problem and for the 2D-� problem to be presented as well.

3.2.3 Pseudo Two-Dimension Optimal Budgeting

For a two-dimensional global routing consisting of an array of routing regions, let ��� (��� ) be the

set of routing regions in a column (row) for horizontal (vertical) wires, and 
�� (	
�) be the set of all

��� ’s (��� ’s). Then, the height � for ��� is defined as the total number of tracks occupied by net

segments, shields and obstacles in ��� , and the height ���� of the total routing area is defined as the

maximum � among all ��� � 
��. The width � for ��� and ���� for the total routing area can be

defined similarly. Same as 1D problem, critical regions are the routing regions that define ���� or ����.

The pseudo two-dimension optimal budgeting (2D-�) problem is defined as follows:

Formulation 3 (Pseudo two-dimension crosstalk budgeting (2D-�) problem) For a given global routing

solution, the 2D-� problem partitions crosstalk bounds among all routing regions such that the weighted

sum � � ���� �  � ���� is minimized, where � and  are two positive constants.

The 2D-� problem can be mathematically stated as:
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minimize � � ���� �  � ����

s.t.

�

������

�
�


�����

�� ���� � �� � �������� � ����

���� � 
�� (12)
�

������

�
�


�����

�� ���� � �� � �������� � ����

���� � 	
� (13)

where the left hand sides of constraints (12) and (13) compute the height and width of an entire column

and row, respectively. We approximate the objective of minimizing the total routing area (���� � ����) by

minimizing the weighted sum of ���� and ����. Because ���� and ���� often have similar values in

practice, minimizing their weighted sum provides a good solution for minimizing their product but with a

much reduced complexity3.

3.2.4 Main Theorem

According to the RLC crosstalk budgeting formulations, we have the following theorem.

Theorem 1 Both 1D and 2D-� problems are linear programming (LP) problems.

Sketch of proof: It is easy to verify that all constraints (8) – (13) are linear, and the objective functions of

1D and 2D-� are linear too, hence both 1D and 2D-� are linear programming problems. �

There are many very mature and robust linear programming solvers available from both the shelf and the

academia. In order to solve our crosstalk budgeting problem, we can utilize any of these available solvers.

We use LP to represent either 1D or 2D-� whenever there is no ambiguity for the rest of the paper.

3.3 Local Refinement

As shown in Figure 5, Phase III contains two passes of local refinement to eliminate crosstalk violations

(denoted as LR-I) and reduce the number of shields (LR-II). The SINO algorithm from [7] is based on

simulated annealing, and the crosstalk and area constraints are implemented as two components of the cost

function. Therefore, a very limited number of crosstalk violations may exist after Phase II. To implement a

“better” SINO algorithm such that all net segments satisfy the partitioned crosstalk bounds within each and

every region may lead to over-design. Instead, we choose to eliminate the remaining crosstalk violations

through LR-I. Let LSK slack of a sink be the gap between ��� and ��� at the sink, therefore the crosstalk

3Minimizing the product of ���� and ���� is a quadric programming problem, but minimizing the sum is a linear programming

problem. Furthermore, minimizing ���� and ���� is closely related to minimizing routing congestion in critical regions.
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violation at each sink is indicated by a negative LSK slack value. In LR-I, we first find a net � � with the most

negative LSK slack (i.e. the most severe crosstalk violation) at sink � �� , and locate a routing region �� with

the highest ��� for segment ���. We then insert exactly one more shield into ��, and carry out simultaneous

ordering of both shields and net segments to obtain the minimum crosstalk for � �� but still satisfy crosstalk

bounds for all other net segments in ��. Such a net ordering is implemented as a simpler case of the SINO

algorithm [7] without shield insertion or deletion allowed during the simulated annealing process. Inserting

a shield in �� may reduce ��� as well as ��� for any other segment ��� in ��, hence we need to update the

LSK slacks for all nets passing ��. The iteration is stopped when there is no crosstalk violation for every

net.

Pass two of the local refinement algorithm (LR-II) reduces the total shield number by exploiting the

remaining LSK slacks to remove unneeded shield segments in each region. We first find a route that has

the largest LSK slack at sink ��� for net ��, then we find a region �� with least ��� value for net segment

���. Exactly one shield will be removed from � � and then simultaneous ordering of both signals and net

segments is performed to obtain a solution with the minimum sum of K values for all net segments in � �.

Since removing a shield may increase some net segments’ K values, we must check if these increments can

be compensated by their LSK slacks respectively. If the answer is yes, then no crosstalk violation occurs,

we accept the new solution for �� and update the affected LSK slacks for all nets passing � �. Otherwise, we

restore our original solution for ��. The iteration is stopped when removing shields is no longer possible in

any region.

4 Experiment Results and Algorithm Tuning

We have implemented our algorithm in C/C++ on UNIX/Linux platforms. A simplex based LP engine, lp-

solver ([21]) is used to solve the LP-based budgeting in Phase I. We present experiments using two-pin bus

structures and MCNC benchmark circuits. The MCNC benchmark circuits are placed by DRAGON [22],

and routed by our own router implementing the iterative deletion algorithm [23]. In all experiments, we

assume that buffers are inserted so that no wires are longer than 1000 !", and consider average logic sensi-

tivity rates of 50% and 70% over the chip. We also assume that all sinks have the same bound ��� � ����,

but our algorithm and implementation can handle non-uniform bounds. Further, we randomly generate ob-

stacles in each region. We summarize the test circuit characteristics in Table 3. In the following, we present

initial experiment results in Section 4.1, and discuss the tuning of budgeting formulation and improved

experiment results in Section 4.2.
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LR-I: Eliminate crosstalk violations

While(there has crosstalk violation)

{

Find net �� whose 
�� sink ��� has most severe crosstalk violation;

Find the region �� containing ��� with highest ���;

Insert a shield into ��;

Simultaneous ordering of shields and net segments;

Update LSK slacks for all affected paths;

}

LR-II: Reduce shield number

While(removing a shield is possible)

{

Find net �� whose 
�� sink ��� has largest LSK slack;

Find the region �� containing ��� with least ���;

Remove a shield from ��;

Simultaneous ordering of shields and net segments;

If(no violation is found)

{

Accept the new solution for ��;

Update LSK slacks for all affected paths;

}

else

Restore the old solution for ��;

}

Figure 5: Phase III local refinement algorithm.

4.1 Initial Experiment Results and Discussions

4.1.1 Initial Comparison between UD and LP Based Algorithms

In order to show the effectiveness of our LP-based budgeting scheme, we further propose an alternative

budgeting scheme called uniform budgeting (UD) scheme, which initially distributes the crosstalk bound

uniformly along the route. Let ��� �� be the crosstalk bound at sink ��� for net ��, �#��� be the total routing

length from source ��
 to sink ��� , then each routing region �� on the path is assigned a uniform crosstalk
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Test Number Number Regions Obstacle

circuit of nets of pins (row	col) segments

bus.1 64 128 1	10 16

bus.2 64 128 15	10 32

MCNC circuit 1 607 1835 8	16 460

MCNC circuit 2 677 2155 16	16 643

MCNC circuit 3 814 2713 128	16 5758

Table 3: Test circuit characteristics.

budget:

��� �
�����

�#���
(14)

If segment ��� is shared by multiple paths starting from the same source to different sinks, we use the

minimum value computed for these paths according to (14). However, we must point out that the uniform

distribution is for an individual net only; different nets will have different values according to their own

crosstalk budgets. UD is not able to consider the non-uniform routing congestion among different regions.

For complete and fair comparison of our full-chip routing optimization, Phase II and III will be applied

to both UD-based and LP-based budgeting schemes. We denote the full-chip routing optimization algorithm

with UD in Phase I as UD+LR; the one with LP in Phase I as LP+LR. Since UD+LR provides an alternative

way to do full-chip routing optimization, it will be used to compare our proposed LP+LR optimization

algorithm.

According to column 9 in Tables 4 and 5, the maximum/average ��� values among all sinks are all

smaller than the given bound ���, i.e., both UD+LR and LP+LR algorithms completely eliminate crosstalk

violations. Further, when the sensitivity rate and obstacles are increased, the routing area and number of

shields are increased for both algorithms. Same as the objective in the LP formulation, the shield and area in

Phase I for both UD+LR and LP+LR are based on our shield estimation formula (7). As shown in column

4 of Tables 4 and 5, LP based budgeting does achieve smaller area compared to UD, and the area reduction

can be as high as 15.49%. All the above observations are same as expected, and indicate the correctness of

our problem formulation and program implementation.

Further, we compare Phase II and III results for UD+LR and LP+LR. From Table 4, we observe that

when the routing resources get more restrictive (because of more obstacles for bus.2), LP+LR is better than

UD+LR after Phases II and III; when the routing resources are not that restrictive (e.g. bus.1), LP+LR is

not necessary better than UD+LR after Phases II and III. For MCNC circuits, Table 5 shows that LP+LR

performs worse than UD+LR after Phase II and Phase III. We discuss below why LP+LR may be worse and
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present the improved LP formulation in order for LP+LR to perform better than UD+LR.

1 2 3 4 5 6 7 8 9

Sensitive Algorithm Phase I Phase II Phase III �	�

Rate Shield ���� Shield ���� Shield ���� 1000

bus.1

50% UD+LR 114.1 92.7 ( 0.00%) 73 88 ( 0.00%) 45 85 ( 0.00%) 950.0/553.9

LP+LR 128.0 80.0 (-13.70%) 108 88 (0.00%) 72 86 (1.18%) 994.4/520.6

70% UD+LR 158.8 97.6 ( 0.00%) 103 92 ( 0.00%) 76 88 ( 0.00%) 981.8/701.5

LP+LR 158.8 83.4 (-14.55%) 220 99 (7.61%) 187 94 (6.82%) 992.5/321.2

bus.2

50% UD+LR 114.1 108.7 ( 0.00%) 72 104 ( 0.00%) 48 101 ( 0.00%) 958.1/556.2

LP+LR 132.7 96.0 (-11.68%) 103 102 (-1.92%) 70 100 (-0.99%) 981.6/451.8

70% UD+LR 158.8 113.6 ( 0.00%) 104 108 ( 0.00%) 79 105 ( 0.00%) 964.2/695.4

LP+LR 184.7 96.0 (-15.49%) 178 104 (-3.70%) 141 100 (-4.76%) 995.0/652.6

Table 4: Comparison of the total number of shields, routing areas in ����, and the maximum/average ���

values under UD+LR and LP+LR budgeting schemes after each phase algorithm for 64-bit bus structures.

The values in parenthesis are LP+LR’s routing area reduction over UD+LR’s in percentage.

4.1.2 Limitation of Initial LP-based Budgeting

Our shield estimation formula (7) has the following limitations. First, the formula results in a continuous

value, but the number of shields is an integer in reality. Even though we could round the estimated shield

number to an integer, it might still be different from the number of shields obtained by the detailed SINO

algorithm4. Second, the formula (7) only reflects the total effects of all net segments in a given region,

therefore it can not differentiate the individual contribution of each net segment clearly. In contrast, our LP

formulation treats the contribution of each net segment as an individual optimization variable. Knowing the

difference between different net segments is the key for the LP formulation to balance the tradeoff among all

net segments and therefore to achieve the optimal budgeting solution. Because of this discrepancy between

what our estimation formula can provide and what our LP+LR formulation requires, LP may be worse than

UD+LR in Phases II and III.

The discrepancy between our shield estimation and LP formulation can be further illustrated by a simple

example. Let us assume in a given routing region, all net segments have the same sensitivity rate and the

4Note that rounding up the estimated number of shields to an integer will theoretically end up with an ILP problem. Such an ILP

problem would be much less efficient compared to our LP problem formulation.
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1 2 3 4 5 6 7 8 9

Sensitive Algorithm Phase I Phase II Phase III ���

Rate Shield ���� � ���� Shield ���� ����� Shield ���� � ���� 1000

MCNC Circuit 1

50% UD+LR 108.6 230.4 + 147.5 ( 0.00%) 168 232 + 151 ( 0.00%) 98 220 + 149 ( 0.00%) 995.6/283.4

LP+LR 444.0 218.0 + 159.6 (-0.08%) 405 246 + 161 (6.27%) 227 231 + 154 (4.34%) 997.9/201.1

70% UD+LR 159.0 236.8 + 149.6 ( 0.00%) 244 237 + 154 ( 0.00%) 161 228 + 150 ( 0.00%) 999.4/311.0

LP+LR 533.1 218.0 + 167.9 (-0.13%) 640 255 + 177 (10.49%) 444 241 + 169 (8.47%) 986.1/209.4

MCNC Circuit 2

50% UD+LR 261.0 193.6 + 194.8 ( 0.00%) 258 194 + 194 ( 0.00%) 129 188 + 192 ( 0.00%) 995.5/269.9

LP+LR 655.8 182.0 + 202.7 (-0.95%) 607 197 + 213 (5.67%) 264 187 + 198 (1.32%) 998.2/198.6

70% UD+LR 368.5 199.2 + 199.1 ( 0.00%) 395 200 + 199 ( 0.00%) 228 191 + 193 ( 0.00%) 998.4/310.8

LP+LR 676.4 182.0 + 207.8 (-2.13%) 1215 225 + 235 (15.29%) 790 210 + 219 (11.72%) 905.5/102.1

MCNC Circuit 3

50% UD+LR 2749.4 214.7 + 939.7 ( 0.00%) 1894 210 + 895 ( 0.00%) 656 200 + 885 ( 0.00%) 998.8/109.1

LP+LR 3574.3 195.0 + 886.0 (-6.36%) 3425 214 + 1037 (13.21%) 1132 201 + 946 (5.71%) 1000.0/37.8

70% UD+LR 3859.1 222.3 + 963.8 ( 0.00%) 2872 217 + 920 ( 0.00%) 1224 206 + 889 ( 0.00%) 999.7/254.8

LP+LR 4857.6 195.0 + 894.5 (-8.14%) 5725 223 + 1112 (17.41%) 2953 209 + 1017 (11.96%) 998.5/67.6

Table 5: Comparison of the total number of shields, routing areas in (���� � ����), and the maxi-

mum/average LSK values under UD+LR and LP+LR budgeting schemes for MCNC benchmark circuits.

The values in parenthesis are LP+LR’s routing area reduction over UD+LR’s in percentage.

sum of ��� over all net segments is fixed as � ���
� . In this case, evenly distributing � ���

� among all net

segments or giving ����
� to only one net segment does not make difference in terms of our LP solution,

but it may make difference in reality. For example, if a net segment has a high coupling bound and the rest

segments have low bounds, the SINO solution may need a large number of shields in order to meet these low

coupling bounds. In contrast, the SINO solution under a more balanced coupling bounds for all net segments

may have fewer shields.

4.2 Improved Budgeting Formulation and Experiment Results

4.2.1 New LP-based Budgeting Formulations

To avoid the above discrepancy between our budgeting formulation and shield estimation, we can either

develop a new shield estimation with the precise relationship between each individual crosstalk bound and

each individual net segment, or impose more constraints to guide the budgeting formulation to better use

our current shield estimation. The choice between the two options reflects the tradeoff between estimation

accuracy and solution efficiency. The first approach of a more sophisticated shield estimation may lead to an
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intractable budgeting formulation. We believe that the second approach may be better if we can keep all new

constraints linear and therefore maintain the budgeting problem as an LP problem that is more tractable.

There exist many possible heuristic constraints capable of improving the LP-based budgeting. The fol-

lowing two constraints are used in this paper due to their simplicity and linearity. The first one is the universal

upper bound given by

��� � ���$�� ���� � ��
 (15)

where �� and �� are constant coefficients in formula (6). The universal upper bound prevents a budgeting

scheme from favoring one net segment too much, which could result in a very unbalanced budgeting solution.

An extreme case is already illustrated by the example in Section 4.1.2. Actually, (15) can be derived from

the positive shield constraints (9) if we assume that all net segments in one region have the same bound as

���. Experiments show that (15) often provides a tighter upper bound for � �� than (10) does.

The second heuristic constraint is based on the following intuition: for a given routing region, a good

budgeting should give a higher ��� to a net segment ��� with a higher sensitivity rate ���, since ��� is likely

to suffer higher RLC crosstalk. I.e.,

��� � ��� ���� � ��� (16)

Theoretically, the above constraint is valid only if we ignore the congestion differences between different

routing regions. However, it leads to nice results in our experiments with the presence of nonuniform con-

gestion distribution. Since (15) and (16) are linear, our 1D and 2D-� budgeting formulations considering the

two new constraints are still LP problems. For the rest of the paper, we call the LP budgeting without (15)

and (16) as LP, the LP budgeting with (15) but not (9) as LP(1), and the LP budgeting with both (15) and

(16) but not (9) as LP(2).

4.2.2 Comparison between UD and LP based algorithms

We compare the UD and LP based algorithms in Table 6 and Table 7. As shown in column 9, all crosstalk

constraints are still satisfied. Furthermore, the new full-chip routing optimization algorithms LP(1)+LR and

LP(2)+LR become better than UD+LR in terms of the routing area almost after each and every phase. As

shown in column 8, LP(1)+LR and LP(2)+LR reduce the area by up to 5.71% for bus structures and up to

4.57% for MCNC benchmarks when compared to UD+LR. However, there is no all-time winner between

LP(1)+LR and LP(2)+LR.

To better appreciate our LP based algorithms, we further compare these algorithms to the uniform bud-

geting without local refinement 5. Ignoring the limited crosstalk violations that may exist after Phase II,

5UD+LR starts with a uniform budgeting, but adjusts the budgeting by Pass II in local refinement. Therefore, the final solution from

UD+LR does not use uniform budgeting.
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results shown in bold in columns 5 and 6 of Table 6 and 7 represent lower bounds of shields and area for a

uniform budgeting that has no crosstalk violation. Compared to the lower-bound results of uniform budget-

ing, LP(1)+LR and LP(2)+LR reduce the area by up to 9.78% for bus structures and up to 8.09% for MCNC

benchmarks.

An interesting observation from Tables 6 and 7 is that even though LP-based full-chip routing optimiza-

tion algorithms consume far more shields than UD+LR, the routing areas for them are not necessary larger.

Indeed, the routing areas are even smaller for LP(1)+LR and LP(2)+LR. These extra shields must belong

to the non-critical routing regions. This observation indicates that LP-based budgeting schemes meet our

expectation – reducing congestion in critical regions by allocating higher crosstalk bounds to the critical

regions. This leads to more shields in the non-critical regions without increasing routing area defined in

Section 3.2.3.

1 2 3 4 5 6 7 8 9

Sensitive Algorithm Phase I Phase II Phase III �	�

Rate Shield ���� Shield ���� Shield ���� 1000

bus.1

UD+LR 114.1 92.7 ( 0.00%) 73 88 ( 0.00%) 45 85 ( 0.00%) 950.0/553.9

50% LP(1)+LR 128.0 80.0 (-13.70%) 98 83 (-5.68%) 62 82 (-3.53%) 998.5/624.0

LP(2)+LR 128.0 80.0 (-13.70%) 81 83 (-5.68%) 58 82 (-3.53%) 980.2/623.8

UD+LR 158.8 97.6 ( 0.00%) 103 92 ( 0.00%) 76 88 ( 0.00%) 981.8/701.5

70% LP(1)+LR 158.8 83.4 (-14.55%) 195 89 (-3.26%) 176 87 (-1.14%) 977.7/355.3

LP(2)+LR 158.8 83.4 (-14.55%) 123 85 (-7.61%) 96 83 (-5.68%) 980.1/705.0

bus.2

UD+LR 114.1 108.7 ( 0.00%) 72 104 ( 0.00%) 48 101 ( 0.00%) 958.1/556.2

50% LP(1)+LR 132.7 96.0 (-11.68%) 82 99 (-4.81%) 61 98 (-2.97%) 982.7/579.5

LP(2)+LR 132.7 96.0 (-11.68%) 80 99 (-4.81%) 58 98 (-2.97%) 970.0/547.2

UD+LR 158.8 113.6 ( 0.00%) 104 108 ( 0.00%) 79 105 ( 0.00%) 964.2/695.4

70% LP(1)+LR 184.7 96.0 (-15.49%) 120 100 (-7.41%) 104 99 (-5.71%) 999.9/732.1

LP(2)+LR 184.7 96.0 (-15.49%) 119 100 (-7.41%) 99 99 (-5.71%) 980.1/751.0

Table 6: Comparison of the total number of shields, routing areas in ����, and the maximum/average ���

values under UD+LR, LP(1)+LR and LP(2)+LR for 64-bit bus structures. The values in parenthesis are

LP(1)+LR and LP(2)+LR’s routing area reduction over UD+LR’s in percentage. The values in bold are the

results for uniform budgeting without local erefinement.

Moreover, local refinement is effective to reduce the total number of shields. As illustrated by MCNC
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1 2 3 4 5 6 7 8 9

Sensitive Algorithm Phase I Phase II Phase III ���

Rate Shield ���� ����� Shield ���� � ���� Shield ���� � ���� 1000

MCNC Circuit 1

UD+LR 108.6 230.4 + 147.5 ( 0.00%) 168 232 + 151 ( 0.00%) 98 220 + 149 ( 0.00%) 995.6/283.4

50% LP(1)+LR 423.6 226.5 + 145.5 (-1.56%) 283 228 + 145 (-2.61%) 157 218 + 143 (-2.17%) 996.2/262.1

LP(2)+LR 422.1 226.9 + 145.7 (-1.40%) 274 222 + 145 (-4.18%) 156 218 + 143 (-2.17%) 998.5/259.8

UD+LR 159.0 236.8 + 149.6 ( 0.00%) 244 237 + 154 ( 0.00%) 161 228 + 150 ( 0.00%) 999.4/311.0

70% LP(1)+LR 509.2 225.8 + 143.8 (-4.35%) 442 234 + 150 (-1.79%) 315 225 + 148 (-1.32%) 996.1/289.2

LP(2)+LR 548.7 231.9 + 146.8 (-1.99%) 428 229 + 149 (-3.32%) 304 222 + 148 (-2.12%) 998.9/308.6

MCNC Circuit 2

UD+LR 261.0 193.6 + 194.8 ( 0.00%) 258 194 + 194 ( 0.00%) 129 188 + 192 ( 0.00%) 995.5/269.9

50% LP(1)+LR 682.4 190.7 + 194.8 (-0.75%) 392 182 + 192 (-3.61%) 167 182 + 185 (-3.42%) 997.0/268.9

LP(2)+LR 688.9 190.7 + 194.8 (-0.75%) 378 182 + 191 (-3.87%) 170 182 + 185 (-3.42%) 997.5/266.5

UD+LR 368.5 199.2 + 199.1 ( 0.00%) 395 200 + 199 ( 0.00%) 228 191 + 193 ( 0.00%) 998.4/310.8

70% LP(1)+LR 878.7 190.1 + 193.2 (-3.77%) 709 187 + 198 (-3.51%) 397 183 + 185 (-4.17%) 997.3/270.8

LP(2)+LR 879.0 190.6 + 193.3 (-3.62%) 692 182 + 196 (-5.26%) 406 183 + 187 (-3.65%) 999.0/272.5

MCNC Circuit 3

UD+LR 2749.4 214.7 + 939.7 ( 0.00%) 1894 210 + 895 ( 0.00%) 656 200 + 885 ( 0.00%) 998.8/109.1

50% LP(1)+LR 3740.8 206.2 + 911.7 (-3.16%) 2561 197 + 929 (1.90%) 857 195 + 854 (-3.32%) 999.4/75.0

LP(2)+LR 3743.5 206.2 + 911.7 (-3.16%) 2553 195 + 929 (1.72%) 885 195 + 858 (-2.95%) 999.3/68.6

UD+LR 3859.1 222.3 + 963.8 ( 0.00%) 2872 217 + 920 ( 0.00%) 1224 206 + 889 ( 0.00%) 999.7/254.8

70% LP(1)+LR 5143.5 206.6 + 914.5 (-5.48%) 3895 201 + 951 (1.32%) 1720 195 + 850 (-4.57%) 999.6/176.9

LP(2)+LR 5143.5 206.6 + 914.5 (-5.48%) 3900 199 + 951 (1.14%) 1719 195 + 850 (-4.57%) 999.9/174.2

Table 7: Comparison of the total number of shields, routing areas in (���� � ����), and the maxi-

mum/average LSK values under UD+LR, LP(1)+LR and LP(2)+LR for MCNC benchmark circuits. The

values in parenthesis are LP(1)+LR and LP(2)+LR’s routing area reduction over UD+LR’s in percentage.

The values in bold are the results for the uniform budgeting without local refinement.

circuits 3 under an average logic sensitivity 50%, local refinment reduces shields from 1894 to 656 for

UD+LR and from 2561 to 857 for LP(1)+LR (see comparison between columns 5 and 7). The relative

reduction is up to 65.4% and 66.9%, respectively. As a by-product, local refinement also reduces the routing

area. For the same experiment example, the area reduction is 1.8% for UD+LR and 8.31% for LP(1)+LR

(see comparison between column 6 and column 8).

We report the running time for different RLC crosstalk budgeting schemes as well as the total running

time including Phase II and Phase III in Table 8. Only the running time for LP(2)+LR is reported as it is

slowest among all LP-based algorithms. The running time is based on the three MCNC benchmark circuits.

As shown in Table 8, even though the LP budgeting consumes more time than UD, the total running time for
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LP(2)+LR is not necessary higher. In fact, LP(2)+LR has a much less runtime than UD+LR for the first two

benchmark circuits. Since the runtime for budgeting is just a small fraction of the total runtime, we conclude

that the future work on runtime reduction should focus on SINO and local refinement, instead of budgeting.

Sensitivity Test UD+LR LP(2)+LR

Rate Circuit Budget Total Budget Total

50% MCNC Circuit 1 0.23 3002.26 10.54 2378.53

MCNC Circuit 2 0.40 2709.08 5.75 2638.90

MCNC Circuit 3 3.07 10878.41 140.06 11255.80

70% MCNC Circuit 1 0.22 3010.56 31.36 2700.38

MCNC Circuit 2 0.40 2935.31 12.04 2703.23

MCNC Circuit 3 3.10 11648.60 113.56 13106.94

Table 8: Running time in �#�%��� for UD and LP(2) budgeting schemes, as well as the total running time

for full-chip routing optimization algorithms of UD+LR and LP(2)+LR, respectively.

5 Conclusions and Future Work

Existing layout optimization methods for RLC crosstalk reduction assume a set of interconnects with a priori

given crosstalk bounds in a routing region. RLC crosstalk budgeting is critical for effectively applying these

methods at the full-chip level. In this paper, we have formulated a full-chip routing optimization problem

with RLC crosstalk budgeting, and solved this problem by a multi-phase algorithm. In phase I, we solve

an optimal crosstalk budgeting based on linear programming (LP) to partition crosstalk bounds at sinks

into bounds for net segments in routing regions. In phase II, we perform simultaneous shield insertion and

net ordering to meet the partitioned crosstalk bounds in each region. In phase III, we carry out a local

refinement procedure to further reduce the total number of shields. Compared to uniform budgeting without

local refinement, our full-chip routing optimization algorithm using LP budgeting can reduce the routing area

for bus structures and MCNC benchmarks by up to 9.78% and 8.09%, respectively. The uniform budgeting

can be improved by local refinement and results in the best alternative (UD+LR) in this paper. Compared to

UD+LR, our full-chip routing optimization algorithm using LP budgeting can use less runtime, and reduce

the total routing area by up to 5.71% and 4.57% for bus structures and MCNC benchmarks, respectively.

Shields are naturally a part of the power/ground (P/G) network. We plan to study co-design of P/G

nets (including shielding) and signal nets, with consideration of both power and signal integrity and routing

area/congestion reduction.
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