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Abstract

This paper first studies the impact of Chemical Mechanical Polishing (CMP)-induced systematic variation. We show that (1)
fill insertion for CMP planarization significantly increases interconnect capacitance, and different fill patterns introduces additional
variations; and (2) CMP-induced dishing and erosion effects can significantly increase interconnect resistance, but have limited
impact on capacitance. Considering a table-based best fill insertion to minimize CMP effects and its associated RC parasitics
with dishing and erosion, we solve the simultaneous buffer insertion, wire sizing and fill insertion (SBWF ) problem by dynamic
programming. Furthermore, we extend the SBWF problem to consider the random Leff variations (vSBWF ). We approach the
resulting vSBWF problem by incorporating probability density function (PDF) into the aforementioned dynamic programming
and developing an efficient heuristic for PDF pruning, whose practical optimality is verified by an accurate but much slower
pruning rule. Experimental results show that the SBWF design improves timing by 1.6% and reduces power by 3% on average
with 4.9% less buffer area over the conventional buffer insertion and wire sizing design followed by fill insertion (SBW +Fill),
and that the vSBWF design reduces yield loss due to CMP and Leff variations by 43.1% on average over the SBW + Fill
design. The runtime of vSBWF is 25× that of SBWF , and vSBWF for the largest example containing 3103 sinks finish in
91 minutes.

I. INTRODUCTION

Design uncertainty in nanometer technology nodes threatens cost-effectiveness of high-performance circuit manufacturing
processes. The main cause for design uncertainty is two-fold: systematic manufacturing process variation and random process
variations due to small geometric dimensions [1]. For example, chemical-mechanical planarization (CMP) is an enabling
manufacturing process to achieve uniformity of dielectric and conductor height in back-end-of-line (BEOL) process step.
However, CMP also introduces systematic design variations due to dummy fill insertion [2] and dishing and erosion [3]. The
channel length of a transistor (Leff ) greatly affects device performance. However, increasingly shrunk Leff makes it more
difficult to print the desired geometry exactly on silicon due to the limit of existing lithographic technology. Moreover, major
Leff variation is attributed to random variation as pointed out by [4]. As a result of combined systematic and random variations,
manufactured circuits exhibit different performance from that estimated by circuit simulation using nominal circuit parameters;
therefore, high yield rate is more difficult to achieve in advanced process.

It can be intuitively understood that dummy fill insertion for CMP planarization would change interconnect parasitics. Such
parasitic variation should be accurately accounted in order to achieve interconnect optimization, especially when technology
continues to scale down to nano-meter region. However, existing research in this regard is very limited and there is no systematic
study in the literature that have quantitatively studied the interconnect parasitic variations due to CMP process. For example,
as we will show later in this paper, interconnect capacitance is affected not only by dummy fill insertion, but also by different
dummy fill patterns. However, such combined impacts have been largely ignored by existing researchers. For example, [5]
assumed one regular fill pattern array and showed that the increase of interconnect capacitance due to such a fill pattern cannot
be ignored for interconnect optimization. In [6], the variation of total capacitance due to the Boolean-based placement of
dummy fills is considered and it has shown that up to 25% variation is possible. However, it is explained that such a variation
is mainly due to intra-die variation but not fill pattern per se. [7] did propose to examine the impact due to different fill patterns,
however, no quantitative experiment results have been reported.

Researches start emerging on circuit optimization for yield improvement considering process variations. Statistical timing
analysis [8], [9], [10] has been studied recently, but results mainly focus on analysis rather than design. Most statistical circuit
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optimization works focus on solving the gate-sizing problem. [11] introduces modification to the non-linear programming
formulation for the gate-sizing problem through iterative delay constraint adjustment. [12] is similar except that the modification
is based on scaling the objective function with a “dis-utility” function which is an ad-hoc metric that reflects the “spread”
of the overall timing distribution. More recently, [13] proposes a statistical sensitivity-based gate sizing algorithm which is
based on bound computation of probability. All these works either assumes delay distributions as Gaussian or do not compute
accurate CDF. Another recent work [14] presents a buffer insertion methodology in a routing tree considers the uncertainty in
wire-length estimation but not process variations such as CMP effects and Leff variation.

The first contribution of this paper is a study of interconnect parasitic variations due to CMP effects. Specifically, different
fill patterns that are “equivalent” with respect to foundry rules, and dishing and erosion of conductors and dielectric similar
to those predicted by ITRS [15] (Section II). The second contribution of this paper is to develop an efficient algorithm for
simultaneous buffer insertion, wiring sizing and fill insertion (SBW +Fill) considering CMP effects in Section III, and extend
SBW +Fill to consider random Leff variation (vSBWF ) with accurate and efficient probability computation in Section IV.
We conclude the paper with discussion of our future research in Section V.

II. MODELING OF CMP VARIATION

The following two types of CMP effects are considered in this paper: dummy fill insertion, and dishing and erosion. Dummy
fill insertion improves the uniformity of metal feature density and enhances the planarization that can be obtained by CMP,
but may also change the coupling and total capacitance of interconnects. Dishing and erosion phenomena change interconnect
cross-sections [3], and hence may affect interconnect capacitance and resistance.

A. Fill Patterns

We assume rectangular, isothetic fill features aligned horizontally and vertically between two adjacent interconnects as shown
in Figure 1. In the figure, conductors A and B are active interconnects and the metal shapes between them are dummy fills. We
assume all dummy fills are implemented as floating metals in the final layout, as floating dummy-fills are preferred for most
ASIC designs due to the short design time and considerable area to be filled [16], [5]. Each distinct fill pattern is specified by:
(1) the number of fill rows (M ) and columns (N ); (2) the series of widths {Wi}i=1,...,N and lengths {Lj}j=1,...,M of fills;
(3) the series of horizontal and vertical spacings, {Sx,i}i=1,...,N and {Sy,j}j=1,...,M , between fills. We denote a fill pattern by
P (M, N, Wi, Lj , Sx,i, Sy,j) for simplicity.
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Fig. 1. Fill pattern definition.

To specify the amount of fill metal needed in the space and the resulting metal density between two adjacent interconnects,
we need the following two definitions.

Definition 1: Effective metal density ρCu – the proportion of the area in a planarization window [3] that all metal features
(interconnect + dummy fill metal) occupies, which is usually a hard requirement from the foundry.

Definition 2: Local metal density ρf – the proportion of the oxide area between two neighboring interconnects that dummy
fill metal occupies, which is found by either rule-based method in the industry or by the recently proposed model-based method
[17] to achieve ρCu.

To achieve CMP planarity and yield optimization, the foundry usually requires an effective metal density ρCu to be satisfied
in a “fixed-dissection” regime [2], [18]. Fixed-dissection fill synthesis typically results in a number of tiles (i.e., square regions
of layout, usually several tens of microns on a side) wherein prescribed amounts of fill features are to be inserted to meet
individual tile’s metal density requirement. This translates to assigning the amount dummy fill feature to the space between
interconnects, and such amount is expressed in terms of local metal density ρf as defined in Definition 2. The inserted fill
features subject to at least two foundry-dependent constraints: (1) each fill feature dimension is within the bounds [Wl,Wu],
and (2) the spacing between any two neighboring fill shapes is at least Sl. A valid fill pattern P (M, N, Wi, Lj , Sx,i, Sy,j)
between two adjacent interconnects achieves the required fill feature area and satisfies all design rules.
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Fig. 2. Geometrical interpretation of DCF .

The required fill area A is computed by
∑

i Wi ·
∑

j Lj = Wb · Lb, with Wb and Lb as the total fill width budget and
length budget, respectively. Hence the total horizontal (or vertical) spacing budget is computed by Sx,b =

∑
j Sx,i = Wt −Wb

(or Sy,b =
∑

j Sy,j = Lt − Lb), where Wt is the spacing between active interconnects and Lt is the length of the active
interconnects. Finding a valid fill pattern is equivalent to distributing the budgets of Wb, Lb, Sx,b, and Sy,b among their
respective series {Wi}, {Lj}, {Sx,i}, and {Sy,j}, which also determines M and N . To solve this problem, we define a
positive distribution characteristic function (DCF ) f(z), where z is an integer variable that takes the index of the element
in the series. The ith element of the series is obtained by f(i) plus the lower bound value as specified by filling rules. For
example, the value of the ith width Wi = f(i) + Wl. If the so-obtained Wi exceeds the upper bound Wu, we take the upper
bound value. Therefore, we can obtain a DRC-clean series under the given budget for a chosen DCF ; and different DCF s
allow us to systematically explore different fill patterns. To illustrate this point, we take the width series {Wi} as an example.
If we define f(z) as a constant number, all Wi will have the same value, i.e., all fills have uniform width. If we define f(z)
as a linear increasing function, the fills will have a progressively increasing width along the x-axis. If we define f(z) as a
triangular function with a convex shape, the center fills will have the largest width, and fills further away from the center
will have a progressively decreasing width along the x-axis. Figure 2 shows three DCF s and their corresponding geometrical
interpretation. In addition to defining different DCF s, we can also try different DCF combinations for {Wi}, {Lj}, {Sx,i},
and {Sy,j} to obtain more fill patterns.

Figure 3 shows the overall algorithm for searching different valid fill patterns for a given interconnect pair.

Pattern-Explore-Alg(T )
Input: interconnect pair.
Output: valid fill patterns in T .

for (all (Wb,Lb), such that Wb · Lb = T.A)
Sx,b = T.Wt - Wb;
Sy,b = T.Lt - Lb;
for (all valid N ,M )

for (all valid length DCF)
{Lj} = lengthDCF(T ,Lb,N );

for (all valid width DCF)
{Wi} = widthDCF(T ,Wb,N );
for (all valid y spacing DCF)
{Sy,j} = spaceYDCF(T ,Sy,b,N );
for (all valid x spacing DCF)
{Sx,j} = spaceXDCF(T ,Sx,b,M );
Pv = genFillPattern(M, N, Wi, Lj , Sx,i, Sy,j);
T .fillList.push(Pv);

Fig. 3. The overall algorithm for fill pattern exploration.

B. Fill Pattern Induced Variation

In the following, we examine the impacts of fills and fill patterns on interconnect capacitance. We consider the coupling
capacitance (Cc) between active interconnects and total capacitance (Cs) of an individual interconnect that is the sum of Cc,
area capacitance and fringe capacitance. Intuitively, we can think of Cc as the capacitance between two parallel plates (active
interconnect) in the simplest scenario. On the one hand, as the capacitance of a capacitor is inversely proportional to the distance
between the two plates, inserting floating fills reduces the distance, which therefore results in the larger the capacitance. On
the other hand, inserting floating dummy fill between the two parallel plates is equivalently to have two “bigger” capacitors
connected in serial, which may decrease the capacitance. Therefore, the final Cc is the combined result of the above two effects.
In the general case, such a first-order relationship is not that straightforward to derive, hence we resort to the more accurate
3D field solver to examine the impact empirically. We use QuickCap [19], a commercial signoff-quality tool, to extract Cc and
Cs. The on-chip interconnect is modeled as a stripline where the interconnect layer is sandwiched between two ground planes.
We study global interconnects in the 65nm technology node, with conductor dimensions and spacing derived from the ITRS
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[15]. For each layout, the interconnect width is set to the minimum width while the spacing between two active interconnects
varies from 3× to 10× minimum spacing1. Interconnect length is 1000µm for all layouts. For a given layout structure, we
first extract the nominal Cc and Cs under the nominal geometries, without considering effects of either fill insertion or dishing
and erosion. We then extract Cc and Cs under the same nominal geometric values but with fill insertion.
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Fig. 4. Distribution of coupling capacitance Cc.
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Fig. 5. Distribution of total capacitance Cs.

Figures 4 and 5 plot the variation of coupling capacitance Cc and total capacitance Cs, respectively, when fills are inserted
to satisfy the required local metal density ρf . We examine the cases where ρf = 0.3, 0.5, 0.7. We vary the spacing between
interconnects from 3× to 10× minimum spacing. The curves with diamond symbols are the nominal Cc or Cs without fill
insertion. For each interconnect configuration (given the interconnect spacing and local metal density requirement), there are
many valid fill patterns and each results in different Cc and Cs. In both Figure 4 and Figure 5, the curves with square symbols
represent the mean values of Cc and Cs, respectively. The ranges of Cc and Cs are represented by their respective maximum
and minimum values among all the fill patterns that we have explored; these are shown in Figure 4 and 5 as well.

From Figure 4, we observe that different fill patterns indeed result in different coupling capacitances, and that fill insertion
always increases the coupling capacitance when compared to the nominal case without considering fill insertion. This observation
shows that the reduced distance effect due to dummy fill insertion dominates the capacitor serial connection effect, hence the
combined effect is increased Cc. Furthermore, the gap between the nominal Cc curve and the mean value Cc curve shows
the average increase of Cc due to fill insertion. When the local metal density requirement increases, Cc increase since fill
insertion also grows. Moreover, for the same local metal density, the relative change of Cc increases as metal spacing increases.
For example, when local metal density ρf = 0.5, the relative Cc change is about 25% on average when the spacing between
interconnect is 3× minimum spacing, and is more than tripled when the spacing becomes 6× minimum spacing. Similar
observations hold for the total capacitance Cs data in Figure 5, except that the relative change of Cs due to fill insertion is less
dramatic than that of Cc. Nevertheless, we observe more than 10% relative change of Cs. We conclude that (1) fill insertion
significantly increases both Cc and Cs when compared to the nominal case without considering fill insertion; (2) the relative
change is more prominent for Cc than for Cs; and (3) different fill patterns yield different Cc and Cs values.

1To have fill insertion between active interconnect without violating design rules, the minimum spacing between active interconnect is 3× minimum spacing
rule.
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Fig. 6. The percentage of Cc over Cs for different local metal density requirement ρf .

To study the relative importance of the coupling capacitance variation versus the total capacitance variation due to fill
insertion, in Figure 6 we plot the percentage of Cc over Cs with respect to different local metal densities ρf (0.1 to 0.7)
between active interconnects, whose spacing is chosen as 3×, 5× and 10× minimum spacing, respectively. Because different
fill patterns have different Cc and Cs, we only report results for the fill pattern that results in either minimum or maximum Cc

over Cs among all fill patterns studied. The gap between the maximum and minimum percentage curves shows the potential
variation due to fill insertion. According to Figure 6, we see that fill insertion increases the relative percentage of Cc over Cs

compared to the nominal percentage of Cc over Cs without fill insertion as shown in the title of each plot, and that the relative
percentage increase becomes larger as the local metal density increases. Moreover, when the metal spacing becomes larger,
the relative percentage of Cc over Cs is also increasingly larger compared to the nominal case. On the other hand, because the
coupling capacitance decreases as the metal spacing increases, the combined Cc increase is not very significant. In our study,
we find that the coupling capacitance is no more than 20% of the total capacitance among all test cases we have studied.

In summary, fill insertion has significant impact on Cc and different fill pattern densities can result in widely varying Cc.
Even though variation of Cs is less dramatic, we still see a spread of more than 10% in relation to the nominal Cs. Therefore, to
obtain robust designs that will meet requirements (e.g., delay and parametric yield) after insertion of dummy fill, the variation
(increase) of both Cc and Cs must be considered by the design flow.

C. Dishing and Erosion Induced Variation

Figure 7 illustrates dishing and erosion phenomena due to CMP [20]. Step height is defined as the difference of height
between different area on the surface of the wafer. Dishing is a special case of step height that it specifically refers to the
difference between the height of the copper in the trench of the metal interconnect and that of the dielectric in the space
surrounding the trenches. Erosion is defined as the difference between the dielectric thickness before CMP and that after CMP.
The sum of dishing and erosion is the total loss of metal thickness.

Dielectric

Copper

dielectric level after CMP

dielectric level before CMP

dishing

erosion

Fig. 7. Dishing and Erosion in Copper CMP.

We employ the dishing and erosion model [20] for the multi-step CMP process to calculate post-CMP interconnect geome-
tries2. During interconnect formation, trenches are etched on the oxide, followed by barrier deposition on the etched surface

2This is the only open source of copper CMP model with parameters published in the literature. This model does not necessarily couple with the lithographic
process which defines our assumed device and interconnect characteristics. This CMP model only means to provide an input source of CMP variability. Our
subsequent process variation aware methodologies do not depend on this assumed CMP model
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to prevent copper diffusion into the oxide. Then a thick layer of copper are deposited on the wafer. CMP removes both the
bulk copper above the trenches and the barrier on the area between the trenches. The multi-step model consists of three steps
which correspond to three different polishing pads. We assume that Step 1 eliminates all the local step heights and is therefore
irrelevant to the modeling of dishing and erosion. We also assume that Step 2 completely removes all the remaining copper so
that there is no dishing and erosion at the moment when the polishing pad reaches the barrier. We use the same assumption
as in Gbondo-Tugbawa’s model [20] that the polishing time of Step 2 after reaching the barrier layer is 20s and that of the
entire Step 3 is 65s.

To model barrier/copper simultaneous polishing in Steps 2 and 3 and oxide/copper simultaneous polishing in Step 2, we use

d = dp · e−t
τ + dss ·

(
1 − e

−t
τ

)
(1)

E = X1 · t + X2 · (dss − dp) ·
(
e

−t
τ − 1

)
(2)

where dp is the amount of dishing at time t = 0, d and E are the amount of dishing and erosion respectively after polishing
time t. Note that the amount of E is not counted towards the final amount of erosion as long as the barrier is not cleared. The
other terms are defined as

dss =
dmax · (rCu − rup) · (1 − ρCu)

rCu · (1 − ρCu) + rup · ρCu

(3)

τ =
dmax · (1 − ρCu)

rCu · (1− ρCu) + rup · ρCu

(4)

X1 =
rCu · rup

rCu · (1− ρCu) + rup · ρCu

(5)

X2 =
rup · ρCu

rCu · (1− ρCu) + rup · ρCu

(6)

where ρCu is the effective metal density, rCu is the blanket copper removal rate, rup is the effective removal rate of the
“up” area (i.e., barrier in barrier/copper polishing and oxide in oxide/copper polishing). rup is obtained by scaling the blanket
removal rate by the factor Ψ to account for the edge rounding effect. Ψ is given by

Ψ = C · e
−s
sC + 1 (7)

with process-dependent constants C and sC . dmax is also a layout feature-dependent parameter and is given by

dmax = B ·
(

w

w0

)α

·
(

s

s0

)β

(8)

where w and s are the wire width and the wire spacing, B, α and β are process-dependent constants, and w0 = s0 = 1µm.
All process-dependent constants are taken from the original model[20].

The model for oxide/copper simultaneous polishing in Step 3 is much more complicated since the removal rate of oxide
(the up-area) is larger than the removal rate of copper (the down-area), which leads to more boundary conditions. The amount
of dishing and erosion is given by

d =





dp − rox

1−ρCu
· t 0 ≤ t < tcr, dp > dcr

dcr · e
−t
τ3 + Dss ·

(
1 − e

−t
τ3

)
t ≥ tcr, dp > dcr

dp · e
−t
τ3 + Dss ·

(
1 − e

−t
τ3

)
t ≥ 0, dp ≤ dcr

(9)

E =





rox

1−ρCu
· t 0 ≤ t < tcr, dp > dcr

rox

1−ρCu
· tcr + X3 · t + Z3 ·

(
1 − e

−t
τ3

)
t ≥ tcr, dp > dcr

X3 · t + Y3 ·
(
1 − e

−t
τ3

)
t ≥ 0, dp ≤ dcr

(10)

where dp is the amount of dishing at t = 0, ρCu is the effective metal density, rCu is the blanket removal rate of copper, and
rox is the effective removal rate of oxide which is again obtained by scaling the blanket removal rate with Ψ as defined in
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Equation 7. dcr is the critical dishing and is defined exactly as in Equation (8) for dmax. The other terms are defined as

tcr =
(dp − dcr) · (1 − ρCu)

rox

(11)

Dss =
d3

max · (rCu − rox) · ρCu

rCu · (1 − ρCu) + rox · ρCu

(12)

τ3 =
d3

max · ρCu

rCu · (1 − ρCu) + rox · ρCu

(13)

X3 = rox +
rox · Dss

d3
max

(14)

Z3 =
rox · τ3 · (dp − Dss)

d3
max

(15)

Y3 =
rox · τ3 · (dp − Dss)

d3
max

(16)

d3
max = dcr ·

( s

w

)
(17)

Table I shows the RC parasitics for a 1000µm long global interconnect bus structure under the 65nm technology node. R0

is the resistance computed from the geometry values obtained from ITRS specifications, i.e., dishing and erosion effects are
not taken into account. Rf is the resistance after fill insertion which fulfills 50% metal density requirement (i.e. ρCu = 0.5).
Based on this, we include the metal loss due to dishing and erosion when computing Rf . From Table I, we can see that
resistance variation due to dishing and erosion is significant, and that resistance is always increasing, potentially by more than
30%. As width increases, the resistance variation becomes increasingly severe. For example, when conductor width increases
from 0.24µm to 4.75µm, the resistance variation increases from 29% to 32%.

All capacitance values in Table I are extracted using QuickCap [19]. Cc,0 and Cs,0 are the coupling capacitance and total
capacitance without considering fill insertion or dishing and erosion effects. Cc,1 and Cs,1 are the coupling capacitance and total
capacitance for the same assumed structure as in Section II-B, taking geometry variations due to dishing and erosion effects
(but no fill insertion) into account. Finally, Cc,f and Cs,f are the coupling capacitance and total capacitance when effects due
to dummy fill, dishing and erosion are all taken into consideration. The percentages in the brackets show the relative changes
from values which do not consider any CMP effect (columns 3, 5 and 6). From Table I, we observe that dishing and erosion
alone have marginal impact on capacitance for most design contexts. In light of these results, we do not consider dishing and
erosion effects on capacitance.

TABLE I
RC PARASITIC COMPARISON FOR 65nm GLOBAL INTERCONNECTS.

Width Space wo/CMP w/CMP wo/CMP Dishing/Erosion Fill+Dishing/Erosion
µm µm R0(Ω) Rf (Ω) Cc,0 Cs,0 Cc,1 (∆%) Cs,1 (∆%) Cc,f (∆%) Cs,f (∆%)
0.24 0.95 186 239 (28.7%) 25.16 286.06 24.48 (-2.63%) 285.12 (-0.33%) 33.48 (33.06%) 285.77 (-0.11%)
2.61 0.95 16.9 22.1 (30.6%) 26.06 966.82 25.06 (-3.78%) 964.98 (-0.19%) 32.90 (26.33%) 953.71 (-1.35%)
4.75 0.95 9.29 12.3 (31.4%) 25.24 1559.84 25.99 (2.97%) 1570.50 (0.68%) 31.93 (26.51%) 1556.24 (-0.23%)
0.24 1.43 186 239 (28.8%) 8.35 283.75 8.57 (2.54%) 283.39 (-0.13%) 20.27 (142.71%) 289.12 (1.88%)
2.61 1.43 16.9 22.1 (30.9%) 8.68 956.84 8.32 (-4.35%) 954.04 (-0.29%) 21.02 (141.81%) 960.34 (0.36%)
4.75 1.43 9.29 12.2 (31.7%) 7.81 1574.42 8.42 (8.11%) 1552.93 (-1.36%) 19.40 (148.81%) 1563.55 (-0.69%)

D. Table-based fill pattern look-up and RC Model

Based upon our study of CMP-induced RC parasitic variations, we tabulate the extracted capacitance in a table indexed by
active interconnect width, spacing and local metal density under an optimized fill pattern. Note that varying metal spacing affects
the local metal density requirement in the space. During interconnect optimization, each enumerated spacing option requires
an appropriate adjustment to the amount of required local metal density. Therefore the fill pattern and RC of all combinations
of spacing and local metal density have to be recorded in the table to accommodate any arbitrary spacing and adjusted local
metal density. Moreover, as different fill patterns under the same local metal density result in different capacitance values as
shown in Section II-B, each table entry only saves the fill pattern and the resulting capacitance under the best fill pattern,
which gives the minimum Cc among all patterns. We use formulae of Section II-C to compute the resistance under dishing
and erosion effects. In the following, we denote the resulting RC models as CMP-aware RC parasitic models. In contrast,
interconnect parasitics without consideration of fill pattern insertion, dishing or erosion effects is called CMP-oblivious RC
model.

III. CMP-AWARE BUFFER INSERTION AND WIRE SIZING

In this section, we study the problem of simultaneous buffer insertion and wire sizing (SBW + Fill) to examine the
impact of CMP on interconnect design. We propose a new method to solve the SBW + Fill and the fill insertion problem
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simultaneously, and we denote it as SBWF . In contrast, current designers use a two-step approach which first solves the
SBW + Fill problem with CMP-oblivious RC, then insert dummy fill metal into the wire space in order to satisfy the local
metal density requirement defined in Section II-A. We use this two-step approach as our baseline for comparison, which is
denoted as SBW + Fill in this paper.

A. Problem Formulation

Consider a routing tree T (V, E), where V consists of a source node nsrc, sink nodes {ns}, and Steiner points {np}, and
E is the set of directed edges (wires) that connect the nodes in V . The SBWF problem is to find an assignment of buffer
insertion, buffer sizing, wire sizing, and dummy fill insertion, such that the required arrival time (RAT ) is maximized at nsrc,
subject to (1) the slew rate constraint η at all ns and buffers’ driving points; and (2) the effective metal density requirement
ρCu for CMP planarization.

We characterize the source nsrc by a driving resistance Rsrc; each sink ns by a loading capacitance Ls and a required
arrival time RATs. We associate each edge ei,j with two center-to-edge wire widths w1 and w2 as illustrated in Fig. 8 3. To
respect the design rules, we restrict wk ∈ {0.5 · w̌, 1.5 · w̌, ..., sk − w̌}, where k = 1, 2, w̌ is the minimum wire width allowed
at the global metal level and sk is the spacing from the center line to the edges of its two nearest neighboring wires. For every
edge ei,j , we define the potential buffer insertion site at the point closest to the node vi. The buffer receives input from node
vi and drives edge ei,j and the downstream subtree rooted at node vj . We express the size of buffer Sbuf in discrete multiples
of the minimum-sized buffers. All buffers are 2-stage cascaded inverters.

1X

1X

1X

W
2

W
1

e
(i,j)

2
S

1
S

Fig. 8. Illustration of asymmetric wire sizing.

B. Slew Rate Constrained SBW Algorithm

The slew rate constrained SBW algorithm largely follows the dynamic programming (DP) framework of [22], where buffer
insertion and asymmetric wire sizing is determined in a bottom-up (sink-to-source), recursive fashion. To obtain the optimal
solution at the source in a deterministic buffer insertion regime, partial solutions soln at node n (i.e. partial buffer placement
and wire width assignment for the subtree rooted at node n) must keep track of the downstream capacitance Cn and the arrival
time RATn associated with soln. The arrival time RATn at node n is defined by

RATn = min
ni∈{ns}

(
RAT i

n − d(ni, n)
)

where d(ni, n) is the delay from the node ni to node n, RAT i
n is the RAT at node ni and {ns} is the set of all sink nodes.

We use the first order Elmore delay model and slew rate model [23] in our current implementation due to their high fidelity
over real design metrics. We update the RATn of each solution soln at node n by

RATn = RAT old
n − rn,v · Cn − 0.5 · rn,v · cn,v

−dbuf − Reff · (Ln + cn,v) (18)

where rn,v and cn,v are the resistance and capacitance of edge en,v respectively; dbuf and Reff are buffer intrinsic delay and
output resistance, respectively, which are both functions of buffer size Sbuf . We use Bakoglu’s slew rate metric [23] given by
ln 9 · dn

T , where dn
T is the maximum delay from the output of buffer at node n to the inputs of other immediate buffers or the

sinks ns in the subtree Tn rooted at n. Note that the above can be replaced by other more accurate delay [24] and slew [25]
metrics which consider higher order moments.

The overall time complexity of the SBW + Fill algorithm is O(|V |2 · cmax · (|Sbuf | + |Swire|)), where |Swire| is the
number of available choices of wire widths, |V | is the number of nodes in the interconnect tree, cmax is the maximum possible
capacitance value carried by any partial solutions and |Sbuf | is the number of possible sizes for buffers [22]. The complexity
depends on cmax if we prune inferior solutions in SOLn for each node n. A solution sol1 is said to be inferior to (or dominated
by) another solution sol2 if C1

sol ≥ C2
sol and RAT 1

sol ≤ RAT 2
sol. With wire sizing, cmax can go exponential but is in fact

upper-bounded when a slew rate bound is considered. The slew rate bound virtually limits the distance that a wire can run
without buffering, which therefore limits the maximum downstream capacitance cmax seen from any node.

3The asymmetric wire sizing problem was first proposed in [21] without slew rate constraints, which does not consider the CMP-induced variation neither.
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C. Extension to SBW and SBWF

The conventional design flow SBW +Fill has two steps. The first step solves the slew rate constrained SBW problem using
CMP-oblivious RC parameters only; the second step inserts the required amount of dummy fill pattern into the space between
the wires of the already buffered and sized routing tree in order to satisfy the required effective metal density requirement ρCu

for CMP planarization.
In contrast, we propose an integrated approach to solve the SBWF problem, and such an approach is denoted as SBWF

whenever there is no ambiguity. SBWF uses the CMP-aware table-based fill pattern look-up RC model from Section II-D for
delay and slew rate calculation while solving the slew rate constrained SBW problem. For every edge ei,j , we specify two
local dummy fill density requirements ρ1

f and ρ2
f at minimum wire width in order to satisfy the effective metal density target

ρCu, as defined in Section II-A. The required ρ1
f and ρ2

f can be determined from algorithms such as [17]. Note that increasing
wire width decreases the amount of dummy fill metal needed between wire space, which necessitates the adjustment to the
required local metal densities. At each enumeration of wire spacing option, the SBWF algorithm makes adjustment to ρ1

f and
ρ2

f , which is then taken together with the corresponding wire widths and spacing to look up the CMP-aware fill pattern and
RC table for the optimized fill pattern and the capacitance values. The algorithm collects all wire sizing and spacing options,
each with timing evaluated under an optimized fill pattern. These options are then pruned against each other as in the SBW

algorithm to remove inferior solutions.

D. Experiment

TABLE II
EXPERIMENTAL SETTINGS

technology ITRS 65nm [15]
interconnect global interconnect layer
delay model Elmore delay, π-model for interconnect
slew model Bakoglu’s first order metric [23]

power model dynamic and short-circuit, from SPICE
device BSIM 4 [26]
Rsrc 100Ω

Lsink & RATsink 10fF & 0ps ∀ti

slew bound η 100ps (under CMP-perturbed RC)
metal density 0∼0.8 (local fill), 0.5 (effective)

Sbuf 20, 40, 80, 120 (x min size)
s1 , s2 1.5∼5.5 (x min width)
w1 , w2 0.5, 2.5, 4.5 (x min width)

segment length 500 µm

test cases r1∼r5: clock trees from [27]
s1∼s10: random Steiner trees

Table II shows the experimental settings used in this paper. We choose typical buffer sizes and wire sizes that are normally
used in real designs. Because there is no physical layout information in the original test cases obtained from [27], we randomly
generate the neighboring wire spacing data and the local metal density requirements for each interconnect in all test cases. We
perform experiments on an Intel Xeon 1.9Ghz Linux workstation with 2Gb of memory.

TABLE III
EXPERIMENTAL RESULT FROM SBW + Fill AND SBWF VERIFIED UNDER CMP-PERTURBED RC.

SBW + Fill (κ = 0.84) SBWF

test- wire # wire buffer RAT power run- wire area buffer area RAT power run-
case length sink area area (ps) (pJ) time (mm2) (x min) (ps) (pJ ) time

(m) (mm2) (x min) (s) (∆%) (∆%) (∆%) (∆%) (s)
s1 0.03 19 0.10 2920 -1007 22 0 0.10 (0.9%) 2680 (-8.2%) -1001 (0.6%) 21 (-6.0%) 0
s2 0.04 29 0.11 3420 -1175 26 0 0.12 (2.0%) 3140 (-8.2%) -1133 (3.6%) 25 (-5.7%) 1
s3 0.05 49 0.14 4380 -1589 33 1 0.15 (9.5%) 4360 (-0.5%) -1567 (1.3%) 34 (0.9%) 1
s4 0.07 99 0.18 6180 -1386 47 2 0.19 (8.0%) 6060 (-1.9%) -1380 (0.4%) 46 (-0.5%) 2
s5 0.10 199 0.26 8820 -2436 67 4 0.27 (5.3%) 8500 (-3.6%) -2409 (1.1%) 66 (-2.1%) 5
s6 0.13 299 0.31 11720 -2294 88 7 0.33 (5.9%) 11020 (-6.0%) -2235 (2.6%) 84 (-3.9%) 8
s7 0.16 499 0.38 15220 -3794 113 16 0.40 (5.1%) 14520 (-4.6%) -3787 (0.2%) 110 (-3.0%) 22
s8 0.19 699 0.43 18320 -3170 136 37 0.45 (4.7%) 17260 (-5.8%) -3141 (0.9%) 131 (-4.0%) 47
s9 0.21 799 0.47 19700 -2967 147 34 0.49 (3.0%) 18580 (-5.7%) -2867 (3.4%) 141 (-4.0%) 38

s10 0.22 899 0.51 21000 -2830 157 57 0.53 (3.7%) 20580 (-2.0%) -2782 (1.7%) 155 (-1.1%) 69
r1 1.32 267 3.79 110000 -4955 838 69 3.97 (4.8%) 104180 (-5.3%) -4844 (2.3%) 811 (-3.2%) 27
r2 2.60 598 7.32 212760 -6148 1625 0 7.74 (5.7%) 202840 (-4.7%) -6031 (1.9%) 1582 (-2.6%) 71
r3 3.37 862 9.33 275760 -7358 2103 102 9.89 (6.1%) 261180 (-5.3%) -7297 (0.8%) 2038 (-3.1%) 91
r4 6.81 1903 18.90 554260 -10748 4233 170 19.83 (4.9%) 522980 (-5.6%) -10592 (1.4%) 4086 (-3.5%) 175
r5 10.20 3101 28.16 823100 -11984 6297 256 29.48 (4.7%) 777920 (-5.5%) -11804 (1.5%) 6084 (-3.4%) 271

(5.0%) (-4.9%) (1.6%) (-3.0%)

We over-constrain the maximum slew rate η in the first step of SBW +Fill in order to meet the actual slew rate constraint
after fill insertion. The first step of SBW + Fill algorithm always under-estimates the slew rate as it does not consider
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CMP-induced variation on RC. The over-constrain rate, κ, is defined as the ratio of the over-constrained slew rate to the actual
slew rate constrains. The value of κ can be obtained via a binary search, in which each iteration involves an execution of
SBW + Fill, and is time-consuming. In contrast, the proposed SBWF algorithm uses the CMP-aware RC parasitics while
solving SBW problem. Therefore, it finds an optimum solution that satisfies the slew rate constrains without repetition. In
our current setting, we use κ = 0.84 for SBW + Fill, which gives maximum slew rates that satisfy the slew rate bound η in
all test cases.

Table III compares the experimental results from SBW +Fill and SBWF . The objective in both SBW +Fill and SBWF

is to optimize the required arrival time at the source, but we also find interesting observation in terms of wiring area, buffer
area and power measured as energy per switch. We verify both the SBW + Fill design and the SBWF design under the
CMP-aware parasitic model. A solution with larger RAT implies smaller delay and is therefore more preferable. Comparing
SBW +Fill against SBWF (relative change of values shown in the brackets), we see that SBWF achieves larger RAT for
all test cases and the average increase is 1.6%. As a by-product of delay-optimization using more accurate model, SBWF also
reduces buffer area by 4.9% on average with 5.0% increase in wiring area. Over-constraining the slew rate in SBW + Fill

causes excessive buffer insertion in SBW + Fill and leads to larger total area of buffers over SBWF , which does not
require over-constraining the slew rate. Reduced buffer area in SBWF also leads to 3.0% reduction of power on average over
SBW + Fill. We also notice that the runtime also slightly increases from SBW + Fill to SBWF due to the evaluation of
dishing and erosion model. However, note that the runtime reported in SBW + Fill is for a single run; in practice designers
have to perform multiple runs in order to determine the over-constrain rate κ as explained above and therefore costs much
more time than the reported value. From all of these results, we see that designs considering CMP impacts out-perform the
counterpart traditional designs in terms of delay, buffer area, power and runtime.

IV. YIELD-DRIVEN SBW
A. Leff Variation

One of the most important process uncertainty that affects circuit performance is the random variation of devices’ effective
channel lengths (Leff ) [28], [4]. The variation of Leff manifests itself in changing devices’ different characteristics, e.g., input
capacitance Cin, effective output resistance Reff , and intrinsic delay dbuf . To understand the effect of Leff variation on the
delay, we show two sets of measurements on buffers using SPICE [29]. We model Leff with a Gaussian distribution ∆L with
its mean value Leff equal to its nominal value and the standard deviation L̂eff equal to 5% of the mean value 4.

The first set studies the sensitivity of the effective input capacitance of buffers to Leff variation. We set the total Leff of
the transistors at the input of an inverter to an unlikely large value and show that the increase in the input capacitance as
a consequence is small. We size the PMOS and the NMOS of the buffers with the ratio of 2:1 for symmetric rise and fall.
Therefore the total input capacitance is a function of Ltot

eff = Ln
eff + 2 · L

p
eff , where Ln

eff and L
p
eff are the Leff of the

NMOS and PMOS transistors respectively. Since Ln
eff and L

p
eff are assumed to be independent Gaussian random variables

having the same Gaussian distribution ∆L, Ltot
eff is also a Gaussian random variable with mean 3 ·Leff and standard deviation√

5 · L̂eff . The 99% percentile of Ltot
eff is given by

Lα
eff =

√
5 · CDF−1

gaussian(0.99) · L̂eff + 3 · Leff (19)

where CDF−1
gaussian(x) is the inverse Gaussian cumulative distribution function. Such Lα

eff happens with a probability of 1%.
We first employ the simplified model from [30] that the transistor gate capacitance Cg operated in saturation region is given
by

Cg = Cox · Wd ·
(

2

3
· Leff + 2 · Lint

)
(20)

where Cox is the gate oxide capacitance per unit area, Wd is the drawn transistor width and Lint is the length of lateral
diffusion. According to the default values in the BSIM 4 65nm device model [26], we set Leff = 33 · 3 = 99nm and
Lint = 16 · 3 = 48nm. We apply Equation 19 to obtain Lα

eff = (99 + 8.58)nm. Using Equation (20), we find that the
capacitance increases by only 3.5% when Ltot

eff increases from 3 · Leff to Lα
eff . To verify this, we increases the Ltot

eff of the
transistors to from the nominal value to Lα

eff in SPICE, from which we find that the measured effective input capacitance only
increases by less than 3% for all sizes of buffers in our experiment. This is equivalent to a negligibly small 4.1fF increase
in the input capacitance for our largest (120×) buffer. Therefore, we conclude that the effective input capacitance is rather
insensitive to random Leff variation and we treat it as constant in our work without much loss of accuracy.

The second set of measurement shows that Leff variation has a much larger contribution to the variation of the effective
output resistance Reff and the intrinsic delay dbuf . To account for the dependence of Reff and dbuf on the common variation
source of Leff , we model the variation in Reff and dbuf using a joint distribution, which can be obtained from Monte Carlo

4ITRS [15] allows a budget of 10% from the nominal value for 3× standard deviations of random variation (excluding all systematic variation like
across-chip line-width variations). Other works in the literature [11], [13] assumes this budget to be 15–30%
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simulation using SPICE in the inner loop. We collect the covariance matrix as a statistical metric to observe the variability of
Reff and dbuf under Leff variation, which is given by

M =

[
ζR,R ζR,d

ζR,d ζd,d

]
=

[
771 26.5
26.5 14.0

]
(21)

Equation (21) shows the covariance matrix M of a 20× buffer, where ζx,y is the covariance of x and y, and subscripts R and
d refer to Reff and dbuf respectively. The standard deviations of Reff (

√
ζR,R) and dbuf (

√
ζd,d) are about 15% and 6% of

their mean values respectively. This shows that Reff and dbuf can deviate significantly from their respective nominal values
due to Leff variation. Moreover, the large covariance between Reff and dbuf (ζR,d) also demonstrates that Reff and dbuf

are positively correlated, which means that an occurrence of positive (negative) variation in Reff from the nominal value is
likely to be accompanied by a positive (negative) variation in dbuf . Therefore, we characterize Reff and dbuf using a joint
probability density function (JPDF) fR,d(Reff , dbuf ), which accurately models the occurrence probability of the (Reff , dbuf )
pair, and can be computed by Monte Carlo simulation. Let us consider the delay of a buffer driving a capacitance CL, which
is given by

dload = CL · Reff + dbuf (22)

in the deterministic case. We express dbuf in terms of dload and Reff using Equation (22), substitute this into fR,d(Reff , dbuf )
and then integrate fR,d over Reff to obtain the probability density function (PDF) of the loaded buffer delay, which is given
by

fd(CL, dload) =

∫ ∞

−∞

fR,d(Reff , dload − CL · Reff )dReff (23)

B. vSBWF Problem Formulation

We call the SBWF problem considering Leff random variation as vSBWF . Owing to the statistical nature of vSBWF ,
we treat the RAT at each node as a random variable in vSBWF . The objective of vSBWF becomes maximizing a routing
tree’s statistical timing yield. The timing yield is defined as

Υ = P (RATs ≥ ΓΥ) (24)

where ΓΥ is the yield cut-off point at Υ · 100%. This equation essentially says that the probability of RATs at the source nsrc

being at least ΓΥ is Υ.
There are two challenges in solving the vSBWF problem, which are (1) how to efficiently represent and compute RAT

that is not a deterministic value but a random variable; and (2) how to define pruning rules that remove statistically inferior
solutions and keep the algorithm tractable. We address these challenges in the following sections.

C. Representing and Computing RAT

To solve vSBWF via the same DP framework as shown in Section III-B, we have to replace the deterministic RAT

computation with its statistical counterpart. Since a random variable can be completely characterized by its cumulative
distribution function (CDF), we choose to base all statistical computation in terms of RAT i

sol’s CDF in any solution soli.
In our implementation, we consider the negative of RATsol, i.e. −RATsol, for the sake of simpler mathematical manipulation.

For example, to obtain the new RAT z
sol at node nz, we take the minimum of RAT

p
sol and RAT

q
sol propagated from child

nodes np and nq . When negative RAT is considered, we take the maximum of −RAT
p
sol and −RAT

q
sol instead. The CDFz

of RAT z
sol is simply given by the closed-form formula CDFz = CDFp · CDFq, where CDFp and CDFq are the CDFs of

RAT
p
sol and RAT

q
sol respectively.

We represent CDF in the form of piecewise-linear curve (PWL) as in [31]. Representing CDF in the form of PWL has
the advantage that operations on a complicated function become a series of operations on ramp functions, which often have
closed-form solutions. For example, using PWL reduces statistical addition and maximum operations to convolution of steps
and ramps and multiplication of ramps respectively, both of which have closed-form quadratic solutions. [31] has depicted
operations for Elmore delay calculation and have provided closed-form quadratic formulae. After all operations on these ramp
and step functions, adding the resulting quadratic curves forms a “piece-wise quadratic curve”. This curve is then “sampled”
at the pre-defined percentile to produce the final CDF in the PWL form using high order models.

Even though the first order Elmore delay and slew rate model are used in this work, the application of PWL is not limited
to these first order models. In fact, it can be applied to other higher order models. For example, delay and slew rate metrics
in [24] and [25] require the computation of the second moment. The second moment computation involves multiplication
of two independent random variables and squaring of random variables, both of which can be expressed analytically. By
modeling CDFs with PWL curves, we can solve the analytical equations for each ramp component and proceed with the same
methodology to compute CDFs in the PWL form.
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Fig. 9. CDF of RATs to illustrate the definition of timing yield, yield cut-off point and and pruning rules

D. Efficient Pruning in vSBWF

A useful pruning rule must (1) not discard any partial solution that may lead to the optimal solution solopt at the source
nsrc; and (2) keep the growth of number of solutions polynomial with respect to the tree size. We propose an efficient Yield
Cut-off Dominance-pruning rule, whose optimality is experimentally supported by an alternative slow but theoretically sound
CDF Dominance-pruning rule.

1) CDF Dominance: Figure 9(a) shows the CDF Dominance relationship. In the shaded area CDF 1 is on the right-hand-
side of CDF 2. As a result CDF 2 is said to be dominated and is discarded under this relationship. To see why pruning under
this relationship preserves optimality, we show mathematically that C̃DF 1(x) and C̃DF 2(x) computed from CDF1(x) and
CDF2(x) in delay and slew rate computations has the same relative superiority as CDF1(x) and CDF2(x). Suppose that
CDF1(x) ≥ CDF2(x) ∀x. Statistical maximum corresponds to CDF multiplication, which is obtained by

C̃DF 1(x) = CDF1(x) · CDF (x)

≥ CDF2(x) · CDF (x) = C̃DF 2(x) (25)

since CDF (x) is always non-negative. Statistical addition corresponds to the convolution of CDF and PDF, which is given by

C̃DF i(x) =

∫ ∞

−∞

CDFi(τ ) · PDF (x − τ )dτ (26)

where i = 1, 2 and PDF (x) = d
dx

CDF (x). Since CDF1(x) − CDF2(x) ≥ 0 and PDF (x) ≥ 0 ∀x, we have
∫ ∞

−∞
(CDF1(τ) − CDF2(τ )) · PDF (x − τ )dτ

= C̃DF 1(x) − C̃DF 2(x) ≥ 0 (27)

and therefore we have C̃DF 1(x) ≥ C̃DF 2(x) again. However, this dominance relationship does not establish a total order
among RATsol for solutions sol ∈ SOL because one curve does not dominate another if they cross in the shaded area of
Figure 9(a). Therefore the pruning effect is weak.

2) Yield Cut-off Dominance: It is clear from figure 9(b) that we only use the yield cut-off ΓΥ for comparing the CDFs of
the RAT s. Since Γ1 > Γ2, CDF 1 is said dominate CDF 2. All options are totally ordered under this rule, which preserves the
property that for each distinct value of load, we retain only the largest ΓΥ. Following from the complexity analysis in Section
III-B, the number of distinct capacitance values are tightly upper bounded and hence the number of non-dominating solutions
is bounded by O(|Sbuf | · cmax · |V |), where |Sbuf |, cmax and |V | are the number of possible buffer sizes, the maximum
capacitance value and the number of tree nodes respectively. We conceive this pruning rule from the observation that we pick
the optimum solution solopt at the source nsrc by finding the largest ΓΥ among all solutions at nsrc. Therefore it is reasonable
to prune solutions at the same yield point Υ at all nodes without considering the part of CDF larger than Υ, which is irrelevant
to obtaining the optimal solution.

Notice that even though pruning under Yield Cut-off Dominance only compares one point, it is different from corner case
designs since we obtain such point from accurate RAT distributions, which are derived from statistical calculation. In the
corner case design, we get the worst case RAT from extreme interconnect and buffer parameters. Using such worst case RAT

leads to sub-optimal designs.
3) Evaluating the Pruning Rules: Figure 10 shows the log-plot of the runtime trends when straight wires of different lengths

undergo the vSBWF algorithm with the two pruning rules. The number of nodes grows linearly with the length of the wire.
The figure shows that the runtime for CDF Dominance-pruning grows exponentially with respect to the wire length. In contrast,
the curve for Yield Cut-off Dominance-pruning plateaus, which shows that the runtime is polynomial with respect to the line
length. The algorithm using CDF Dominance-pruning is able to finish in a reasonable time only for some small test cases but
takes over 24 hours for any of the test benches in Section IV-E.

Table IV shows the statistics of solutions produced by using the two pruning rules. We hand-craft these test cases so that
vSBWF with CDF Dominance-pruning finishes in hours. It is quite obvious that the Yield Cut-off Dominance-pruning loses
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Fig. 10. Runtime in log-scale with different pruning rules

TABLE IV
COMPARISON BETWEEN PRUNING USING CDF Dominance AND Yield Cut-off Dominance

CDF Yield Cut-off
Test- Mean SD (ps) Mean (ps) SD (ps)
bench (ps) (ps) (∆%) (∆%)
line -6569 338 -6569 (0%) 338 (0%)

5-sink -11543 505 -11545 (0%) 511 (1.2%)
6-sink -9189 437 -9192 (0.03%) 438 (0.002%)

almost no optimality when used in place of the theoretically plausible CDF Dominance-pruning. With this observation and
the runtime concern, we shall use the Yield Cut-off Dominance-pruning in practice and in our subsequent discussion in the
experiment section.

To maximize the timing yield Υ, the best solution to pick at the source nsrc is the one which has the largest yield cut-off
point ΓΥ. The timing yield Υ can be chosen by designers to fulfill their yield requirement objective.

E. Experiment

We carry out the experiment on the same test cases in Section III-D. We use SBW +Fill, which reflects the current design
methodology as our baseline case. We also compare SBWF from Section III, which considers CMP but not Leff variation,
and another case named vSBW + Fill which considers only Leff variation without CMP against vSBWF . Section IV-A
has already explained the assumptions on Leff . The vSBWF problem requires a different slew rate constraint due to its
random nature, therefore all SBW + Fill, SBWF and vSBW + Fill require different over-constrain rates from the one
used in Section III-D. We again rely on the binary search using SBW + Fill, SBWF and vSBW + Fill to find this new
over-constrain rate. We choose the new slew rate constraint to be P (slew ≤ η) ≥ 99% at all inputs of buffers and sinks ti,
where η = 100ps. This means that the slew rate at all buffer inputs and sinks ti must have 99% chance meeting the bound
η. Under this new requirement, we have found that the over-constrain rate κ for SBW + Fill, SBWF and vSBW + Fill

are 0.75, 0.78 and 0.85 respectively. In contrast, the vSBWF algorithm considers the random variation during optimization
and therefore directly produces optimum solution solopt that meet such slew rate constraint. The yield Υ we optimize for is
set to 0.9. We use the same computing platform as in Section III-D to perform these experiments. To verify the solutions, we
perform statistical timing analysis on the solutions from SBW + Fill, SBWF , vSBW + Fill and vSBWF through Monte
Carlo simulation, which is set to achieve 0.1% error in mean values with 99% confidence.
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Fig. 11. Probability density distribution of net “s10”.

To compare the solutions produced by SBW +Fill, SBWF , vSBW +Fill and vSBWF in the random Leff regime, we
use the concept of timing yield. Figure 11 shows the PDFs of the RAT s from the optimized solutions on a large net “s10”. We
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use the 90% yield cut-off point, Γ90%, of the vSBWF ’s RAT solution, which is 2962ps, as the threshold for timing tests. We
regard the proportion of the PDF that has RAT better than Γ90%=2962ps as yield. Under this comparison, the yield from the
PDF of SBW + Fill is 37.7%, which is shown in the shaded area under the curve for SBW + Fill, while those of SBWF

and vSBW + Fill are almost 0%. The PDF of vSBWF has a yield rate of 90% shown in the shaded area under its curve.

TABLE V
EXPERIMENTAL RESULT OF SBW + Fill, SBWF AND vSBWF VERIFIED UNDER RANDOM Leff VARIATION AND CMP EFFECTS ON RC PARASITICS.

SBW + Fill SBWF vSBW + Fill vSBWF
(κ = 0.75) (κ = 0.78) (κ = 0.85)

test- wire buffer nominal yield nominal yield nominal yield wire area buffer area nominal run-
case area area RAT (%) RAT (ps) (%) RAT (ps) (%) (mm2) (103×) RAT (ps) time

(mm2) (103×) (ps) (∆%) (∆%) (∆%) (∆%) (∆%) (s)
s1 0.10 3.3 -1105 12% -1105 (0%) 6% -1107 (-0%) 5% 0.11 (8%) 3.2 (-1%) -1059 (4%) 23
s2 0.11 3.5 -1176 97% -1232 (-5%) 7% -1177 (-0%) 93% 0.12 (7%) 3.3 (-6%) -1176 (0%) 28
s3 0.14 4.9 -1677 90% -1728 (-3%) 18% -1678 (-0%) 95% 0.15 (8%) 4.8 (-1%) -1676 (0%) 33
s4 0.18 6.7 -1460 10% -1533 (-5%) 0% -1441 (1%) 49% 0.19 (7%) 6.5 (-3%) -1412 (3%) 77
s5 0.26 9.7 -2579 93% -2724 (-6%) 0% -2587 (-0%) 86% 0.29 (11%) 9.6 (-1%) -2579 (0%) 174
s6 0.31 12.7 -2400 90% -2516 (-5%) 0% -2454 (-2%) 17% 0.35 (12%) 12.7 (-0%) -2399 (0%) 265
s7 0.38 15.8 -4024 35% -4225 (-5%) 0% -4083 (-1%) 1% 0.43 (12%) 16.1 (2%) -3967 (1%) 558
s8 0.43 19.8 -3337 35% -3464 (-4%) 0% -3338 (-0%) 31% 0.49 (13%) 19.3 (-3%) -3284 (2%) 1022
s9 0.47 21.6 -3092 11% -3174 (-3%) 0% -3095 (-0%) 10% 0.52 (12%) 21.3 (-1%) -3024 (2%) 1080
s10 0.50 22.0 -2967 38% -3078 (-4%) 0% -3023 (-2%) 1% 0.56 (12%) 22.8 (3%) -2922 (2%) 1610
r1 3.74 116.6 -5177 78% -5604 (-8%) 0% -5312 (-3%) 0% 4.09 (10%) 115.9 (-1%) -5160 (0%) 690
r2 7.31 229.4 -6511 30% -7029 (-8%) 0% -6715 (-3%) 0% 7.97 (9%) 226.4 (-1%) -6458 (1%) 1663
r3 9.32 299.0 -7716 60% -8280 (-7%) 0% -7989 (-4%) 0% 10.17 (9%) 295.9 (-1%) -7669 (1%) 2189
r4 18.74 596.6 -11439 24% -12369 (-8%) 0% -11735 (-3%) 0% 20.54 (10%) 595.8 (-0%) -11344 (1%) 3682
r5 28.07 895.1 -12796 0% -13830 (-8%) 0% -13119 (-3%) 0% 30.57 (9%) 885.2 (-1%) -12502 (2%) 5480

47% (-5%) 2% (-1%) 26% (10%) (-1%) (1%)

Table IV-E shows the comparison between SBW + Fill, SBWF , vSBW + Fill and vSBWF under both CMP and
random Leff variation. We report the yield of SBW + Fill, SBWF and vSBW + Fill designs in the fifth, the seventh and
the ninth column of Table IV-E respectively. SBW + Fill results in a significant 43.1% yield loss on average compared to
the vSBWF designs. It is interesting to notice that the vSBWF design also reduces buffer area in most cases, but increases
wiring area compared to SBW + Fill. In general, we observe that considering CMP tends to decrease buffer area due to
over-constraining slew rate as explained in Section III-D, while considering random Leff variation tends to increase buffer
area for extra design margin. Wire sizes tend to increase as a result of both CMP and random variation. Increased wire size (1)
compensates for the increased resistance caused by dishing and erosion; and (2) reduces the effect of the large Reff variation
on delay. We have also noticed that both SBWF and vSBW +Fill tend to size buffers away from the optimum buffer sizes
found in vSBWF , while SBW + Fill produces buffer sizes which are closest to those of vSBWF . Therefore, SBWF ,
which out-performs SBW + Fill in the CMP variation only regime, and vSBW + Fill result in much lower timing yield
rates than SBW + Fill in this experiment. The runtime of vSBWF is roughly 25× of SBWF 5. This again shows that the
vSBWF algorithm runs in polynomial time rather than exponential time with respect to the tree size.
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Fig. 12. Probability density distribution of net “r1” assuming L̂eff = 5% and 10% of Leff .

We also look into the effectiveness of statistical design on the possible increased random variation in the future process
technologies. Figure 12 shows the probability distributions of net “r1” optimized using SBW + Fill and vSBWF under
the assumption of standard deviation L̂eff = 5% (curves’ label suffixed with “0.05”) and 10% (curves’ label suffixed with
“0.10”) of the mean Leff respectively. The curves are much flatter when L̂eff increased to 10% · Leff , with the distribution
of timing now spans more than 5% of the mean delay. Moreover, vSBWF is now capable of achieving bigger improvement
in timing. The yield improvement of “r1” using vSBWF over SBW + Fill is reported to be 12% from Table IV-E under
the 5% L̂eff assumption, while that under the 10% assumption is almost 90%. The nominal delay improvement by vSBWF

5Runtime of s1–s5 are not compared since overhead of PWL calculation dominates the runtime of these small test cases
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over SBW + Fill increases from less than 1% under the 5% L̂eff assumption to more than 5% under the 10% assumption.
Experiments on other testcases show similar trend. This shows that statistical design methodologies like our vSBWF will
become more important for timing closure as process variation increases in future technologies.

V. CONCLUSION

In this paper, we have studied the impacts of Chemical Mechanical Polishing (CMP)-induced systematic variation and random
channel length (Leff ) variation on interconnect design. We have shown that fill insertion has a substantial impact on capacitance.
Different fill pattern density can result in widely varying capacitance distribution. Dishing and erosion similar to those predicted
by the ITRS roadmap can cause interconnect resistance varying up to 30%, but has limited impact on interconnect capacitance.
Our study on RC parasitics provides us with an accurate, table look-up based RC model considering systematic CMP variation
effects with pre-calculated best fill insertion. Equipped with such a model, we have studied a simultaneous buffer insertion,
wire-sizing and fill insertion problem (SBWF ). Experimental result have shown that the proposed SBWF designs can achieve
1.6% delay reduction, 3% power reduction and 4.9% buffer area reduction on average when compared to a conventional design
flow which performs fill insertion after buffer insertion and wire sizing (SBW + Fill). We also approach the SBW problem
considering both systematic CMP variation and random Leff variation (vSBWF ) by incorporating probability density function
(PDF) into the SBWF algorithm and developing an efficient heuristic for PDF pruning, whose practical optimality is verified
by an accurate but much slower pruning. Experimental results show that (vSBWF ) increases timing yield by 43.1% on
average, compared to SBW + Fill which considers nominal Leff value.

In this work, we assume a fixed routing topology with buffer insertion and wire sizing as a post layout synthesis process.
In the future, we plan to study simultaneous routing topology generation with buffer insertion and wire sizing considering
systematic and random variations due to both CMP and device effects.
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