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As very large scale integrated circuits move into the era of deep-submicron tech-

nology and gigahertz clock frequency, the system performance has increasingly

become dominated by the interconnect delay. Contributions of this dissertation

include the following three related aspects for the design of high-performance in-

terconnects: interconnect modeling, interconnect optimization, and optimization

theory.

Concerning interconnect modeling, we study the two extraction problems to

compute the capacitance and inductance values respectively from complex 3-

dimensional interconnect structures. For each problem, we �rst propose and

validate \foundations" that can be used to reduce the problem complexity, then

present a simple yet accurate methodology directly based on the foundations.

The resulting extraction methodologies are applicable to both IC and MCM/PCB

designs, and have been used in the industry for real designs.

Concerning interconnect optimization, we formulate and solve the following

three problems:

� The multi-source wire sizing (MSWS) problem. It determines the optimal
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widths for all wire segments to minimize the delay along a given routing

tree with multiple sources.

� The simultaneous transistor and interconnect sizing (STIS) problem using

the accurate device model. It assigns optimal wire widths to interconnects

and optimal sizes to transistors to minimize the delay for multiple critical

paths, where a path may contain multiple routing trees and related devices.

� The global interconnect sizing and spacing (GISS) problem. Given the

topology for multiple routing trees, the GISS problem �nds the wire siz-

ing and spacing solution simultaneously for all trees, with consideration of

coupling capacitance between them.

We reveal interesting properties and present e�cient algorithms for all those

problems. Experiments show that our formulations and algorithms have achieved

signi�cant reduction of the interconnect delay.

As to the optimization theory, we formulate three classes of optimization

problems: the simple, monotonically constrained, and bounded CH-problems.

We reveal that the dominance property holds for those CH-problems under dif-

ferent types of local-re�nement operations. This property immediately leads to

an e�cient polynomial-time algorithm, which provides a uni�ed solution to a

number of interconnect optimization problems, including the MSWS, STIS, and

GISS problems.
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CHAPTER 1

Introduction

1.1 Computer-Aided Design for VLSI Circuits and Sys-

tems

Following the prediction of the Moore's Law [57], the complexity of integrated

circuits was doubled for every 18 months in the past three decades. As projected

by the 1997 National Technology Roadmap for Semiconductors(NTRS'97) [78]

(see Table 1.1), this exponential growth will continue for at least another decade,

and a single-chip with 21 million transistors and more than 1 gigahertz clock

frequency is expected by the end of this year (1999). Given such a high complexity

and clock frequency, the only feasible way to �nish the design within a reasonable

amount of time is the computed-aided design.

As shown in Figure 1.1, the computer-aided design of VLSI circuits and sys-

tems is typically divided into the following stages:

� High level synthesis: based on the circuit speci�cations, to generate the

system behavior by RTL-level components, and to de�ne the function for

each component.

� Logic synthesis: to generate functions of RTL-level components by boolean

expressions, and to implement boolean expressions by logic gates given in

the library.

1



Tech. (�m) 0.25 0.18 0.15 0.13 0.10 0.07

Year 1997 1999 2001 2003 2006 2009

Transistor # 11M 21M 40M 76M 200M 520M

Across chip clock (MHz) 750 1200 1400 1600 2000 2500

Area (mm2) 300 340 385 430 520 620

Wiring levels 6 6-7 7 7 7-8 8-9

Min. wire width (�m) 0.25 0.18 0.15 0.13 0.10 0.07

Min. wire spacing (�m) 0.34 0.24 0.21 0.17 0.14 0.10

Wire aspect ratio 1.8 1.8 2.0 2.1 2.4 2.7

Table 1.1: Summary of NTRS'97

� Physical design: to implement logic gates by geometric patterns, and to

place and connect these geometric patterns to obtain the layout for fabri-

cation.

Di�erent objectives such as area, delay and power minimizations are often shared

among these stages. Iterations between stages or within a stage are sometimes

needed. For example, a failed physical design procedure may lead to a logic

re-synthesis, or another physical design procedure based on the current logic

synthesis result. Simulations are invoked after each stage to verify the function

and timing correctness, and may lead to more iterations.

The last stage, physical design, contains the topics studied in this dissertation.

It is also called layout design. For a layout, the geometric implementation for

a logic gate is a cell. A set of related cells is a block, which often implement a

speci�c logic function. Connection points on the block or cell are pins. A net is

a set of pins to be electrically connected. Then, an integrated circuit (IC) can be

represented by a netlist, which is a set of nets. Five iterative steps are involved
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High-level Synthesis

Circuit Specification

Logic Synthesis

Physical Design

layout

Figure 1.1: Overall ow for the computer-aided design of VLSI circuits and sys-

tems.

in the physical design process, namely, partitioning, oorplanning, placement,

global routing and detailed routing (see Figure 1.2).

Partitioning is the �rst step for the physical design procedure. For the purpose

of \divide-and-conquer", partitioning divides the netlist into a set of sub-netlist.

Each sub-netlist contains a number of blocks, and is small enough to be handled

by the design tools, or the silicon implementation capacities such as the maximum

die area for ICs. The objective for partitioning often is to minimize the total

number of nets that belong to more than one sub-netlist.

Floorplanning and placement determine shapes, orientations and locations for

blocks and cells on a layout. Floorplanning handles exible blocks whose shapes

and orientations are not yet fully determined. Placement deals with �xed blocks

that have speci�c layout and orientations. The objective for oorplanning and

placement is to avoid overlap of blocks and cells, and to minimize the total wire
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partitioning

floorplan

 placement

global routing

detailed routing

Figure 1.2: Conventional ow for physical design.

length and the chip area.

Global and detailed routing complete the electrical connections (via metal

wires) between blocks or cells as indicated by the netlist. The entire routing

area is divided into disjoint, smaller routing regions. Global routing only assigns

each net to a set of routing regions to minimize the total routing area and the

congestion in routing regions. The detailed routing implements nets within each

and every routing region by metal wires with exact geometric speci�cations in-

cluding layer assignments. In this dissertation, metal wires are also called as

interconnects or wires.
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1.2 Contributions of this Dissertation

As very large scale integrated circuits move into the era of deep-submicron tech-

nology and gigahertz clock frequency, the system performance has increasingly

become dominated by the interconnect delay [33, 22]. Therefore, interconnect

modeling and optimization is drawing considerable attention. Contributions of

this dissertation include the following three related aspects for the design of

high-performance interconnects: interconnect modeling, interconnect optimiza-

tion, and optimization theory.

We study the following interconnect modeling problems:

� Interconnect capacitance extraction problem. It computes the capacitance

values from complex 3-dimensional interconnect structures. We propose

and validate �ve \foundations" that can be used to simplify capacitance

extraction, then present a simple yet accurate 2 1/2-dimensional extraction

methodology directly based on the foundations. This methodology is able

to generate capacitance on y during interconnect design and optimization,

and can be used for both IC and MCM/PCB designs.

� Interconnect inductance extraction problem. It computes the inductance

values from three-dimensional on-chip interconnect structures. Our ap-

proach is based on the partial inductance model. It is accurate and e�-

cient, and again can be used during the interconnect design and optimiza-

tion procedure. It has been used to generate distributed RLC models for

on-chip interconnects with consideration of process variations, and has been

extended to MCM/PCB designs. In addition, several design freedoms, in-

cluding bu�er insertion and shielding insertion, are studied to reduce the

inductive e�ect.
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We also investigate the following interconnect optimization problems:

� Multi-source wire sizing (MSWS) problem. For this problem, we are given

a routing tree with multiple sources. The goal is to determine the optimal

widths for all wire segments such that the delay is minimized. We further

study the wire sizing problem without an a priori �xed wire segmenting,

which allows us to use much �ner wire segmenting for more delay reduction

or less wire area, but still to be able to �nd the optimal solution in a timely

manner.

� Simultaneous transistor and interconnect sizing (STIS) problem. We as-

sume that the circuit netlist is given and the routing topology is �xed,

and apply device models more accurate compared to many used in inter-

connect optimization works. We then assign optimal wire widths to all

wire segments and optimal sizes to all transistors for minimizing the de-

lay and/or power for multiple critical paths. Here, a path contains several

nets/routing-trees. Compared to the single-net sizing problems such as the

MSWS problem, this problem has a much higher complexity but is able to

achieve more delay and power reduction.

� Global interconnect sizing and spacing (GISS) problem. Given the topology

for multiple nets, the GISS problem �nds the wire sizing and spacing solu-

tion optimal to all nets, with consideration of coupling capacitance between

neighboring wires. The formulation uses coupling capacitance generated on

y during wire sizing and spacing procedure, and can be treated as part

of the STIS problem. Therefore, we are able to consider simultaneous de-

vice sizing, and wire sizing and spacing for multiple paths, using accurate

models for device delay and interconnect coupling capacitance.
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In addition, this dissertation makes a nice contribution to the theory of the

local-re�nement (LR) based optimization. We formulate three classes of opti-

mization problems: the simple, monotonically constrained, and bounded CH-

programs. We reveal the dominance property (Theorem 8) under the local

re�nement (LR) operation for the simple CH-program, as well as the general

dominance property (Theorem 9) under the pseudo-LR operation for the mono-

tonically constrained CH-program and under the extended-LR operation for the

bounded CH-program. These properties enable a very e�cient polynomial-time

algorithm, using di�erent types of LR operations to compute tight lower and

upper bounds of the exact solution to any CH-program. The formulation and

algorithm for CH-programs unify solutions to several important CAD problems,

including the MSWS, STIS, and GISS problems. Other algorithmic contributions

will be summarized in Section 1.3, with details in Chapters 2-7.

Formulations and solutions to these problems belong to the general framework

of the interconnect design and optimization problem. Given the netlist to connect

devices, the problem is to determine the interconnect topologies, wire sizing and

spacing solutions, bu�er locations and sizes, driver/receiver sizes, and shielding

insertion. The objective can be optimizing delay, power, signal integrity, and

skew (in case of clock nets).

The solution to the interconnect design and optimization problem can be used

in an innovative physical design ow to better handle the interconnect delay. As

shown in Figure 1.3, the innovative physical design ow is di�erent from the

conventional physical design in the following aspects:

During oorplanning, interconnect planning is carried out simultaneously with

planning for logic blocks. Based on certain estimation models (see [32] for an ex-

ample on interconnect delay estimation considering the impact of wire sizing),
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partitioning

floorplan
interconnect planning

interconnect optimization

timing driven placement

global routing
interconnect optimization

detailed routing for
variable width and spacing

Figure 1.3: An innovative physical design ow.

the impact of wire sizing and spacing, interconnect coupling noise, shielding in-

sertion, and bu�er insertion must be considered by the interconnect planning. On

the other hand, detailed but quick interconnect optimization may be carried out

for critical nets. At the same time, placement should explicitly consider timing

constraints, rather than simply minimize the total wire length. In addition, inter-

connect optimization techniques, especially bu�er insertion, should be considered

to meet time constraints.

Global routing extensively applies interconnect optimization to synthesize in-

terconnect structures, including topologies, wire ordering and shielding solutions,

wire widths and spacings, layer assignments, and bu�er locations and sizes. Then,

detailed routing geometrically implements the synthesized interconnect structures

with multiple widths and spacings. For the sake of completeness, a post-layout
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interconnect optimization can be invoked to further re�ne wire widths and spac-

ings, and device sizes, with consideration of the exact con�guration of intercon-

nect structures.

1.3 Overview of the Dissertation

The remainder of the dissertation includes the following parts:

In Chapter 2, we study the multiple-source wiresizing (MSWS) problem. Our

contributions include:

� We formulate the wiresizing problem to minimize delay for nets with multi-

ple sources under the distributed RC model. Decomposing an MSIT into a

source subtree (SST) and a set of loading subtrees (LSTs), we show a num-

ber of interesting properties of the optimal wiresizing solutions under this

decomposition, including the LST separability, the LST monotone prop-

erty, the SST local monotone property, and the dominance property. These

properties lead to e�ective algorithms to compute the optimal wire width

assignment for any given MSIT. We have tested our algorithm on multi-

source nets extracted from the multi-layer layout of a high-performance

Intel processor. HSPICE simulation shows that our methods reduce the

average delay by up to 23.5% and the maximum delay by up to 37.8% for

the submicron CMOS technology.

� We study the optimal wiresizing problem using a variable segment-division

rather than an a priori �xed segment-division used in all previous works.

We show the bundled re�nement property that leads to a very e�cient wire

sizing algorithm based on bundled re�nement operations and the segment-

division re�nement operations. The algorithm yields a speedup of over 100x
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time and does not lose any accuracy, when compared to the method based

on an a priori �xed segment-division. The algorithm has been extensively

used in the practice.

� We also investigate the �delity of the Elmore delay model for wiresizing

optimization using a ranking technique. We have found that the optimal

wiresizing solution selected according to the Elmore delay model is about

0.06% worse than the optimal wiresizing solution selected according to the

SPICE-computed delay, when the delays of both solutions are measured

by SPICE simulation. This experiment convincingly justi�es our formula-

tion based on the Elmore delay model for the current submicron CMOS

technology.

These results were �rst presented in [14, 16]. To the best of our knowledge, it is

the �rst work which presents an in-depth study of both the optimal wiresizing

problem for MSITs and the optimal wiresizing problem under a variable segment-

division.

In Chapter 3, we address interconnect capacitance extraction during inter-

connect optimization. Our contributions include:

� We show how basic drivers in process technology (planarization and mini-

mummetal density requirements) actually simplify the extraction problem;

we do this by proposing and validating �ve \foundations" through detailed

experiments with a 3-D �eld solver on representative 0:50�m, 0:35�m and

0:18�m process parameters.

� We present a simple yet accurate 2 1/2-D extraction methodology directly

based on the foundations. This methodology has been productized and is

being shipped with the Cadence Silicon Ensemble 5.0 product for the timing
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veri�cation purpose. The methodology is also able to generate capacitance

on y during interconnect design and optimization, and can be used for

both IC and MCM/PCB designs.

These results were �rst presented in [21].

In Chapter 4, we present the theory and algorithm for local-re�nement based

optimization. Our contributions in this chapter include:

� We formulate three classes of optimization problems: the simple, monoton-

ically constrained, and bounded CH-programs. The simple CH-program

contains the single-source and multi-source wire sizing problems, and is a

subset of the monotonically constrained CH-program. In turn, the mono-

tonically constrained CH-program is a subset of the bounded CH-program.

� We generalize the concept of the LR operation, and introduce the concepts

of the pseudo-LR operation and the extended-LR operation. We then reveal

the dominance property (Theorem 8) under the LR operation for the simple

CH-program, as well as the general dominance property (Theorem 9) under

the pseudo-LR operation for the monotonically constrained CH-program

and under the extended-LR operation for the bounded CH-program.

� Based on the dominance property and the general dominance property we

propose a very e�cient polynomial-time algorithm, using di�erent types

of LR operations to compute tight lower and upper bounds of the exact

solution to any CH-program.

These results were �rst presented in [20, 19, 25]. Note that both the MSWS prob-

lem in Chapter 2 and the STIS and GISS problems to be presented in Chapters

5 and 6 belong to CH-programs. Therefore, the formulation and algorithm of

CH-programs unify the solutions to all three problems.
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In Chapter 5, we study the simultaneous transistor and interconnect sizing

(STIS) problem. Our contributions include:

� We assume that the circuit netlist is given and routing topology is �xed,

and then formulate the STIS problem to assign optimal wire widths to

all wire segments and optimal sizes to all transistors, for minimizing the

delay and/or power for multiple critical paths. Compared to the single-net

sizing problems such as the MSWS problem, this problem has much higher

complexity but is able to achieve more delay and power reduction.

� We apply the LR-based bound-computation algorithm presented in Chap-

ter 4 to the STIS problem under both the simple device model and the

accurate STL-bounded device model. The STL-bounded model is based on

tables pre-computed from SPICE simulations for the device delay, so that

it is much more accurate than many models used in previous device and

interconnect optimization algorithms. Experiments show that the bound-

computation algorithm can e�ciently handle both simple and STL-bounded

models, and obtain solutions close to the global optimum in both cases.

According to SPICE simulations, the solution obtained by the STIS algo-

rithm under the simple model achieves up to 14.4% delay reduction when

compared to the solution given by manual optimization (reported in [10]).

Furthermore, the solution obtained by the STIS algorithm under the ac-

curate STL-model achieves up to 15.1% additional delay reduction when

compared to the solution obtained by the STIS algorithm under the simple

model.

These results were �rst presented in [20, 19, 25], and were among the �rst in-depth

studies on the simultaneous interconnect and device sizing problems.
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In Chapter 6, we study the interconnect sizing and spacing problem for the

single-net and multiple nets, respectively. Our contributions include:

� We formulate the global interconnect sizing and spacing (GISS) problem

based on the concept of asymmetric wire sizing. Given the topology for

multiple nets, the problem �nds the wire sizing and spacing solution optimal

for all nets, and considers coupling capacitance extracted during wire sizing

and spacing procedure.

� We pose the GISS problem as a CH-program, which directly leads to an

e�ective and e�cient solution based on bound computation using di�erent

types of local-re�nement operations. Note that this GISS formulation can

be treated as part of the STIS formulation. Therefore, we have a uni�ed

formulation and solution to the problem of simultaneous device sizing, and

wire sizing and spacing for multiple paths, under accurate models for device

delay and interconnect coupling capacitance.

� We also solve the single-net interconnect sizing and spacing (SISS) problem.

It is a simpler version of the GISS problem assuming that neighboring wires

are �xed for the speci�c net. Experiments show that GISS algorithm may

achieve up to 39% delay reduction, when compared with SISS algorithm

applied iteratively to multiple nets.

These results were �rst presented in [23, 19, 25], and were among the �rst in-

depth studies of the global interconnect sizing and spacing problem using accurate

capacitance model.

In Chapter 7, we study the inductance extraction problem for on-chip inter-

connects. Our contributions include:
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� We propose and theoretically validate two foundations which allow us to

reduce the problem size of inductance extraction without loss of accuracy,

and present a table-based inductance extraction methodology directly based

on the two foundations.

� We use this e�cient inductance extraction methodology to generate dis-

tributed RLC models for on-chip interconnects with consideration of pro-

cess variations. We have applied this RLC model to interconnect model-

ing and optimization for designs of the state-of-the-art microprocessors in

Hewlett-Packard Company.

These result were �rst present in [44]. To the best of our knowledge, it is the �rst

work that presents an e�cient and accurate table-based inductance extraction

method for on-chip interconnects. Note that the table-based inductance extrac-

tion has been recently extended to o�-chip interconnects in MCM/PCB designs.

In Chapter 8, we discuss the future works and conclude the dissertation.

Finally, several proofs for the MSWS problem are presented in the Appendix

(Chapter 9).
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CHAPTER 2

Wiresizing Optimization for Nets with Multiple

Sources

All wiresizing works [30, 29, 73, 82, 7, 6, 56, 83] and simultaneous device and

wire sizing works [26, 55, 49] assume that there is a unique source in each in-

terconnect tree (called single source interconnect tree (SSIT)) and minimize the

delay between the source and a set of critical sinks. However, there exist many

important interconnect structures with multiple potential sources, each driving

the interconnect at a di�erent time, such as those in global signal buses. We call

such interconnect structures as multi-source interconnect trees (MSITs). Even

those single-source wiresizing algorithms based on the mathematical program-

ming [72, 56, 55, 82, 6] or the sensitivity analysis [73, 83] might be adapted to

minimize the delay between the multiple source-sink pairs by modifying their

objective functions, none of existing sizing works explicitly considers MSITs. It

is of both theoretical and practical interest to understand the properties of the

optimal wiresizing solutions for MSITs and develop e�cient algorithms directly

for MSITs.

In this chapter, we study the multiple-source wiresizing (MSWS) problem.

Our contributions include:

� We formulate the wiresizing problem to minimize delay for nets with multi-

ple sources under the distributed RC model. Decomposing an MSIT into a
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source subtree (SST) and a set of loading subtrees (LSTs), we show a num-

ber of interesting properties of the optimal wiresizing solutions, including

the LST separability, the LST monotone property, the SST local monotone

property, and the dominance property. These properties lead to e�ective

algorithms to compute the optimal wire width assignment for any given

MSIT. We have tested our algorithm on multi-source nets extracted from

the multi-layer layout of a high-performance Intel processor. SPICE simu-

lation shows that our methods reduce the average delay by up to 23.5% and

the maximum delay by up to 37.8% for the submicron CMOS technology.

� We also study the optimal wiresizing problem using a variable segment-

division rather than an a priori �xed segment-division used in all previous

works. We show the bundled re�nement property that leads to a very

e�cient wire sizing algorithm based on bundled re�nement operations and

the segment-division re�nement operations. The algorithm yields a speedup

of over 100x time and does not lose any accuracy, when compared to the

method based on an a priori �xed segment-division.

� Finally, we investigate the �delity of the Elmore delay model for wiresizing

optimization using the ranking technique similar to [4]. We have found

that the optimal wiresizing solution selected according to the Elmore delay

model is about 0.06% worse than the optimal wiresizing solution selected

according to the SPICE-computed delay, when the delays of both solutions

are measured by SPICE simulation. This experiment convincingly justi�es

our formulation based on the Elmore delay model for the current submicron

CMOS technology.

Those results are �rst presented in [14, 16]. To the best of our knowledge, it is

the �rst work which presents an in-depth study of both the optimal wiresizing
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problem for MSITs and the optimal wiresizing problem under a variable segment-

division.

The remainder of this chapter is organized as follows: In Section 2.1, we

present the formulation of the MSIT wiresizing problem. In Section 2.2 and 2.3,

we study the properties of the optimal wiresizing solutions for MSIT designs,

under the a priori �xed and the variable segment-divisions, respectively. These

properties lead to e�cient algorithms given in Section 2.4. Section 2.5 shows

experimental results, including the �delity study of the Elmore delay model.

Section 2.6 concludes the chapter with discussions of future works. The proofs of

the Theorems 3, 5 and 6 are given in the Appendix at the ending of this proposal.

Proofs of other theorems, together with more experimental results, can be found

in a technical report [15].

2.1 Problem Formulation

2.1.1 Multi-Source Wiresizing (MSWS) Problem

We call the wiresizing problem for MSITs as the multi-source wiresizing (MSWS)

problem. For an MSIT, each pin in the MSIT can be a source (driver), or a sink

(receiver), or both at di�erent times. We assume, however, no two sources in the

MSIT are active at the same time. Let a node be either a pin or a Steiner point in

the MSIT and src(MSIT ) the set of pins which can be sources of the MSIT, we

say that sinki(MSIT ) is the set of sinks in the MSIT when pin Ni is the source

of the MSIT. Besides, let a segment connect two nodes and fS1; S2; � � � ; Smg be

the set of segments in the MSIT. In order to capture the distributed resistive

property of interconnects and achieve better wiresizing solutions, a segment is

divided into a sequence of uni-segments. The term of \uni-segment" is coined
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based on this assumption that the wire width is uniform within a uni-segment.

The segment-division determines the set of all uni-segments, fE1; E2; � � � ; Eng, in

the MSIT. Our wiresizing problem is formulated to �nd a wire width for each uni-

segment from a set of given choices fW1;W2; � � � ;Wrg (W1 < W2 < � � � < Wr).

Di�erent from our formulation, a segment in [29] is not further divided and is

simply treated as a uni-segment1, and a segment in [26] is divided into a sequence

of wires of unit length and such a wire of unit length is treated as a uni-segment.

Thus, both segment-divisions in [29, 26] are given a priori and �xed during the

wiresizing procedure. In our formulation, the segment-division is in fact a variable

during the wiresizing procedure and is de�ned by the wiresizing procedure, which

will be discussed later in Section 2.3. For simplicity, we assume that an a priori

�xed segment-division is given in this section.

The modeling technique similar to those used in [29] is applied. Each uni-

segment is treated as a �-type RC circuit containing resistance rE and capacitance

cE, respectively. Let the unit-width unit-length wire have wire resistance r0, wire

area capacitance ca and wire fringing capacitance cf , then rE = r0 �
lE

wE
and

cE = ca � wE � lE + cf � lE for uni-segment E with width wE and length lE. The

driver at source Ni is modeled by an output capacitance C i

d
and a �xed-value

resistor Ri

d
connected to an idle voltage source, and the receiver at sink Nj by a

loading capacitor cj
s
. Thus, a given interconnect including its drivers and receivers

is modeled by a distributed RC tree. The Elmore delay [37] tij in the RC tree from

source Ni to sink Nj is a function of the segment-division E and the wiresizing

solution W. It can be written as the Eqn. (2.1) according to the Elmore delay

1we note that arti�cial degree-2 Steiner points can be introduced within a segment in [29]

to achieve certain segment-division.
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formulation for RC trees [65].

t
ij(MSIT; E;W) =

X
E2P (Ni;Nj)

rE � (
cE

2
+ CE) (2.1)

where the summation is taken over all uni-segments on the unique path P (Ni; Nj)

from source Ni to sink Nj, and CE is the total downstream capacitance of uni-

segment E with respect to source Ni. In order to handle multiple source-sink

pairs, we further introduce the following weighted delay formulation Eqn. (2.2).

t(MSIT; E;W) =
X

Ni2src(MSIT )

X
Nj2sink

i(MSIT )

�
ij � tij(MSIT; E;W) (2.2)

where �ij is the penalty weight to indicate the priority of the Elmore delay t
ij

between source Ni and sink Nj.

With these de�nitions, we give the general formulation of the MSWS problem

as follows:

Formulation 1 Given an MSIT, a segment-division E and a set of possible wire

width choices, the multi-source wiresizing (MSWS) problem for delay minimiza-

tion is to determine a wiresizing solution W which gives a wire width wE for

every uni-segment E under E, such that the weighted delay t(MSIT; E;W) is

minimized.

When there is only one source in an interconnect tree, the MSWS problem degen-

erates into the single-source wiresizing (SSWS) problem. Note that we assume

a given segment-division in Formulation 1. A more general wiresizing problem,

the multi-source wiresizing problem without an a priori given segment-division

(the MSWS/E problem) will be presented in Section 2.3.
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2.1.2 Weighted Delay Formulation

For simplicity, we assume that all interconnects belong to the same layer and the

assumption will be removed later in Section 2.2.3. It is not di�cult to verify that

the Elmore delay tij between source N i and sink N j can be formulated as follows:

t
ij(MSIT; E;W)

= Kij

0 + Ki

1 �
X

E2MSIT

lE � wE +

K2 �
X

E;E0
2MSIT

f
ij(E;E0) �

lE � lE0 � wE0

wE

+

K3 �
X

E;E0
2MSIT

f
ij(E;E0) �

lE � lE0

wE

+

K4 �
X
E

g
ij(E) �

lE

wE

+ K5 �
X

E2MSIT

h
ij(E) �

l
2
E

wE

(2.3)

where wE and lE are respectively the (wire) width and length of the uni-segment

E. Kij

0 ;K
i

1;K2; � � � ;K5 are constants independent of the wiresizing solution, as

given in the following:

Kij

0 = R
i

d
� C i

d
+R

i

d
�

X
u2sinki(MSIT )

c
u

s
+ R

i

d
�
X

E2MSIT

cf +
X

E2P (Ni;Nj)

r0 � ca
2

Ki

1 = R
i

d
� ca

K2 = r0 � ca

K3 = r0 � cf

K4 = r0

K5 =
r0 � cf
2

Recall that Ri

d
and C

i

d
are the driving resistance and output capacitance for the

driver at source Ni, and c
u

s
the sink capacitance at sink Nu. These parameters can

take account the di�erent sizes of drivers/receivers at di�erent sources/sinks of an

MSIT. Besides, f ij(E;E0); gij(E) and H ij(E) de�ned below, again, are constants
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independent of the wiresizing solution.

f
ij(E;E 0) =

8><
>:

1 if E 2 P (Ni; Nj) and E
0 2 Desi(E)

0 otherwise

(2.4)

g
ij(E) =

8><
>:
P

u2sinki(E) c
u

s
if E 2 P (Ni; Nj)

0 otherwise

(2.5)

h
ij(E) =

8><
>:

1 if E 2 P (Ni; Nj)

0 otherwise

(2.6)

where Desi(E) is the set of downstream uni-segments of E with respect to source

Ni, and sink
i(E) the set of downstream sinks of E with respect to source Ni.

Assume that �ij's are normalized, i.e.,

X
Ni2src(MSIT )

X
Nj2sink

i(MSIT )

�
ij = 1

the objective function Eqn. (2.2) becomes:

t(MSIT; E;W)

= K0 + K1 �
X

E2MSIT

lE � wE +

K2 �
X

E;E0
2MSIT

F (E;E0) �
lE � lE0 � wE0

wE

+

K3 �
X

E;E0
2MSIT

F (E;E0) �
lE � lE0

wE

+

K4 �
X

E2MSIT

G(E) �
lE

wE

+ K5 �
X

E2MSIT

H(E) �
l
2
E

wE

(2.7)

where

K0 =
X

Ni2src(MSIT )

X
Nj2sink

i(MSIT )

�
ij �K ij

0 (2.8)

K1 =
X

Ni2src(MSIT )

X
Nj2sink

i(MSIT )

�
ij �K i

1 (2.9)
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F (E;E0) =
X

Ni2src(MSIT )

X
Nj2sink

i(MSIT )

�
ij � f ij(E;E0) (2.10)

G(E) =
X

Ni2src(MSIT )

X
Nj2sink

i(MSIT )

�
ij � gij(E) (2.11)

H(E) =
X

Ni2src(MSIT )

X
Nj2sink

i(MSIT )

�
ij � hij(E) (2.12)

Our MSWS problem is aimed to �nd the optimal wE's to minimize the weighted

delay formulation Eqn. (2.7). Although this weighted delay formulation for

multiple sources and multiple sinks is very similar to that for the single source

and multiple sinks in [29], the coe�cient functions F , G and H have very di�erent

properties, which lead to much higher complexity and very di�erent properties

for the MSWS problem when compared to the SSWS problem. These properties

will be discussed in Section 2.2.

2.2 Properties of Optimal MSWS Solutions

The single-source wiresizing problem (SSWS) under the an a priori �xed segment-

division was studied in [29], and the polynomial-time optimal algorithm was de-

veloped based on the separability, the monotone property and the dominance

property. The presence of multiple sources, however, greatly complicates the

wiresizing problem. For example, with multiple sources, even a monotone wire-

sizing solution is not well de�ned. Nevertheless, our research have revealed a

number of interesting properties of the optimal MSWS solutions under the de-

composition of MSITs. Some of them generalize the results on the SSWS problem,

and others are unique for the MSWS problem. These properties to be presented

in this section and Section 2.3 will enable us to apply the algorithms developed

in [29] to the MSWS problem to certain extent and to develop even more e�cient

algorithms in Section 2.4.
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2.2.1 Decomposition of an MSIT

When there is only one source in the routing tree, each segment has a unique

signal direction and the ancestor-descendant can be de�ned with respect to the

direction. The MSWS problem is most complicated by the fact that, in general,

there is no �xed signal direction for a segment. In order to reduce the complexity

with the MSWS problem, we decompose an MSIT into the source subtree (SST)

and a set of loading subtrees (LSTs) (see Figure 2.1). The SST 2 is the subtree

spanned by all source nodes in the MSIT. After we remove the SST from the

MSIT, the remaining segments form a set of subtrees, each of them is called an

LST. When every pin of an MSIT can be a source at di�erent times, the entire

MSIT becomes the SST and there is no LST.

SSTA Source

Both a source and a sink

A Source LST2

LST3

LST1

Figure 2.1: An MSIT can be decomposed into the source subtree SST , and a

set of loading subtrees (three LST s here) branching o� from the SST . The dark

segments belong to the SST .

Parallel to the ancestor-descendent relation in an SSIT, the left-right relation

is introduced in an MSIT. We choose an arbitrary source as the leftmost node

Lsrc. The direction of the signal owing out from Lsrc is de�ned as the right

direction along each segment S. Under such de�nition, the signal in any LST

always ows rightward, but the signal may ow either leftward or rightward in a

2Note that SST de�ned here is di�erent from that de�ned in [29], where SST is used to

denote a single stem tree.
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segment in the SST. The properties of optimal MSWS solutions will be studied

in the context of the MSIT decomposition.

2.2.2 Properties of Optimal MSWS Solutions

A. LST Separability

Theorem 1 Given the wire width assignment of the SST, the optimal width as-

signment for each LST branching o� from the SST can be carried out indepen-

dently. Furthermore, given the wire width assignment of both the SST and a path

P originated from the root of an LST, the optimal wire width assignment for each

subtree branching o� from P can be carried out independently.

The �rst part of Theorem 1 is the separability between LSTs. Thus, for

the MSIT in Figure 2.1, the optimal wire widths for LST1,LST2 and LST3 can

be computed independently if the wire widths for the SST are given. While,

the second part of Theorem 1 is the separability within an LST, which is the

counterpart of the separability in the SSWS problem since an LST can be viewed

as an SSIT with its driver located at the branching node from the SST . Because

the separability may not hold within the SST , the MSWS problem has much

higher complexity than the SSWS problem in general.

B. LST Monotone Property

Theorem 2 For an MSIT, there exists an optimal wiresizing solution W� where

the wire widths decrease monotonically rightward within each LST in the MSIT.

Again, with respect to the analogy between an LST and an SSIT , and re-

placing the left-right relation in the LST with the ancestor-descendent relation
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in an SSIT , the LST monotone property just like the monotone property for the

SSWS problem. Because the optimal wiresizing algorithm OWSA developed in

[29] for the SSWS problem is based on the separability and the monotone prop-

erty, according to Theorems 1 and 2, it can be applied independently to each

LST when the wire width assignments for the SST is given. Since OWSA is a

polynomial-time algorithm, the optimal wire widths for the entire MSIT will be

computed in the polynomial-time with respect to the given wire widths for the

SST.

Furthermore, it is worthwhile to emphasize that the monotone property for

the MSWS problem just holds within an LST . The root uni-segment in an

LST may be wider than the uni-segment from which the LST branches o�. An

optimal MSWS solution based on the parameter for the second metal layer (M2)

given in Table 2.4 is shown in Figure 2.2. The total wire length is 600�m. In

the optimal solution, the wire width assignment is monotone within the LST ,

however, the root uni-segment of the LST is wider than uni-segments in the

SST . This example also shows that the monotone property like that in the

SSWS problem does not hold for any particular source in an MSIT.

C. SST Local Monotone Property

Although the signal direction is changeable in the segments of the SST when

di�erent sources are active, surprisingly, our study shows that optimal MSWS

solutions still satisfy a local monotone property (Theorem 3) given after Lemma

1.

Lemma 1 Given an MSIT and a segment S in the MSIT, for any uni-segments

E1 and E2 (E1 6= E2) within segment S, F (E1; E2) de�ned in Eqn. (2.10) is an

invariant (denoted Fl(S)) if E1 is left to E2, and F (E1; E2) is another invariant
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Src A Src B

Sink C

Sink D

Sink E

3w

4w

w

2w

w

Figure 2.2: The optimal wire width assignments for a two-source net with W

being the minimum wire width. The SST is surrounded by the dashed curve.

Segments outside the curve belong to an LST . The wire width assignment is

monotone within the LST . However, the root uni-segment of the LST is wider

than uni-segments in the SST .

(denoted Fr(S)) if E1 is right to E2.

Theorem 3 There exists an optimal wiresizing solution for an MSIT, such that

the wire widths within each segments is monotone: (1) if Fl(S) > Fr(S), the wire

widths within S decrease monotonically rightward. (2) if Fl(S) = Fr(S), the wire

width within S does not change. (3) if Fl(S) < Fr(S), the wire widths within S

increase monotonically rightward.

Of course, the local monotone property holds for segments in LSTs, where

the Fl(S) is always greater than Fr(S) (in fact, Fr(S) = 0) and the wire widths

always decrease rightward, just as given by the LST monotone property in an

even stronger sense.

D. Dominance Property

De�nition 1 Given two wiresizing solutions W and W 0, we de�ne W dominates

W 0 if wE � w
0

E
for every uni-segment E.
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De�nition 2 Given a wiresizing solution W for the routing tree, and any par-

ticular uni-segment E in the tree, a local re�nement on E is de�ned to be the

operation to minimize the objective function Eqn. (2.7) by changing only the

wire width of E while keeping wire width assignment of W on other uni-segments

unchanged.

Theorem 4 Suppose that W� is an optimal wiresizing solution for an MSIT. If

a wiresizing solution W dominates W�, then the wiresizing solution obtained by

any local re�nement of W still dominates W�. Similarly, if W is dominated by

W�, then the wiresizing solution obtained by any local re�nement of W is still

dominated by W�.

Although the dominance property was proven based on the ancestor-descendant

relation in [29] for the SSWS problem, we proved that it not only holds for the

MSWS problem, but also independent of the ancestor-descendent relation in the

SSWS problem, or the left-right relation in the MSWS problem. Theorem 4 en-

ables e�cient computations of lower and upper bounds of the optimal wiresizing

solution for the MSWS problem by the greedy wiresizing algorithm GWSA [29]

originally developed for the SSWS problem. It applies the local re�nement oper-

ation iteratively to every uni-segment to compute the lower or the upper bound

of the optimal wiresizing solution. A much more powerful re�nement operation,

called the bundled re�nement operation, which may compute the lower or the up-

per bound for a number of uni-segments in a single operation, will be introduced

in Section 2.3.2.
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2.2.3 Extensions to Multi-layer Layout

Up to now, all properties are discussed under the assumption that all wires lay in

the same routing layer. In the real layout designs, interconnects are often routed

using more than one layer. Similar to the extension made for the SSWS problem

in [29], the MSWS formulation can be extended to the multi-layer cases. In the

multi-layer formulation, the LST separability and the dominance property still

hold. The LST monotone property holds within each layer, i.e., there always exist

an optimal wiresizing solution such that the wire widths decrease monotonically

rightward within each layer for each LST. Furthermore, even in the same layer, if

the allowable minimum and maximum wire widths are di�erent from segment to

segment due to obstacles in the routing area or reliability considerations, the LST

monotone property holds only within segments in the same layer such that these

segments have uniform allowable minimumand maximumwire widths. Moreover,

it is reasonable to assume that each segment always stays in the same layer and

its allowable minimum and maximum wire widths remains unchanged within the

segment. In this case, the local monotone property always holds. Note that all

discussions and the bundled re�nement property to be presented in Section 2.3,

same as the dominance property, hold for any layer assignment and any allowable

minimum or maximum wire width.

2.3 Properties of Optimal MSWS/E Solutions

Up to now, both theMSWS problem de�ned here and the SSWS problem studied

in [29, 73, 56, 55, 49, 82, 83] are only studied in the context of an a priori

�xed segment-division. Intuitively, a �ner segment-division may lead to better

wiresizing solution. However, it is di�cult to choose a proper segment-division.
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For the best accuracy, a very �ne, often uniform segment-division needs to be

chosen, which results in the high memory usage and computation time due to

the large number of uni-segments. We now investigate methods to obtain the

optimal wiresizing results using a non-uniform and coarser segment-division. A

novel contribution of our work is to introduce an MSWS formulation based on a

variable segment-division. The segment-division might be �ner in some regions

but coarser in others. Moreover, we begin with a coarser segment-division then

proceed to a �ner one. Theorem 5 to be presented in Section 2.3.2 justi�es this

strategy and leads to much more e�cient algorithms with the same accuracy

when compared with previous works. All properties in this section hold for both

the MSWS problem and the SSWS problem, but we shall concentrate on the

MSWS problem since the SSWS problem can be treated as a special case.

2.3.1 Segment-Division and Bundled-Segment

We assume that minLength is a constant determined by the user or the tech-

nology such that the wire widths are allowed to change every minLength long,

in other words, minLength is the minimum length that a uni-segment can be.

Given an MSIT, let E0 be the segment-division where each uni-segment is a seg-

ment in the MSIT, and EF the uniform segment-division where each uni-segment

is minLength long.3 Given two segment-divisions E and E 0, if each uni-segment

in E corresponds to a single or multiple uni-segments in E 0, we say that E 0 is a

re�nement of E. An segment-division E is valid only if E is a re�nement of E0

and the length of every uni-segment is a multiple of minLength. Clearly, among

all valid segment-divisions, E0 is coarsest and EF is �nest.

With these de�nitions, the variable segment-division multi-source wiresizing

3For the simplicity of presentation, we assume that the length of any segment in an MSIT

is a multiple of minLength.
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(MSWS/E) problem, can be formulated as follows:

Formulation 2 Given an MSIT, the minimum uni-segment length minLength,

and a set of possible wire width choices, the MSWS/E problem for delay mini-

mization is to determine both an segment-division E and a wiresizing solution W,

such that the weighted delay t(MSIT; E;W) is minimized.

De�nition 1 will be extended to consider the variable segment-division cases.

De�nition 3 Given two wiresizing solutionsW andW 0, we de�ne W 0 dominates

W if w0

E
� wE for every uni-segment E under the �nest segment-division EF .

The concept of bundled-segment will be de�ned in order to achieve a segment-

division as coarse as possible without the loss of wiresizing accuracy.

De�nition 4 Given an MSIT, a segment S and the �nest segment-division EF ,

let E1; � � � ; Ep be a maximal sequence of successive uni-segments in S under EF

such that all uni-segments in this sequence have the same wire width in the optimal

wiresizing solution under EF , We say that these uni-segments in the sequence form

a bundled-segment.

(b)   

(a)  

Figure 2.3: (a) The optimal wiresizing solution for segment S with twelve

uni-segments under the �nest segment-division EF . (b) Segment S contains only

three bundled-segments which de�ne a coarser segment-division with fewer com-

putation costs to achieve the wiresizing solution same as that obtained by EF .
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Figure 2.3 illustrates the concept of the bundled-segment by showing the opti-

mal wiresizing solution for segment S in an MSIT. It has twelve uni-segments un-

der the �nest segment-division EF (Figure 2.3.a), but just three bundled-segments

(Figure 2.3.b). Clearly, the segment-division de�ned by the bundled-segments

can achieve the wiresizing solution same as that obtained by the �nest segment-

division EF . For a long segment or a small minLength used in order to achieve a

better wiresizing solution, the number of uni-segments under the �nest segment-

division tends to be quite large while the number of bundled-segments in the

segment is always bounded by a really small constant, as given by the following

corollary of the local monotone property (Theorem 3).

Corollary 1 Each segment in an MSIT has at most r bundled-segments where

r is the number of possible wire width choices.

Obviously, using the segment-division de�ned by the bundled-segments can

achieve the required wiresizing solution for the lowest costs. An operation which

leads to the computation of the optimal width for a bundled-segment directly,

instead of treating it as a sequence of uni-segments under the �nest segment-

division EF , will be presented in the next subsection.

2.3.2 Bundled Re�nement Property

Let W be a wiresizing solution which dominates the optimal solution W�, and

E be a uni-segment under the current segment-division E and in segment S.

Without loss of generality, we assume Fl(S) � Fr(S) and treat E as two uni-

segments El and El during the bundled re�nement operation. El is the leftmost

part of E, with length minLength (recall minLength is the length for a uni-

segment in the �nest segment-division EF ); El is the remaining part of E. Let
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~wEl
be the locally optimized width for El based on the objective function Eqn.

(2.7) while keeping the width assignment of W on El and any uni-segment E0

other than E. Then, ~wEl
is regarded as a re�ned upper bound of the entire uni-

segment E (not only El). This operation is called a bundled re�nement operation

for the upper bound (BRU).

The rational for the BRU operation is as follows: if Fl(S) � Fr(S), in the

optimal solution W�, El is always wider than all uni-segments under EF in El

(according to the local monotone property). The re�nement of an upper bound of

w
�

El
is still an upper bound of it (according to the dominance property), thus also

gives an (possibly re�ned) upper bound of the optimal wire width assignments

for any uni-segment under EF in El. Note that E will not be divided into El and

El when performing the BRU operation on uni-segments other than E.

Similarly, the bundled re�nement operation for the lower bound (BRL) can be

de�ned for a wiresizing solution W dominated by W�. Again, assuming Fl(S) �

Fr(S), we treat E as two uni-segments Er and Er. Er is the rightmost part of E,

with length minLength; Er is the remaining part of E. Let ~wEr be the locally

optimized width for Er based on the objective function Eqn. (2.7) while keeping

the assignment of W on Er and any uni-segment E0 other than E. Then, ~wEr is

regarded as a re�ned lower bound of the entire uni-segment E.

Concerning the bundled re�nement operation, the bundled re�nement prop-

erty similar to the dominance property for the local re�nement operation will

be given as Theorem 5, which leads to the bundled wiresizing algorithm to be

presented in Section 2.4.1.

Theorem 5 Let W� be an optimal wiresizing solution under EF . If a wiresizing

solution W dominates W�, then the wiresizing solution obtained by any BRU

operation on W under any segment-division E still dominates W�. Similarly,
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if W is dominated by W�, then the wiresizing solution obtained by any BRL

operation on W under any segment-division E is still dominated by W�.

2.4 Optimal MSWS Algorithm

2.4.1 Bundled Wiresizing Algorithm

Based on the dominance property (Theorem 4), the greedy wiresizing algorithm

GWSA [29] originally developed for the SSWS problem is applicable to the MSWS

problem. Working on an a priori de�ned segment-division, GWSA can use local

re�nement operations to compute the lower or the upper bound of the optimal

wiresizing solution starting with the minimumor the maximumwire width assign-

ment, respectively. Based on the bundled re�nement property, a new algorithm,

bundled wiresizing algorithm (BWSA) (Table 2.3) is proposed to compute the

lower and upper bounds of the optimal wiresizing solution for an MSIT. BWSA

also starts with the minimum and maximum wire width assignments, but uses

bundled re�nement operations instead of local re�nement operations, and a grad-

ually re�ned segment-division rather than a �xed one. BWSA achieves the same

optimal lower and upper bounds for much less computation costs when compared

with GWSA.

A. Overview

Starting with the coarsest segment-division E0, we perform BRU and BRL iter-

atively through an MSIT. We assign the minimum width to all uni-segments (in

this case, each uni-segment is a segment), then traverse MSIT and perform BRL

operation on each uni-segment. This process is repeated until no improvement is

achieved on any uni-segment in the last round of traversal. Because the minimum
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wire width assignment is dominated by the optimal wiresizing solution, according

to the bundled re�nement property, the result wiresizing solution is still domi-

nated by the optimal wiresizing solution and is a lower bound of it. Similarly,

we assign the maximumwidth to all uni-segments and perform BRU operations,

obtain an upper bound of the optimal wiresizing solution. This is the �rst pass

of BWSA.

After each pass, we check the lower and upper bounds. If there is a gap

between the lower and upper bounds for an uni-segment (which is called a non-

convergent uni-segment) and it is still longer than the minimum uni-segment

length minLength, we divide it into two uni-segments of the almost equal length

(they may di�er by minLength in order to maintain a valid segment-division ),

and let each uni-segment inherit the lower and upper bounds from their parent.

After the re�nement of all non-convergent uni-segments, another pass to tighten

the lower and upper bounds is carried out by performing bundled re�nement

operations under the re�ned segment-division. Note that the bundled re�nement

is only needed for uni-segments who are just re�ned, because only these uni-

segments are not convergent.

This BWSA algorithm iterates through a number of passes until we either

have the identical lower and upper bounds for all uni-segments under current

segment-division (in this case we get an optimal wiresizing solution), or each

non-convergent uni-segment is minLength long. The pseudo-codes of the BWSA

algorithm are given in Tables 2.1-2.3.

B. Optimality

In order to discuss the optimality of the lower and upper bounds obtained by the

BWSA algorithm, we de�ne the following EF -tight lower and upper bounds.
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Function gBWSA_L/U(minLength; E;Wlower=Wupper)

W  Wlower=Wupper;

do

progress  false;

for each uni-segment E of E do

w BRL(minLength; E;Wlower; E)

or BRU(minLength; E;Wupper; E);

if w 6=W(E) then

progress true;

W(E) w;

end if

end for;

while progress = true;

return W;

end Function;

Table 2.1: gBWSA L/U: Given the minimumuni-segment length minLength, an

segment-division E, a lower/upper boundWlower=Wupper of the optimal wiresizing

solution, and a set of possible wire widths fW1, W2, � � �, Wrg, compute a tight

lower/upper bound using BRL or BRU.
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Function SBSR(minLength; E;Wlower;Wupper)

E 0  �;

for each uni-segment E of E do

if Wlower(E) 6=Wupper(E), and E is longer than minLength

then divide E into two uni-segments, E0 and E
00,

with (nearly) equal lengths;

Wlower(E
0) =Wlower(E

00) =Wlower(E);

Wupper(E
0) =Wupper(E

00) =Wupper(E);

E 0  E 0 + fE0
; E

00g;

else E 0  E 0 + fEg;

end if;

end for;

return E 0;

end Function;

Table 2.2: Selective Binary Segment-division Re�nement (SBSR): Given the min-

imum uni-segment length minLength, an segment-division E, a lower bound

and an upper bound of the optimal wiresizing solution, return a re�ned seg-

ment-division.
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Function BWSA(E0;minLength)

E 0  E0; Wlower  W1; Wupper  Wr;

do

E  E 0;

Wlower  gBWSA_L(minLength; E;Wlower);

Wupper  gBWSA_U(minLength; E;Wupper);

E 0  SBSR(minLength; E;Wlower;Wupper);

while E 6= E 0

return Wlower and Wupper;

end Function;

Table 2.3: Bundled Wiresizing Algorithm (BWSA) : Given the coarsest seg-

ment-division E0, the minimum uni-segment length minLength and a set of pos-

sible wire widths fW1;W2; � � � ;Wrg, return the EF -tight lower and upper bounds

of the optimal wiresizing solution.
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De�nition 5 If a wiresizing solution W dominates the optimal solution W� and

can not be further re�ned by any local re�nement operation under the �nest

segment-division EF , W is an EF -tight upper bound. Similarly, W is an EF -

tight lower bound if W is dominated by W� and can not be further re�ned by any

local re�nement operation under EF .

It is easy to �nd that the lower and upper bounds given by the GWSA algorithm

are EF -tight. Besides, it is worthwhile to mention that there may be more than

one EF -tight upper (or lower) bounds for an W
�. An experimental example of

non-unique EF -tight bounds will be given in Section 2.5.2.

With this de�nition, we proved the following important result concerning the

optimality of the BWSA algorithm.

Theorem 6 The lower and upper bounds provided by BWSA are EF -tight.

Basically, Theorem 6 suggests that the quality of the wiresizing solutions

obtained by the BWSA algorithm starting from the coarsest segment-division

is as good as those obtained by the GWSA algorithm using the �nest segment-

division EF .

C. Complexity

Recall that our MSWS/E problem aims to �nd the optimal wiresizing solution for

every wire which is minLength long. In order to achieve the required accuracy,

the �nest segment-division EF where each uni-segment isminLength long must be

used by GWSA, while BWSA can determine a proper, usually coarser, segment-

division during the wiresizing procedure. If we use minLength as the wire length

unit, the total wire length n is a natural metric to measure the problem size. We

proved the following Theorem 7.
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Theorem 7 Given an MSIT and r wire width choices, if the total wire length is

n when regarding minLength as the length unit, both GWSA and BWSA have

the worst-case complexity of O(n3 � r) for the MSWS/E problem.

It is worthwhile to emphasize that the �nal uni-segment produced by BWSA

is often much longer than minLength and BWSA runs much faster than GWSA

in the practice, which is supported by extensive experiments in Section 2.5.2 and

[15]. In fact, because BWSA runs much faster than GWSA and obtains the

lower and upper bounds same tight as those obtained by GWSA, we always use

BWSA instead of GWSA. Furthermore, we like to mention that due to the fact

that BWSA computes both lower and upper bounds of the optimal wiresizing

solution based on the bundled re�nement property, we can tell easily when the

optimal wire widths are achieved for those uni-segment that their lower and upper

bounds meet, so that we do not have to further re�ne the segment-division for

them. Similar segment-division re�nement scheme may not be used optimally

in other wiresizing methods [73, 56, 55, 82, 83, 49] until there is an easy way to

determine that the current wiresizing solution is the optimal wiresizing solution

or partial of it belongs to the optimal wiresizing solution.

2.4.2 Optimal Wiresizing Algorithm Using Bundled Re�nement

Given an MSIT, BWSA can be used to compute the EF -tight lower/upper bounds

of the optimal wiresizing solution. If the lower and upper bounds meet, which is

very likely in practice, we get the optimal wiresizing solution immediately. Oth-

erwise, the optimal solution shall be found between the lower and upper bounds.

Because of the LST separability and the LST monotone property, OWSA, orig-

inally developed for the SSWS problem in [29], can be used independently for

every LST with respect to the given wire width assignments for the SST. How-
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ever, since the separability in SST does not hold in general, the optimal wire

width assignments for non-convergent uni-segments in the SST will be found by

enumeration between the EF -tight lower and upper bounds and subject to the

local monotone property. Thus, the optimal wiresizing algorithm using bundled

re�nement (OWBR algorithm) has been developed, which works as the following:

1. Compute the EF -tight lower and upper bounds by BWSA;

2. Enumerate the wire width assignments for the SST between the EF -tight

lower and upper bounds and subject to the local monotone property;

3. Apply OWSA independently to each LST during the enumeration of wire

width assignments for the SST and subject to the EF -tight lower and upper

bounds.

Our experiments show that BWSA gives the convergent bounds on all uni-

segments in an MSIT for almost all cases. For those cases which have non-

convergent uni-segments, the percentage of non-convergent uni-segments is very

small. Moreover, the gap between the lower and upper bounds on each non-

convergent uni-segment is also very small (usually being one in our experiments).

Therefore, OWBR runs very fast in practice. Note that the OWBR algorithm

can be extended to the multi-layer case same as the extension of the OWSA

algorithm in [29]. Experimental results with multi-layer MSIT designs will be

presented in Section 2.5.

2.5 Experimental Results

We have implemented the OWBR algorithm in ANSI C for the Sun SPARC

station environment and tested our algorithm on multi-source nets extracted
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from the multi-layer layout of an Intel high-performance microprocessor. In this

section, we shall present both the comparison of di�erent wiresizing solutions,

the comparison between the BWSA algorithm and the GWSA algorithm and the

�delity study of the Elmore delay model versus the SPICE-computed delay to

justify our formulation based on the Elmore delay model.

The parameters used in our experiments are summarized in Table 2.4. These

parameters are based on the 0:5�m CMOS technology in North Carolina Micro-

electronic Center (MCNC) [54]. Since only parameters about the �rst and the

second metal layers (M1 and M2) are available, we only use layers M1 and M2

in our experiments. The wire width choices in each layer are fW , 2W , 3W , 4W ,

5Wg with W being the minimum allowable wire width in the layer. Note that

our algorithms are still valid if wire widths are not multiples of the minimum

width. The minimum uni-segment length minLength is set to be 10 �m. We

assume that the driver is an inverter, its p-type transistor is 105:9�m wide and

n-type 53:5�m wide. Its e�ective resistance is 156 
 based on SPICE simulation.

We model the driver as a resistor of this value during the wiresizing procedure.

In addition, the loading capacitance in every loading is set to be 3.720 fF . Note

that both our formulation and implementation can handle cases where di�erent

sources have di�erent driver resistances and di�erent sinks have di�erent loading

capacitances.

Metal Layer: M1 M2

Wire Resistance (
=2): 0.068 0.044

Wire Capacitance (area) (aF=�m2): 130.6 41.3

Fringing Capacitance (2 sides) (aF=�m): 161.9 150

Table 2.4: Parameters based on MCNC 0:5�m submicron CMOS technology.
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2.5.1 Comparison between Di�erent Wiresizing Solutions

We will report SPICE-computed delays instead of calculated Elmore delay values

in the comparison between di�erent wiresizing solutions. For the SPICE simula-

tion in this chapter, the driver is modeled by parameters given in [54] for SPICE

Level-3 MOSFET model, and every wire of minLength long (10 �m) by an RC

circuit. The use of SPICE simulation results not only shows the quality of our

MSWS solutions, but also veri�es the validity of our interconnect modeling and

the correctness of our MSWS problem formulation.

The test suite used for our algorithms comprises real multi-source nets pro-

vided by Intel [43]. These nets were extracted from the top-level oor-plan of

a high-performance microprocessor. Most pins of these nets can serve as both

sources and sinks at di�erent times, and almost all pairs between sources and

sinks (excluding feed-through pins) are timing critical. We use 1-Steiner tree

algorithm [46] to route these nets. Table 2.5 summarizes the routing trees for

these nets.

total pin number total segment number total wire length (�m)

net1 3 4 3600

net2 4 6 6600

net3 9 13 10070

net4 4 5 10570

net5 11 10 16980

net6 19 19 31980

Table 2.5: Routing trees for multi-source nets extracted from the layout for a

high-performance Intel microprocessor
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We applied our OWBR algorithm to these MSITs. First, we assume that all

wires in M2; then, we assume that all wires parallel to X-axis in M1, the rest in

M2. Let min width be the wiresizing solution with minimum wire width W ev-

erywhere, and opt msws the multi-source wiresizing solution given by our OWBR

algorithm. Also, let wire length denote the total wire length of a routing tree, and

normalized area denote the area ratio of wiresizing solution versus the min width

wiresizing solution, which is equivalent to the average wire width if the minimum

wire width W is scaled to 1. Both average delay and maximum delay are only

in terms of critical source-sink pairs. In these experiments, we assign �
ij = 1

for a critical source-sink pair and �
ij = 0 otherwise. Thus, the objective in Eqn.

(2.7) is equivalent to the average delay among critical source-sink pairs. Compar-

isons between di�erent wiresizing solutions are shown in Tables 2.6 and 2.7. In

terms of the average delay, which is the objective of our MSWS formulation, the

opt msws solutions consistently outperform the min width solutions. The delay

reduction is up to 23.5% and 12.6% for the single-layer case and the multi-layer

case, respectively. It is interesting to observe that although the average delay is

our objective, experimental results show that this formulation reduces the maxi-

mal delay substantially (only in one example, opt msws loses 0.69% in terms of

the maximum delay, but still wins in terms of the average delay). The maximum

delay reduction is up to 36.3% and 37.8% for the single-layer case and the multi-

layer case, respectively. Besides, the delay reduction for nets with larger span is

observed to be more signi�cant. It often happens in our experiments that the

optimal wiresizing solution for nets with fewer pins and shorter total wire lengths

is simply the minimum wire width solution. In general, the optimal wiresizing is

more e�ective for global nets with more pins and longer total wire lengths.
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Normalized Area Average Delay (ns) Maximum Delay (ns)

opt msws min width opt msws min width opt msws

net1 1.000 0.1198 0.1198(0.0%) 0.1224 0.1224 (0.0%)

net2 1.044 0.2004 0.1994(-0.50%) 0.2572 0.2567 (-0.2%)

net3 1.475 0.3504 0.3241(-7.5%) 0.5230 0.4025 (-23.0%)

net4 2.000 0.5007 0.3846(-23.2%) 0.5853 0.4873 (-16.7%)

net5 1.775 0.6375 0.5711(-10.4%) 0.9496 0.7635 (-19.6%)

net6 2.706 1.8968 1.4512(-23.5%) 3.4505 2.1979 (-36.3%)

Table 2.6: Multi-source wiresizing results on several nets in an Intel micropro-

cessor layout. All wires are assumed to be on layer M2.

Normalized Area Average Delay (ns) Maximum Delay (ns)

opt msws min width opt msws min width opt msws

net1 1.000 0.1198 0.1198(0.0%) 0.1224 0.1224 (0.0%)

net2 1.044 0.3250 0.3245(-0.15%) 0.3777 0.3803 (+0.69%)

net3 2.000 0.5336 0.4983(-6.61%) 0.8583 0.7853 (-8.51%)

net4 2.000 0.5514 0.5282(-4.54%) 0.8009 0.7000 (-12.6%)

net5 1.775 0.6445 0.5850(-9.23%) 0.9447 0.7623 (-19.3%)

net6 3.224 2.2752 1.9885(-12.6%) 4.3826 2.7238 (-37.8%)

Table 2.7: Multi-source wiresizing results on several nets in an Intel micropro-

cessor layout. We assume that all wires parallel to X-axis are on layer M1, the

rest on layer M2.
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2.5.2 Speed-up Using Variable Segment-Division

We applied both BWSA and GWSA algorithms to the test suite of Intel nets.

Because the time for BWSA to compute the EF -tight lower and upper bounds for

most nets in the test suite is too small to measure, we compared the total running

time. In Table 2.8, the BWSA-based algorithm is just OWBR, i.e., BWSA to

compute EF -tight lower and upper bounds, followed by enumerating for the SST

and OWSA for LSTs. The GWSA-based algorithm is just to replace BWSA by

GWSA in the OWBR scheme. The BWSA-based algorithm is observed to run

more than 100x faster than the GWSA-based algorithm.

It is worthwhile to mention that BWSA gives identical EF -tight lower and up-

per bounds for net3 while GWSA does not, which is also an example of existence

of multiple EF -tight bounds for the optimal solution as mentioned in Section

2.4.1. Also note that, in case of OWBR, the total running time is not dominated

by the time to compute EF -tight lower and upper bounds, one reason is that the

current implementation builds the data structure for the �nest segment-division

even if the bundled re�nement does not need it at all. Thus, the total running

time still can be further reduced in future implementation without building the

data structure for the �nest segment-division4.

2.5.3 Fidelity of the Elmore Delay Model

The concept of �delity for the Elmore delay model was introduced by Boese et al

in [4] for the routing tree topology optimization to measure if an optimal or near-

optimal solution selected according to the Elmore delay model is nearly optimal

according to the actual delay (e.g., computed using SPICE). We shall investigate

the �delity of the Elmore delay model for the optimal wiresizing problem, i.e., to

4It has been done in [18, 20].
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�nd out how good the solution given by our optimal wiresizing formulation based

on the Elmore delay model is in terms of the real delay.

We measure the �delity again on the test suite of Intel nets and assume all

wires in the M2 layer. Since the number of total wiresizing solutions is pro-

hibitively large to enumerate, we randomly generate 1,000 wiresizing solutions

for every MSIT. In a solution, a random wire width is assigned for every wire

minLength long (10�m). We obtain both the weighted average Elmore delay

and the weighted average 50% delay computed by SPICE for each solution and

then ranked the 1,000 solutions for each MSIT, using the technique similar to [4]:

�rst rank solutions according to their weighted Elmore delays, then rank them

according to their weighted SPICE-computed delay. The absolute di�erence be-

tween the two rankings of a wiresizing solution is its ranking di�erence and we

average ranking di�erence over 1,000 solutions for every MSIT. In order to know

how large the SPICE-computed delay di�erence may be with respect to the aver-

age ranking di�erence, delay di�erence is computed in the following way: Let the

average ranking di�erence is d. For a wiresizing solution whose SPICE-computed

delay ranking is i, we compute the relative di�erence between the (i+ d)-th and

i-th SPICE-computed delays, as well as that between the (i � d)-th and i-th

SPICE-computed delays. Between the two values, the one with the larger ab-

solute value is de�ned as the delay di�erence for the average ranking di�erence

d.

The average ranking di�erences and the associated average delay di�erences

are given in Table 2.9. Let's take net1 as an example to show how good the opti-

mal solution selected according to the Elmore delay model might be. The average

rank di�erence for 1,000 wiresizing solutions is 23.61. Thus, the optimal solution

selected according to the Elmore delay, on average, might be d23:61e away from
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net1 net2 net3 net4 net5 net6

GWSA-based algorithm (s) 0.07 8.18 172.37 15.67 38.10 227.92

BWSA-based algorithm (s) 0.07 0.15 0.37 0.37 0.97 3.37

Speedup factor 1 54.5 465.8 42.3 39.3 67.63

Table 2.8: Running time comparison between GWSA-based and BWSA-based

algorithms

Overall (1,000) Best-100 (Elmore Delay) Best-10 (Elmore Delay)

net Ranking Delay Ranking Delay Ranking Delay

Di�erence Di�erence Di�erence Di�erence Di�erence Di�erence

net1 23.61 0.1048% 11.36 0.0150% 2.800 0.0017%

net2 121.7 0.7223% 69.81 0.1007% 23.10 0.0173%

net3 53.50 0.3264% 33.31 0.1300% 15.40 0.0508%

net4 170.7 0.8517% 54.54 0.0410% 1.400 0.0490%

net5 38.52 0.1462% 14.52 0.0580% 0.900 0.0012%

net6 54.27 0.1812% 25.45 0.0286% 2.000 0.0026%

Table 2.9: Average di�erences in ranking and SPICE-computed delay for Intel

nets based on 0.5�m CMOS technology
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the top one in the ranking according to SPICE-computed delays. Since the rank-

ing di�erence of d23:61e accounts for only 0.1448% SPICE-computed delay di�er-

ence, on average, the optimal solution selected according to Elmore delay is only

0.1448% worse than the optimal one selected according to the SPICE-computed

delays, when delays of both solutions are measured by SPICE simulation. 5

Over the 1,000 random solutions for each net, the average ranking di�erences

are between 23.61 and 170.7, and average delay di�erences between 0.1648% and

0.8517%. In addition, we measure the average delay di�erence for the best-100

and best-10 wiresizing solutions according to the Elmore delay model for each

random solution set, respectively. It is interesting to �nd that the better the

wiresizing solutions according to the Elmore delay model, the less the average

delay di�erence they have. Taking net1 as an example, the average delay di�er-

ence is 0.1048% for the 1,000 solutions, but only 0.0150% for the best-100, and

even less, 0.0017% for the best-10. It implies that, in general, in the area near

the optimum in the solution space, the Elmore delay model has a even higher

�delity.

Based on data of the best-10 in every random solution set, the optimal wiresiz-

ing solution selected according to the Elmore delay model is less than 0.06% worse

than the optimal solution selected according to the SPICE-computed delay.6

Thus, we believe that the Elmore delay model has really high �delity for wire-

sizing optimization, i.e., the optimal solution selected according to the Elmore

delay model is also the optimal solution or nearly the optimal solution selected

5Note that the Elmore delay value of the optimal solution selected according to the Elmore

delay model is often quite di�erent from the SPICE-computed delay of the same solution, with

24% error for the optimal wiresizing solution for net1.
6We also enumerate the wiresizing solutions for net1 and net2 by assuming that each segment

in the routing tree has a uniform wire width. Even higher �delity is observed when compared

with this set of random wiresizing experiments. For these two nets, the Elmore delay model

gives the best-5 solutions same as those given by the SPICE-computed delay.
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according to the SPICE-computed delay. Note that the inductance is not taken

into consideration in our SPICE simulation, since the inductive e�ect is negligi-

ble under the current CMOS technology. The higher-order delay model used in

[56, 55] does not consider the inductance, either.

2.6 Conclusions and Future Work

The results in chapter have shown convincingly that proper sizing of the wire seg-

ments in multi-source nets can lead to signi�cant reduction in the interconnect

delay. We have also developed an e�cient wiresizing algorithm named BWSA

algorithm. It achieves the wiresizing solution same as the GWSA algorithm (orig-

inally developed for the single-source wire sizing problem[29], and extended to

the multi-source wire sizing problem in this work), but runs 100x time faster and

uses much less memory space. Compared to the minimum wire width solution,

the optimal wiresizing solution obtained by our algorithm reduces the average

delay by up to 23.5% and the maximum delay by up to 37.8%, respectively. It

takes several seconds to obtain the optimal wiresizing solution for the largest

example in our test suite extracted from a high-performance Intel microproces-

sor. In practice, the BWSA algorithm has been used for single-source wiresizing

[28, 29], simultaneous driver and wire sizing [26], simultaneous transistor and

interconnect sizing [20] and simultaneous bu�er and wire sizing [27].

Simultaneous driver and wire sizing for multi-source nets has been solved by

being posed as a CH-program [20], which will be presented in Chapter 4. Other

recent works on multi-source net optimization include the following: in [39], an

optimal shape function for a bi-directional wire is derived. A bi-directional wire

is like a wire segment in our SST. Similar to Theorem 3, the wire shape is shown

to be monotonic. In [48], an augmented RC-diameter (ARD) is proposed as a
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performance measure for MSITs, and a bu�er insertion algorithm is developed to

minimize the ARD.

In addition to weighted delay minimization, another wiresizing optimization

objective is to minimize the maximum delay in interconnects. If we assume the

single-source net and the �xed-value resistor model for the driver, approaches in

[72, 55, 6] are able to achieve the optimal continuous wiresizing solution, and the

approach in [49] is able to achieve the optimal discrete wiresizing solution. It is

worthwhile to mention that the approach in [6] is based on a Lagrangian relax-

ation procedure to iteratively apply the weighted delay minimizations (same as

that in [28, 29] and similar to our formulation). It adjusts the weight assignments

after each iteration until the optimal weight assignments are achieved to mini-

mize the maximum delay by using the weighted delay minimization. In order

to minimize the maximum delay for multi-source nets, the optimal continuous

solution might be achieved by extensions of approaches in [72, 55, 6]. However,

the optimal algorithm to obtain the discrete solution is still open. We have shown

experimentally that our weighted delay formulation could reduce the maximum

delay very well. It is worthwhile to �nd out whether an optimal algorithm exists.

The topologies of MSITs may a�ect the delay reductions that can be achieved

by the optimal wiresizing even though our OWBR algorithm is able to achieve

the optimal wiresizing solution for any MSIT topology. For single-source nets,

simultaneous tree construction and wiresizing has been explored very recently in

[50, 60]. Also, a min-cost min-diameter A-tree algorithm has been proposed [31]

for multi-source tree construction. However, it is still open how to combine the

routing tree construction and wiresizing to achieve the largest delay reduction for

multi-source nets. It will be an interesting direction for the future work.

In this chapter, the simple model is used for the interconnect capacitance: it
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is assumed that for a wire with width w and length l, its capacitance is given

by w � ca + cf with ca and cf being constants. The simple capacitance model

might not be true for the DSM designs where the coupling capacitance becomes

more signi�cant. We will present an accurate interconnect capacitance model in

Chapter 3, and then extend our wire sizing algorithm to consider the coupling

capacitance in Chapter 6.
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CHAPTER 3

A Simple and Practical 2 1/2-D Capacitance

Extraction Methodology

This chapter addresses interconnect capacitance extraction during interconnect

optimization. Our contributions include:

� We show how basic drivers in process technology (planarization and mini-

mummetal density requirements) actually simplify the extraction problem;

we do this by proposing and validating �ve \foundations" through detailed

experiments with a 3-D �eld solver on representative 0:50�m, 0:35�m and

0:18�m process parameters.

� We present a simple yet accurate 2 1/2-D extraction methodology directly

based on the foundations. This methodology has been productized and is

being shipped with the Cadence Silicon Ensemble 5.0 product for the timing

veri�cation purpose. The methodology is also able to extract capacitance

on y during interconnect design and optimization. Moreover, it can be

used for MCM/PCB designs.

We will use this capacitance extraction methodology, in other words, the 2 1/2-

D capacitance model, to study the interconnect sizing and spacing problem in

Chapter 6.
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The remainder of this chapter is organized as follows. Section 3.1 presents the

introduction to the interconnect capacitance extraction problem, and an overview

of this chapter. Section 3.2 uses 3-D numerical extractions based on representa-

tive 0.5 �m, 0.35 �m and 0.18 �m processes to justify these foundations. The

2 1/2-D RC extraction methodology, which is based on these foundations and

is used in Cadence Silicon Ensemble 5.0 product, is then described in Section

3.3; example structures are used to show the accuracy of the methodology. We

conclude in Section 3.4 that the 2 1/2-D extraction method proposed in chapter

is su�cient for delay calculation and estimation for performance-driver layout in

deep submicron designs.

3.1 Introduction

In deep-submicron VLSI, complex 3-dimensional interconnect structures pose

a di�cult challenge for parasitic capacitance extraction. Many extraction ap-

proaches exist, including 1-D, 2-D and 2 1/2-D analytic models [70, 2, 9, 69, 71,

11, 35, 1, 81] as well as 2-D and 3-D �eld solvers [66, 79, 76, 59, 42, 58]. These

techniques span a wide range of cost-accuracy regimes.

� 1-D analysis uses (per-unit length) total capacitance, equivalent to (per-

unit area) area capacitance and (per-unit length) edge capacitance when

some wire width is assumed.

� 2-D analysis uses (per-unit area) area capacitance and (per-unit length)

lateral+fringing capacitance, where geometries on neighboring layers are at

best probabilistically modeled.

� 2 1/2-D analysis (sometimes called \2-D, 3-Body" analysis) uses (per-unit

area) area capacitance and (per-unit length) lateral and fringing capaci-
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tances, where geometries on one or more neighboring layers are explicitly

modeled but then lumped additively into \above" and \below" corrections

to the coupling calculation.

� 3-D analysis uses numerical techniques (�nite-element as in [66] and An-

soft's products, or �nite-di�erence as in [79, 76] and Avant!'s Raphael)

to solve Laplace's equation for potential distribution, then applies Gauss's

theorem to yield charge distribution, �nally applies Q = [C]V to deter-

mine self- and mutual capacitances of all conductors. Boundary-element

numerical techniques [59] can exploit the atness and rectilinearity of IC

geometries. In addition, multipole algorithms [58] has been recently re-

ported.

However, an e�ective design ow requires a principled matching of the parasitic

extraction methodology to the actual requirements for accuracy and runtime.

Our discussion will focus on the di�cult task of post-routing capacitance ex-

traction during performance-driven layout design. Such an extraction must be

accurate: correlation with \�nal" veri�cation engines is needed for design con-

vergence. Such an extraction must also be fast: it may be performed dozens of

times on full-chip layout, and thousands of times on critical signal nets, during

the iterative loop (placement, routing, extraction, delay calculation, timing/noise

analysis) of layout design. Simple 1- and 2-D extraction may not su�ce in deep-

submicron design. First, wire aspect ratios (thickness divided by width) are

becoming larger for more advanced processes, so that lateral and fringe couplings

become much more signi�cant (where Cf is the fringe coupling in this chapter,

and Cx is the lateral coupling). Second, increased packing densities, lower sup-

ply voltages, and use of dynamic logic for performance optimization all lead to

much tighter signal integrity margins, so previously second-order details such as
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crossover and crossunder couplings must be modeled. At the same time, full 3-D

numerical extraction is di�cult to support during layout due to its time com-

plexity. For these reasons, the 2 1/2-D approach has been well-studied in recent

years [11, 3, 1].

Our �rst contribution lies in showing how basic drivers in process technology

(planarization and minimummetal density requirements) are actually making the

parasitic capacitance extraction problem easier, enabling a simple yet accurate 2

1/2-D methodology. Our second contribution is a simple yet accurate 2 1/2-D

extraction methodology [84] that has recently been developed and validated in

cooperation with major ASIC suppliers; this methodology has been productized

and is being shipped with the �rst release of the Cadence Silicon Ensemble (SE)

5.0 product.

Using a numerical 3-D �eld solver and leading-edge technology parameters,

we �rst establish the following \foundations".

1. Ground, and neighboring wires in the same layer have signi�cant shielding

e�ects. Thus, both must be considered for accurate modeling.

2. Coupling between wires on layer i� 1 and wires on layers i+1 is negligible

when the metal density on layer i exceeds a certain threshold.

3. During capacitance extraction for wires on layer i, layers i�2 can be treated

as ground planes with negligible error. There is no need to look beyond

layers i� 2.

4. Coupling analysis to wires in the same layer need only consider nearest

neighbors independently, with the widths of same-layer neighbor wires hav-

ing negligible e�ect on the coupling.
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5. The interaction of layer i � 1 in conjunction with layer i + 1 on layer i is

negligible; therefore, corrections for orthogonal crossovers and crossunders

can be performed independently.

These foundations imply that for a given victimwire on layer i, wires on layers

i�2 and i+2 can be treated as ground planes (with farther layers being ignored),

while nearest neighbor wires on layer i, as well as all crossover and crossunder

wires on layers i� 1 and i+ 1, must be considered.

The above foundations justify a simpli�ed 2 1/2-D extraction methodology,

and can be used to guide the development of analytical formulas for parasitic

capacitance. The Cadence Silicon Ensemble 5.0 product contains just such a

simpli�ed methodology, which has been developed and validated in cooperation

with Motorola and other ASIC suppliers. The methodology entails one-time use

of a 3-D �eld solver to determine the capacitance matrices for multiple predeter-

mined \patterns" (i.e., multi-layer interconnect structures) that vary in widths

and spacings of the victim on layer i, and widths and spacings of wires on

crossover/crossunder layers i � 1 and i + 1. Linearity assumptions allow sim-

ple derivation of coe�cients that capture per-unit length area, lateral and fringe

components of the parasitic capacitance, along with corrections for crossovers

and crossunders. In the actual post-routing extraction, a victim net's same-

layer neighbors, crossovers, and crossunders are extracted from the geometric

layout database, and total capacitance of the victim net is determined by sim-

ple pattern-matching and linear interpolation. Experiences of Cadence industrial

partners show that the methodology produces satisfactory results.
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3.2 Foundations

3.2.1 Preliminaries

A multilayer VLSI process has metal interconnects, or wires, on layers 1; 2; : : : ; k

(i.e., M1, M2, ..., Mk). Currently, there are k = 6 layers in leading-edge processes,

but k = 8 or more will be seen by the turn of the century. We call the multilayer

geometric structure of wires a pattern. We assume that wires in adjacent layers

are orthogonal, which is often true in layout designs. We use geometric param-

eters of maximum-density local interconnects in 0.50�m, 0.35�m and emerging

0.18�m processes (see Table 22 in NTRS'94 [77]), and normalize all dimensions

with respect to the minimum wire width in a given interconnect structure. The

following normalized dimensions are used: For 0.50�m processes, wire width =

1.0, wire thickness = 1.0, and dielectric height between adjacent layers = 1.5(see

Figure 3.1); for 0.35�m processes, wire width = 1.0, wire thickness = 1.5, and

dielectric height between adjacent layers = 1.5; for 0.18�m processes, wire width

= 1.0, wire thickness = 2.5, and dielectric height between adjacent layers = 3.0.1

1Let AR = thickness=width denote the aspect ratio for a wire. We see that higher AR

values are achieved in more advanced processes, and are deployed for better wiring density.

According to Table 22 in NTRS'94 [77], the expected value of AR is 1.5 for 0:35�m processes.

For such processes, the expected ratio between the wire thickness and the dielectric thicknesses

is 0:6�m : 1:0�m = 1 : 1:67. Compared with the AR = 1:5 case in our experiment using

the normalized wire thickness 1.5 and the normalized dielectric thickness 1.5, the Roadmap's

0:35�m process has a relatively thicker dielectric, perhaps to provide better isolation. Therefore,

our foundations concerning the coupling between di�erent layers can be safely extended to

the Roadmap's 0:35�m process. Furthermore, AR according to the Roadmap is generally

interpreted with respect to the minimum wire width. In real designs, smaller AR values often

apply due to non-minimum wire width on layers above M1 and possibly even including M1;

this again implies relatively less coupling between sidewalls and allows our foundations to be

safely extended.

Note that in more recent NTRS'97 [78], the AR becomes smaller (see Table 1.1): for example,

AR = 2:5 for 0.18�m process in NTRS'94, but it becomes 1:8 for the same generation of process

in NTRS'97. Nevertheless, the trend holds for both that the more advanced the process, the

higher the value of AR. In experiments of this chapter, we cover the range of AR from 1.0 to

2.5, which implies that the conclusion in this chapter can be safely extended for processes from

0:25�m process to 0:10�m process (with AR from 1:8 to 2:4) in NTRS'97.
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Let s be the edge-to-edge spacing between a wire (the victim) and its same-layer

neighboring wires (neighbors). We typically study the \extreme" cases of s = 1:0

and s =1, with the latter meaning that the neighbors are too far away to have

signi�cant coupling to the victim.

1.0 1.0

1.0

(a) (b)

layer i+2

layer i+1

layer i

1.5

 1.5

1.0

1.0

1.0

Figure 3.1: For the maximum-density local interconnect structure in 0.50�m

process, we assume (a) the cross-section view { the thickness is 1.0 for all wires,

and the height is 1.5 for all dielectrics (inter-layer spacings); (b) the top view {

all wire have width 1.0.

We use an industrial-strength multipole-accelerated 3-D �eld solver, Fastcap2

[58], to obtain coupling capacitances between multiple conductors in the form of

a capacitance matrix. Since we run Fastcap on normalized patterns in free space,

we obtain normalized capacitances as output. For example, if the minimum wire

width in a pattern is 0:36�m, a normalized capacitance of 100pF implies actual

capacitance of

100(pF ) � 0:36(�m=m) � �r = 0:1404fF

where we assume that the relative permittivity of SiO2 is �r = 3:9. We will report

only normalized values for all dimensions and capacitances (in units of pF), as

only the ratios between di�erent capacitance values are signi�cant to our study.

2Fastcap is a public-domain program available by anonymous ftp from rle-vlsi.mit.edu. It

is an element of several commercial products, e.g., from Quantic and Ansoft.
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3.2.2 Coupling between wires on layer i and wires on layer i� 2

Two experiments study coupling between wires on layers i and i � 2, as well as

e�ects of ground planes and same-layer neighboring wires. The pattern for the

�rst experiment has one wire (victim) on layer i and one wire on layer i� 2, but

no wires on layer i � 1 (see Figure 3.2). Let scenter be the horizontal distance

between the centers of the two wires. We shift the wire on layer i�2 and observe

the change of the ratio between Ci;i=Ci;i�2, where Ci;i is the total capacitance for

the victim, and Ci;i�2 the coupling between the two wires. We also study the two

cases where layer i� 3 is ground, and where there is no ground at all. Last, we

consider two possible spacings (s = 1:0;1) for the two same-layer neighbors of

the victim. All wires have length 20 and the ground is a 40� 40 plane. Table 3.1

shows the following for 0.18�m process:

� The ground has a strong shielding e�ect on Ci;i�2. In the case of no neigh-

bors and full overlap (scenter = 0), Ci;i�2=Ci;i = 28:4% when there is no

ground versus 16:3% when there is a bottom ground plane.

� Neighboring wires also have a signi�cant shielding e�ect on Ci;i�2. With two

neighbors at s = 1:0, scenter = 0 and a bottom ground present, Ci;i�2=Ci;i =

1:8% versus 16:3% when there are no neighbors.

� The parallel-plate capacitance from overlap of the victim on layer i and the

wire on layer i � 2 is not the dominant component in the coupling. From

full overlap (scenter = 0) to non-overlap (scenter = 1), relative changes in the

coupling capacitance are less than 2%.

59



Similar trends can be observed for 0.50�m and 0.35�m processes.

layer i

layer i-1

layer i-2

victim

neighbors

1.0

S center

Figure 3.2: Cross-section of a pattern in the �rst experiment of Section 2.2.

In practice, there is always at least one ground (e.g., the substrate), and

the likelihood of neighboring wires is high (see Footnote 3). Furthermore, it is

unlikely that there are no wires on layer i � 1. We study the e�ect of wires on

layer i� 1 using a pattern with one wire on layer i (the victim), one parallel and

fully-overlapped wire on layer i�2 (similar to scenter = 0 in the �rst experiment),

and a number of wires (crossunders) on layer i � 1 (see Figure 3.3). We vary

the number of crossunders and observe the change in both Ci;i and the ratio

Ci;i=Ci;i�2.

layer i

layer i-1

layer i-2

victim

crossunders ......

Figure 3.3: Cross-section for a pattern in the second experiment of Section 2.2.

Again, four possible combinations are studied: (i) layer i�3 is a bottom plane,

or there is no ground; and (ii) the victim has two same-layer neighbors at spacing

s = 1:0 or s = 1. All wires have length 20 and the ground is a 40 � 40 plane.

Crossunders on layer i � 1 are evenly distributed over the ground plane. The
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0:50�m;Ci;i=Ci;i�2

Scenter s =1 s = 1:0

with ground without ground with ground without ground

0.0 459.6/103.5 424.3/170.9 880/48 874/71

1.0 458.1/101.6 422.5/168.2 897/47 873/68

4.0 499.0/71.0 403.6/139.0 877/26 867/48

10.0 441.4/25.0 374.9/88.0 876/7 865/27

0:35�m;Ci;i=Ci;i�2

Scenter s =1 s = 1:0

with ground without ground with ground without ground

0.0 483.8/106.4 449.2/174.0 1063/44.22 1063/65.36

1.0 483.0/104.1 446.9/171.4 1063/43.14 1061/64.08

4.0 475.0/78.9 432.0/148.4 1058/26.29 1056/49.11

10.0 466.0/33.2 403.7/98.3 1057/8.98 1053/28.40

0:18�m;Ci;i=Ci;i�2

scenter s =1 s = 1:0

with ground w/o ground with ground w/o ground

0.0 486.6/79.49 458.4/130.1 1428/24.77 1424/37.96

1.0 486.5/78.78 451.9/127.4 1428/24.41 1424/37.63

4.0 484.6/71.70 454.8/123.1 1428/21.03 1424/36.91

10.0 479.4/46.96 446.5/100.4 1427/12.30 1424/24.40

Table 3.1: Ci;i=Ci;i�2, where Ci;i is total capacitance of the layer-i victim, and

Ci;i�2 is its coupling to the wire on layer i� 2.
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0:50�m;Ci;i=Ci;i�2

s =1 s = 1:0

with ground without ground with ground without ground

2x 484.8/95.98 457.7/165.7 881.9/50.03 880.0/75.03

4x 537.6/47.57 530.9/76.65 895.2/26.69 894.5/37.61

8x 622.2/6.066 621.9/10.5 924.4/4.59 924.9/6.51

12x 632.2/3.31 632.4/5.17 928.7/2.95 927.0/3.33

0:35�m;Ci;i=Ci;i�2

s =1 s = 1:0

with ground without ground with ground without ground

2x 534.9/66.37 511.3/120.5 1072/30.9 1070/47.9

4x 579.9/43.9 575.0/68.4 1083/22.21 1083/30.94

8x 654.2/8.85 654.2/16.6 1106/4.392 1105/7.09

12x 685.4/1.22 681.1/5.42 1117/0.209 1117/1.17

0:18�m;Ci;i=Ci;i�2

s =1 s = 1:0

with ground w/o ground with ground w/o ground

2x 534.5/48.45 521.5/82.3 1433/16.64 1427/25.25

4x 581.3/21.99 578.5/31.6 1437/9.185 1450/11.54

8x 622.2/3.47 622.5/6.86 1440/3.45 1457/2.67

12x 635.9/2.47 636.7/4.21 1443/2.43 1458/1.95

Table 3.2: Ci;i=Ci;i�2 values for the second experiment of Section 2.2.
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capacitance values are given in Table 3.2, where 2x - 12x indicates from 2 to 12

crossunders on layer i�1. Note that 12x corresponds to 30% of the area on layer

(i�1) being occupied.3 We observe that, in addition to the strong shielding e�ect

on Ci;i�2 due to the ground or same-layer neighbors, more crossunders on layer

i�1 imply less signi�cant Ci;i�2. For example, in 0.18�m process, when there are

twelve crossunders and a bottom ground, Ci;i�2=Ci;i = 0:4% with no neighbors

on layer i, and 0:2% with two neighbors on layer i. Given the minimum area

occupancy of metal layers in deep-submicron processes, the coupling between a

wire on layer i and a wire on layer i � 2 is not signi�cant. We conclude the

following from these two experiments:

Foundation 1 Ground, and neighboring wires on the same layer, have signi�-

cant shielding e�ects. Thus, both must be considered for accurate modeling.

Foundation 2 Coupling between wires in layer i + 1 and wires on layers i � 1

is negligible when the metal density on layer i exceeds a certain threshold.

These two foundations are further veri�ed below. Foundation 2 implies that

capacitance extraction can be simpli�ed by treating layer i�2, and symmetrically

layer i+ 2, as ground planes. We now verify this.

3.2.3 Coupling between wires on layers i� 2 and i

Three experiments show that layers i � 2 can be treated as ground planes for

wires on layer i. In the �rst experiment, there is one victim wire of length 20

3In deep-submicron processes (� 0:35�m) the minimum area occupancy of a metal layer is

typically set by the foundry to 30% for uniformity of etch rate or CMP planarization. Foundries

may specify certain shapes of dummy metal which are small enough so as to not hold much

charge during manufacturing (e.g., 2.5 �m by 2.5 �m). The key observation is that maximum

possible occupancy is 50%, even with the line-to-line spacing = 1.0. Thus, conductor structure

on adjacent orthogonal wiring layers is fairly predictable.
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on layer i and one crossunder of length 20 on layer i� 1. The real pattern (see

Figure 3.4) in practice has a number of wires on layer i�2, with layer i�3 acting

as a ground plane (or the substrate is a bottom ground plane). We assume that

wires on layer i� 2 are 40 units long. We also solve a model pattern by treating

layer i�2 as a 40�40 ground plane without looking beyond this layer (i.e., there

is no ground plane on layer i � 3). Our experiment varies the number (density)

of wires on layer i� 2 and compares Ci;i and Ci;i�1 for di�erent patterns. Ci;i is

again the total capacitance for the victim, and Ci;i�1 is the coupling between the

victim and the crossunder. In Table 3.3, 2x - 16x indicates from 2 to 16 wires

on layer i � 2 for the real pattern; GND indicates the model pattern. To take

0.18�m as an example, compared with the model pattern, Ci;i in cases 8x - 16x

di�ers by less than 0.7% when the victim has no neighbors (s =1), and by less

than 0.4% when it has two neighbors at spacing s = 1:0; the corresponding values

are 6.2% and 7.5% for Ci;i�1.

layer i

layer i-1

layer i-2

victim

crossunder

Figure 3.4: Cross-section of the real pattern in the �rst experiment of Section

2.3: the victim on layer i, one crossunder on layer i � 1 and a number of wires

on layer i� 2. Layer i� 3 is a ground plane, but is not shown in the �gure.

Due to the minimum area occupancy requirement, a more likely scenario has

a number of crossunders on layer i � 1 instead of a single crossunder. Our sec-

ond experiment in this section assumes that there is one victim on layer i, two

same-layer neighbors of the victim at spacing s = 1:0 or s = 1, and twelve

crossunders (u1; � � � ; u12) on layer i�1 (see Figure 3.5). All wires on layers i and

64



0:50�m;Ci;i=Ci;i�1 0:35�m;Ci;i=Ci;i�1 0:18�m;Ci;i=Ci;i�1

layer i � 2 s =1 s = 1:0 s =1 s = 1:0 s =1 s = 1:0

2x 482.2/77.6 883.4/35.4 495.8/102.1 1065/40.6 513.7/112.9 1431/31.93

4x 483.5/75.7 882.0/35.1 507.1/96.98 1066/39.33 519.5/112.0 1432/33.04

8x 491.7/74.4 885.4/34.2 551.7/96.68 1077/46.04 527.4/100.5 1430/27.64

12x 496.6/72.1 886.3/33.3 527.2/87.68 1072/38.42 529.5/99.17 1430/26.64

16x 498.1/71.0 886.3/33.0 529.7/86.15 1073/37.99 530.7/98.00 1433/27.83

GND 481.5/74.8 881.4/35.6 507.7/95.49 1068/38.99 531.0/95.46 1428/30.55

Table 3.3: Ci;i=Ci;i�1, where Ci;i is the total capacitance of the victim, and Ci;i�1

the coupling between the victim and the crossunder.

(a) (b)

layer i

layer i-1

layer i-2

crossunders

ground plane

crossunder u1
on layer i-1

crossunder u12
on layer i-1

...    ...

victim

Figure 3.5: Layer i� 2 is modeled as a ground plane: (a) the cross-section view;

(b) the top view.
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i� 1 have length 20. The real pattern has twelve wires uniformly distributed in

a 40 � 40 plane on layer i� 2 and a 40 � 40 ground on layer i� 3; the wires on

layer i � 2 have length 40. There are two model patterns: the model1 pattern

treats layer i� 2 as a 40 � 40 ground, and the model2 pattern treats layer i� 2

as free space. We compare the total capacitance Ci;i for the victim wire and the

coupling Ci;u1; � � � ; Ci;u12 between the victim wire and crossunders u1; � � � ; u12.

Tables 3.4-3.6 show that

(i) Both model1 and model2 can produce similar values for total capacitance

Ci;i and couplings Ci;l1 and Ci;r1 between the victim and its same-layer neighbors,

when compared with the real pattern.

(ii) Model1 is better than model2 when used to solve the coupling between the

victim and crossunders. For 0.18�m process, compared with the real pattern, the

largest deviations for Ci;u1, � � �, Ci;u12 are 10.7% when s = 1, and 14.0% when

s = 1:0 for model1; corresponding values for model2 are 45% and 72%. Further-

more, for couplings Ci;u3, � � � ; Ci;u10 between the victim and crossunders not at

the boundary (see Figure 3.5), the deviation is at most 4.2% for model1. Since

most crossunders in real designs are not at the boundary, the error introduced

by model1 is negligible.

(iii) Even when same-layer neighbors have their strongest shielding at min-

imum spacing s = 1:0, the coupling mainly due to crossunders accounts for

1�(621:2+626:0)=1447 = 13:8% of the total capacitance Ci;i for 0.18�m process.

More signi�cant percentages are observed for representative 0.50�m and 0.35�m

geometric parameters.. Therefore, coupling between the victim and crossunders

must be considered in the capacitance extraction. We conclude that when there

is no layer i+1 and beyond, layer i� 2 can be viewed as a ground for computing

total capacitances for wires on layer i, or coupling capacitances between wires on

layer i and wires on layer i� 1.
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The third experiment of this section considers the impact of wires on layers

i + 1 and beyond. To have a geometric structure that still can be solved by

Fastcap4, we assume one victim on layer i with two same-layer neighbors at

spacing s = 1:0 or 1, six crossunders on layer i � 1 and six crossovers on layer

i + 1. All wires on layer i have length 10, and all crossunders/crossovers have

length 20. Crossunders/crossovers are uniformly distributed in 20 � 20 planes

such that the area occupancy for layers i � 1 is 30%. In the real pattern, there

are six wires distributed in a 20�20 plane on layer i+2 or i�2. These wires have

length 20; layers i � 2 also have area occupancy of 30%. In the model pattern,

layers i� 2 are 20� 20 ground planes.

Tables 3.7-3.9 report total capacitance Ci;i for the victim, same-layer cou-

plings Ci;l1 and Ci;r1 between the victim and its neighbors, crossunder couplings

Ci;u1; � � � ; Ci;u6 between the victim and crossunders u1; � � � ; u6, and crossover cou-

plings Ci;o1, � � �, Ci;o6 between the victim and crossovers o1; � � � ; o6. The di�erence

between the model pattern and the real pattern is less than 0.5% for Ci;i, Ci;l1

and Ci;r1, and about 5% for crossunder or crossover coupling if the crossunder or

crossover is not at the boundary in our pattern. We conclude:

Foundation 3 During capacitance extraction for wires on layer i, layers i � 2

can be treated as ground planes with negligible error. There is no need to look

beyond layers i� 2.

4Shorter wires mean that the coupling due to the front and end sidewalls, as well as wire

corners, is more signi�cant. Our experiments use wires that are as long as possible, subject to

Fastcap being run on a workstation with 400MB RAM.
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3.2.4 Coupling between wires on the same layer

To isolate the impact of crossunders and crossovers, we study the following two

patterns. The optimistic pattern treats layers i � 1 as ground planes; this em-

phasizes the shielding e�ect due to crossunders and crossovers and in general

leads to underestimation of couplings between wires on layer i. The pessimistic

pattern treats layers i � 2 as ground planes without any wires on layers i � 1;

this removes all shielding e�ects due to crossunders and crossovers and in general

leads to overestimation of couplings between wires on layer i.

We �rst study the coupling between a victim wire and its non-immediate

neighbors. We use a 40 � 40 ground plane and wires of length 20. Orthogonally

with respect to the optimistic and the pessimistic patterns, we again have a real

pattern and a model pattern. The real pattern has �ve wires on layer i, l2, l1,

victim, r1 and r2 at spacing s = 1:0. The model pattern has only the immediate

neighbors (l1 and r1) of the victim. According to Table 3.10, di�erences in the

total capacitance for the victim between the real pattern and the model pattern

are less than 0.2%. The error associated with the model pattern for the coupling

between the victim and its immediate neighbors is approximately 3%. Therefore,

coupling analysis to wires in the same layer need only consider nearest neighbors.

We also study interactions between the victim's two neighbors as well as the

e�ect of neighbor widths. We consider only the worst case interaction, given

by the pessimistic pattern with wires (victim and two neighbors) on layer i and

ground planes on layers i � 2. We use a 40 � 40 ground plane and wires of

length 10. To observe the interaction between the victim's neighbors, we vary

the spacings between the victim and its neighbors, and measure the change in

total capacitance of the victim. Let Cl�r be the total capacitance of the victim

when the left and right neighbors are distance l and r away (l = 1 or r = 1

74



0.50�m real model

Ci;i Ci;l2 Ci;l1 Ci;r1 Ci;r2 Ci;i Ci;l1 Ci;r1

optimistic 909.3 23.27 316.2 312.0 26.89 906.4 327.9 327.6

pessimistic 886.6 32.66 332.9 327.2 37.24 881.9 349.9 351.5

0.35�m real model

Ci;i Ci;l2 Ci;l1 Ci;r1 Ci;r2 Ci;i Ci;l1 Ci;r1

optimistic 1120.0 0.8489 377.8 380.3 0.8425 1115 386.9 386.5

pessimistic 891.9 27.33 328.0 324.1 31.7 888.5 341.1 341.5

0.18�m real model

Ci;i Ci;l2 Ci;l1 Ci;r1 Ci;r2 Ci;i Ci;l1 Ci;r1

optimistic 1451 32.04 602.2 602.1 31.67 1449 602.2 619.9

pessimistic 1436 54.9 616.6 616.5 54.86 1436 639.8 639.6

Table 3.10: Total capacitance Ci;i of the victim wire on layer i and couplings

Ci;l2; Ci;l1; Ci;r1 and Ci;r2 between the victim wire and its neighbors (l2; l1; r1 and

r2).
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capacitance Ci;i

neighbor widths 1 2 3 4

0.50�m 471.5 471.8 471.7 471.4

0.35�m 568.4 568.8 568.6 568.5

0.18�m 764.5 765.2 764.9 764.4

Table 3.12: Total capacitances Ci;i for the victim in case of di�erent neighbor

widths.

indicates no left or right neighbor). Simulation and derived results are given in

Table 3.11. The derived values are based on formula Cl�r = (Cl�l + Cr�r)=2.

Since di�erences between the simulated and derived values are often less than

1.0%, we see that couplings on opposite sides can be considered independently.

To assess the e�ect of neighbor widths, we assume that the victim has a �xed

width of 1.0, and that two neighbors (at spacing 1.0) have identical widths. We

vary the widths of the neighbors and observe the change in total capacitance

of the victim (see Table 3.12). Since the maximum variation is less than 0.2%,

widths of neighbors can be ignored. We summarize the experiments of this section

by:

Foundation 4 Coupling analysis to wires in the same layer need only consider

nearest neighbors independently, with the widths of same-layer neighbor wires

having negligible e�ect on the coupling.

3.2.5 Coupling between wires on layer i and wires on layers i� 1

To study the interaction between crossunder coupling and the crossover coupling,

we �rst observe the impact of the crossover coupling on the crossunder coupling.
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We assume that layer i has twelve wires i1, � � �, i12, i.e., area occupancy of

30%, and that layer i� 1 has one wire (crossunder) and same-layer neighbors at

spacings s = 1:0.5 We solve one pattern which treats layer i+1 as a ground plane

(full crossing), which models the greatest possible e�ect due to crossovers, and a

second pattern which treats layer i+ 2 as a ground plane without any wires on

layers i + 1 (no crossing), which models no e�ect due to crossovers. Again, we

use a 40 � 40 ground plane and wires of length 20.

We compute the crossunder coupling between wires on layer i and the central

wire on layer i�1 (see Table 3.13). The di�erence between the two extreme cases

is less than 6% (excluding cases at the boundary). Recall that the total crossunder

and crossover coupling accounts for about one third of total capacitance for a

victim; hence, the crossunder coupling can be computed independently without

considering crossovers while introducing an error of at most 2% for the victim's

total capacitance. Due to the symmetry between crossunders and crossovers, we

have:

Foundation 5 The joint interaction of layers i� 1 and i+ 1 on layer i is neg-

ligible; therefore, corrections for orthogonal crossovers and crossunders can be

performed independently.

3.3 2 1/2-D Methodology

The above foundations justify a simpli�ed yet accurate 2 1/2-D extraction method-

ology. The Cadence Silicon Ensemble 5.0 product contains just such a method-

ology [84]. For a victim wire on layer i, it looks into a neighborhood structure

5We note that a good experiment setting here should have wires of certain density on layer

i, which leads to alleviated coupling between crossovers and crossunders and is a more realistic

case.
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which contains layers i � 2 as ground planes, all same-layer immediate neigh-

bors, all crossunders on layer i � 1, and all crossovers on layer i + 1. Rather

than running 3-D �eld solver each time, capacitance components are generated

based on predetermined capacitance coe�cients and then added up to obtain

the lumped capacitance for the victim. Lateral, area and fringe capacitance co-

e�cients are predetermined for di�erent widths and spacings for the victim on

layer i. Crossover and crossunder correction capacitances are predetermined for

di�erent wire widths and spacings in both crossing layers i�1 and layer i. In this

section, we �rst present methods to generate capacitance coe�cients by using 3-D

simulation on predetermined patterns, then discuss the Cadence 2 1/2-D method

to compute the lumped capacitance from capacitance coe�cients. The method-

ology is developed and validated in cooperation with Motorola and other ASIC

suppliers. Examples are also given to show the accuracy of the methodology.

3.3.1 Capacitance Component Generation

We assume the following:

� the substrate is a ground plane for layer i only if i = 1 or i = 2;

� each of layer i+ 2 and layer i� 2, if it exists, is a ground plane (resp. the

top and bottom ground planes), and hence no couplings to layers beyond

them need be considered; and

� if there is no layer i + 2, then there is no top ground plane (the substrate

or layer i� 2 is the bottom ground plane).

For 3-D simulation, ground planes should be large enough to cover wires on layers

i and i� 1. In addition, we assume all wires have length l.
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3.3.1.1 Lateral, Area and Fringe Capacitances

In addition to the bottom ground and the possible top ground, we assume a

pattern with three wires (victim and neighbors) on layer i (see Figure 3.6) and

no wires on layer i�1. It is used to generate lateral, area and fringe capacitances

for width w and spacing s, where lateral capacitance is the coupling between

sidewalls of the victim and sidewalls of its neighbors, area capacitance is the

coupling between grounds and the top/bottom sides of the victim, and fringe

capacitance is the coupling between grounds and sidewalls of the victim.

layer i

victim

neighbors

S

W

S

Figure 3.6: The geometric structure on layer i for lateral, area and fringe capac-

itance generation.

3-D simulation by FastCap is used to solve the pattern. Let the total ca-

pacitance for the victim be Cself , and coupling capacitance between it and its

neighbors be Cc1 and Cc2
6. Then, the lateral capacitance coe�cient Cl, de�ned

as the lateral capacitance per-length and per-side, is given by

Cl = (Cc1 + Cc2)=(2 � l) (3.1)

The remaining part Cself � (Cc1 + Cc2) is assumed to be the area and fringe

capacitances. It needs to be separated into two parts and there are many ways

to do it. One way is to run the above simulation with another width w
0 for the

victim, and C
0

self
, C 0

c1 and C
0

c2 are obtained. The following equations are used to

6In theory, Cc1 = Cc2. But numeric roundo� may cause slight di�erence.
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separate the area and fringe components:

Cself � (Cc1 + Cc2) = 2 � l � Ca + 2 � (l + w) � Cf (3.2)

C
0

self
� (C 0

c1 + C
0

c2) = 2 � l � Ca + 2 � (l + w
0) �Cf (3.3)

where Ca is the area capacitance coe�cient, de�ned as the area capacitance

per-length and per-side, and Cf is the fringe capacitance coe�cient, de�ned as

the fringe capacitance per-length and per-side. Coe�cients Ca and Cf can be

computed by solving Equations (2) and (3) simultaneously.

3.3.1.2 Crossover and Crossunder Correction Capacitances

According to Foundation 5, crossover and crossunder correction capacitances

(Cover and Cunder) can be generated independently. We simulate two patterns

in order to compute Cover. First, we run 3-D simulation by FastCap on the pat-

tern in Figure 3.7(a). In addition to the bottom ground and the possible top

ground, there are three wires on layer i and three wires on layer i+ 1. Wires on

layer i have width w and spacing s. Crossovers on layer i+1 have width wc and

spacing sc. In general, crossover correction capacitance is a function of w; s;wc

and sc. We obtain the total capacitance Cself for the central wire (the victim)

on layer i.

Then, we run FastCap on the pattern in Figure 3.7(b). Di�erence from the

pattern in Figure 3.7(a), it has only two wires on layer i+1. We obtain the total

capacitance C 0

self
for the victim. Finally, crossover correction capacitance Cover

is given by

Cover = (Cself � C
0

self
)=4 (3.4)

The division is necessary since Cover is de�ned for each corner, and added to the
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(b)

W

S

Sc
Wc

(a)

W

S

Sc
Wc

victim

Figure 3.7: The geometric structure on layers i and i+1 for crossover correction

capacitance generation.

lumped capacitance for the victim corner by corner as shown in Table 3.14. The

crossunder correction capacitance Cunder can be generated similarly.

victim wire 1L2

S2

S1

L1

wire 2

L

Sc

Wc

wire 3

wire 4

Figure 3.8: An example for 2 1/2-D capacitance analysis.

3.3.2 Algorithm for 2 1/2-D Analysis

A typical situation that can occur in gate-array and standard-cell digital IC

designs is shown in Figure 3.8. The victimwire on layer i is being analyzed. Wire1

and wire2 are same-layer neighbors and wire3 and wire4 are crossovers. We �rst

obtain geometric parameters from the layout database, including width w for the

victim, e�ective lengths7 and spacings, < l1; s1 > and < l2; s2 >, for neighbors

wire1 and wire2, and the width and spacing, < wc; sc >, for every crossover

7The e�ective length of a neighbor for a victim is length of the parallel part of both wires.
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and crossunder (only the width and spacing for the crossover wire3 are shown in

this Figure). This information is then used to calculate the capacitance for the

victim as given in Table 3.14. In this table, the look up range is the minimum

spacing between the victim and its neighbor when the coupling between them is

negligible. Furthermore, linear interpolation is used to compute values between

di�erent widths in the look-up table, and linear interpolation on 1=spacing is used

to compute values between di�erent spacings in the look-up table. Therefore, at

least two widths and at least two spacing for each width should be pre-analyzed

and stored in the look-up table. If only two spacings are used for a width, one

should be the look up range. Moreover, linear extrapolation is used for widths

and spacings that exceed values given in the look-up table. Closed-form formulas

which are more sophisticated than our linear interpolation and extrapolation are

were presented in [11, 1]. Those formulas can also be used here. However, in

gate-array and standard-cell digital IC designs, choices of widths and spacings

are usually limited. Therefore, a look-up table with a reasonable size can be

su�cient with limited using of interpolation and extrapolation. It was shown by

real designs that our linear interpolation and extrapolation produces satisfactory

results.

3.3.3 Examples with 2 1/2-D analysis

Two nets were extracted from real designs and their lumped capacitances were

computed based on the 2 1/2-D methodology. We also separated the two nets

into a number of small sections and used 3-D simulator FastCap to solve all the

relevant geometries for such sections. Capacitances from di�erent sections were

then added up. We compared results from two methods in Table 3.15. The errors

are 0.54% for the smaller net and 3.33% for the larger one. Moreover, our method
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Begin 2 1/2-D analysis

For any given victim wire segment of width w and length l

Let the lumped capacitance for the victim be Cself = 0

For each side of length l

Find out all the same-layer neighbors within look up range

Let their e�ective lengths be li and spacing si

For each neighbor

Lookup lateral, area and fringe capacitance coe�cients

(Cl; Ca and Cf ) for si and w

Cself = Cself + (Cl + Ca + Cf) � li

For any crossover of width wc

Get the next crossover and determine spacing sc

Lookup the crossover correction capacitance Cover for w; si; wc; sc

Cself = Cself + Cover

For each side of a crossunder of width wc

Determine spacing sc to the neighboring crossunder in the side

Lookup the crossunder correction capacitance Cunder for w; si; wc; sc

Cself = Cself + Cunder

For each side of width w

Find out all the same-layer neighbors within look up range

Let their e�ective lengths be li and spacing si

For each neighbor

Lookup lateral and fringe capacitance coe�cients

(Cl and Cf) for si and w

Cself = Cself + (Cl + Cf) � li

End

Table 3.14: Algorithm for 2 1/2-D analysis.

85



2 1/2-D analysis 3-D simulation error

smaller net 6.53552 6.5713 -0.54%

larger net 3152.42 3261.17 -3.33%

Table 3.15: Comparison between 2 1/2-D analysis and 3-D simulation

has been validated in cooperation with Motorola and other ASIC suppliers by

comparing extracted values with measured values.

A software tool has been developed to automate the coe�cient generation.

The input to this program consists of thicknesses8, permissible widths and spac-

ings for wires on every metal layer, and thickness and e�ective permittivity for

the dielectric between adjacent metal layers. The tool automatically generates

capacitance coe�cients based on 3-D simulation and writes out a LEF �le con-

taining all capacitance coe�cients.

The extraction methodology can be used for MCM and PCB designs as well.

In Table 3.16, we report the capacitance coe�cients computed for the MMS

MCM technology that is available through the MCM Interconnect Designer's

Access Service from Information Science Institute. There are one power plane

and one ground plane to sandwich each pair of routing planes. The wires are 4�m

thick, and are 12�m and 21.5�m away from the power plane and ground plane,

respectively. In the following, we compute the capacitance value for a 38�m-wide

line with two 19�m-wide lines at spacings of 31�m and 56�m, respectively. We

assume that all lines are 1cm long, and obtain a capacitance value of 2.265pF

using capacitance coe�cients in Table 3.16. The capacitance value given by

FastCap is 2.300pF. The di�erence between two values is less than 2%.

8It is possible to have di�erent wire thicknesses in a metal layer.
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width(�m) space(�m) ca(fF=�m) cf(fF=�m) cx(fF=�m)

31 0.42 0.51 0.22

19 43 0.43 0.59 0.11

56 0.43 0.65 0.06

31 0.82 0.48 0.26

38 43 0.82 0.57 0.14

56 0.83 0.63 0.07

Table 3.16: Capacitance coe�cients for a MCM technology. ca, cf and cx are

unit-length area, fringe and lateral capacitances, respectively.

3.4 Conclusions

We have addressed post-routing capacitance extraction as it is typically required

during performance-driven layout. The context of our methodology would be

any standard deep-submicron ASIC design ow, e.g., with a back-end block im-

plementation loop consisting of (1) (incremental) placement, (2) (incremental)

global and detailed routing, (3) parasitic extraction, (4) delay calculation and

timing/noise analysis (5) driver, bu�er and routing topology/wirewidth opti-

mization, and (6) netlist engineering change. It can be also used for MCM/PCB

designs.

We have validated �ve \foundations" that allow simpli�cation of the capaci-

tance extraction problem for multilayer interconnects. We have also described a

simple yet accurate 2 1/2-D extraction methodology, now implemented in a com-

mercial cell-based layout tool. We showed that this methodology gives results

that are very close (within a few percent) to measured silicon and 3-D numeri-

cal simulation. In Chapter 6, we will use this 2 1/2-D extraction methodology,
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in other words, the 2 1/2-D capacitance model to study the interconnect sizing

and spacing problem with consideration of coupling capacitance between multiple

nets.
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CHAPTER 4

Theory and Algorithm for Local-Re�nement

Based Optimization

The local re�nement (LR) operation is an optimization technique for solving

multi-variable optimization problems with complex objective functions. It was

�rst introduced in [29] to solve the single-source wire sizing problem using itera-

tive LR operations. In Chapter 2, the algorithm was extended to the multi-source

wire sizing problem. Furthermore, the bundled re�nement operation, which is

also called bundled-LR operation, was proposed to replace the LR operation and

obtain a speedup of up to 100x. We may refer the algorithms using the LR

or bundled-LR operations as LR-based optimization algorithm. The e�ective-

ness and e�ciency of LR-based optimization lead us to study in this chapter the

following problem: can we use the LR-based algorithm to solve other problems?

Our contributions in this chapter include:

� We formulate three classes of optimization problems: the simple, monoton-

ically constrained, and bounded CH-programs. The simple CH-program

contains the single-source and multi-source wire sizing problems, and is a

subset of the monotonically constrained CH-program. In turn, the mono-

tonically constrained CH-program is a subset of the bounded CH-program.

� We generalize the concept of the LR operation, and introduce the concepts
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of the pseudo-LR operation and the extended-LR operation. We then reveal

the dominance property (Theorem 8) under the LR operation for the simple

CH-program, as well as the general dominance property (Theorem 9) under

the pseudo-LR operation for the monotonically constrained CH-program

and under the extended-LR operation for the bounded CH-program.

� Based on the dominance property and the general dominance property we

propose a very e�cient polynomial-time algorithm, using di�erent types

of LR operations to compute tight lower and upper bounds of the exact

solution to any CH-program.

Note that the dominance property in [29] and Chapter 2 is applicable only to

the single-source and multi-source wire sizing problem, respectively. The domi-

nance property to be presented is applicable to a class of optimization problems,

the simple CH-program that includes the single-source and multi-source wire siz-

ing problems. Nevertheless, the general dominance property is applicable to even

larger classes of optimization problems.

The remainder of the chapter is organized as follows: We formulate three

classes of CH-programs in Section 4.1, and present their properties in Section 4.2.

We propose a polynomial-time bound-computation algorithm in Section 4.3, and

compare the algorithm for CH-programs with the coordinate-descent algorithm

for the posynomial program in Section 4.4. We will apply the formulations and

algorithm of CH-programs to solve the simultaneous device sizing, and wire sizing

and spacing problems under accurate models for device delay and interconnect

coupling capacitance in Chapters 5 and 6. Results in this chapter have been

presented in conference papers [18, 20, 19], and a journal paper [25].
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4.1 Formulations of CH-functions

We �rst de�ne the CH-function (Cong-He function)1 as a function of a positive

vector X = fxi j xi � 0; i = 1; � � � ; ng with the following form:

f(X) =
X
p�0

X
q�0

nX
i=1

nX
j=1;j 6=i

(
ap;q;i;j(X)

x

p

i

) � (bp;q;i;j(X) � x
q

j
) (4.1)

where coe�cients ap;q;i;j(X) and bp;q;i;j(X), as well as exponents p and q, are

positive.

Depending on the coe�cient ap;q;i;j(X) and bp;q;i;j(X), we de�ne the following

three types of CH-functions:

De�nition 6 (simple CH-function) Eqn. (4.1) is a simple CH-function if

coe�cients ap;q;i;j and bp;q;i;j are constants.

The concept of simple CH-function was �rst introduced in [18, 20]. It was shown

that many previous works on device and interconnect sizing problems, including

the single-source and multi-source wire sizing problems [29, 16], continuous wire

sizing problem [8], and simultaneous driver and wire sizing problem [26], use

simple CH-functions as objective functions.

In some applications however, coe�cients ap;q;i;j(X) and bp;q;i;j(X) may vary

as functions depending onX. For two vectorsX and X0, we say that X dominates

X0 (denoted by X � X0) if xi � x
0

i
for i = 1; � � � ; n. We then de�ne the following

monotonically constrained CH-function:

De�nition 7 (monotonically constrained CH-function) Eqn. (4.1) is a

monotonically constrained CH-function, if it satis�es the following monotonic

1CH-function was called CH-posynomial in [20, 19]. We renamed it to show that it is not,

in general, a posynomial.
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constraints: for any vector X0 � X, (i)
ap;q;i;j (X

0)

x
0p

i

� ap;q;i;j(X)

x
p

i

and ap;q;i;j(X
0) �

ap;q;i;j(X); (ii) bp;q;i;j(X
0) � x

0
q

j
� bp;q;i;j(X) � x

q

j
and bp;q;i;j(X

0) � bp;q;i;j(X).

The monotonically constrained CH-function was de�ned di�erently (and called

bounded-variation CH-posynomial2) in [19], where we say (i) ap;q;i;j is a function

depending only on xi. With respect to an increase of xi,
ap;q;i;j (xi)

x
p

i

monotonically

decreases and ap;q;i;j(xi) monotonically increases; (ii) bp;q;i;j is a function depend-

ing only on xj. With respect to an increase of xj, bp;q;i;j(xj) � x
q

j monotonically

increases and bp;q;i;j(xj) monotonically decreases. It is easy to see that De�nition

7 subsumes the old de�nition and covers a wider class of functions, because now

each coe�cient may vary as a function of all variables in X, instead of a single

variable in [19].

We �nally remove the monotonic constraints for the CH-function by formu-

lating the following bounded CH-function:

De�nition 8 (bounded CH-function) Eqn. (4.1) is a bounded CH-function,

if its coe�cients are bounded: for any p; q; i and j, there exist positive constant

a
L

p;q;i;j
, aU

p;q;i;j
, bL

p;q;i;j
and bU

p;q;i;j
, such that aL

p;q;i;j
� ap;q;i;j(X) � a

U

p;q;i;j
and bL

p;q;i;j
�

bp;q;i;j(X) � b
U

p;q;i;j
.

Clearly, the simple CH-function is a subset of the monotonically constrained

CH-function, which in turn is a subset of the bounded CH-function (see Figure

4.1). In addition, the simple CH-function is a subset of the posynomial. A

posynomial [36] is a function of a positive vector X having the form g(X) =

P
m

i=1 ui(X) with

ui(X) = cix
ai1

1 x

ai2

2 � � �x
ain

n
; i = 1; 2; � � � ;m (4.2)

2We saved the name \bounded" for the type of CH-function de�ned in De�nition 8, which

was called the general CH-posynomial in [19].
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where the exponents aij are real numbers and the coe�cients ci are positive. For

example,

f(x1; x2; x3) = x

1=2
1 + 1=x2 + x3 (4.3)

is a simple CH-function as well as a posynomial. However,

f(x1; x2; x3) = x
2
1 � x2 �

1

x3

(4.4)

is a posynomial but not a simple CH-function. On the other hand, the mono-

tonically constrained and bounded CH-functions may be no longer a posynomial.

For example,

f(x1; x2) =
1

lnx1
� x21 +

x2

x1

; x1 > 3 (4.5)

is neither a simple CH-function nor a posynomial. However, one can easily ver-

ify that it is a monotonically constrained CH-function by treating 1
lnx1

as the

coe�cient function for x21.

bounded
CH-function

monotonically-constrained
CH-function

simple 
CH-function

Figure 4.1: The simple CH-function is a subset of the monotonically constrained

CH-function, which is in turn a subset of the bounded CH-function.

4.2 Properties for CH-programs

We de�ne the CH-program as an optimization problem to minimize a CH-function

subject to L � X � U (i.e., li � xi � ui for i = 1; � � � ; n). It may be a sim-
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ple, monotonically constrained or bounded CH-program depending on whether

its objective function is a simple, monotonically constrained or bounded CH-

function. We will introduce the dominance property for the simple and mono-

tonically constrained CH-programs, as well as the general dominance property

for the monotonically constrained and bounded CH-programs.

4.2.1 Dominance Property

We �rst de�ne the following local re�nement operation:

De�nition 9 (local re�nement operation) Given a function f(X) and a so-

lution vector (or simply, a solution) X0, the local re�nement operation for any

particular variable xi is to minimize f(X) by only varying xi while keeping all

values of other xj(j 6= i) in X0 �xed.

Such an operation is also called an LR operation in short. The resulting solution

vector is called the local re�nement of X0 (with respect to xi).

Furthermore, we de�ne

g(X) =
nX
i=1

nX
j=1

Ai(xi) �Bj(xj) (4.6)

where Ai(xi) is a function depending only on xi, and it decreases with respect

to an increase of xi; Bj(xj) is a function depending only on xj, and it increases

with respect to an increase of xj. We may prove the following Lemma 2:

Lemma 2 Let X� an exact solution to minimize g(X) (Eqn. (4.6)). For any

solution X0 of f(X), if X0 dominates X�, any local re�nement of X0 leads to a

solution that still dominates X�. Similarly, if X0 is dominated by X�, any local

re�nement of X0 leads to a solution that is still dominated by X�.

94



Proof:

With respect to any particular xi and Eqn. (4.6), we de�ne the following:

�(X� fxig) =
nX

j=1;j 6=i

nX
k=1;k 6=i

Aj(xj) �Bk(xk) (4.7)

Then, the objective function (4.6) can be written as the following for xi:

g(X; i) =
nX

j=1;j 6=i

Ai(xi) �Bj(xj) +
nX

j=1;j 6=i

Aj(xj) �Bi(xi)

+ �(X� fxig) (4.8)

Let X� be the exact solution to minimize Eqn. (4.6), and ~xi be the local

optimum of xi with respect to a particular solutionX
0. According to the de�nition

of the LR operation, we have:

nX
j=1;j 6=i

Ai(~xi) �Bj(x
0

j
) +

nX
j=1;j 6=i

Aj(x
0

j
) �Bi(~xi) + �(X0 � fxig)

�
nX

j=1;j 6=i

Ai(x
�

i
) �Bj(x

0

j
) +

nX
j=1;j 6=i

Aj(x
0

j
) �Bi(x

�

i
) + �(X0 � fxig) (4.9)

where x�
i
is the value for xi in the exact solution X�. Because x�

i
must be the

local optimum for xi with respect to X�, we have:

nX
j=1;j 6=i

Ai(x
�

i
) �Bj(x

�

j
) +

nX
j=1;j 6=i

+Aj(x
�

j
) �Bi(x

�

i
) + �(X0 � fxig)

�
nX

j=1;j 6=i

Ai(~xi) �Bj(x
�

j
) +

nX
j=1;j 6=i

+Aj(x
�

j
) �Bi(~xi) + �(X0 � fxig) (4.10)

Summing up (4.9) and (4.10), we obtain:

nX
j=1;j 6=i

(Aj(x
0

j
)�Aj(x

�

j
)) � (Bi(~xi)�Bi(x

�

i
))

+
nX

j=1;j 6=i

(Bj(x
0

j
) �Bj(x

�

j
)) � (Ai(~xi)�Ai(x

�

i
))

� 0 (4.11)
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When X0 dominates X� (i.e., X0 � X�), according to the de�nition of Eqn.

(4.6), we have the following:

Aj(x
0

j
) �Aj(x

�

j
) � 0 (4.12)

Bj(x
0

j
)�Bj(x

�

j
) � 0; (4.13)

and

Ai(x
0

i
)�Ai(x

�

i
) � 0; (4.14)

Bi(x
0

i
)�Bi(x

�

i
) � 0: (4.15)

For the purpose of contraction, we assume that the dominance property does not

hold so that ~xi < x
�

i
. Then, according to de�nition of Eqn. (4.6), we have

Ai(~xi)�Ai(x
�

i
) > 0; (4.16)

Bi(~xi)�Bi(x
�

i
) < 0: (4.17)

Without loss of generality, we assume that for at least one j, the strict inequality

holds for either Eqn. (4.12) or (4.13)3, then,

nX
j=1;j 6=i

(Aj(x
0

j
)�Aj(x

�

j
)) � (Bi(~xi) �Bi(x

�

i
))

+
nX

j=1;j 6=i

(Bj(x
0

j
)�Bj(x

�

j
)) � (Ai(~xi)�Ai(x

�

i
))

> 0 (4.18)

holds, which is a contraction to Eqn. (4.11). Therefore, the dominance property

holds for X0 � X�. The dominance property can be proved symmetrically for

X0 � X�. 2

Because the simple CH-function is a subset of Eqn. (4.6), we have the follow-

ing dominance property based on Lemma 2:4

3Otherwise, x0i is the local optimal value for variable xi, Theorem 1 still holds.
4Nevertheless, Lemma 2 also reveals that the dominance property holds for the mono-

tonically constrained CH-program when coe�cients are functions of single variables, like the
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Theorem 8 (Dominance Property) Let f(X) be a simple CH-function, and

X� an exact solution to minimize f(X). For any solution X0 of f(X), if X0

dominates X�, any local re�nement of X0 leads to a solution that still dominates

X�. Similarly, if X0 is dominated by X�, any local re�nement of X0 leads to a

solution that is still dominated by X�.

The dominance property under the LR operation was �rst introduced for the

single-source wire sizing problem [29], and was extended to the multi-source wire

sizing problem [16]. In [20], it was revealed that the dominance property holds

for all simple CH-programs. It was also shown that both wire sizing problems

[29, 16], the simultaneous driver/bu�er and wire sizing problem, and simultaneous

transistor and interconnect sizing problem are all simple CH-programs if simple

device and capacitance models are used. Therefore, the dominance property holds

for these problems and enables an LR-based algorithm, which uses iterative LR

operations to compute optimal sizes for both devices and wires.5

When coe�cients for variable xi, like the case of simple CH-program, are all

constants, the LR operation of xi is a single-variable posynomial program that

can be solved very e�ciently.6 The LR operation for other CH-programs may be

less e�cient, however. First, it might be no longer a posynomial program. An

bounded-variation CH-program de�ned in [19]. The dominance property, however, may not

hold for the new de�ned monotonically constrained CH-program when coe�cients are func-

tions of solution vector X.
5The SDWS algorithm for simultaneous driver and wire sizing problem in [26] is di�erent

from and less e�cient than the LR-based algorithm in [20] because mathematic package Maple

is invoked iteratively to compute the driver size..
6 According to [36], a posynomial program is the following minimization problem:

min g0(X) subject to gk(X) � 1

k = 1; 2; � � � ; p and X > 0

where each gk (k = 0; 1; 2; � � � ; p) is a posynomial function. In the case of LR operation of xi for

a simple CH-program, the local optimum is also a global optimum no matter whether xi has

continuous or discrete value. More detailed discussion of posynomial programs can be found in

Section 4.4.
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example is the LR operation of x1 to minimize Eqn. (4.5), where a logarithm

function is involved. Second, when a coe�cient varies depending on a table rather

than a closed-form formula, we may have to enumerate all possible values for xi

in order to �nd out its local optimal value (an example is given in Section 6.2.1).

The usage of the LR operation is also limited by the fact that the dominance

property under the LR operation generally does not hold for a monotonically

constrained or bounded CH-program. To overcome these limitations, we intro-

duce the pseudo-LR and extended-LR operations, then show a general dominance

property.

4.2.2 General Dominance Property

The pseudo-LR and extended-LR operations (in short, the PLR and ELR oper-

ations) are de�ned as the following:

De�nition 10 (pseudo-LR operation) Given a CH-function f(X) and a so-

lution vector X0, the pseudo-LR operation for variable xi with respect to X0 is an

LR operation using constant coe�cients ap;q;i;j(X
0) and bp;q;i;j(X

0) when solving

the \local-optimal" xi for any p; q; i and j.

That is, we �x the coe�cients under the current solution when performing an

PLR operation. The PLR and LR operations are same for a simple CH-program,

but may produce di�erent results for a monotonically constrained CH-program.

De�nition 11 (extended-LR operation) Given a CH-function f(X) and a

solution X0, the extended-LR operation for a particular variable xi in X0 is the

LR operation using the following coe�cients for any p; q, j 6= i, and k 6= i:

(i) When X0 � X�, we replace ap;q;ij(X
0) and ap;q;k;j(X

0) by a
U

p;q;i;j
and a

L

p;q;k;j
,

and replace bp;q;j;i(X
0) and bp;q;k;j(X

0) by bL
p;q;j;i

and b
U

p;q;j;k
.
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(ii) When X0 � X�, we replace ap;q;ij(X
0) and ap;q;k;j(X

0) by a
L

p;q;i;j
and a

U

p;q;k;j
,

and replace bp;q;j;i(X
0) and bp;q;k;j(X

0) by bU
p;q;j;i

and b
L

p;q;j;k
.

We call the solution given by the PLR or ELR operation as the pseudo- or

extended-local re�nement of X0, respectively. Note that the lower and upper

bounds are not unique for coe�cient functions. The de�nition of the ELR oper-

ation is applicable to any valid lower and upper bounds.

According to these de�nitions, even though coe�cients are functions of the

variable vector X in the monotonically constrained or bounded CH-program,

coe�cients during each PLR or ELR operation are still treated as constants.

Therefore, the PLR or ELR operation for a monotonically constrained or bounded

CH-program again becomes a single-variable posynomial program that can be

solved very e�ciently, exactly as the LR operation for a simple CH-program. We

will illustrate the PLR and ELR operations using the following CH-function:

f(x1; x2) =
a1(x1; x2)

x1

� (b2(x1; x2) � x
2
2) (4.19)

+
a2(x1; x2)

x2

� (b1(x1; x2) � x1);

The pseudo-local re�nement of x1 with respect to X0 = fx01; x
0

2g is

~xPLR1 =

vuuta1(x
0

1; x
0

2) � (b2(x
0

1; x
0

2) � x
03
2 )

a2(x
0

1; x
0

2) � b1(x
0

1; x
0

2)
: (4.20)

If we assume that a1(x1; x2) 2 [aL1 ; a
U

1 ], a2(x1; x2) 2 [aL2 ; a
U

2 ], b1(x1; x2) 2 [bL1 ; b
U

1 ]

and b2(x1; x2) 2 [b
L

2 ; b
U

2 ]. When fx01; x
0

2g is dominated by exact solution fx�1; x
�

2g,

the extended-local re�nement of x1 concerning fx
0

1; x
0

2g is

~xELR1 =

vuuta
L

1 � (b
L

2 � x
03
2 )

a
U

2 � b
U

1

: (4.21)

Even though we assume continuous variables in this example, our de�nition

for the PLR and ELR operations (as well as the LR operation) applies to both
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continuous and discrete variables. We may prove the following theorem concern-

ing the PLR and ELR operations:

Theorem 9 (General Dominance Property) Let X� an exact solution to

minimize a CH-function f(X).

(i) When f(X) is a monotonically constrained CH-function, for any solution X0

of f(X), if X0 dominates X�, any pseudo-local re�nement of X0 leads to a solution

that still dominates X�; if X0 is dominated by X�, any pseudo-local re�nement of

X0 leads to a solution that is still dominated by X�.

(ii) When f(X) is a bounded CH-function, for any solution X0 of f(X), if X0

dominates X�, any extended-local re�nement of X0 leads to a solution that still

dominates X�; if X0 is dominated by X�, any extended-local re�nement of X0

leads to a solution that is still dominated by X�.

We will prove the general dominance property �rst under the PLR operation

for the monotonically constrained CH-program, then under the ELR operation

for the bounded CH-program.

A: Proof under PLR operation for Monotonically-Constrained CH-

program:

With respect to any particular x
p

i (p > 0), we de�ne the following:

	p(X; i) =
X
q�0

nX
j=1;j 6=i

(
aq;p;j;i(X)

x

q

j

) � bq;p;j;i; (4.22)

�p(X; i) =
X
q�0

nX
j=1;j 6=i

ap;q;i;j(X) � (bp;q;i;j(X) � x
q

j
); (4.23)

We also de�ne

�(X; i) =
X
q�0

X
r�0

nX
j=1;j 6=i

nX
k=1;k 6=j 6=i

(
aqr;jk(X)

x

q

j

) � (bqr;jk(X) � x
r

k
)

+ 	0(X; i) + �0(X; i): (4.24)
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Then, the objective function (4.1) can be written as the following for xi:

f(X; i) =
X
p>0

f	p(X; i) � x
p

i
+ �p(X; i) �

1

x

p

i

g+�(X; i) (4.25)

where �(X; i) is de�ned in Eqn. (4.24).

For any two solutions X and X0 to a monotonically constrained CH-program,

if X is dominated by X0, one is easy to verify that:

	p(X; i) � 	p(X
0
; i) (4.26)

�p(X; i) � �p(X
0
; i) (4.27)

Let X� be the exact solution to minimize Eqn. (4.1), and ~xi be the pseudo-

local optimum of xi with respect to a solution X0. According to the de�nition of

the PLR operation, we have:

X
p>0

(	p(X
0
; i) � ~xp

i
+ �p(X

0
; i) �

1

~xp
i

) + �(X0
; i)

�
X
p>0

(	p(X
0
; i) � x�

i

p + �p(X
0
; i) �

1

x
�

i

p
) + �(X0

; i) (4.28)

where x�
i
is the value for xi in the exact solution X�. Because x�

i
must be the

local optimum (as well as the pseudo-local optimum) for xi with respect to X�,

we have:

X
p>0

(	p(X
�
; i) � x�

i

p + �p(X
�
; i) �

1

x
�

i

p
) + �(X�

; i)

�
X
p>0

(	p(X
�
; i) � ~xp

i
+ �p(X

�
; i) �

1

~xp
i

) + �(X�
; i) (4.29)

Summing up (4.28) and (4.29), we obtain:

X
p>0

f	p(X
0
; i) � 	p(X

�
; i)g � (~xpi � x

�p

i )

+
X
p>0

f�p(X
0
; i) � �p(X

�
; i)g � (

1

~xp
i

�
1

x

�p

i

)

=
X
p>0

ff	p(X
0
; i) � 	p(X

�
; i) +

�p(X
�
; i) � �p(X

0
; i)

~x
p

i � x
�p

i

g � (~xp
i
� x

�p

i
)g

� 0 (4.30)
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IfX� is dominated byX0, according to Eqn. (4.26) and (4.27), we have 	p(X
�
; i) �

	p(X
0
; i) and �p(X

�
; i) � �p(X

0
; i). We know that ~xp

i
� x

�p

i
� 0, and therefore

~xi � x
�

i
� 0, i.e. X� is still dominated by the pseudo-local re�nement of X0.

Similarly, if X� dominates X0, then 	p(X
�
; i) � 	p(X

0
; i), �p(X

�
; i) � �p(X

0
; i),

and ~xi � x
�

i
� 0, therefore, X� still dominates the pseudo-local re�nement of X0.

B. Proof under ELR Operation for Bounded CH-program:

Let X� be the exact solution to minimize Eqn. (4.1). According to Eqn. (4.22),

(4.23) and (4.24), we have the following with respect to X�:

	p(X
�
; i) =

X
q�0

nX
j=1;j 6=i

(
aq;p;j;i(X

�)

x

�q

j

) � bq;p;j;i(X
�); (4.31)

�p(X
�
; i) =

X
q�0

nX
j=1;j 6=i

ap;q;i;j(X
�) � (bp;q;i;j(X

�) � x�q
j
); (4.32)

�(X�
; i) =

X
q�0

X
r�0

nX
j=1;j 6=i

nX
k=1;k 6=j 6=i

(
aq;r;j;k(X

�)

x

�q

j

) � (bq;r;j;k(X
�) � x�r

k
)

+
X
q�0

nX
j=1;j 6=i

a0;q;i;j(X
�) � (b0;q;i;j(X

�) � xqj)

+
X
p�0

nX
j=1;j 6=i

ap;0;j;i(X
�)

x

p

j

� bp;0;j;i(X
�) (4.33)

We emphasize that all coe�cients are those with respect to X�.

In addition, for a solutionX0 dominatingX�, we de�ne the following according

to the de�nition of the ELR operation:

	0

p
(X0

; i) =
X
q�0

nX
j=1;j 6=i

(
a
L

q;p;j;i

x

�q

j

) � bL
q;p;j;i

(4.34)

�0

p
(X0

; i) =
X
q�0

nX
j=1;j 6=i

a
U

p;q;i;j
� (bU

p;q;i;j
� xqj) (4.35)

�0(X0
; i) =

X
q�0

X
r�0

nX
j=1;j 6=i

nX
k=1;k 6=j 6=i

(
a
L

q;r;j;k

x

q

j

) � (bU
q;r;j;k

� xr
k
)
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+
X
q�0

nX
j=1;j 6=i

a0;q;i;j(X
0) � (b0;q;i;j(X

0) � xq
j
)

+
X
p�0

nX
j=1;j 6=i

ap;0;j;i(X
0)

x

p

j

� bp;0;j;i(X
0) (4.36)

One can easily verify that

	p(X
�
; i) � 	0

p
(X0

; i) (4.37)

�p(X
�
; i) � �0

p
(X0

; i) (4.38)

Let ~xi be the extended local optimum for xi with respect to X0. We have:

X
p>0

(	0

p
(X0

; i) � ~xpi + �0

p
(X0

; i) �
1

~x
p

i

) + �0(X0
; i)

�
X
p>0

(	0

p
(X0

; i) � x�
i

p + �0

p
(X0

; i) �
1

x
�

i

p
) + �0(X0

; i) (4.39)

where x�
i
is the value for xi in the exact solution X�.

Because x�
i
must be the local optimum of xi with respect to X�, and Eqn.

(4.31)-(4.33) are de�ned with respect to X�, we have:

X
p>0

(	p(X
�
; i) � x�

i

p + �p(X
�
; i) �

1

x
�

i

p
) + �(X�

; i)

�
X
p>0

(	p(X
�
; i) � ~xpi + �p(X

�
; i) �

1

~x
p

i

) + �(X�
; i) (4.40)

Summing up (4.39) and (4.40), we obtain:
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Because X� is dominated by X0, using Eqn. (4.37) and (4.38), we know that

~xp
i
�x�p

i
� 0, and therefore ~xi�x

�

i
� 0, i.e. X� is still dominated by the extended

local re�nement of X0.

The case when a solution X0 is dominated byX� can be proved symmetrically.

2

Note that the simple CH-program is a subset of the monotonically constrained

CH-program, and the PLR operation is same as the LR operation in the case of

simple CH-program, Theorem 2 also shows that the dominance property holds

under the LR operation for the simple CH-program.

4.3 Local-Re�nement based Algorithm

Again, let X� be an exact solution to a CH-program. We say that a solution X

is the lower bound of X� if X is dominated by X�, and X is an upper bound of

X� if X dominates X�. Theorems 1 and 2 enable an algorithm based on di�erent

types of LR operations to compute a set of lower and upper bounds for X�.

Bound-Computation Algorithm

1. Initialize lower and upper bounds;

2. If lower and upper bounds do not meet

3. Perform ELR operation on every xi of the lower bound iteratively;

4. Perform ELR operation on every xi of the upper bound iteratively;

5. Goto 2 if there is any improvement in 3 and 4;

6. Return ELR-tight lower and upper bounds.

Table 4.1: Bound-computation algorithm using the ELR operation

Because the bounded CH-program is the most general case, we use the ELR
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operation to illustrate the bound-computation algorithm (see Table 4.1). Starting

with the initial lower and upper bounds (L and U), the algorithm carries out

interleaved passes of lower- and upper-bound computations. A pass of lower-

bound computation will perform an ELR operation on every xi of a lower bound

X in an arbitrary order. Because X is dominated by X�, its extended-local

re�nement becomes closer to X� but is still a lower bound. Similarly, a pass of

upper bound computation will perform an ELR operation on every xi of an upper

bound X. The iteration of passes is stopped when the lower and upper bounds

meet for every xi, or both bounds are ELR-tight. We say that a lower or upper

bound is ELR-tight if it can not be improved by any ELR operation.7 Although

the ELR operation may use any valid lower and upper bounds for coe�cients

according to De�nition 11, in general, the closer the lower and upper bounds for

coe�cients, the smaller the gap between the resulting ELR-tight lower and upper

bounds. Because reducing the size of the solution space may narrow the range

for coe�cients, lower- and upper-bound computations are carried out alternately.

The algorithm guarantees that within the resulting ELR-tight lower and upper

bounds, there would exist an exact solution to the bounded CH-program.

For a simple or monotonically constrained CH-program, we may replace the

ELR operation in Table 4.1 by the LR or PLR operation, respectively. Then,

the algorithm computes the LR-tight or PLR-tight lower and upper bounds,

where a lower or upper bound of an exact solution is LR-tight or PLR-tight if

it can not be improved by any LR or PLR operation. In essence, the bound-

computation algorithm generalizes the greedy wiresizing algorithm GWSA that

7Even though the lower and upper bounds are ELR-tight, there may still be a gap between

them. We say that the computation for a variable xi is convergent if its lower and upper

bounds are identical. The ELR operation does not guarantee the convergence for all variables.

We de�ne the convergence rate as the percent of variables that has identical lower and upper

bounds. Both average gap among all variables and convergence rate will be presented for our

experiments later on in Sections 5.3 and 6.3.
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has been used for computing LR-tight lower and upper bounds for the exact wire

sizing solution under �xed ca and cf in [29, 16]. When the exact solution has the

monotone property like those for the single-source and multi-source wire sizing

problems (see Chapter 2), the bundled re�nement operation, which is also called

the bundled-LR (BLR) operation [14], can be used to speed up the LR, PLR

or ELR operation. We also use the LR-based algorithm to refer to the bound-

computation algorithm, where LR, in general, refers to the LR, PLR, ELR and

BLR operations.

The LR-based algorithm has the same worst-case complexity when using dif-

ferent types of LR operations. Let r be the average number of the possible values

for variables xi(i = f1; � � � ; ng) 2 X when all variables xi have discrete values.

Because each pass of the lower- and upper-bound computation at least changes

the value of one variable to narrow the solution space by at least one unit, the

worst-case number of passes is �(r � n). In addition, each pass has at most 2n

LR operations. Therefore, the bound-computation algorithm needs �(r � n2) LR

operations. We observed in our experiments that the total number of LR opera-

tions is much smaller than �(r � n2) and is empirically linear with respect to the

number of variables.

4.4 Comparison with Posynomial Program

In order to better appreciate the implications of Theorems 8 and 9, we compare

the CH-programs with the posynomial program (de�ned in Footnote 6). When

every variable is of continuous value, the posynomial program has the impor-

tant property that the local optimum is unique, and therefore is also the global

optimum. The posynomial program plays an important role in the device and

wire sizing works. In [38], the transistor sizing problem was �rst formulated as
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a posynomial program and solved by a sensitivity-based method. Later on, the

posynomial program formulation was used for transistor sizing [75], wire sizing

[74] and simultaneous gate and wire sizing [55], and was solved by being trans-

formed into the convex program.8 Note that optimality of these solutions depends

on the assumption that the local optimum is unique. The assumption holds for

the continuous sizing formulation and simple models for the interconnect capac-

itance and device delay, but may be not true for the discrete sizing formulation

and more general models for the interconnect capacitance and device delay.

Our LR-based algorithm is similar to the coordinate descent approach [53] for

the posynomial program. The approach iteratively optimizes the value for each

variable (i.e., coordinate) while keeping the values for the rest of the variables

�xed.9 Because the local optimum is unique for the posynomial program regard-

ing continuous variables, one may even start with an arbitrary solution (see [13])

rather than a lower or upper bound used in the LR-based algorithm. However,

when the variables x1; x2; � � � ; xn are of discrete values for the simple CH-program,

or when the coe�cients are not constants as in the monotonically constrained or

bounded CH-program (for both continuous or discrete variables), there may be

more than one local optimum.10 Then, the global optimum can not be achieved

by the coordinate descent approach starting from an arbitrary solution. However,

the LR-based algorithm, which respectively uses the LR, PLR or ELR operations

8Same as the method in [55], methods in [75, 74] minimize the maximum delay.
9An alternative method, called the steepest descent approach or the gradient method [53],

minimizes the objective function along the direction of the steepest gradient, and may simulta-

neously change all coordinates. In general, it is n� 1 times faster than the coordinate descent

approach, where n is again the number of variables [53]. However, because of the special nature

of the sizing problems, the LR-based optimization (the coordinate descent approach) turns out

to be very e�cient in experiments. In fact, it was recently shown that when using the simple

device and capacitance models, the LR-based algorithm can be �nished in a linear time for the

continuous wire sizing problem [13].
10The simple CH-program using continuous variables belongs to the posynomial program,

and therefore has a unique local optimum.
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for a simple, monotonically constrained or bounded CH-program, can still be used

to compute lower and upper bounds for the exact (i.e., globally optimal) solution.

In the following, we will apply the ELR operation to the simultaneous transistor

and interconnect sizing problem under the table-based device model, and apply

the PLR and ELR operations in Chapter 6 to the global interconnect sizing and

spacing (GISS) problem considering the coupling capacitance for multiple nets.

Both problems are no longer the simple CH-program, and may have multiple

local optimum solutions.

4.5 Conclusions and Discussions

In this chapter we formulated three classes of optimization problems: the sim-

ple, monotonically constrained, and bounded CH-programs. We revealed the

dominance property (Theorem 8) under the local re�nement (LR) operation for

the simple CH-program, as well as the general dominance property (Theorem 9)

under the pseudo-LR (PLR) operation for the monotonically constrained CH-

program and under the extended-LR (ELR) operation for the bounded CH-

program. These properties enable a very e�cient polynomial-time algorithm,

using the LR, PLR, or ELR operation for computing lower and upper bounds of

the exact solution to any CH-program. In addition, we introduced in Chapter 2

the bundled-LR (BLR) operation, which may be used to speed up the LR, PLR

and ELR operations. We also called the bound-computation algorithm as the

LR-based algorithm, where LR, in general, refers to the LR, PLR, ELR or BLR

operation.

The algorithm can be used to unify solutions to several problems, including the

single-source and multi-source wire sizing problems [29, 16], continuous wire sizing

problem [8], and simultaneous driver/bu�er and wire sizing problem [26, 6, 27].

108



These problems assume the simple models for the device delay and interconnect

capacitance, and are all simple CH-program where the LR operation can be

used for bound computations. We will apply the formulations and algorithm of

CH-programs, especially those for the bounded CH-program, to solve the much

more general simultaneous device sizing, and wire sizing and spacing problems in

Chapters 5 and 6. Models that are much more accurate than the simple models

will be used for device delay and interconnect capacitance.
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CHAPTER 5

Application of Local-Re�nement based

Optimization to Simultaneous Device and

Interconnect Sizing

To minimize interconnect delay in DSM designs, many optimization techniques

have been proposed to including interconnect topology optimization, bu�er in-

sertion, device sizing, and wire sizing studied in the previous chapter. We believe

that the most e�ective approach to performance optimization in DSM designs

is to consider both logic and interconnect designs throughout the entire design

process (from RTL level to layout design). This motivates our study of the si-

multaneous device and interconnect sizing problem for DSM designs.

Several recent studies considered the simultaneous device and interconnect

sizing problem. One class of algorithms minimizes the weighted delay. In [26],

the simultaneous driver and wire sizing problem was formulated to minimize the

weighted delay between the source and a set of sinks for a single net. Procedures

of device sizing and wire sizing are alternately carried out, with device sizes

computed by closed-form formulas (via Maple) and wire widths computed by

algorithms from [29, 16]. In [18, 20], the simultaneous transistor and interconnect

sizing problem was studied to minimize the weighted delay for multiple paths (a

path contains multiple nets). The local re�nement operation, previously used

only for wire sizing solutions [29, 26, 16], is applied to optimize both devices and
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interconnects. It leads to a uni�ed and very e�cient algorithm. Recently, the

simultaneous bu�er insertion and wire sizing problem was also addressed [12]. It

is assumed that the number of bu�ers to insert is given for each wire segment,

and that the wire widths between any two bu�ers are monotonic. Therefore, the

problem can be solved as a convex quadratic program to �nd the lengths of wire

segments for di�erent wire widths.

The other class of simultaneous device and interconnect sizing algorithms

considers the maximum delay. In [55], the simultaneous gate and wire sizing

problem was formulated to minimize the area under the maximum-delay con-

straint for multiple paths. The problem is shown to be a posynomial program,

and is transformed into a convex program solved by a sequential quadratic pro-

gramming technique. In addition, the simultaneous bu�er insertion and wire

sizing problem was studied to minimize the maximum delay from the source to a

set of sinks for a single net [49]. The potential locations for bu�er insertion are

a priori given. Based on a bottom-up dynamic programming approach, bu�ers

are then inserted with optimal sizes, and optimal wire widths determined simul-

taneously. In general, the algorithms for minimizing the weighted delay are more

e�cient. By adjusting the weight assignments, a sequence of such minimizations

can be used to minimize the maximumdelay under the area constraint or to min-

imize the area under the delay constraint. In particular, a Lagrangian relaxation

technique was proposed in [6] to optimally assign the weights for the sequence of

weighted-delay minimizations. The simultaneous bu�er and wire sizing problem

was also solved [6].

However, most of these works assumed over-simpli�ed models for device delay

and interconnect capacitance. Those assumptions are no longer realistic for DSM

designs. Accurate models will be used to solve the simultaneous device and wire
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sizing problem in this chapter and Chapter 6.

Our contributions in this chapter include:

� We assume that the circuit netlist is given and routing topology is �xed,

and then formulate the STIS problem to assign optimal wire widths to

all wire segments and optimal sizes to all transistors, for minimizing the

delay and/or power for multiple critical paths. Compared to the single-net

sizing problems such as the MSWS problem, this problem has much higher

complexity but is able to achieve more delay and power reduction.

� We apply the LR-based bound-computation algorithm presented in Chap-

ter 4 to the STIS problem under both the simple device model and the

accurate STL-bounded device model. The STL-bounded model is based on

tables pre-computed from SPICE simulations for the device delay, so that

it is much more accurate than many models used in previous device and

interconnect optimization algorithms. Experiments show that the bound-

computation algorithm can e�ciently handle both simple and STL-bounded

models, and obtain solutions close to the global optimum in both cases.

According to SPICE simulations, the solution obtained by the STIS algo-

rithm under the simple model achieves up to 14.4% delay reduction when

compared to the solution given by manual optimization (reported in [10]).

Furthermore, the solution obtained by the STIS algorithm under the ac-

curate STL-model achieves up to 15.1% additional delay reduction when

compared to the solution obtained by the STIS algorithm under the simple

model.

The rest of the chapter is organized as follows: We describe the STIS problem

formulation in Section 5.1, and apply the LR-based algorithm to solving the
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STIS problem, for both simple and STL-bounded models in Section 5.2. We

�nally present experimental results in Section 5.3, and conclude the chapter in

Section 5.4. Results of this chapter have been presented in conference papers

[18, 20, 19], and the journal paper [25].

5.1 Formulation and Solution of STIS Problem

5.1.1 Device and Interconnect Models

5.1.1.1 Simple Model

Almost all simultaneous device and wire sizing works [26, 55, 49] assumed simple

gates like inverters and bu�ers, and used gate sizing formulation where an optimal

size is found for each gate. We will use transistor sizing formulation where an

optimal size is found for each transistor, in order to consider complex gates and

to achieve better results when compared with the gate sizing formulation.

In our formulation, we partition all transistors and interconnects into DCCs.

A DCC is de�ned as a set of transistors and wires which are connected by DC-

connected paths containing only transistor channels or wires, and the DC current

can not cross the boundary of a DCC. In most cases, a DCC comprises a logic

gate G and a routing tree connecting the output of G to the inputs of all logic

gates driven by G. However, in cases like simultaneous driver and wire sizing

for multi-source nets, a DCC contains last-stage drivers at all sources and the

routing tree.

We model a transistor as an idle switch connected to an e�ective resistor,

similar to the switch-level timing tool [61]. For example, a transistor of size d

and output load cl is assumed to have a delay td = t0 + rd � cl, where t0 and rd
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are the intrinsic delay and e�ective resistance of the transistor, respectively. In

addition, rd = r0=d, where r0 is the unit-size e�ective-resistance for the transistor.

The simple model used in most works assumes that t0 and r0 are constants.

In addition to e�ective resistance rd, the gate, source and drain capacitances

cg; cs and cd are also needed to characterize a transistor of size x. we have:

rd = rd0=x (5.1)

cg = cg0 � x+ cg1 (5.2)

cs = cs0 � x+ cs1 (5.3)

cd = cd0 � x+ cd1 (5.4)

Again, the simple model assumes that cg0; cs0 and cd0, as well as cg1; cs1 and cd1

are constants determined by the technology.

Overall, the logic gate is characterized by a RC network for the transistor

sizing formulation. Note that a gate can be characterized by a \macro" transistor

connected to Vdd in the gate sizing formulation with one size for each gate like

[26, 55, 49]. It is a simple case of the RC network for the transistor sizing

formulation. Therefore, this switch-level transistor model is able to consider

both transistor sizing and gate sizing formulations.

We model a routing tree as a distributed RC tree. Similar to wiresizing work

[16], each wire segment is divided into a sequence of uni-segments. A uni-segment

is treated as a �-type RC circuit and the wire width is assumed uniform within a

uni-segment. The segmentation controls how aggressively we perform wiresizing

optimization. For simplicity, we assume that all uni-segments have the same

wire length and the unit-width uni-segment has wire resistance r0, wire area

capacitance ca and wire fringing capacitance cf . Then, the resistance r and the
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capacitance c for a uni-segment with width x are

r = r0=x (5.5)

c = ca � x+ cf (5.6)

Again, the simple model used in most works assume that r0, ca and cf are con-

stants.

5.1.1.2 More Accurate Model

Most existing device and interconnect sizing works assume the simple model for

the device delay and interconnect capacitance, where r0 is a constant for the de-

vice delay, and both ca and cf are constants for the interconnect capacitance. The

simple model is no longer realistic for DSM designs. For example, we computed

r0 for an inverter in Table 5.1. We apply HSPICE simulations, and use device

parameters for the 0:18�m technology in Table 5 of the 1994 National Technology

Roadmap for Semiconductors (NTRS'94) [77]. When the inverter is driven by a

rising input, we �rst measure two delay values t1 and t2 for a pair of output loads

c1 and c2 under the same size and input switching time. Using the assumption

that t1 = t0 + rd � c1 and t2 = t0 + rd � c2, we can obtain rd = (t1 � t2)=(c1 � c2),

and t0 = t1 � rd � c1. We then compute t0 values for di�erent combinations of

size, input switching time (ts) and output load (cl). Because we assume that

the intrinsic delay t0 is a constant in this paper, we derive the \best" t0 value

by least-square-�tting over t0 values for di�erent combinations of size, ts and cl.

Finally, we use the \best" t0 value to compute r0 = (td� t0)=cl �d, where td is the

inverter delay, and d the size for the n-transistor in the inverter. We compute r0

for the n-transistor under di�erent combinations of size, ts and cl. Similarly, when

the inverter is driven by a falling input, r0 for the p-transistor can be determined

in the same way under di�erent combinations of size, ts and cl. As one can see
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from Table 5.1, r0 is clearly not a constant. Its value may vary by a factor of 2.

size = 100x

n-transistor p-transistor

cl / ts 0.05ns 0.1ns 0.2ns 0.05ns 0.1ns 0.2ns

0.225pF 12200 13370 19180 17200 19920 24550

0.425pF 8135 9719 12500 17180 17190 18820

0.825pF 8124 8665 10250 17090 17150 17290

1.625pF 8114 8170 8707 16140 17140 17150

3.225pF 7578 8137 8251 14710 16940 17100

size = 400x

n-transistor p-transistor

cl / ts 0.05ns 0.1ns 0.2ns 0.05ns 0.1ns 0.2ns

0.501pF 12200 15550 19150 18200 19970 27030

0.901pF 11560 13360 17440 17340 19590 24560

1.701pF 8463 9688 12470 17070 17420 18790

3.301pF 7725 8812 10420 17030 16780 17440

4.901pF 7554 8480 10010 16090 17020 17060

Table 5.1: Unit-size e�ective-resistance for n- and p-transistor

Little progress has been made for optimization beyond the simple device

model. The simultaneous bu�er insertion and wire sizing algorithm [49] was

extended to consider the impact of the input switching time for the device delay.

The unit-size e�ective-resistance, in essence, is assumed to be r0 = r
0

0 + � � ts,

where r00 is the unit-size e�ective-resistance under the step input, ts the input

switching time, and � an empirical constant. The algorithm based on the bottom-

up dynamic-programming, however, no longer has a polynomial-time complexity

under the extended device model. The posynomial program formulation for the

simultaneous gate and wire sizing problem [55] was also extended to accommodate

a voltage-ramp gate model, which considers the impacts of the input switching
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time and output loading under the Ceff model [63]. The resulting sizing problem,

however, is no longer a posynomial program. It is unknown how far away the

solution obtained by solving a posynomial program is from the exact solution

under the voltage-ramp model. Furthermore, runtime of the two works is pretty

high.

We will call the device table, like Table 5.1, STL-bounded model, where r0

is determined by the size, input switching time (ts) and output load (cl), and

its value is bounded (i.e., there exist lower and upper bounds for r0) for any

given ranges of size, ts and cl. We build tables for the STL-bounded device

model via HSPICE simulations. These models are more accurate than the simple

model, and have been widely used for veri�cation purposes. However, there are

virtually no existing algorithms that allow us to use these models for the device

and interconnect sizing problems. In the following of this chapter, the device and

interconnect sizing algorithm will be developed using the STL-bounded device

model.

For DSM designs, the coupling capacitance between neighboring wires be-

comes the dominant capacitance component. Because the coupling capacitance

depends strongly on spacing, the simple capacitance model given in Eqn. (5.6)

is no longer valid, and it is needed to study the simultaneous interconnect sizing

and spacing problem, rather than interconnect sizing only, for the maximum de-

lay reduction. We will extend the STIS formulation and algorithm to consider the

coupling capacitance and simultaneous interconnect sizing and spacing formation

in Chapter 6.
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5.1.2 Problem Formulation

Our delay formulation is similar to those in [61], and is based on the Elmore delay

formulation in [65] (see [20] for details). The delay is computed �rst for each a

stage. It is de�ned as a DC-connected path from a power supply (either the Vdd

or the ground) to the gate node of a transistor, containing both transistors and

wires. The delay of a stage P (Ns; Nt) with Ns being the source and Nt being the

sink can be written as Eqn. (5.7) under the Elmore delay model.

t(P (Ns; Nt);X)

=
X
i;j

f(i; j) �
r0(i)

xi

� ca(j) � xj +
X
i;j

f(i; j) �
r0(i)

xi

� cf (j)

+
X
i

g(i) �
r0(i)

xi

+
X
i

r0(i) � h(i) +
X
i

h(i) �
r0(i)

xi

� cf(i) (5.7)

where xi is the width for a transistorMi or a wire Ei, r0(i) is its unit-size e�ective-

resistance, and ca(i) and cf(i) are its unit-area capacitance and unit-length fringe

capacitance. Coe�cients f(i; j); g(i) and h(i) are determined by the transistor

netlist and routing topology as the following:

f(i; j) =

8><
>:

1 if Mi=Ei charges Mj=Ej

0 otherwise

g(i) =

8><
>:
P
c
l

if Mi=Ei charges loading capacitance c
l

0 otherwise

h(i) =

8><
>:

1=2 if Mi=Ei 2 P (Ns; Nt)

0 otherwise

In order to simultaneously minimize delays along multiple critical paths, we then

minimize the weighted delay t(X) of all stages in the set of critical paths denoted
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as P:

t(X) =
X

P (Ns;Nt)2P

�st � t(P (Ns; Nt);X) (5.8)

where the weight �st indicates the criticality of stage P (Ns; Nt). After we elimi-

nate those terms independent of X, Eqn. (5.8) can be re-written as

t(X)

=
X
i;j

F (i; j) �
r0(i)

xi

� ca(j) � xj

+
X
i;j

F (i; j) �
r0(i)

xi

� cf (j)

+
X
i

G(i) �
r0(i)

xi

+
X
i

H(i) �
r0(i)

xi

� cf(i) (5.9)

where F (i; j); G(i) and H(i) are weighted functions of f(i; j); g(i) and h(i), re-

spectively.

We formulate the following simultaneous transistor and interconnect sizing

(STIS) problem:

Formulation 3 Given the lower and upper bounds (L and U) for the width of

each transistor and wire, the STIS problem is to determine a width for each

transistor and wire (or equivalently, a sizing solution X, L � X � U) such

that the weighted delay through multiple critical paths given by Eqn. (5.9) is

minimized.

Note that a sequence of weighted-delay minimization can be used to minimize

the maximumdelay by adjusting the weight assignment based on the Lagrangian-

relaxation method as in [6]. Therefore, we focus on how to minimize weighted

delay in this paper. In addition, we assume that the possible width is from a

discrete width set determined by the technology. The discrete sizing problem
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is more di�cult than the continuous sizing problem, but is more convenient for

placement and routing tools and fabrication.

5.2 STIS Algorithm

5.2.1 Bound Computation for STIS Problem

Under the simple models, r0, ca and cf are constants for each wire/transistor, and

Eqn. (5.9) is a simple CH-function. In this case, the STIS problem is a simple

CH-program. Because the simple model is a simpli�ed case of the STL-bounded

model, and the latter is more suitable for DSM designs, we present the STIS

algorithm under the STL-bounded device model. For simplicity of presentation,

we assume here that ca and cf are constants for each wire segment, but will

remove the assumption in Chapter 6.

In the STL-bounded model, r0 is pre-computed and stored in tables (e.g., see

Table 5.1) indexed by the size, input switching time (ts), and output load (cl).

It could be very accurate depending on the table size.1 Because the value for r0

is bounded, it is easy to verify the following Theorem 10:

Theorem 10 The STIS problem under the STL-bounded device model is a gen-

eral CH-program.

Note that the STL-bounded model might not be monotonic with respect to

the sizing solution X. Therefore, the STIS problem is unlikely a monotonically

1In our experiments, r0 table for a type of gate (e.g., an inverter) considers the combinations

of �ve di�erent device sizes (from 1x to 800x of the minimum size), three di�erent input

switching times, and �ve di�erent load capacitances. Therefore, the total table size is 5 �

3 � 5 � m = 75m, where m is the number of gate types. Satisfactory optimization results

are obtained according to experiments in Section 5.3. For simplicity, we assume that cl is the

lumped capacitance in this paper. Extension to the e�ective capacitance model [63] is ongoing

work and will be discussed briey in Section 5.4.
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constrained CH-program, and the LR and PLR operations are not applicable. It

can be justi�ed by the following observations: r0 in our model is a monotonic

function of ts, whereas ts is not monotonic with respect to X, because the optimal

wire sizing solution (see [29, 74, 16]) to minimize ts often has neither minimum

nor maximum wire width.

Therefore, the ELR operation is needed in the LR-based algorithm (Table 4.1)

to compute lower and upper bounds for an exact solution to the STIS problem.

We assume that r0(i) 2 [rL0 (i); r
U

0 (i)] and r0(j) 2 [rL0 (j); r
U

0 (j)]. In an ELR

operation on a transistor Mi for the lower-bound computation, we use r
L

0 (i)

instead of r0(i), and r
U

0 (j) instead of r0(j) for Mj , where Mj is an upstream

transistor in the same net for Mi. Symmetrically, in an ELR operation on Mi

for the upper-bound computation, we use rU0 (i) instead of r0(i) for Mi, and r
L

0 (j)

instead of r0(j) for an upstream transistor Mj .

We determine rL0 (i) as follows: Let X
L and XU be lower and upper bounds of

the exact solution X�. We assume that transistor Mi has size xi 2 [x
L

i
; x

U

i
], input

switching time ts(i) 2 [t
L

s
(i); tU

s
(i)], and capacitance load cl(i) 2 [c

L

l
(i); cU

l
(i)]. We

often observe in our experiments that r0(i) increases with respect to an increase

of xi or ts(i), but decreases with respect to an increase of cl(i). Therefore, r
L

0 (i)

for Mi can be obtained by table lookup using x
L

i
, tL

s
(i) and c

U

l
(i). Symmetri-

cally, rU0 (i) is determined using x
U

i
, tU

s
(i) and cL

l
(i). In addition, contributions of

transistors or wires to cU
l
(i) are computed using sizes in XU , and contributions

to cL
l
(i) computed using sizes in XL. After the ELR operation on Mi, for every

stage P (Ni; Nj) (Ni is the source, Nj is the sink) driven by Mi, we will update

the lower and upper bounds for the switching time ts(j) at sink Nj , because ts(j)

is the input switching time for the transistor Mj with gate connected to node Nj.

The lower or upper bound of ts(j) is assumed to be the lower or upper bound of
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the delay through P (Ni; Nj), respectively. As X
L and XU move closer during the

ELR-based optimization procedure, the range of r0 is also narrowed. In general,

the closer the values for rU0 and r
L

0 , the smaller the gap between the lower and

upper bounds given by the ELR operations.

Because the unit-size resistance r0(i) is a constant for each wire segment Ei,

we can simply use the LR operation for Ei. Furthermore, in order to achieve

better wire sizing solutions, we can divide a wire segment into a sequence of

uni-segments, then �nd a wire width for each uni-segment [16]. We assume that

each segment always stays in the same layer, has the �xed r0, ca and cf , as well

as same allowable wire widths.2 With these assumptions, we have proved the

following local monotone property:

Theorem 11 (local monotone property) There exists an optimal STIS so-

lution where the wire widths for uni-segments are monotonic within each wire

segment.

The proof is available from the technical report [17]. This theorem enables us to

use the BLR operation [16] instead of the LR operation for each wire segment

Ei. The BLR operation is shown to be 100x faster than the LR operation for the

wiresizing problem [16].

5.2.2 Overall Algorithm for STIS Problem

Let L0 and U0 be the ELR-tight lower and upper bounds given by the above

bound-computation procedure. If L0 and U0 are identical, we obtain the exact

solution to the STIS problem under the STL-bounded model. Otherwise, we

2Di�erent segments may have di�erent r0, ca and cf if they are in di�erent layers, or have

di�erent spacings to neighboring wires.
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traverse all wire segments and transistors by iterative PLR operations until there

is no improvement in the last round of traversal. Note that the PLR operation

is bounded by L0 and U0, and it uses r0 obtained from the device table. Even

though the PLR operation may lead to further improvement over L0 and U0, in

general it does not lead to a lower or upper bound of the exact solution.3

Our experiments in Section 5.3.4 show that the ELR-tight lower and upper

bounds (L0 and U0) are often close to each other in most cases. Therefore, we

can simply treat L0 as the �nal solution (for smaller area and often lower power-

dissipation). We will also show in the experiments that the STIS problem to

minimize a weighted-sum of delay and area is a CH-program. Therefore, a trade-

o� can be obtained between delay and area. A similar approach can be used to

better minimize the capacitive power by minimizing the weighted-sum of delay

and capacitive power.

5.3 Experimental Results

For all experiments in this paper, we computed the delays via HSPICE using the

distribute RC model and the level-3 MOSFET model that is also used in HSPICE

simulations for device-table generation. The use of HSPICE simulation results

not only shows the quality of our sizing solutions, but also veri�es the validity

of our interconnect and device modeling, and the correctness of our problem

formulations.

3In our experiments, we tried to use PLR operations starting from either the minimum or

maximum sizing solution. The resulting solutions are often outside the range de�ned by L0 and

U
0, and are worse than L0.
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5.3.1 Area-Delay Trade-o� for Transistor Sizing

Since the algorithm based the local re�nement operation was used only for the

optimal wiresizing problem [29, 26, 14] in the past, we �rst use the STIS algorithm

to solve the transistor sizing problem to show that the local re�nement operation

is also applicable to transistor sizing problem. We study the transistor sizing

problem for area-delay trade-o� under the following objective function:

obj(X; ) =  �

P
xi2X

xiP
xi2L

xi

+ (1 � ) �
t(X)

t(X = L)
(5.10)

It is the scaled weighted sum of area and delays, and  (0 �  � 1) can be

adjusted for area-delay trade-o�. One can easily verify that Eqn. (5.10) is still a

CH-posynomial. Again, we can apply the STIS algorithm e�ciently.

We sized 8bit, 16bit and 32 bit ripple-adders, respectively, under the simple

step model. We report total device areas and maximum delays by HSPICE simu-

lation in Table 5.2. We use parameters of MCNC 0:5�m CMOS technology [54],

same as those used in Chapter 3, and assume that each primary input to these

adders comes from a 2x inverter and each primary output drives a 2x inverter.

The STIS algorithm optimizes the 32bit adder containing 1,026 transistors in

54 seconds. A smooth delay-area trade-o� is observed and the maximum delay

is reduced by up to 30.8% with about 2x times area when compared with the

minimum-size design. These adders are implemented in CMOS complex gates,

and we simply assume that every transistor has the same timing criticality and

the same weight penalty. We plan to use the Lagrangian relaxation method [6]

to obtain the optimal weight penalty assignment and study the impact of weight

penalty assignment. Besides, the area-delay trade-o� formulation can be easily

extended for power-delay trade-o�.
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5.3.2 Simultaneous Driver and Wire Sizing for Multi-source Nets

We then use the STIS algorithm to solve the simultaneous driver and wire sizing

(SDWS) problem for multi-source nets.4 These nets are extracted from an Intel

high-performance microprocessor design and were used in [31, 14] for topology

construction and wiresizing optimization. We assume that a chain of cascade

drivers is used for each source and the �rst stage is a minimum-size (1x) driver.

We compare our STIS method with the DS+WS method. The DS+WS method

uses a constant stage ratio � = (CL=C0)
1=N where C0 is the gate capacitance

of the 1x driver, and CL the total loading capacitance when the wires have the

minimum width. The stage number N is chosen such that � is around e, the

base of natural logarithms, for performance optimization. Then, the DS+WS

method applies the OWBR algorithm [14] to obtain the optimal wiresizing so-

lution with respect to the given driver sizing solution. The STIS method uses

the same stage number N and assumes the �rst stage is also a 1x driver, but the

sizes of both wires and transistors in other stages are determined by the STIS

algorithm. Again, we use parameters of MCNC 0:5�m CMOS technology [54].

We assume the nets are driven by a clock of 20MHz and report the HSPICE

simulation results in Table 5.3. Even though the OWBR algorithm achieves the

optimal wiresizing solutions under the given driver sizing solutions, the STIS for-

mulation consistently outperforms DS+WS: the maximum delay is reduced by

up to 17.7%, and more signi�cantly, the total device area and total power dissi-

pation are reduced by 57.4% and 61.7%, respectively. Although we compute the

optimal width for every transistor and every 10�m-long wire, the total runtime

of the STIS algorithm for all nets is just 7.18 seconds. Furthermore, we point

out that our STIS algorithm can be used to �nd even better sizing solutions by

4The SDWS formulation in [26] is applicable only to single-source nets.
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trying di�erent stage numbers, as we already observed during our experiments.

5.3.3 Comparison between Manual Optimization and STIS Algorithm

To illustrate the e�ectiveness of the STIS algorithm, we �rst compare the sizing

solution obtained by our algorithm and the manual optimization applied to a

spread spectrum IF transceiver chip in [10]. The design is under the 1.2 �m two-

layer metal SCMOS technology. There are two clock nets, dclk and clk; each uses

a chain of four cascade drivers in the clock signal source and chains of four cascade

bu�ers in order to drive long interconnects and register �les. The maximum

delays of the two nets need to be minimized to reduce the clock skew. Therefore,

source drivers and bu�ers are tuned manually via iterative procedures of layout,

extraction and HSPICE simulation. We retain the manual sizing solutions for the

�rst stage drivers at the source and for the drivers of the register �les, then apply

the STIS algorithm to optimize the sizes for every 10�m-long wire and the rest of

the drivers and bu�ers. We use two formulations under the simple device model,

one is simultaneous transistor and wire sizing formulation (stis/simple) where

optimal sizes are found for p- and n- transistors in each driver/bu�er, and the

other one is simultaneous gate and wire sizing formulation (sgws/simple) where

an optimal size is found for each driver/bu�er. We also assume that the allowable

wire widths are fw; 2w; 3w; 4w; 5wg with w = 1:2�m being the minimum wire

width in the 1:2�m technology, and the allowable transistor sizes are multiples

of 0:6�m between 1:2�m and 500�m. The constant value for r0 in the simple

model is determined under the typical input switching time, device size and

output load. The �xed ratio between p- and n- transistors in the sgws/simple

formulation is tuned to make sure that the inverter will have same pull-up and

pull-down resistance values.
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Because the simple device model is applied, we use the LR operation to com-

pute the LR-tight lower and upper bounds for devices. Experiments show that

the identical LR-tight lower and upper bounds are achieved for almost all devices

and wire segments, therefore we use the LR-tight lower bounds as the �nal sizing

solution. We report HSPICE simulation results in Table 5.4. When compared

with the manual optimization, sgws/simple and stis/simple formulations reduce

the maximum delay by up to 6.2% and 14.4%, respectively. More signi�cantly,

both reduce the power consumption by 42.6% and 42.8%. Because we use the

same simple model for two formulations in this experiment, the extra delay re-

duction (8.2%) of the stis/simple formulation comes from the exibility of the

transistor sizing formulation.

5.3.4 Comparison between Simple and STL-bounded Models

We then apply our STIS algorithm under di�erent device models. We use the

0.18 �m technology given in the NTRS'94 [77] in order to study the impact of

the DSM technologies. The wire sheet-resistance R2 = 0:0638
. We generate de-

vice and capacitance tables via HSPICE simulations and numerical extractions,

respectively, and use ca and cf values where the wire is 1:10�m wide and neigh-

boring wires are 1:65�m away5. We size two global nets, one is a 2cm line with

�ve bu�ers optimally inserted for delay minimization. The other is the above dclk

net. In addition to di�erent device models (simple model versus STL-bounded

model), we also use di�erent sizing formulations (sgws versus stis). There are four

combinations, including sgws/simple and stis/simple using the LR operation for

devices, and sgws/bounded and stis/bounded using the ELR operation for de-

vices. For simplicity, we assume that the �xed ratio between p- and n- transistors

5We lump the coupling capacitance into cf , therefore it is in fact the e�ective-fringe

capacitance.
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for the gate sizing formulation is 1.0. For both nets, we �nd the optimal wire

width for each 10 �m-long wire, and assume that allowable transistor sizes are

multiples of 0.18�m between 0.18�m and 144�m, and that allowable wire widths

are multiples of 0.56�m between 0.56�m and 5.6 �m.

Table 5.5 summarizes experimental comparisons between di�erent formula-

tions. We computed convergence rate under di�erent formulations. For the sim-

ple model, the computation for a transistor or wire is convergent if its LR-tight

lower and upper bounds are identical. For the STL-bounded model, the com-

putation for a transistor or wire is convergent if its ELR-tight lower and upper

bounds are identical. The convergence is not signi�cantly di�erent. For example,

computations for about 85% transistor are convergent in dclk net under all four

formulations. We also computed the average width and the average gap between

lower and upper bounds for all wire segments and transistors, respectively. The

ELR operation does give larger gap than the LR operation. However, the di�er-

ence is small. Overall, the average gap is only 1% of the average width, except

that net dclk has a large gap, nearly 10% of the transistor size.

We simply use the ELR-tight lower bound as the �nal solution under the

STL-bounded model, and the LR-tight lower bound as the �nal solution under

the simple model, because lower and upper bounds given by bound computations

are very close to each other. Table 5.5 also give the maximum delay via HSPICE

simulation. The solutions under the STL-bounded model are consistently better

than those under the simple device model. When compared with the sgws/simple

formulation, the sgws/bounded formulation further reduce the maximumdelay by

up to 6.4%. When compared with the stis/simple formulation, the stis/bounded

formulations further reduce the maximum delay by up to 15%. Note that both

sgws/simple and stis/simple formulations already give very good sizing solutions
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as shown in the experiment of Section 5.3.3. Although ELR operations under the

STL-bounded model are more complex, the runtime is still impressively small. It

used just 3.17 seconds to optimize dclk net of 154 bu�ers and 41518.2�m wires,

when the transistor sizing formulation is used and wire segments are 10�m long.

Therefore, our STIS algorithm is extremely e�cient.

5.4 Conclusions and Discussions

We have formulated the STIS problem, which assigns optimal wire widths to all

wire segments and optimal sizes to all transistors, for minimizing the delay and/or

power for multiple critical paths. Compared to the single-net sizing problems

such as the MSWS problem in Chapter 2 and [29, 8, 26, 6], this formulation has

extremely high complexity but is able to achieve more delay and power reduction.

We have applied the LR-based bound-computation algorithm presented in

Chapter 4 to the STIS problem under both the simple device model and the ac-

curate STL-bounded device model. The STL-bounded model is based on tables

pre-computed from SPICE simulations for the device delay, so that it is much

more accurate than many models used in previous device and interconnect opti-

mization algorithms. We �rst showed that the STIS problem is a bounded CH-

program, then developed the STIS algorithm based on bound-computation using

the ELR operation. According to Theorem 9, our bound-computation guarantees

that there exist exact solutions to the STIS problem between resulting lower and

upper bounds. Experiments also showed that our algorithms obtained solutions

close to the global optimum in the most cases. Based on SPICE simulations,

the solution obtained by the STIS algorithm under the simple model achieves

up to 14.4% delay reduction when compared to the solution given by manual

optimization (reported in [10]), and the solution obtained by the STIS algorithm
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under the accurate STL-model achieves up to 15.1% additional delay reduction

when compared to the solution obtained by the STIS algorithm under the simple

model. Moreover, the algorithms are extremely e�cient. It took less than 10

seconds to optimize the largest example in this chapter.

For the simplicity of presentation,the simple model is used for the interconnect

capacitance in this chapter. It is assumed that for a wire with width w and length

l, its capacitance is given by w � ca + cf with ca and cf being constants. The

simple capacitance model is not true for the DSM designs where the coupling

capacitance can no longer be ignored. In Chapter 6, we will extend the STIS

formulation to accommodate the concept of simultaneous interconnect sizing and

spacing under the 2 1/2-D capacitance model presented in Chapter 6. Because the

simultaneous interconnect sizing and spacing problem will be solved also by the

LR-based bound computation algorithm, therefore, we have a uni�ed formulation

and solution to the simultaneous device sizing, wire sizing and spacing problem

under accurate models for device delay and interconnect capacitance.
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CHAPTER 6

Application of Local-Re�nement based

Optimization to Simultaneous Interconnect

Sizing and Spacing

In DSM designs, rather than the conventional ground capacitance, the coupling

capacitance between neighboring wires becomes the dominant capacitance com-

ponent. Because the coupling capacitance depends strongly on spacing, it is

needed to study the simultaneous interconnect sizing and spacing problem for

further delay reduction when compared to wire sizing only.

In this chapter, we study the simultaneous interconnect sizing and spacing

problem for the single-net and multiple nets, respectively. Our contributions

include:

� We formulate the multi-net (i.e., global) interconnect sizing and spacing

(GISS) problem based on the concept of asymmetric wire sizing. Given the

topology for multiple nets, the problem �nds the wire sizing and spacing

solution optimal for all nets, and considers coupling capacitance extracted

during wire sizing and spacing procedure.

� We pose the GISS problem as a CH-program, which directly leads to an

e�ective and e�cient solution based on bound computation using di�erent

types of LR operations. Note that this GISS formulation can be treated as
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a part of the STIS formulation. Therefore, we have a uni�ed formulation

and solution to the problem of simultaneous device sizing, and wire sizing

and spacing for multiple paths, under accurate models for device delay and

interconnect coupling capacitance.

� We also solve the single-net interconnect sizing and spacing (SISS) problem.

It is a simpler version of the GISS problem assuming that neighboring wires

are �xed for the speci�c net. Experiments show that GISS algorithm may

achieve up to 39% delay reduction, when compared with SISS algorithm

applied iteratively to multiple nets.

Part of those results was �rst presented in [23, 19, 25]. An alternative approach

to the GISS problem was also presented in [23], and will be covered in Mr.

Zhigang Pan's thesis. These were among the �rst in-depth studies of the global

interconnect sizing and spacing problem using accurate capacitance model.

The remainder of this chapter is organized as follows: We formulate SISS

and GISS problems in Section 6.1, and present solutions to the two problems in

Section 6.2. We then show experiment results in Section 6.3, and conclude this

chapter in Section 6.4.

6.1 Problem Formulation

6.1.1 Introduction

In almost all existing works on wire sizing (e.g., [30, 29, 73, 82, 7, 6, 56, 83]) and

simultaneous device and wire sizing (e.g., [26, 55, 49, 20, 12]), the capacitance

for a wire of width w and length l is given by ca � w � l + cf � l, where ca and cf

are unit-area capacitance and unit-length fringe capacitance for the wire. Both

136



are assumed to be constants.

These assumptions about the interconnect capacitance are no longer realistic

for DSM designs. We computed the capacitance for the basic geometric structure

(see Figure 6.1), where the victim wire is centered between two neighboring wires

on the same layer and both top and down grounds (two layers away from the

victim). We assume that wires in the basic geometric structure have same widths,

then apply a numerical capacitance extraction tool FastCap [58] to solve the

structure, using interconnect geometric parameters for the 0:18�m technology in

Table 22 of NTRS'94.1 Figure 6.2(a) depicts the unit-length ground capacitance

cg between the victim and grounds, with each curve for cg under di�erent wire

widths but a �xed edge-to-edge spacing (in short, spacing). If we assume cg =

ca � w � l + cf � l, the curve slope should be ca, and the curve intercept should

be cf . Because none of these curves is linear, and di�erent curves have di�erent

intercepts, neither ca nor cf is a constant. The total capacitance of the victim is

ctotal = cg + cx � l = ca � w � l+ (cf + cx) � l

where cx is the unit-length coupling capacitance between the victim and the

neighboring wires. One can de�ne the unit-length e�ective-fringe capacitance

cef = cf+cx, and compute ctotal = ca�w�l+cef �l. We also obtained cef for di�erent

widths for the victim, under the assumption that the center-to-edge spacing (see

Figure 6.1) from the center of the victim to the edges of its neighboring wires is

�xed. As shown in Figure 6.2(b) for two di�erent center-to-edge spacing, cef is a

not a constant either. In fact, cef is very sensitive to changes of the spacing.

With consideration of coupling capacitance, we say a capacitance model is a

simple model if both ca and cef are constants for the interconnect capacitance.

1NTRS'94 gives capacitance values only for the minimumwidth and spacing. Our extracted

capacitance values closely match those given in NTRS'94 (see [22]).
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spacing

width

spacing

center-to-edge spacing

Figure 6.1: The basic geometric structure for capacitance extraction.

All aforementioned sizing works were only able to consider the simple capaci-

tance model. Because cx (and therefore cef ) becomes the dominant capacitance

component for DSM designs and depends strongly on the spacing, it is needed

to study the simultaneous interconnect sizing and spacing problem, rather than

wire sizing only, to take account variable cx for the maximum delay reduction.

One very recent work [80] considered coupling capacitance for the simultane-

ous interconnect sizing and spacing problem for multiple nets. The problem is

formulated using the concept of the dominant time constant, and is solved as a

semide�nite program. There are two drawbacks however. First, the capacitance

for a wire of width w and the unit-length is assumed to be simply ca � w + c
0

x
=s,

where c0
x
is the unit-length coupling capacitance coe�cient, and s the spacing.

Clearly, the capacitance model is not accurate enough. It is not clear whether the

semide�nite programming is capable of handling the accurate capacitance model

like the one we presented in Chapter 3. Second, the dominant time constant is

an approximation to the maximum delay among multiple sinks in a net. Because

there is no formula for the delay to a speci�c sink, it is di�cult to e�ciently min-

imize the delay of a critical sink in a net, or the delay of a critical path, where a

path involves multiple nets.

In the following, we are going to solve the simultaneous interconnect sizing
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Figure 6.2: (a) Ground capacitance and (b) e�ective-fringe capacitance for the

central wire (the victim) in the basic geometric structure shown in Figure 6.1.

Each curve in (a) has the same spacing but di�erent wire widths, and each curve

in (b) has the same center-to-edge spacing but di�erent wire widths. The capac-

itance values are given for the unit-length wire.
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and spacing problem under the accurate table-based capacitance model presented

in Chapter 3. We assume that the capacitance for a wire of width w and length

l is given by

ctotal = ca �w � l+ cef � l: (6.1)

where ca and cef are not constants, but functions of widths and spacings. In

addition, their values are bounded for any given ranges of widths and spacings.

We will call this capacitance model as WS-bounded capacitance model. These

models are more accurate than the simple models used in all most all existing

works. We are going to present the formulations for simultaneous interconnect

sizing and spacing problems using this model.

6.1.2 Single-net and Multi-net Interconnect Sizing and Spacing Prob-

lems

Similar to the STIS problem presented in Chapter 5, we still want to minimize the

delay for multiple critical paths. Therefore, the weighted delay formulation Eqn.

(5.9) in Section 5.1.2 is applicable here, except that we should use cef instead of

cf taking account of the coupling capacitance. With this change, the weighted

delay for multiple paths are

t(X)

=
X
i;j

F (i; j) �
r0(i)

xi

� ca(j) � xj

+
X
i;j

F (i; j) �
r0(i)

xi

� cef (j)

+
X
i

G(i) �
r0(i)

xi

+
X
i

H(i) �
r0(i)

xi

� cef (i) (6.2)

where xi is the width for a transistorMi or a wire Ei, r0(i) is its unit-size e�ective-

resistance, and ca(i) and cef (i) are its unit-area capacitance and unit-length
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e�ective-fringe capacitance. During optimization, coe�cients F (i; j); G(i) and

H(i) are constants determined by the transistor netlist and routing topology, as

well as weight assignment for each path. Note that for the STIS problem in Chap-

ter 5, we assume that the unit-area capacitance ca and unit-length e�ective-fringe

capacitance cef , which is the sum of fringe capacitance and coupling capacitance,

are constants for each wire segment. We now proceed to remove this assump-

tion using the more general WS-bounded capacitance model. For simplicity of

presentation, we assume that the device sizes are �xed, and study the simultane-

ous interconnect sizing and spacing problem with consideration of the coupling

capacitance. However, our algorithm and implementation are able to use the

STL-bounded device model and the WS-bounded capacitance model at the same

time.

Our formulation for the simultaneous interconnect sizing and spacing problem

was �rst presented in [23]. We assume that an initial layout is a priori given and

de�nes the initial central-line for each wire segment. The initial pitch-spacing,

i.e., the distance between the initial central-lines, remains unchanged during the

sizing procedure. We consider two wire sizing formulations. One is the symmetric

wire sizing formulation, where wires are always symmetric with respect to initial

central-lines as illustrated in Figure 6.3(a). In contrast, in the asymmetric wire

sizing formulation shown in Figure 6.3(b), wires of same widths are asymmetric

with respect to initial central-lines, and have smaller capacitance and less delay.

Because neighboring wires are, in general, asymmetrically away from interested

nets, the asymmetric wire sizing formulation is capable of further reducing the

interconnect delay.

Given the asymmetric formulation, in general, the wire sizing solution for wire

segment Ei needs to be represented by a pair of widths (x
"

i
, x

#

i
), where x

"

i
is the
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neighboring wire

(a)  Symmetric wiresizing

E E1 2

neighboring wire

neighboring wire

(b)  Asymmetric wiresizing

E E1 2

neighboring wire

Figure 6.3: (a) symmetric wire sizing, and (b) asymmetric wire sizing. The

asymmetric wire sizing has smaller capacitance and less delay.

width of the piece of wire above (or left to) the initial central-line when Ei is

a horizontal (or vertical) segment, and x

#

i the width of the piece of wire on the

other side of the initial central-line. Similarly, we denote the spacing above (or

left to) Ei as s
"

i , and spacing on the other side as s
#

i . In order to maintain the

connectivity, we say that a wire width xi is valid if x
"

i
and x#

i
are at least Wmin=2,

where Wmin is the minimum wire width set by the manufacture technology.

With consideration of both symmetric and asymmetric wire sizing formu-

lations, we de�ne the following global interconnect sizing and spacing (GISS)

problem:

Formulation 4 Given multiple nets with initial central-line for each wire seg-

ment Ei, the GISS problem is to determine a valid wire width (x"i ; x
#

i ) for each Ei

in these nets such that the weighted delay for multiple nets, given by Eqn. (6.2),

is minimized.

We also de�ne a more restricted single-net interconnect sizing and spacing

(SISS) problem:

Formulation 5 Given multiple nets with initial central-line for each wire seg-

ment Ei, the SISS problem is to assume that all neighboring wire segments for a
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speci�c net have �xed wire sizing solutions, and then to determine a valid wire

width (x"
i
; x

#

i
) for each Ei in this net such that the weighted delay for this net,

given by Eqn. (6.2), is minimized.

Note that both formulations treat that ca and cef are functions of wire widths

and spacings. Furthermore, the SISS formulation can be treated as a special

case of the GISS formulation where all nets except the speci�c net do not have

contributions to the weighted delay given in Eqn. (6.2). In the following, we will

solve �rst the SISS problem then the GISS problem, and solve �rst the symmetric

wire sizing formulation and then the asymmetric wire sizing formulation.

6.2 Properties and Algorithms

6.2.1 Bound Computation for Symmetric SISS Problem

Our WS-bounded capacitance model is a table-based model simpli�ed from the

2.5D capacitance model presented in Chapter 3. In this model, for a wire segment

E with width w and spacing s" and s
# to its two nearest neighboring wires, we

denote ca as ca(w; s
"
; s

#), and cef as cef (w; s
"
; s

#). Furthermore, for two spacing

values s1 and s2, we have shown in Chapter 3 that the following approximations

ca(w; s1; s2) = fca(w; s1; s1) + ca(w; s2; s2)g=2; (6.3)

cef (w; s1; s2) = fcef(w; s1; s1) + cef (w; s2; s2)g=2 (6.4)

are accurate enough. Therefore, we only need to use the numerical capacitance

extraction to solve the basic geometric structure with equal spacings (see Figure

6.1). We consider di�erent width and spacing combinations, and store ca and cef

in two-dimensional tables indexed by widths and spacings. Then, for the given

wire segment with width w and spacings s" and s# to its two nearest neighboring
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wires, ca(w; s
"
; s

#) and cef (w; s
"
; s

#) are obtained from two-dimensional tables

using Eqn. (6.3)-(6.4). Justi�cations and more details about the capacitance

model can be found in Chapter 3.

For wire segment Ei with width xi = (x
"

i ; x
#

i ) and spacing (s
"

i ; s
#

i ), let s
"

i and

s

#

i
be the spacings between Ei and its neighboring wire segments Ej and Ek,

respectively. Because our SISS formulation assumes that the initial central-lines

are �xed, s
"

i
can be determined by x

"

i
and x

#

j
, and s

#

i
by x

#

i
and x

"

k
. Therefore,

ca(i)(xi; s
"

i
; s

#

i
) and cef (i)(xi; s

"

i
; s

#

i
) can be rewritten as ca(i)(x

"

i
; x

#

i
; x

#

j
; x

"

k
) and

cef (i)(x
"

i ; x
#

i ; x
#

j ; x
"

k
). Because coe�cients ca and cef are bounded, according to

the de�nitions of the SISS problem and the bounded CH-program, we have the

following Theorem 12:

Theorem 12 The symmetric SISS problem under the WS-bounded capacitance

model is a bounded CH-program.

Note that the SISS problem is easier than the STIS problem in the sense that co-

e�cient ca or cef for any wire segment in SISS are functions of just one variable for

the symmetric formulation, and are functions of two variables for the asymmetric

formulation, whereas coe�cient r0 in STIS may depend on all variables.

Based on this theorem, we may use the ELR operation to compute the lower

and upper bounds for x�
i
, the optimal width for a wire segment Ei. We assume

that ca 2 [cL
a
; c

U

a
] and cef 2 [cL

ef
; c

U

ef
]. In an ELR operation on a wire Ei during

the lower-bound computation, we use cU
a
(i) and c

L

ef
(i) instead of ca(i) and cef (i)

for Ei, and use cL
a
(d) and c

L

ef
(d) instead of ca(d) and cef (d) for Ed, where Ed is

a downstream segment in the same net as Ei. Similarly, during the upper-bound

computation for Ei, we use c
L

a
(i) and cU

ef
(i) instead of ca(i) and cef (i) for Ei, and

use cU
a
(d) and c

U

ef
(d) instead of ca(d) and cef (d) for downstream segment Ed.
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The bound-computation for the SISS problem can be simpli�ed when the

WS-bounded model is monotonically constrained. We �rst de�ne the following

monotonically constrained capacitance table:

De�nition 12 A capacitance table is monotonically constrained if the following

is true with respect to the basic geometric structure in Figure 6.1: for any two

combinations of widths and spacings (w1; s1) and (w2; s2), if w1 � w2 and s1 � s2,

then ca(w1; s1; s1) � ca(w2; s2; s2), ca(w1; s1; s1) � w1 � ca(w2; s2; s2) � w2, and

cef (w1; s1; s1) � cef (w2; s2; s2),

Intuitively, when the width increases and the spacing decreases, cef often increases

because of the larger coupling capacitance (see cef for center-to-edge spacing

= 1:1�m in Figure 6.2(b)). Also, the unit-area capacitance ca often decreases

because of the stronger shielding e�ect due to that the neighboring wires are

closer. Note that the unit-length area-capacitance (like ca(w1; s1; s1) � w1 and

ca(w2; s2; s2) � w2) often still increases even though the unit-area capacitance ca

decreases.

We say that the WS-bounded model is monotonically constrained if its ca-

pacitance table is monotonically constrained. One may easily verify the following

theorem using the de�nitions for the SISS problem and the monotonically con-

strained CH-program:

Theorem 13 The symmetric SISS problem under the WS-bounded capacitance

model is a a monotonically constrained CH-program if the capacitance model is

monotonically constrained.

In this case, the PLR operation can be used instead of the ELR operation. To

tighten a lower- (upper-) bound xi for a wire Ei, we assume that its neighboring

wires have lower- (upper-) bound widths at spacings s
"

i and s

#

i away from Ei.

145



We obtain ca(xi; s
"

i
; s

#

i
) and cef (xi; s

"

i
; s

#

i
) by table lookup, and perform an PLR

operation on xi. Compared with the ELR operation, the PLR operation is more

e�cient and may lead to smaller gaps between lower and upper bounds.

In order to exploit the optimality of the ELR operation and the e�ciency of

the PLR operation, our implementation of the ELR operation is a hybrid of both

operations. When working on a wire Ei, we �rst check capacitance values with

respect to all valid widths and spacings for Ei,
2 then use an PLR operation if

De�nition 12 is satis�ed. Otherwise, we use an ELR operation.

By using the ELR or PLR operation, we obtain lower and upper bounds

only for the optimal total-width x
�

i
. If the resulting bound is xi, we assign

x

"

i
= x

#

i
= xi=2 for the symmetric SISS problem. Therefore, starting with the

minimum and maximum symmetric wire sizing solutions for all wire segments,

and using iterative ELR or PLR operations, we can compute ELR-tight lower and

upper bounds for the globally optimal solution to the symmetric SISS problem.

Let c0
total

= ca(i) �w + cef (i) be unit-length capacitance for a wire. The delay

objective Eqn. (6.2) can be re-written as

t(X)

=
X
i;j

F (i; j) �
r0(i)

xi

� c0
total

(j)

+
X
i

G(i) �
r0(i)

xi

+
X
i

H(i) �
r0(i)

xi

� c0
total

(i); (6.5)

where xi is the width for a transistor Mi or a wire Ei, and r0(i) is its unit-size

e�ective-resistance. When the WS-bounded model is monotonically constrained,

it is easy to verify that Eqn. (6.2) is an instance of Eqn. (4.6). According

2A dynamic-programming scheme is used based on two-dimensional cache tables, which,

similar to our capacitance tables, are indexed by widths and spacings. For given maximum

width and minimum spacing, the cache tables return the minimum or maximum values for ca
and cef , or imply that the PLR operation can be used.

146



to Lemma 2, the LR operation can be used to compute the lower and upper

bounds for the optimal solution to the SISS problem. The LR operation is less

e�cient than the PLR operation as shown in the following: we assume that for

wire segment Ei with width xi = fx
"

i
; x

#

i
g, there are ten choices for both x

"

i
and

x

#

i
. Because ca and cef in the WS-bounded model depend on x

"

i
and x

#

i
, we

need to enumerate these width choices to �nd the local optimal value for xi. It

costs ten computations for the symmetric wire sizing formulation, and 10 � 10

computations for the asymmetric wire sizing formulation. On the other hand, the

PLR operation needs only one computation to �nd out the pseudo-local optimal

value for xi. Even though the LR operation may need fewer numbers of passes

of lower- and upper-bound computations in the bound-computation algorithm,

overall, using LR operations is less e�cient than using PLR operations in our

experiments.

6.2.2 Bound Computation for Symmetric GISS Problem

For the interested wire segment Ei with width xi and spacings s
"

i and s

#

i to its

two nearest neighboring wires Ej and Ek, only xi is a variable, but wire widths

xj and xk are both constants for the SISS problem. However, xi, xj and xk are

all variables for the GISS problem. In this case, we represent the unit-length

e�ective-fringe capacitance cef (i) for Ei as

cef (i) = c

"

ef
(i) + c

#

ef
(i); (6.6)

where c
"

ef
(i) is the unit-length e�ective-fringe capacitance between Ei and Ej,

and c

#

ef
(i) the unit-length e�ective-fringe capacitance between Ei and Ek. Fur-

thermore, we re-write

c

"

ef
(i) = c

0"
ef
(i) � (xi + xj); (6.7)
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c

#

ef
(i) = c

0#
ef
(i) � (xi + xk): (6.8)

where with respect to the �xed initial central-lines, c0"
ef
(i) is a function of xi and

xj, c
0#
ef
(i) is a function of xi and xk.

Based on this representation for cef , the objective Eqn. (6.2) for the GISS

problem can be re-written as

t(X) =
X
i;j

F (i; j) �
r0(i)

xi

� ca(j) � xj +
X
i;j

F (i; j) �
r0(i)

xi

� cef (j)

+
X
i

G(i) �
r0(i)

xi

+
X
i

H(i) �
r0(i)

xi

� cef (i)

=
X
i;j

F (i; j) �
r0(i)

xi

� ca(j) � xj

+
X
i;j

F (i; j) �
r0(i)

xi

� fc0"
ef
(j) � (xj + x

"

n
(j)) + c

0#
ef
(j) � (xj + x

#

n
(j))g

+
X
i

G(i) �
r0(i)

xi

+

+
X
i

H(i) �
r0(i)

xi

� fc0"
ef
(i) � (xi + x

"

n
(i)) + c

0#
ef
(i) � (xi + x

#

n
(i))g (6.9)

where x"
n
(i) and x#

n
(i) are neighboring wires for wire Ei, and x

"

n
(j) and x#

n
(j) are

neighboring wires for wire Ej.

Because values for ca and c
0
ef

are obviously bounded, we have the following

Theorem 14:

Theorem 14 The symmetric GISS problem under the WS-bounded capacitance

model is a bounded CH-program.

Based on this theorem, we may use the ELR operation to compute the lower

and upper bounds for x�
i
, the optimal width for a wire segment Ei in the GISS

problem. We use the same rules for ca as those we used for the SISS problem: If

we assume that ca 2 [cL
a
; c

U

a
] and Ei has two neighboring wires Ej and Ek, in an
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ELR operation during the lower-bound computation for Ei, we use c
U

a
(i); cU

a
(j)

and cU
a
(k) instead of ca(i); ca(j) and ca(k) for Ei; Ej and Ek, and use c

L

a
(d) instead

of ca(d) for Ed that is a downstream segment of Ei; Ej, or Ek. Similarly, during

the upper-bound computation for Ei, we use c
L

a
(i); cL

a
(j) and cL

a
(k) for Ei; Ej and

Ek, and c
U

a
(d) for downstream segment Ed. The following rules similar to those

for ca are used for c0
ef
: during the lower-bound computation, the upper bound

of c0
ef

will be used for Ei; Ej and Ek, and lower bound of c0
ef

for downstream

segment Ed; during the upper-bound computation, the lower bound of c0
ef

will

be used for Ei; Ej and Ek, and upper bound of c0
ef
used for Ed

3.

6.2.3 Bound Computation for Asymmetric SISS and GISS Problems

In the following, we consider the asymmetric SISS and GISS problems. Because

the SISS problem is a simpler version of the GISS problem, we present our algo-

rithm in the following sections only using the GISS formulation. We �rst extend

the dominance relation to consider the asymmetric wire sizing formulation. We

say that the wire sizing solution X dominates another solution X0 (denote as

X � X0), if (x
"

i ; x
#

i ) � (x0
"

i
; x

0#

i
) (i.e., x

"

i � x
0"

i
and x

#

i � x
0#

i
) holds for any wire

segment Ei. A lower and upper bound of the exact solution to the asymmetric

GISS problem will be determined according to the new de�nition of dominance

relation.

We then solve the asymmetric SISS and GISS problems by augmenting the

bound-computation algorithm presented in the above two sections. Each ELR or

PLR operation gives only the total-width xi, which is a lower or upper bound of

3Note that the monotonically constrained capacitance model can be extended with respect

to the representation for cef given in Eqn. (6.6-6.8) so that the GISS objective Eqn. (6.2)

becomes a monotonically constrained CH-function, and then the PLR operation can be used

instead of the ELR operation.
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the optimal total-width x�
i
for Ei. To obtain an asymmetric wire sizing solution,

we need to separate xi into x
"

i
and x

#

i
, which are respective widths for the \two

pieces" of wires around the initial central-line of Ei. This separation is equivalent

to embed a wire with total-width xi around the initial central-line of Ei. It also

a�ects the ELR and PLR operations in the subsequent steps. We propose to

perform a conservative embedding right after any ELR or PLR operation.

We assume that x�
i
= (x

"�

i
; x

#�

i
) is the width for Ei in the exact asymmetric

solution. Let x
"L

i
and x

"U

i
be the lower and upper bounds for x

"�

i
, and x

#L

i

and x

#U

i the lower and upper bounds for x
#�

i . If we obtain a total-width x
L

i

in the lower-bound computation, the conservative embedding (CE) operation

computes x#L
i

= x
L

i
�x"U

i
, which is a conservative lower-bound for x#�

i
. Similarly,

x

"L

i
= x

L

i
�x#U

i
is a conservative lower bound for x"�

i
. Note that the sum of x"L

i
and

x

#L

i
may be less than xL

i
in the CE operation. Symmetrically, for an upper-bound

x
U

i
, we compute x"U

i
= x

U

i
�x#L

i
, and x#U

i
= x

U

i
�x"L

i
. This augmented algorithm

leads to the lower and upper bounds of the exact solution to the asymmetric

GISS problem.

We also de�ne a greedy embedding (GE) operation. Recall that neighboring

wires of Ei have their lower- (upper-) bound widths during lower- (upper-) bound

computation for Ei. If the lower or upper bound of wire width for Ei is xi, we

�nd x

"

i
and x

#

i
such that x"

i
+ x

#

i
= xi and the objective function Eqn. (6.2) is

minimized with respect to the given neighboring wires. Di�erent from the CE

operation, the GE operation does not always lead to a lower or upper bound of

the exact solution for the asymmetrical GISS problem. We will show, however,

that the GE operation has a higher convergence rate than the CE operation in

experiments, and achieves satisfactory experimental results in Section 6.3. Again,

we say the computation on a wire segment is convergent if lower and upper bounds
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are identical.

6.2.4 Overall Algorithm for Asymmetric SISS and GISS Problems

Our overall asymmetric GISS algorithm (denoted as GISS/ELR algorithm, see

Table 6.1) consists of the following three steps. First, we compute the ELR-tight

lower and upper bounds using iterative ELR operations and CE operations. Our

ELR implementation invokes PLR operations when PLR operations assure the

optimality. Then, if the resulting lower and upper bounds do not meet, we will

use iterative LR operations and GE operations to further improve the lower and

upper bounds. We carry out the LR operation and GE operations simultaneously

as the following: for a wire segment, we enumerate width choices for two wire-

pieces between lower and upper bounds, and the two widths that minimize our

multiple-net objective function Eqn. (6.2) are the LR and GE result. Note that

the �rst step guarantees the optimality in the sense that there exists a global

exact solution within the resulting ELR-tight lower and upper bounds. However,

this kind of optimality may not hold in the second step. Finally, for each net that

still has non-convergent wire segments, we will assume that other nets have lower-

bound wire widths, and invoke the dynamic-programming-based SISS algorithm

presented in [23] to �nd the �nal sizing and spacing solution within its lower

and upper bounds. This SISS algorithm combines the asymmetric wire sizing

formulation and the wire sizing algorithm based on the bottom-up dynamic-

programming technique [49]. We apply this SISS algorithm in the greedy order

such that the more timing-critical net is processed earlier.
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GISS/ELR Algorithm

1. Compute ELR-tight lower and upper bounds

using iterative ELR operations and CE operations;

2. Compute LR-tight \lower" and \upper" bounds

using iterative LR operations and GE operations;

3. For all non-convergent nets in the greedy order,

invoke single-net dynamic-programming based algorithm

within resulting lower and upper bounds.

Table 6.1: Asymmetric GISS algorithm based on ELR and LR operations

6.3 Experimental Results

We have implemented GISS/ELR algorithm using C++ programming language,

and have tested the algorithm by a large number of examples. Experiment in this

section use parameters based on the 0:18�m technology speci�ed in NTRS'94 [77].

We assume the following: the sheet resistance of wire is 0.0638 
=2, the minimum

wire width is 0:22�m, and minimum edge-to-edge spacing between neighboring

wires is 0:33�m. We de�ne the min pitch, as the sum of minimum spacing and

minimum wire size, i.e., 0:55�m. The allowable wire widths are from 0.22 to 1.1

�m, with the incremental step of 0.11 �m. The capacitance tables are generated

using numerical capacitance extractions, as presented in Chapter 3.

6.3.1 Single-net Interconnect Sizing and Spacing

Our GISS/ELR algorithm and implementation can be used for both single-net

and multi-net cases. Here, we apply this algorithm to �nd the optimal intercon-

nect sizing and spacing solution for �ve nets extracted from an advanced indus-
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trial micro-processor. The routing trees are the same as those used in Chapter

2. These trees originally have multiple sources, and we randomly assign one as

the unique single source. We assume that each wire segment has neighboring

wires at randomly-generated spacings from 1 to 5 �min pitch. We assign equal

criticality for each sink so the weighted delay is equal to the average delay in this

experiment.

We compare the average and maximum delays for the following solutions:

minimum wire sizing solution (MIN); symmetric optimal wire sizing solution

(OWS-S) without considering the coupling capacitance (but coupling capac-

itance is counted in HSPICE simulation); symmetric SISS solution (SISS-S)

given by GISS/ELR algorithm and asymmetric SISS solution (SISS-A) given

by GISS/ELR algorithm. We report delays via HSPICE simulations in Table

6.2. One can see from the table that SISS-A is consistently better than all other

algorithms. In terms of the average delay, which is our objective function, the im-

provement is up to 51.6% over the MIN solution, 34.1% over OWS-S, and 32.7%

over SISS-S.

Although the average delay is our objective, experimental results show that

this formulation reduces the maximum delay as well. From the table, we can see

that SISS-A is better than MIN, OWS-S and SISS-S by up to 47.6%, 38.0% and

32.3%, respectively. By assigning more weight to sinks with the most delays, we

may further reduce the maximum delay.

We say that the computation for a wire segment is convergent if the resulting

lower and upper bounds are identical. In Table 6.3, we report the convergence

rate, which is the percent of wire segments that have identical lower and upper

bounds after our bound computation algorithm. In the Table, ELR-S stands for

our ELR-based algorithm under the symmetric SISS formulation, and ELR-A
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Convergence rate Run time (s)

Net ELR-S ELR-A DP-S ELR-S DP-A ELR-A

net1 100% 100% 0.13 0.02 5.58 0.04

net2 100% 100% 0.71 0.03 41.1 0.06

net3 100% 100% 0.80 0.05 48.9 0.11

net4 100% 100% 0.91 0.04 39.8 0.09

net5 100% 100% 3.62 0.07 980 0.8

Table 6.3: The convergence rates for the ELR-based bound computation under

both symmetric and asymmetric SISS formulations. Also shown are the run-

times for SISS algorithms based on dynamic-programming and ELR operations,

respectively.

for this algorithm under the asymmetric SISS formulation. In all cases, 100%

convergence rate is achieved. In [23], a dynamic-programming based SISS algo-

rithm is developed4. In the same Table, we also report the running time compari-

son between dynamic-programming based algorithms and ELR-based algorithms.

We represent the dynamic-programming based algorithms under symmetric and

asymmetric SISS formulations by DP-S and DP-A, respectively. The runtime

by LR-S is only about 1/50 to 1/6 of that by DP-S. For asymmetric case, the

speed-up of LR-A versus DP-A is even more signi�cant. Therefore, for the SISS

problem in practice, we recommend to �rst compute the lower and upper bounds

by LR-based algorithm, then apply the dynamic programming within the �nal

lower and upper bounds if they are not identical.

4The implementation will be reported in Mr. Zhigang Pan's dissertation.
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6.3.2 Multi-net Interconnect Sizing and Spacing

We have tested our GISS algorithm on a 16-bit parallel bus structure. In this

bus, each bit is a 1cm line with a 119 
 driver resistance and a 12.0fF sink

capacitance. We assume that initially these lines are equally spaced. We will

�nd an asymmetric wire sizing for every 500�m-long wire segment.

pitch- Convergence Average gap (�m)

spacing ELR/CE LR/GE ELR/CE LR/GE

2x 54% 100% 0.20 0.0

3x 42% 83% 0.33 0.037

4x 49% 100% 0.44 0.0

5x 45% 84% 0.55 0.048

6x 30% 100% 0.90 0.0

Table 6.4: Convergence of ELR/CE and LR/GE in GISS/ELR algorithm

We optimized the bus for di�erent initial pitch-spacings, from 2x to 6x of the

minimum pitch-spacing (0.55�m). Our GISS/ELR algorithm has two bound-

computation phases, the �rst one using ELR/CE operations and the second one

using LR/GE operations (see Table 6.1). As shown in Table 6.4, computations

for from 30% to 54% wire segments are convergent, i.e., identical lower and upper

bounds are achieved for these segments after the ELR/CE phase. The average

gap after the ELR/CE phase is between 0.90 �m and 0.20 �m. Furthermore, the

LR/GE phase increases the convergence rate to at least 83%.

We compare to an alternative GISS algorithm presented in [23]. Based on an

e�ective-fringe property, it uses a bottom-up dynamic programming technique to

compute lower and upper bounds for the global solution to the asymmetric GISS
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pitch- Average Delay (ns) Run Time (s)

spacing SISS GISS/FAF GISS/VAF GISS/ELR GISS/VAF GISS/ELR

2x 1.31 0.82(-37%) 0.82(-37%) 0.80(-39%) 183 0.69

3x 0.72 0.63(-13%) 0.56(-22%) 0.53(-27%) 189 1.23

4x 0.46 0.46(+0.0%) 0.45(-2.2%) 0.45(-2.2%) 511 1.82

5x 0.38 0.39(+2.6%) 0.37(-2.6%) 0.36(-5.3%) 1083 2.44

6x 0.35 0.36(+2.9%) 0.34(-2.9%) 0.32(-8.6%) 1379 2.28

Table 6.5: Comparison of di�erent sizing solutions for the bus structure.

problem when ca and cf are constants. We call it GISS/FAF. The algorithm may

be extended to use variable ca and cf under the WS-bounded capacitance model,

and we call it GISS/VAF. In both cases, the exact solution may be outside the

range de�ned by the resulting lower and upper bounds. Both GISS/FAF and

GISS/VAF algorithms further use the SISS algorithm to obtain �nal solutions

within the lower and upper bounds, whereas the GISS/ELR algorithm uses the

lower bound as the �nal solution due to its high convergence. In addition, we

also apply the SISS algorithm in a greedy order, which is equivalent to invoking

only step 3 in the GISS/ELR algorithm (Table 6.1). The SISS algorithm obtains

a local-optimal solution for the GISS problem.

We compare the average HSPICE delay for solutions given by these algorithms

in Table 6.5 (average delay is our objective function). As seen from the table,

the GISS/ELR algorithm always achieves results better than the SISS solutions,

with up to 39% delay reduction. Therefore, it is important to �nd the globally

optimal solution to the GISS problem. The improvement of the GISS/ELR al-

gorithm over the SISS algorithm is reduced when the pitch spacing increases,

due to the fact that the coupling capacitance is less signi�cant for larger pitch

spacings. Nevertheless, compared with the SISS algorithm, the GISS/ELR al-
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gorithm still reduces the average delay by 8.6% in the case of maximum pitch

spacing. Because neither ca nor cf is a constant in DSM designs, both GISS/ELR

and GISS/VAF algorithms obtain better results than the GISS/FAF algorithm

does. The GISS/ELR algorithm obtains an extra delay reduction of up to 17%

when compared with the GISS/FAF algorithm. Furthermore, compared to the

GISS/VAF algorithm, the extra delay reduction of the GISS/ELR algorithm is

up to 7.1%. More signi�cantly, the GISS/ELR algorithm runs 100x faster. It

also uses much less memory. Very recently, it was brought to our attention that

an alternative method to the GISS problem, named Bound Re�nement (BR),

has been developed. BR outperforms GISS/VAF in terms of solution quality

and runtime. Preliminary experiment also indicates that for some examples, BR

produces solutions with smaller delays but with longer runtime compared to the

GISS/ELR algorithm5. Further comparison between BR and GISS/ELR algo-

rithms is underway. The BR algorithm and more detailed experiment results will

be included in Mr. Zhigang Pan's thesis.

6.4 Conclusions and Discussions

In this chapter, we have formulated the simultaneous interconnect sizing and

spacing problems for single-net (denoted as SISS problem) and multiple nets (de-

noted as GISS problem), respectively. Given the topology for multiple nets, the

GISS problem �nds the wire sizing and spacing solution optimal for all nets, and

considers coupling capacitance extracted during wire sizing and spacing proce-

dure. The SISS problem is a simpler version of the GISS problem assuming that

neighboring wires are �xed for the speci�c net. We pose both SISS and GISS

problems as CH-programs, which directly leads to e�ective and e�cient solutions

5Private communication with Zhigang Pan, 1999.
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based on bound computation using di�erent types of local-re�nement operations.

We have convincingly shown that it is important for DSM designs to consider

the coupling capacitance by using the simultaneous interconnect sizing and spac-

ing formulation. Experiment showed that compared to the wire sizing formula-

tion, which is not able to consider the coupling capacitance, the SISS formulation

may achieve delay reduction by up to 38%. Furthermore, for multiple nets, the

GISS formulation obtains up to 39% delay reduction when compared to the case

iteratively applying SISS to these nets.

Our SISS and GISS algorithms based on di�erent types of LR operations are

extremely e�cient, with no experiment in this chapter having a runtime of over

10 seconds. Note that SISS and GISS formulations can be treated as parts of

the STIS formulation. Therefore, we have a uni�ed formulation and solution

to the problem of simultaneous device sizing, and wire sizing and spacing for

multiple paths, under accurate models for device delay and interconnect coupling

capacitance.

In the future, we plan to develop noise model with consideration of both cou-

pling capacitance and coupling inductance, and extend our simultaneous device

sizing, wire sizing and spacing algorithm to control noise. Bu�er insertion will

be taken into account as well.
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CHAPTER 7

On-Chip Inductance Model and Its Applications

In this chapter, we study the inductance extraction problem for on-chip intercon-

nects. Our contributions include:

� We propose and theoretically validate two foundations which allow us to

reduce the problem size of inductance extraction without loss of accuracy,

and present a table-based inductance extraction methodology directly based

on the two foundations.

� We use this e�cient inductance extraction methodology to generate dis-

tributed RLC models for on-chip interconnects with consideration of pro-

cess variations, and also apply the resulting RLC model to optimize on-chip

interconnects in the designs of the state-of-the-art microprocessors.

Part of preliminary result are �rst present in [44]. To the best of our knowledge,

it is the �rst work that presents an e�cient and accurate table-based induc-

tance extraction method for on-chip interconnects. Very recently, we have ex-

tended the inductance extraction methodology to consider o�-chip interconnects

in MCM/PCB designs.

The remainder of this chapter is organized as follows: In section 7.1, we intro-

duce the inductance extraction problem for on-chip interconnects. In section 7.2,

we validate two foundations which allow us to reduce the problem size of induc-

tance extraction without loss of accuracy. In section 7.3, we propose a table-based
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inductance extraction methodology based on the two foundations. In section 7.4,

we present two applications of the inductance extraction methodology: (i) to

derive the e�ective ( loop) inductance for a coplanar-waveguide; (ii) to be inte-

grated with the statistically-based RC model generation in [5] to generate RLC

models for on-chip interconnects. We also use the RLC model to optimize bus

structures, using bu�er insertion and shielding insertion. In addition, we briey

discuss extensions to model the power/ground planes and to consider inductance

for MCM/PCB packages. Section 7.5 concludes this chapter.

7.1 Introduction

Precisely, the impedance of a wire is given by R+ j!L, where R is the resistance

of the wire, and L the inductance of the wire. However, the inductance was not

considered traditionally for on-chip interconnect designs. According to a conser-

vative rule the inductance is needed only when R is comparable to j!L. The

RC model is used for the earlier chapters and for most IC designs in the reality,

because the on-chip interconnect resistance R dominates the on-chip interconnect

inductive impedance j!L (less conservative �gures of merit to characterize the

importance of on-chip inductance can be found in [85, 45]).

The on-chip inductance are gaining increasingly importance for DSM designs

for the following reasons:

� In VLSI circuits, global signal nets and clock nets often use large widths

and are routed on the top layers that have high thicknesses. Moreover,

lower resistive copper wires start to replace conventional aluminum wires.

All of these factors lead to more on-chip interconnects that have relatively
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low resistance and can exhibit signi�cant inductive e�ects1.

� As the clock frequency increases and the rising/falling time of the signal

decreases, the signal has more and more high frequency components. It

makes j!L and therefore the inductance e�ect more signi�cant. Note that

the frequency ! in the inductive impedance j!L is not given by 2� times the

clock frequency, but more precisely by 2� times the signi�cant frequency,

which is larger than the clock frequency and is given by 0:17=tr [52], where

tr is the rising/falling time of the signal.

� In addition, with the increase of chip size (see Table 1.1), there are increas-

ingly more wires that are long and are running in parallel. It may lead to

severe inductive coupling, and this type of coupling exists even for wires

that are not directly adjacent.

The on-chip inductance is considered as a very di�cult problem, because the

inductance in essence is de�ned for the current loop but the current return path

is not well de�ned for on-chip interconnects. A key idea to solve the problem

to extract inductance from complex 3D interconnect structures is the concept

of partial inductance. It is developed in [64] and was introduced to the circuit

design �eld in [67, 68]. The partial inductance for a wire segment is de�ned as the

portion of the loop inductance for the wire segment, assuming the wire segment

forms a loop with the in�nity. Based on the concept of the partial inductance (or

called partial element equivalent circuit (PEEC) model as in [68]), the numerical

�eld solvers are developed [68, 47, 34].

However, extraction of parasitic parameters (resistance, capacitance and in-

1Both resistance and inductance are reduced when the cross-section area becomes larger.

While the resistance is reversely proportional to the cross-section area, the inductance is much

less sensitive to the change of the cross-section area, as shown later on in (7.3) and (7.4).
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ductance) via numerical �eld solvers is hard to support during iterative proce-

dures of simulation and optimization for on-chip interconnects. Accurate and e�-

cient extractions of resistance and capacitance without using numerical methods

have been achieved recently. For example, we presented a 2 1/2-D capacitance

extraction methodology in Chapter 3. Also, a fast generation of statistically-

based worst-case RC models was implemented and used at Hewlett-Packard [5].

Both used the table-based approach, which is suitable for iterative simulation and

optimization purposes. Yet, there is no report on table-based inductance extrac-

tions. In the following, we will present two foundations concerning the inductance

extraction. These two foundations are based on the PEEC model, and will lead

to an accurate and e�cient table-based inductance extraction methodology.

7.2 Foundations for Inductance Extraction

7.2.1 Preliminaries

There are multiple metal layers in a VLSI technology. We assume that wire

traces on adjacent layers are orthogonal, and extract the inductance for a block,

which contains n parallel traces (T1, T2,..., Tn) of same lengths on the same layer

(see Figure 7.1). In addition, we also assume that the two most outside traces,

T1 and Tn, are dedicated power/ground traces. When the block size is three, it

is a coplanar-waveguide, which is one of the three basic forms for transmission

line2, and is often used for clock tree in high-speed designs. When the block size

is large, it models the bus structure with outside power/ground traces that can

be used for shielding only or for shielding and power supply at the same time.

Because traces are orthogonal on adjacent layers, traces on layer N +1 and layer

2The other two forms are the micro-strip line and strip line. Both will be discussed in Section

7.4.3.
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N � 1 will not a�ect the inductance of traces on the current layer N [51]. In

section 7.5, we will discuss the impacts of layer N + 2 and layer N � 2.

T1 T2 T3 T4 Tn-1 Tn

Figure 7.1: The cross-section view for a block of n traces, where T1 and Tn are

dedicated power/ground traces. The widths for the traces are W1, W2, :::, and

Wn, respectively. The spacings between them are S1, S2, ::: and Sn�1, respectively.

Note that the capacitive e�ect is a \short-range" e�ect in the sense that for a

block, only the mutual capacitance between adjacent traces are important, and

the rest of the mutual capacitance can be ignored. Therefore, for any trace, it is

su�cient to solve the trace and its two adjacent traces via numerical extraction

(Foundation 4 in Chapter 3). In other words, we are able to reduce the n-

trace capacitance problem to a number of 3-trace subproblems (see Chapter 3).

The inductive e�ect, however, is a \long-range" e�ect. For example, in Figure

7.2, we compute the inductance for a block with size n=5 by assuming that

the wire thickness is 2.0�m, wire width W1=4�m, W2=W3=W4=0.8�m, W5=

2�m, all spacings are 0.8�m, and the length is 4000�m. We specify that T1

and T5 are power/ground traces that serve as current return paths, and run a

3D inductance tool RI3 in Raphael [34] to compute loop inductance. The result

is the loop inductance in a 3x3 matrix, where current is assumed to return via

the two power/ground traces T1 and T5. In the matrix, diagonal elements are

self inductance, and o�-diagonal elements are mutual inductance. The mutual

inductance between T2 and T4 can not be ignored even though there is T3 between

them.

In general, there is a signi�cant mutual inductance between any traces within
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T1 T2 T3 T4 T5

            T2     T3      T4
T2       1.73   1.15   0.53
T3       1.15   1.94   1.24
T4       0.53   1.24   1.92

Figure 7.2: Loop inductance (nH) by specifying that T1 and T5 are current return

paths.

a block (e.g., even for a block of size n=32). Due to this \long-range" e�ect,

even though we assume that all signal traces have an identical width, and the

spacings are identical, the brute-force way to build inductance tables will have

large table sizes. The table for self inductance has six dimensions: two widths for

power/ground traces, one width for signal traces, the trace location, and uniform

spacing and length. Note that the trace length is needed because the inductance

is not a linear function of trace length. At the same time, the table for mutual

inductance needs locations for two traces, which leads to seven-dimension tables.

We may not a�ord to consider di�erent widths and spacings for di�erent traces.

Furthermore, the loop inductance in Figure 7.2 assumes that all current re-

turns via the two power/ground traces, which may not be true for the high

frequency. For example, when only one trace is switching, its current may return

from adjacent quiet traces. The right way to extract inductance for a block is

to run RI3 without specifying any power/ground traces as current return paths.

Then, for the block in Figure 7.2, we obtain the partial inductance in a 5x5 ma-

trix (see Figure 7.3(a)). Again, the diagonal elements are self inductance, and

o�-diagonal elements are mutual inductance. An important observation is that

now the self inductance of a trace depends only on the trace itself, and the mu-

tual inductance of two traces depends only on the two traces themselves. For

example, in Figure 7.3(b), we compute the self inductance L11 for T1 with other
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traces removed, and obtain the same L11 as in Figure 7.3(a). In Figure 7.3(c), we

compute the mutual inductance L15 for T1 and T5 with T2, T3 and T4 removed,

and obtain the same L15 as in Figure 7.3(a).

T1 T2 T3 T4 T5

        T1     T2    T3    T4     T5
T1   6.17  5.43  5.12  4.89  4.66
T2   5.53  6.79  6.10  5.48  5.04
T3   5.12  6.10  6.79  6.10  5.33
T4   4.89  5.48  6.10  6.79  5.77
T5   4.66  5.04  5.33  5.77  6.50 

T1 T5

       T1      T5
T1   6.17  4.66
T5   4.66  6.50 

T1

        T1
T1   6.17  

(a)

(b)

(c)

Figure 7.3: Partial inductance (nH) without specifying any current return path:

(a) a block of size n = 5, (b) only trace T1 (with other traces removed), and (c)

only two traces T1 and T5 (with traces T2-T4 removed).

When we do not specify which traces are power/ground traces, we compute

partial inductance (denoted as Lp) under the PEEC model. In general, we have

the following foundations:

Foundation 6 Self Lp of a trace is solely decided by the trace (its length, width

and thickness).

Foundation 7 Mutual Lp of two traces is solely decided by the two traces (their

lengths, widths and thicknesses, and the spacing between them).
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7.2.2 Validation of foundations

In order to validate the two foundations, the following illustrates the inductance

extraction procedure under the PEEC model. The PEEC model was introduced

in [67, 68], and has been widely used in numerical inductance extraction tools

(for example, [34, 47]). Because the inductance is de�ned only for closed loops,

the partial inductance of a trace can be viewed as the inductance of the trace as

it forms a loop with in�nity. If the current density is uniform in traces Tk and

Tm, according to [68], the mutual inductance Lpkm
under the PEEC model is:

Lpkm
=

�

4�

1

akam

Z
ck

bk

Z
ak

Z
cm

bm

Z
am

dlk � dlm
rkm

dak � dam (7.1)

where ak and am are cross-sectional areas, bk and bm are starting points, ck and

cm are ending points, all for traces Tk and Tm, respectively. In addition, rkm is

the distance between dlk and dlm, which represent di�erential elements of length

for traces Tk and Tm, respectively. When k = m, Eqn. (7.1) gives the self Lp of

a trace.

In the case where the current is not uniform in a trace, a trace can be divided

into rectangular �laments (see Figure 7.4). The current is assumed to ow along

the length of each �lament with a constant density within each �lament. There-

fore, Eqn. (7.1) may be used for each �lament. It is easy to see that Foundations

6 and 7 hold for each �lament with respect to (7.1). I.e., the self Lp of a �lament

is solely decided by the �lament, and the mutual Lp between two �laments is

solely decided by the two �laments. The conclusions hold for cases of a single

trace and multiple traces.

If we assume that trace Tk has P �laments, and trace Tm Q �laments, then
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current flow

3 filaments

5 filaments

Figure 7.4: A trace is divided into 3� 5 �laments. It is assumed that the current

density is the same within a �lament.

Lpkm
is given by

Lpkm
=

PX
i=1

QX
j=1

Lpij
(7.2)

where Lpij
is the mutual Lp between �lament i of Tk and �lament j of Tm. Again,

when k = m, Eqn. (7.2) computes the self Lp for a trace. Because Foundations

6 and 7 hold for Lpij
, it is easy to see that Foundations 6 and 7 still hold after

using Eqn. (7.2) to compute Lp for traces.

7.3 Table-based Inductance Extraction

The two foundations enable us to reduce the n trace inductance problem into

1-trace subproblems to solve the self Lp, and into 2-trace subproblems to solve

the mutual Lp. There is no loss of accuracy during the reduction. As given in
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[41], the self inductance may be solved by

L(nH) = 2l[ln
2l

w + t

+ 0:5� k] (7.3)

where k = f(w; t) and 0 < k < 0:0025, and l, w, and t are length, width and

thickness of the trace in unit of cm. The mutual inductance for two traces of

same width and length is

L(nH) =
�0l

2�
[ln

2l

s

� 1 +
s

l

] (7.4)

where s is spacing between two traces, again in unit of cm.

These equations give us two insights: First, the inductance for on-chip inter-

connects is not linearly scalable. Both self and mutual inductance are super-linear

functions of the trace length. Secondly, because of the logarithmic operation of

2l
w+t

and l

s
, both mutual and self inductance is less sensitive to variations of trace

width and spacing as the capacitance and resistance are. The two insights are

also veri�ed by experiments with numerical inductance tools. For example, in

Table 7.1, we report both self and mutual inductance for two parallel wire traces

with pitch-spacing being 3�m. Columns 2-4 are inductance values for wire length

of 1000�m, and column 5-7 are inductance values for wire length of 4000�m. For

each length, three wire widths are assumed, namely, 1�m, 1.2�m (i.e., the width

has 20% variation compared to width=1�m), and 2�m (i.e., the wire is up-sized

by 100% compared to width=1�m). One can see the following from the table:

First, the inductance is not linearly scalable with respect to the wire length. For

example, when the wire width is 1�m and the wire length increases from 1000�m

to 4000�m (an increasing factor of 4x), the self inductance increases by a factor

of 4.74x rather than 4x. Second, the inductance variation is only around 1% for

the 20% variation of wire width (see columns 3 and 6). Therefore, there is no

need to consider the impact of process variation for inductance extraction, even
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though the impact must be considered for resistance and capacitance extractions

as in [5]. Finally, when we up-size the wire width by 100% (see columns 4 and

7), the inductance changes by up to 5.4% for self inductance, and by 4.5% for

mutual inductance. Therefore, interconnect sizing and spacing might not be an

e�ective way to change inductance3.

There are limitations of applying the two equations however. First, they

do not consider the skin depth and internal inductance; Second, widths are not

considered for mutual inductance. Therefore, we will propose to build tables via

numerical inductance extraction for self and mutual inductance.

There are two parts in the table-based inductance extraction. One is to pre-

compute inductance tables. We assume that each layer has a nominal thickness,

and build tables for di�erent layers. The self inductance table has two dimensions:

width and length. The mutual inductance table has four dimensions: widths for

two traces, the spacing between them, and the length. The 3D inductance extrac-

tion tool RI3 is invoked to solve a block of two traces for di�erent combinations of

lengths, widths, and spacings. The resulting self and mutual inductance is stored

in tables. Note that only 2-trace subproblems need to be solved, because results

to 1-trace subproblems are parts of results to 2-trace subproblems. In addition,

the inductance depends on the skin depth, which is a function of frequency. We

run RI3 under the signi�cant frequency. The signi�cant frequency is de�ned as

0:17=tr, where tr is the minimumrising/falling time [52]. It captures the majority

of high-frequency components for the signal with rising/falling time tr.

The other part of the table-based inductance extraction is table lookup. For

each trace in a block, we obtain a self inductance from tables for a given layer,

3On the other hand, because the coupling capacitance depends strongly on the spacing, the

optimal interconnect sizing and spacing, as shown in Chapter 6, is e�ective to reduce RC delay

(as well as capacitive coupling).
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length and width. For any combination of two traces Ti and Tj, we obtain a

mutual inductance from tables for a given layer, widths, and spacing between Ti

and Tj. A bicubic spline algorithm [62] will be used to compute inductance that

is not given in the table.

7.4 Applications of Inductance Model

7.4.1 Leff for coplanar-waveguide

The coplanar-waveguide structure (a block of size n = 3, see Figure 7.5) is often

used for on-chip clock trees in high-speed designs. Not to consider the inductive

e�ect will lead to a signi�cant underestimate of delay and noise. Therefore, the

e�ective loop inductance (Leff ) of the signal trace needs to be computed in order

to use the transmission line theory. In the following, we derive Leff as a function

of Lp for the three traces T1, T2 and T3, where T2 is the signal trace, and T1 and

T3 are coplanar power/ground traces.

T1 T2 T3

i1 i2 i3

Figure 7.5: The top view of a coplanar-waveguide. T1 and T3 are dedicated

power/ground traces.

Leff is de�ned for the current loop that has two segments: the �rst segment
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is current i2 through T2; the second segment has two parallel branches, i.e., i1

through T1 and i3 through T3. According to the de�nition of Leff , we have

�V = Leff

di2

dt

(7.5)

= Lp22

di2

dt

+ Lp21

di1

dt

+ Lp23

di3

dt

� Lp11

di1

dt

� Lp12

di2

dt

� Lp13

di3

dt

and the two power/ground traces have the same voltage drop

Lp11

di1

dt

+ Lp12

di2

dt

+ Lp13

di3

dt

= Lp13

di1

dt

+ Lp23

di2

dt

+ Lp33

di3

dt

(7.6)

�nally, the current are conservative according to KCL

i1 + i2 + i3 = 0 (7.7)

Leff can be derived by simultaneously solving (7.5)-(7.5). When T1 and T3 are

symmetric with respect to T2, Leff is

Leff = Lp22
� 2Lp23

+
Lp11

2
+
Lp13

2
(7.8)

Experiments show that (7.8) using our partial inductance tables gives results

almost identical to Leff obtained by 3D extractions using RI3. For example,

we compute the Leff for a coplanar-waveguide structure with all three traces

10�m wide, 2000�m long, and separated by 2�m. The Leff given by our formula

(7.8) using table-based partial inductance is 0.839nH, while Leff given by RI3 is

0.840nH. The di�erence can be almost ignored.

7.4.2 Bus optimization

We also have integrated the table-based inductance model with the statistically-

based RC model [5] to obtain the RLC model for on-chip interconnects. As

discussed in section III, we do not need to consider the impact of process varia-

tions for inductance, but we do consider the impact for resistance and capacitance
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[5]. In addition, because of the assumption that traces on adjacent layers are or-

thogonal, there is no need to consider the mutual inductance between traces on

layer N and those on layer N +1 or N � 1. At the same time, trace densities on

layers N + 1 and N � 1 are considered during capacitance extraction for traces

on layer N . The resulting RLC model is represented as the SPICE netlist. The

current return path will be determined automatically by SPICE.

In the following, we apply the RLC model to optimize a bus structure with

18 signal traces, and two fat power-traces outside the signal traces. The wire

thickness is 2.0�m, and spacing is 0.8�m, both for all traces. The width is

0.8�m for all signal traces, and is 16�m for two fat power-traces. We assume the

following signal pattern: all signal traces are simultaneously switching up with

rising time of 80ps, except that one of the two central signal traces is the quiet

victim. We also assume that all devices, including drivers, bu�ers and receivers,

are 40x of the minimum inverter in a representative 0.18�m CMOS technology.

Based on SPICE simulations, we will show how bu�er insertion and shielding

insertion reduce the noise under the RLC model.

A. Bu�er insertion

It is well known that bu�er insertion is e�ective to reduce the RC delay and

capacitive noise. It is also very e�ective to reduce the inductive noise, since

the original longer current return loop becomes shorter, as the current returns

through the inserted bu�ers. Furthermore, as we discussed in the above (see

Table 7.1), the inductance is a super-linear function of the wire length, more

precisely, the DC-connected wire length between devices such as drivers, bu�ers

and receivers. Therefore, while inserting a bu�er at the middle point of a long

wire reduces the coupling capacitance by a half for each DC-connected wire, it
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reduces the mutual inductance by more than a half for each DC-connected wire.

In the following example via SPICE simulation under the RLC model, we

assume that for all traces, the wire length is 4000�m. We measure the noise at

the far-end of the victim trace (the input node of receiver) for three cases: no

bu�er, one bu�er, and three bu�ers inserted for each single trace, respectively.

These bu�ers are inserted uniformly. Therefore, the DC-connected wire lengths

are 4000�m, 2000�m and 1000�m for three cases, respectively. As shown in Table

7.2, inserting one bu�er reduces the noise by 21.1%, and inserting three bu�ers

reduces the noise by 42.3%. Note that the noise is measure at the inputs of devices

for the victim trace. Much less of noise will be observed if the measurement is

made at the output of devices.

number of bu�er inserted 0 1 3

DC-Connected wire length (�m) 4000 2000 1000

Noise (V) 0.71(0.0%) 0.56(-21.1%) 0.41(-42.3%)

Table 7.2: Comparison of noise between di�erent bu�er insertion solutions.

B. Shielding insertion

A shielding trace is a wire directly connected to power or ground networks. It

can provide the dedicated current return path to reduce the inductive noise. In

the following experiment, we assume that for all traces, the length is 4000�m,

and no bu�ers are inserted. We again measure the noise at the far-end of the

victim trace (the input node of receiver) via SPICE simulation. We will insert

shielding traces to make the far-end noise of the victim trace less than 0.25V.

When there is no shielding traces, the noise of victim trace is 0.71V. Then,
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we insert a shielding trace for every six signal traces, and increase the width Ws

for shielding traces from 0.8�m to 2.4�m. The noise is 0.22V with Ws = 2:4�m.

Finally, we insert a shielding trace for every three traces. The noise is 0.17V

when Ws = 0:8�m. As shown in Table 7.3, there is a clear trade-o� between area

and noise: we may reduce the noise by a factor of 4.2x while the total width, the

sum of the total wire width and total spacing, of the bus structure is increased

by 13%, and the total wire width is increased by 8.8%.

Ns Ws Noise (V) total width (�m) wire width (�m)

18 { 0.71 61.6 46.4

6 0.8 0.38 64.8 46.0

6 1.6 0.27 64.4 49.6

6 2.4 0.22 68.0 51.2

3 0.8 0.17 69.6 50.4

Table 7.3: Comparison of noise between di�erent shielding insertion solutions.

Column one (Ns) is the number of signal traces between two shielding trace, and

column 2 (Ws) is the width for the shielding traces. Column 3 is the total width

(including the total spacing) of the the bus structure, and column 4 is the total

wire width.

7.4.3 Extensions to Model Power/Ground Planes and MCM/PCB

Designs

Same as the shielding trace, the power/ground plane can be used to provide the

dedicated current return path and to reduce the inductance e�ect. Very recent,

it is reported that the Alpha 21264 microprocessor uses entire metal layers as

power/ground planes to supply power and reduce coupling [40]. Because using
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entire layer is extremely expensive, partial metal layer may also be used. The

on-chip interconnects become micro-strip lines if there is only one power/ground

plane, or strip lines if there are two power/ground planes sandwiching intercon-

nects.

Foundations 6 and 7 still valid if we explicitlymodel the power/ground planes

using the PEEC model. It leads to a model with a high complexity however. Re-

cently, the two foundations have been extended to compute the loop inductance

for the micro-strip and strip lines in a similar fashion4. Because the loop induc-

tance has taken the e�ect of power/ground planes into account, there is no need

to explicitly model the inductance for power/ground planes. More detailed study

on the characteristics and optimization of inductance for on-chip micro-strip and

strip lines is planned as a future work.

The MCM/PCB design often uses the micro-strip and strip lines for o�-chip

interconnects. The extended methodology can be used to consider these o�-chip

interconnects. To illustrate the inductance characteristics for o�-chip intercon-

nects, we compute the loop inductance for the strip lines in the MMS MCM

technology that is available through the MCM Interconnect Designer's Access

Service from Information Science Institute. We use two wires between one power

plane and one ground plane. Both wires are 4�m thick, and are 12�m and 21.5�m

away from the power plane and ground plane, respectively. The pitch spacings

between the two wires are 62�m and 75�m, respectively. We report loop in-

ductance under di�erent wire widths and lengths in Table 7.4. Columns 2-4 are

inductance for wires of 1cm, and columns 5-7 are inductance for wires of 4cm.

We observe the following: First, the inductance is again not linearly scalable with

respect to length. For example, when pitch-spacing is 62�m, wire width is 19�m

4Private discussion with Dr. Norman Chang and Dr. Shen Lin at Hewlett-Packard

Laboratories.
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and length increases from 1cm to 4cm, the self inductance increases by a factor of

4.5x rather than 4x. Second, the mutual inductance is not sensitive to the change

of the wire width for the given pitch-spacing, but does have certain change for

di�erent pitch-spacings. As shown in the table for pitch-spacing being 62�m, a

100% increase of the wire width only leads to less than 1% change of the mutual

inductance5, but when we increase the pitch-spacing from 62�m to 75�m, the

mutual inductance decreases for about 10%. Finally, the self inductance is more

sensitive to the wire width change, but not the pitch-spacing change. A 20%

increase of the wire width reduces the self inductance by up to 4.5% and a 100%

increase of the wire width reduces the self inductance by up to 13%, but when

we increase the pitch-spacing from 62�m to 75�m, the self inductance decreases

only for about 1%.

7.5 Discussions and Conclusions

In this chapter, we have proposed two foundations that can be used to reduce

the problem size for the on-chip inductance extraction problem. We have also

presented a table-based inductance extraction methodology, which is e�cient

and accurate, and can be used for iterative layout optimization and veri�cation

procedure.

We have applied the table-based inductance model to computeLeff for coplanar-

waveguide, and to generate RLC models for on-chip interconnects. The RLC

model has been used to optimize bus structures via SPICE simulations. Experi-

ments have shown that both bu�er insertion and shielding insertion are e�ective

to reduce the inductive noise. In the future, we plan to develop optimal algo-

5It implies that the power/ground planes are e�ective to shield the coupling e�ect between

parallel wires.
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rithms for the optimal bu�er insertion problem and the optimal shielding insertion

problem, both under the distributed RLC model. Furthermore, the simultaneous

bu�er and shielding insertion problem will be studied to explore the trade-o�

between the device and interconnect costs to minimize the delay and noise under

the distributed RLC model. Moreover, we will extend the simultaneous device

sizing, and interconnect sizing and spacing problem, which is solved under the dis-

tributed RC model for performance optimization in Chapter 6, to the distributed

RLC model for both performance and signal-integrity optimization.

Our inductance model in this chapter considers traces only on a single layer.

It is assumed that for traces on layer N , the current return path via layer N + 2

or N � 2 has a very high impedance, therefore the lion's share of the current

returns via loops in the same layer. In addition, layers N + 2 and N � 2 are

statistically quiet. Therefore, it is acceptable to consider only layer N . Further

study on the impact of layer N + 2 or N � 2 is planned.

Our Foundations 6 and 7 can be e�ciently applied to model on-chip inter-

connects without the presence of power/ground planes. We have also briey

discussed the ongoing extensions to consider the power/ground planes. The ex-

tended results are applicable to both on-chip and o�-chip interconnects.
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CHAPTER 8

Conclusions and Discussions

As very large scale integrated (VLSI) circuits move into the era of deep-submicron

(DSM) technology and gigahertz clock frequency, the system performance has

increasingly become dominated by the interconnect delay. In this dissertation,

we have presented �ve research topics on interconnect modeling and optimization,

as well as optimization theory.

In Chapter 2, we have studied the multi-source wire sizing (MSWS) prob-

lem. Given a routing tree with multiple sources, the MSWS problem determines

the optimal widths of the wire segments such that the weighted sum of delays

between di�erent source-sink pairs is minimized. We have revealed several inter-

esting properties for the optimal MSWS solution, of which the most important

is the bundled re�nement property. Based on this property, we have proposed a

polynomial-time algorithm, which uses iterative bundled-re�nement operations to

compute lower and upper bounds of an optimal solution. Because the algorithm

often achieves identical lower and upper bounds in experiments, the optimal solu-

tion is obtained simply by the bound computation. Experiments based on SPICE

simulations have convincingly shown that wire sizing is e�ective to reduce the in-

terconnect delay for the routing tree with multiple sources. Furthermore, this

new wire sizing algorithm can be used for single-source wire sizing problem and

runs 100x faster than previous methods. It has replaced previous single-source

wire sizing methods in practice.
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In Chapter 3, we have solved the interconnect capacitance extraction prob-

lem to compute the capacitance values from complex 3-dimensional interconnect

structures. We have shown how basic drivers in process technology (planariza-

tion and minimum metal density requirements) actually simplify the extraction

problem; we do this by proposing and validating �ve \foundations" through de-

tailed experiments with a 3-dimensional �eld solver on representative 0:50�m,

0:35�m and 0:18�m process parameters. We have further presented a simple yet

accurate 2 1/2-dimensional extraction methodology directly based on the foun-

dations. This methodology has been productized and is being shipped with the

Cadence Silicon Ensemble 5.0 product. Moreover, this methodology can also be

used for MCM/PCB designs.

In Chapter 4, we have developed the theory and algorithm for the local-

re�nement based optimization. We have formulated three classes of optimization

problems: the simple, monotonically constrained, and bounded CH-problems. We

have revealed that the dominance property holds for those CH-problems under

di�erent types of local-re�nement operations. This property immediately leads

to an e�cient polynomial-time algorithm, which provides a uni�ed solution to a

number of interconnect optimization problems, including the MSWS problem, as

well as STIS and GISS problems presented in Chapters 5 and 6, respectively.

In Chapter 5, we have solved the STIS (i.e., simultaneous transistor and

interconnect sizing) problem under the accurate device model. The problem

assigns optimal wire widths to interconnects and optimal sizes to transistors

for minimizing the delay for multiple critical paths. We have shown that the

STIS problem is in general a bounded CH-program and can be solved by the

local-re�nement based algorithm presented in Chapter 4. According to SPICE

simulations, signi�cant delay reduction has been achieved by using the device
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model more accurate than many used in existing interconnect optimization works.

Both the MSWS problem in Chapter 2 and the STIS problem in Chapter 5

are aimed to address the resistive e�ect of the interconnect. This e�ect is often

ignored when the minimum transistor size is larger than the submicron that is

� 0:35�m. Furthermore, our study of interconnect capacitance in Chapter 3

shows that, rather than conventional ground capacitance, the coupling capaci-

tance between neighboring wires becomes the dominant capacitance component

for the DSM designs. The dominant coupling capacitance has a great impact on

both performance and signal integrity in the DSM designs.

In Chapter 6, we have studied the global interconnect sizing and spacing

(GISS) problem to address the impact of the coupling capacitance on the inter-

connect delay. Given the topology for multiple nets, the GISS problem �nds the

wire sizing and spacing solution simultaneously for all nets, with consideration

of coupling capacitance between them. We have formulated the GISS problem

based on the concept of asymmetric wire sizing. The formulation can be posed

as a CH-program, which directly leads to an e�ective and e�cient solution. We

have shown convincingly that the simultaneous wire sizing and spacing formula-

tion and algorithm can signi�cantly reduce the interconnect delay compared to

the formulation using wire sizing only.

Note that the MSWS and GISS formulations can be viewed as parts of the

STIS formulations, and the solutions to the three problems are all based on

di�erent types of local-re�nement operations1. Therefore, we have a uni�ed for-

mulation and solution to minimize the interconnect delay under the distributed

RC model with consideration of simultaneous device sizing, and wire sizing and

spacing. We also use accurate models for both device delay and interconnect

1The bundled re�nement operation for the MSWS algorithm is also a type of local-re�nement

operation as discussed in Chapter 4.
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capacitance (including the coupling capacitance). Solutions to the three inter-

connect optimization problems, as well as the interconnect extraction problem,

have been integrated in the TRIO package [24]2.

Due to increasingly wider and longer wire traces, faster clock frequencies and

shorter rising times, the inductance e�ect of on-chip interconnects becomes an

emerging problem for DSM designs with gigahertz clock frequencies. In Chapter

7, we have investigated the interconnect inductance extraction problem. It com-

putes the inductance values from three-dimensional interconnect structures. We

have proposed an e�cient yet accurate table-based approach using the concept

of partial inductance. This approach has been used to generate RLC models for

on-chip interconnects with consideration of process variations, and is being used

in the state-of-the-art microprocessor designs in Hewlett-Packard Company. We

have also shown that both bu�er insertion and shielding insertion are e�ective

to reduce the inductive noise. However, the automatic interconnect optimization

considering the inductance e�ect is still an open problem. To solve the problem,

we plan to develop optimal algorithms under the distributed RLC model or the

lossy transmission line model to optimize both performance and signal integrity.

2TRIO package is available at http://cadlab.cs.ucla.edu/ ~trio.
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CHAPTER 9

Appendix: Proofs for Properties of Optimal

MSWS Solutions

In this appendix, we present the proofs for properties of optimal multi-source

wiresizing solutions. These properties are described in Chapter 2.

Since the proofs for the LST separability (Theorem 1), the LST monotone

property (Theorem 2), the dominance property (Theorem 4) and Theorem 7

concerning the complexities of GWSA and BWSA algorithms are similar to those

in [29], the full proofs of these theorems are given in [15]. In this appendix, we �rst

discuss the properties for the coe�cient functions and then prove the SST local

monotone property (Theorem 3), the bundled re�nement property (Theorem 5)

and Theorem 6 concerning the optimality of the BWSA algorithm.

9.1 Properties of Coe�cient Functions

Careful study of the de�nitions of f ij; gij and h
ij in (2.4){(2.6), as well as F;G

andH in (2.10){(2.12) reveals Lemma 1 presented in Section 2.2 and the following

Lemmas 3 and 4 for the coe�cient functions F, G and H.

Lemma 3 Given an MSIT and a segment S in the MSIT, for any uni-segments

E and E
0, if E is in segment S, and E

0 in segment S0(6= S
0), F (E;E0) is an

invariant (denoted F (S; S0)).

185



Lemma 4 Given an MSIT and a segment S in the MSIT, for any uni-segment

E within segment S, G(E) and H(E) are invariants (denoted G(S) and H(S),

respectively).

Although the coe�cient functions F;G and H are de�ned for uni-segments in

(2.10){(2.12), Lemmas 1{4 enable us to compute these functions based on seg-

ments rather than uni-segments. Because the number of segments in an MSIT

may be much smaller than the number of uni-segments in the MSIT, we can

compute these coe�cient functions for much reduced costs. These coe�cient

functions will be computed before the wiresizing procedure and viewed as con-

stants during the wiresizing procedure.

9.2 Proof of Theorem 3

We shall prove Theorem 3 (the SST local monotone property) based on a series

of lemmas. For simplicity, we assume the �nest segment division in this proof.

Recall that a uni-segment under any valid segment-division corresponds to a

single or multiple uni-segments in the �nest segment-division, it is easy to verify

that the local monotone property holds for any valid segment-division if and only

if it holds for the �nest segment-division.

Lemma 5 Given an MSIT and a segment S in the MSIT, if El and Er are two

adjacent uni-segments within segment S and El is just left to Er, then

F (El; E) = F (Er; E) if E 6= El 6= Er

F (E;El) = F (E;Er) if E 6= El 6= Er

Proof: There are two cases for Lemma 5.

Case 1: E is in segment S, according to Lemma 1,
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if E is right to El (as well as Er), F (El; E) = F (Er; E) = Fl(S) and F (E;El) =

F (E;Er) = Fr(S);

if E is left to El (as well as Er), F (El; E) = F (Er; E) = Fr(S) and F (E;El) =

F (E;Er) = Fl(S).

Case 2: E is in segment S0(6= S), according to Lemma, 3

F (El; E) = F (Er; E) = F (S; S0) and F (E;El) = F (E;Er) = F (S0
; S). 2

Lemma 6 Given an MSIT and a segment S in the MSIT, let El and Er be

uni-segments in segment S with El just left to Er, concerning the optimal wire-

sizing solution, if Fl(S) > Fr(S), then El can not be narrower than Er; if

Fl(S) < Fr(S), then El can not be wider than Er.

(a) (b)

rE El rEEl

W*/ rE : El
ωω rEEl ,

Figure 9.1: (a) The width assignments for El and Er in the optimal solutionW
�.

(b) The wiresizing solution obtained by swapping the width assignments for El

and Er.

Proof: Let M =MSIT �fEl; Erg and W be the wiresizing solution de�ned on

M by W. The objective function (2.7) can be written as:

t(MSIT; E;W)

= t(M; E;W) + K1 � (wEl
+ wEr) +

K2 �
X

E0
2MSIT

F (El; E
0) �

wE0

wEl

+ K2 �
X

E2MSIT

F (E;El) �
wEl

wE

+

K2 �
X

E0
2MSIT

F (Er; E
0) �

wE0

wEr

+ K2 �
X

E2MSIT

F (E;Er) �
wEr

wE

+

K3 �
X

E0
2MSIT

F (El; E
0) �

1

wEl

+ K4 �G(El) �
1

wEl

+
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K5 �H(El) �
1

wEl

+ K3 �
X

E0
2MSIT

F (Er; E
0) �

1

wEr

+

K4 �G(Er) �
1

wEr

+ K5 �H(Er) �
1

wEr

(9.1)

Let W� be the optimal wiresizing solution. After swapping the width assign-

ments for El and Er with respect to W� (see Fig. 9.1), we denote the resulted

wiresizing solution W�
=El; Er : wEl

$ wEr
.

According to Lemmas 4 and 5

G(El) = G(Er) = G(S) (9.2)

H(El) = H(Er) = H(S) (9.3)

F (El; E) = F (Er; E) if E 6= Er 6= El (9.4)

F (E;El) = F (E;Er) if E 6= Er 6= El (9.5)

thus,

t(MSIT; E;W�
=El; Er : wEl

$ wEr) � t(MSIT; E;W�)

= K2 � F (El; Er) � (
w
�

El

w
�

Er

�
w
�

Er

w
�

El

) + K2 � F (Er; El) � (
w
�

Er

w
�

El

�
w
�

El

w
�

Er

) +

K3 � F (El; Er) � (
1

w
�

Er

�
1

w
�

El

) + K3 � F (Er; El) � (
1

w
�

El

�
1

w
�

Er

)

= fF (El; Er) � F (Er; El)g � fw
�

El
� w

�

Er
g �

fK2 �
(w�

El
+ w

�

Er
) + K3

w
�

El
� w�

Er

g (9.6)

We know that
(w�

El
+ w

�

Er
) + K3

w
�

El
�w

�

Er

> 0 and (9:6) � 0 since W� is the optimal so-

lution. Clearly, if Fl(S) > Fr(S), according to Lemma 1, F (El; Er) > F (Er; El),

then we have w�

El
� w

�

Er
. Similarly, if Fl(S) < Fr(S), then F (El; Er) < F (Er; El),

so we have w�

El
� w

�

Er
. As a result, Lemma 6 holds. 2

By applying Lemma 6 to any adjacent uni-segments in a segment, we obtain

Lemma 7.
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Lemma 7 Given an MSIT and a segment S in the MSIT, concerning the optimal

wiresizing solution, if Fl(S) > Fr(S), then the wire widths within segment S de-

crease monotonically rightward. Similarly, they increase monotonically rightward

if Fl(S) < Fr(S).

Lemma 8 Given an MSIT and any segment S in the MSIT, if Fl(S) = Fr(S),

there exists an optimal wiresizing such that all uni-segments in segment S have

the same wire width.

(a)

(b)
rE El rE

El rE

(c)

El

W*/ rE : El
ωω rE

W*/ : El
ω ω rEEl

Figure 9.2: (a) The width assignments for El and Er in the optimal solutionW
�.

(b) The wiresizing solution obtained by replacing the width of Er with that of

El. (c) The wiresizing solution obtained by replacing the width of El with that

of Er.

Proof: Assume that Lemma 8 fails for an MSIT, then for any optimal solution

W�, there must exist two uni-segments in a segment S of the MSIT such that

El is just left to Er and w
�

El
6= w

�

Er
. Since W� is optimal, the increase in the

objective function when we change the width of Er in W
� from w

�

Er
to w�

El
(see

Figure 9.2.b), by using (9.1), is:

�t1 = t(MSIT; E;W�
=Er : wEr ! wEl

) � t(MSIT; E;W�)

= K1 � (wEl
� wEr) + K2 �

X
E0
2MSIT

F (Er; E
0) � (

wE0

wEl

�
wE0

wEr

) +

K2 �
X

E2MSIT

F (E;Er) � (
wEl

wE

�
wEr

wE

) +
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K3 �
X

E0
2MSIT

F (Er; E
0) � (

1

wEl

�
1

wEr

) +

K4 �G(Er) � (
1

wEl

�
1

wEr

) + K5 �H(Er) � (
1

wEl

�
1

wEr

)

� 0 (9.7)

Similarly, the increase in the objective function when change the width of El in

W� from w
�

El
to w�

Er
(see Figure 9.2.c) is:

�t2 = t(MSIT; E;W�
=El : wEl

! wEr) � t(MSIT; E;W�)

= K1 � (wEr
� wEl

) + K2 �
X

E0
2MSIT

F (El; E
0) � (

wE0

wEr

�
wE0

wEl

) +

K2 �
X

E2MSIT

F (E;El) � (
wEr

wE

�
wEl

wE

) +

K3 �
X

E0
2MSIT

F (El; E
0) � (

1

wEr

�
1

wEl

) +

K4 �G(El) � (
1

wEr

�
1

wEl

) + K5 �H(El) � (
1

wEr

�
1

wEl

)

� 0 (9.8)

Recall (9.2){(9.5), it is not di�cult to verify the following:

�t1 + �t2 = 0 (9.9)

According to (9.7){(9.9), �t1 = �t2 = 0. That is, both W�
=Er : wEr ! wEl

and W�
=El : wEl

! wEr are optimal.

Therefore, if there is an optimal solution W� where the wire widths are not

uniform in a segment S, let w�

l
be the wire width of the leftmost uni-segment in

S, from left to right, we can successively replace the wire width for every uni-

segment in S by w
�

l
, without increase in the objective function. That is, the

resulting wiresizing solution is an optimal wiresizing solution such that the wire

widths are uniform in segment S. 2

In conclusion, we obtain the SST local monotone property (Theorem 3) by

combining Lemmas 7 and 8,
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9.3 Proof of Theorem 5

In order to prove Theorem 5 (the bundled re�nement property), we de�ne the

following equations with respect to any particular uni-segment E:

	(MSIT; E; E;W) = K1 �
X

E0
2MSIT�fEg

wE0 +

K2 �
X

E0;E00
2MSIT�fEg;E0

6=E00

F (E0
; E

00) �
wE00

wE0

+

K3 �
X

E0;E00
2MSIT�fEg;E0

6=E00

F (E0
; E

00) �
1

wE0

+

K4 �
X

E0
2MSIT�fEg

G(E0) �
1

wE0

+

K5 �
X

E0
2MSIT�fEg

H(E0) �
1

wE0

(9.10)

�(MSIT; E; E;W) = K1 + K2 �
X

E0
2MSIT�fEg

F (E0
; E) �

1

wE0

(9.11)

�(MSIT; E; E;W) = K2 �
X

E0
2MSIT�fEg

F (E;E0) �wE0 +

K3 �
X

E0
2MSIT�fEg

F (E;E0) +

K4 �G(E) + K5 �H(E) (9.12)

Then, we can then rewrite the objective function (2.7) as follows:

t(MSIT; E;W) = 	(MSIT; E; E;W) + �(MSIT; E; E;W) � wE +

�(MSIT; E; E;W) �
1

wE

(9.13)

We show the following Lemma 9:

Lemma 9 Given an MSIT, a segment-division E and a wiresizing solution W,

for any particular uni-segment E under E, if we divide E into a sequence of uni-

segments E1; E2; � � �, and Ek, let each new uni-segment inherits the wire width
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assignment of E, and denote the resulting segment-division and wiresizing solu-

tion E 0 and W 0, respectively, then the following relations hold for any uni-segment

E
0 other than E.

	(MSIT; E; E 0
;W) = 	(MSIT; E 0; E0

;W 0)

�(MSIT; E; E 0
;W) = �(MSIT; E 0; E0

;W 0)

�(MSIT; E; E 0
;W) = �(MSIT; E 0; E0

;W 0) 1

Proof: It is not di�cult to verify that Lemma 9 is true if the follows hold:

F (E1; E
0) = F (E2; E

0) = � � � = F (E;E 0)

F (E0
; E1) = F (E0

; E2) = � � � = F (E0
; E)

G(E1) = G(E2) = � � � = G(E)

H(E1) = H(E2) = � � � = H(E)

Assuming uni-segment E is in segment S. There are two cases for uni-segment

E
0:

Case 1: E0 is also in the same segment S, according to Lemma 1, if E is left to

E
0,

F (E1; E
0) = F (E2; E

0) = � � � = F (E;E0) = Fl(S)

F (E0
; E1) = F (E0

; E2) = � � � = F (E0
; E) = Fr(S)

if E is right to E 0,

F (E1; E
0) = F (E2; E

0) = � � � = F (E;E 0) = Fr(S)

F (E0
; E1) = F (E 0

; E2) = � � � = F (E0
; E) = Fl(S)

1In general, under the modeling method used in this work and [29, 73], for the Elmore delay

t
ij between source Ni and sink Nj , we have t

ij(E ;W) = t
ij(E 0;W0). I.e., the Elmore delay is

independent of the segment-division when given the wiresizing solution.
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Case 2: E0 is in segment S0 di�erent from segment S, according to Lemma 3

F (E1; E
0) = F (E2; E

0) = � � � = F (E;E0) = F (S; S0)

F (E 0
; E1) = F (E0

; E2) = � � � = F (E0
; E) = F (S0

; S)

Again assuming uni-segment E is in segment S, according to Lemma 4

G(E1) = G(E2) = � � � = G(E) = G(S)

H(E1) = H(E2) = � � � = H(E) = H(S)

As a result, Lemma 9 holds. 2

Recall the de�nition for the local re�nement operation, according to Lemma

9 and (9.13), we can conclude that the following Lemma 10 holds.

Lemma 10 When given the wiresizing solutionW and any particular uni-segment

E, the local re�nement result for E with respect to W is independent of the

segment-division for uni-segments other than E.

We give the following proof for Theorem 5 (the bundled re�nement property).

Proof: For any particular uni-segment E under the current segment-division E

in segment S of anMSIT , it may be divided into k uni-segments under the �nest

segment-division EF . From left to right, let them be El = EF1; EF2; EF3; :::; EFk =

Er.

Without loss of generality, we assume Fl(S) � Fr(S). For a wiresizing so-

lution W which dominates the optimal solution W�, let Wb be the wiresizing

solution after performing an BRU operation of W on E under E. Then, we have
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w
b

l
= w

b

F2 = w
b

F3 = ::: = w
b

r
according to the de�nition of the BRU operation.

Meanwhile, in the optimal wiresizing solution W�, we have w�

l
� w

�

F2 � w
�

F3 �

::: � w
�

r
according to the local monotone property.

According to Lemma 10, wb

l
is also the local re�nement result for uni-segment

El under the �nest segment-division EF . Therefore, wb

l
� w

�

l
. As a result,

w
b

l
= w

b

F2 = w
b

F3 = ::: = w
b

r
� w

�

l
� w

�

F2 � w
�

F3 � ::: � w
�

r
. Recall that

the bundled re�nement of uni-segment E does not change the wire width in

the wiresizing solution W (dominating W�) for any uni-segment E0 other than

El; EF2; EF3; :::; Er. Thus, W
b still dominates W�.

The BRL case can be proved in a similar way. 2

9.4 Proof of Theorem 6

Theorem 6 The lower and upper bounds provided by BWSA are EF -tight.

Proof: Let E be the wiresizing segment-division after BWSA. For any uni-

segment E under E, lE is longer than minLength (the length for all uni-segments

under the �nest segment-division EF ) if and only if E is a convergent uni-segment,

whose bounds can not be tightened any more.

If E is minLength long, according to Lemma 10, its lower and upper bounds

given by the bundled re�nement operations are same as those given by local

re�nement operations under EF . Thus, if the bundled re�nement operations

can not tighten the lower and upper bounds, neither can the local re�nement

operations under EF .

In conclusion, Theorem 6 holds. 2
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