
Submission under Review, Please DO NOT Distribute

Fast Algorithms for Power-optimal Buffering

Yu Hu and Jing Tong
Electrical Engineering Dept.

Tsinghua University, Beijing, P.R. China

{matrix98, jingtong}@tsinghua.edu.cn

King Ho Tam and Lei He
Electrical Engineering Dept.

Univ. of California, Los Angeles, CA 90095, USA

{ktam, lhe}@ee.ucla.edu

ABSTRACT
This paper presents efficient algorithms to tackle the power
optimal buffer insertion and buffered routing tree construc-
tion problems using dual Vdd buffers. We show that the so-
phisticated data-structures which has good amortized com-
plexity do not necessarily benefit the runtime, and that
the key to runtime reduction is to reduce propagated op-
tions. We present three speedup techniques, namely pre-
buffer slack pruning, predictive min-delay pruning, and 3D
sampling, and obtain an effectively linear time algorithm at
1% and 2% of delay and power optimality loss, respectively.
In addition to these, we enhance the power-optimal buffered
tree construction by introducing routing grid reduction. Ex-
perimental results show that we obtain over 50x and 100x
speedup compared to the most efficient existing algorithms
for dual Vdd buffer insertion and buffered tree construction
respectively in the literature to-date.

1. INTRODUCTION
Interconnect optimization is a critical component of typ-

ical VLSI design flows for timing closure. However, delay
optimal buffer insertion incurs high power overhead [1]. It
is possible to achieve low power buffer insertion to given
routed tree tolopologies through utilizing timing slacks of
tree branches. [2] developed a power-optimal buffer insertion
algorithm. In this algorthm, the number of sub-solutions
(i.e. options) at each node grows in a pseudo-polynomial
manner, as computation progresses from sinks to source.
The runtime for large nets is unacceptably high due to the
uncontrolled option increase. [3] assumes a large buffer
library with near continuous buffer sizes, and solves the
power-optimal buffer insertion problem with 5x speedup over
[2] and negligible loss of delay and power optimality. [4]
proposes a power optimal buffer insertion algorithm which
also considers dual Vdd buffer insertion. They achieve 17x
speedup with no delay penalty and about 1% loss of power
optimality over [2] when single Vdd buffers are considered,
and save an extra 23% power when dual Vdd buffers are con-
sidered.

Simultaneous buffer insertion and tree topology genera-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tion has also been studied for delay optimization and more
recently for power optimization. [5, 6] study buffered tree
construction problem for multi-sink nets, without consider-
ing buffer stations (BS) or blockages. They construct inter-
connect trees while explore a few topologies for delay min-
imization, although the buffered routing is not necessarily
delay-optimal. [7, 8] present two construction approaches
to account for blockage and BS and quickly explore a few
alternative routes for the purpose of delay minimization. [9]
presents a delay-optimal routing algorithm based on maze
routing over Hanan grid which also considers BS and block-
ages, while [10] enhances it with several speed-up techniques.
[4] presents the first power-optimal buffered routing algo-
rithm again based on routing over Hanan grid, but it can
only handle nets of only up to a few sinks, as in [9, 10], due
to the explosion of the number of options.

In this paper, we study the power-optimal dual Vdd buffer
insertion and buffered tree construction problems. Our pro-
posed algorithm targets at orders of magnitude speedup of
the power-optimal dual Vdd buffer insertion and buffered
tree construction problems. Our algorithm is based on [4]
with some important speedup techniques. Our main contri-
butions include

1. proposing three speedup techniques for power-optimal
dual Vdd buffer insertion, which are Pre-buffer Slack
Pruning (PSP) extended from the one presented in
[11, 12] for dual Vdd buffer insertion, Predictive Min-
delay Pruning (PMP) and 3D sampling, resulting in
a practically linear time algorithm with respect to the
tree-size; and

2. introducing grid reduction to further speedup the power-
optimal buffered tree construction algorithm.

The experimental results show that we can obtain more
than 50x and 100x speedup over DVB and D-Tree algo-
rithms in [4] respectively with only 1% worse delay. We
achieve a combined speedup of more than 100x over the ex-
act power-optimal buffer insertion algorithm [2] at the ex-
pense of 1% delay and 2% power optimality loss. We also
expand the power-optimal routing capability to handle 10-
sink nets, which cannot be handle by the D-Tree algorithm
in [4], in about one hour.

The rest of the paper is organized as follows. Section 2
presents modeling and problem formulations for DVB and
D-Tree. Our speedup techniques for DVB and D-Tree are
described in details in Section 3. Section 4 proposes our
Fast dBIS and Fast dTree algorithms for DVB and D-Tree
problem, respectively. Experimental results and some dis-

cussions are given in Section 5, and the paper is concluded
in Section 6.

2. PRELIMINARIES

2.1 Delay, power, and slew model
We use distributed Elmore delay model as in [7, 8, 9, 10].

The delay d(l) due to a piece of wire of length l is given by

d(l) = (
1

2
· cw · l + cload) · rw · l (1)

where cw and rw are the unit length capacitance and resis-
tance of the interconnect and cload is the capacitive loading
at the end of the wire. We also use Elmore delay times ln9
as the slew rate metric [4]. The delay of a buffer dbuf is
given by

dbuf = dint + ro · cload (2)

where dint, ro and cload are the intrinsic delay, output re-
sistance and capacitive loading at the output of the buffer
respectively.

In the context of buffer insertion with upper bound on
slew rate, we observe that slew rates at the buffer inputs
and the sinks are always within up to only a few tens ps
of the upper bound. Therefore we model buffer delay with
negligible error by approximating input slew rate using the
upper bound as in [4].

We measure interconnect power by energy per switch. The
energy per switch Ew for an interconnect wire of length l is

Ew = 0.5 · cw · l · V 2

dd (3)

We collapse per switch short-circuit and dynamic power con-
sumed by a buffer into a single value Ebuf , which is a func-
tion of both Vdd and buffer size.

2.2 Dual Vdd Technique
Dual Vdd buffering uses both high Vdd and low Vdd buffers

in interconnect synthesis. Designs using low Vdd buffers con-
sume less buffer and interconnect power. Applying this tech-
nique to non-critical paths, we achieve power saving without
worsening the delay of the overall interconnect tree.

As in [4], we have the following constraint of dual Vdd

buffers – we only allow high-Vdd buffers followed by low Vdd

buffers. We assume that the driver at the source operates
at high Vdd and Vdd level converters only placed at high Vdd

sinks driven by low Vdd buffers.

2.3 Dual Vdd buffer insertion
We assume that a loading capacitance and a required ar-

rival time (RAT) qs
n are given at each sink terminal ns. We

assume that a driver resistance at the source node nsrc is
given. We also assume that all types of buffers can be placed
only at buffer candidate nodes nk

b . We use the RAT at the
source nsrc to measure delay performance. Our goal is to
minimize power of the interconnect subject to the RAT con-
straint at the source nsrc.

DEFINITION 1. The required arrival time (RAT) qn at
node n is defined as

qn = min
ns∀s

(qs
n − d(ns, n)) (4)

where d(ns, n) is the delay from the sink node ns to n.

Dual-Vdd buffer insertion (DVB) – Given an inter-
connect fanout tree which consists of a source node nsrc,
sink nodes ns, Steiner nodes np, candidate buffer nodes nb

and a connection topology among them, the DVB problem
is to find a buffer placement, a buffer size assignment and a
Vdd level assignment solution such that the RAT qsrc

n at the
source nsrc is met and the power consumed by the intercon-
nect tree is minimized, while slew rate at every input of the
buffers and the sinks ns are upper bounded by s̄.

2.4 Dual Vdd buffered tree construction
We measure the delay and power performance using the

same metric as in the DVB formulation. Assuming that a
floorplan of the layout is available, we can identify the loca-
tions and shapes of rectangular blockages and the locations
of the buffer station (BS) which are the allocated space for
buffer insertion. Therefore we have the following problem
formulation.

Dual Vdd Buffered Tree Construction (D-Tree) –
Given the locations of a source node nsrc, sink nodes ns,
blockages and BS, the D-Tree problem is to find the mini-
mum power embedded rectilinear spanning tree with a buffer
placement, a buffer sizes and a Vdd assignment that satisfy
the RAT qsrc

n constraint at the source nsrc and the slew rate
bound s̄ at every input of the buffers and the sinks ns.

3. SPEEDUP TECHNIQUES

3.1 DVB Problem
Our power-optimal buffer insertion algorithm is based on

[4] with speedup techniques to improve runtime. Power-
optimal solutions are constructed using partial solutions (i.e.
options) from the subtrees. At each node of the given rout-
ing tree, a list of options for the sub-tree rooted at that node
is generated by recursively traversing the tree in a bottom
up fashion. In DVB problem, an option Φn at the node n is
denoted as Φ = (rat, cap, pwr, θ), where rat, cap, and pwr
are the required arrival time, the downstream capacitance
and the downstream sub-tree power dissipation at node n,
and θ signifies whether there exists any high Vdd buffers at
the downstream of node n. We say an option Φ is redundant
if it is dominated by another option, and we can safely drop
Φ without losing the optimality of the solution.

DEFINITION 2. In node n, option Φ1 = (rat1, cap1,
pwr1, θ) dominates Φ2 = (rat2, cap2, pwr2, θ), if rat1 ≥
rat2, cap1 ≤ cap2, and pwr1 ≤ pwr2.

The key to an efficient power-optimal buffer insertion al-
gorithm is to reduce the number of options as early and as
much as possible. The delay-optimal buffer insertion algo-
rithm [1] creates as many options as the number of nodes,
but this is no longer true in power-optimal buffer insertion
problem. [2] shows that the growth of the number of op-
tions is psuedo-polynomial. The option sampling technique
in [4] bounds the growth of options at each node, which help
reduce the number of options at the expense of optimality.
In the following we first discuss the data structure and then
present techniques for effective option pruning.

3.1.1 Data structure
Advanced data-structures in [11] for delay-optimal buffer

insertion cannot be applied to power-optimal buffer inser-
tion as they only accomodate up to two option labels, which

are RAT and capacitance. The fastest algortihm to-date for
power-optimal buffer insertion [4] makes use of augmented
orthogonal search trees embedded in a balanced binary search
tree (BST), based on which we initially develop our algo-
rithm. In order to maintain a non-redundant set of options
at each node n, we maintain a balance binary search tree
BSTn sorted by downstream capacitance of the options, as
shown in Figure 1. Each node opListc in BSTn is a set of
(ratn, pwrn) pairs.

1
0(p , 1

0q), ...2
0(p , 2

0q),

C = 100

1
1(p , 1

1q), ...2
1(p , 2

1q), 1
2(p , 1

2q), ...2
2(p , 2

2q),

1
3(p , 1

3q), ...2
3(p , 2

3q), 1
4(p , 1

4q), ...2
4(p , 2

4q), 1
5(p , 1

5q), ...2
5(p , 2

5q),

C = 81 C = 152

C = 53 C = 94 C = 215

Figure 1: Data structure of DVB problem

We analyze this data-structure for buffer insertion algo-
rithms by analyzing the statistics of options. The number of
distinct values of capacitance is generally smaller than that
of power due to the presence of slew rate bound. Figure 2
shows the statistics for the number of distinct values of ca-
pacitance and power in each tree node for net s4, which is a
99-sink net with 137 buffer candidate nodes. We can see that
the number of distinct values of power is larger than that
of capacitance in almost all tree nodes. Therefore, label-
ing the BSTn with capacitance results in the least number
of tree nodes. Table 1 shows the runtime of five test cases
calculated by DVB in [4] with power indexed and capaci-
tance indexed data structure, respectively. We can see that
the power indexed data structure (column “p-indexed”) is
much slower than the capacitance indexed counterpart (col-
umn “c-indexed”). Therefore, we use a capacitance-indexed
binary search tree for the best runtime.

node# sink# p-indexed (s) c-indexed (s)
86 19 36 15
102 29 28 21
142 49 142 40
226 99 1905 104
515 299 >3600 373

Table 1: Comparison of runtime between power-
indexed and capacitance-indexed data structures

50 100 150 200

50

100

150

200

250

node ID

D
is

tin
ct

 v
al

ue
s

nu
m

be
r

number of capacitance values
number of power values

Figure 2: The number of distinct values of capaci-
tance and power in each node

We also find that, on the contrary to [4] which expects
a large option list opListc under each node in BSTn, the
opListc list is quite small. Figure 3 shows the distribution
of the number of options in all opListc for net s4. We can
see that most opListc (> 80%) contains less than 10 options.
Using sophisticated orthogonal search trees like those in [2,
4] only speeds up a very small portion of all opListc oper-
ations while significantly increases the runtime overhead of
other cases. Therefore, we only maintain the BSTn in our
implementation by keeping the (rat, pwr) tuples in opListc

as linked lists, which has the lowest runtime and memory
overhead.

Figure 3: The distribution of options indexed by
power and capacitance

3.1.2 Pre-buffer slack pruning
The aggressive pre-buffer slack pruning (APSP) in [13,

12] prune redundancy by predicting upstream buffer delay.
Therefore, we “preview” the relative optimality of the cur-
rent options at a node, which allows us to drop options that
will be dominated after propagation. This prevents options
from being populated at the upstream and therefore help
reduce the time complexity.

Pre-buffer Slack Pruning (PSP): Suppose Rmin is
the minimal resistance in the buffer library. For two non-
redundant options Φ1 = (rat1, cap1, pwr1, θ1) and Φ2 = (rat2,
cap2, pwr2, θ2), where rat1 < rat2 and cap1 < cap2, then Φ2

is pruned, if (rat2 − rat1)/(cap2 − cap1) ≥ Rmin.
Rmin refers to the minimal resistance of the buffer library

for single Vdd buffers, and has to be redefined for dual Vdd

buffer insertion for optimal pruning. To handle dual Vdd

buffers, we choose a proper high/low Vdd buffer resistance
RH/RL for PSP. When there exists some high Vdd buffers in
the downstream of the current option Φ = (rat, cap, pwr, θ),
i.e. θ = true, we use RH in PSP. Otherwise, we use RL.
As θ = true indicates no low Vdd buffer is to be placed in
upstream, it is overly aggressive to perform PSP by using
RL (> RH). On the other hand, it makes PSP more effective
(to prune more) by using RL if there is no high Vdd buffer
downstream from Φ. To make the algorithm even faster, we
may use a resistance larger than Rmin (i.e. Aggressive Pre-
buffer Slack Pruning (APSP)). [12] shows that we can get
substantial (more than 50%) speedup at a cost of 5% loss
of optimality for min-cost (buffer number) buffer insertion
problem. As the number of options in the DVB problem is
much larger than that of the min-cost problem, we expect
more speedup from using PSP.

3.1.3 Predictive min-delay pruning

We also try to predict whether the option leads to a valid
solution at the source by introducing the predictive min-
delay pruning (PMP). This rule makes use of analytical for-
mulae to calculate the lower bound of delay from any node
to the source, which assumes continuous number of buffers
and buffer sizes. If such delay does not meet the delay spec-
ification at the source, the option is dropped to save the
algorithm from unyielding option propagation. Consider an
interconnect segment of unit length resistance r and unit
length capacitance c. It is driven by a buffer of size s with
unit driving resistance rs, unit input capacitance cp, and
unit output capacitance co. We assume that the intercon-
nect (with length l) is terminated at the other end with
another repeater of identical size. [14] presented that the
unit length delay is optimal when

lopt =

r

2rs(co + cp)

rc
, sopt =

r

rsc

rco

(5)

where lopt and sopt are the optimal buffer insertion length
and the optimal buffer size, respectively The optimum unit
length delay delayopt is given by

delayopt = 2
√

rscorc(1 +

r

1

2
(1 +

cp

co

)) (6)

We pre-compute a unit length minimum delay table in-
dexed by buffer, unit length resistance and capacitance, and
the path length from the source to each tree node. We as-
sume high Vdd buffers to calculate the unit length minimal
delay, such that we get a lower bound when both high Vdd

and low Vdd buffers are used. We define PMP as
Predictive Min-delay Pruning (PMP) Given a re-

quired arrival time RAT0 at the source, for a tree node
v, its upstream delay lower bound is given by dlb(v) =
delayopt · dis(v), where dis(v) is the distance of the path
from the source to node v. A newly generated option Φ =
(rat, cap, pwr, θ) is pruned if rat − dlb(v) < RAT0.

We arrive at some interesting observation about PMP
through extensive experimentation. We note that PMP
prunes more options when RAT0 is larger (i.e. the delay
constraint is tight). Therefore PMP essentially prevents un-
necessary solution exploration when there is little room for
power optimization. We have also explored enhancing PMP
by considering the theorectical minimum power buffered in-
terconnect from analytical methods [14]. We define the fol-
lowing pruning rule:

Predictive Min-power Pruning (p-PMP) Given two
options α1 = (pwr1, rat1, cap1) and α2 = (pwr2, rat2, cap2),
α1 can be pruned if pwr1 + pre pwr1 > pwr2 and rat1 +
pre d1 < rat2, where pre pwr1 and pre d1 are the min-
power and min-delay between the source and the current
node.

However, our experimental experience shows that the small
extra gain in pruning power from p-PMP does not justify the
overhead of table lookup and additional calculation needed.
To perform p-PMP, we pre-calculate the unit length min-
delay table as in PMP. In addition, we also need to prepare
another table to store the unit length min-power with re-
spect to the timing slack available, which yields a big table
indexed by Vdd, buffer size and slack. We have performed a
few experiments using the p-PMP rule. For an instance, we
test s4 (a 99-sink net with 137 nodes) by PMP and p-PMP,
respectively. We have found that p-PMP only prunes 3%
more options while the runtime with p-PMP rule takes 2x

50

100

150

−1400

−1200

−1000

−800

1500

2000

2500

3000

3500

4000

4500

5000

capacitance

required arrival time

po
w

er
 d

is
si

pa
tio

n

(a) Before sampling

50

100

150

−1600

−1400

−1200

−1000

−800

2000

2500

3000

3500

4000

4500

5000

capacitance
required arrival time

po
w

er
 d

is
si

pa
tio

n

(b) After sampling

Figure 4: 3D sampling for non-redundant options

longer. We observe that the analytical min-power buffered
interconnect tends to give a very loose lower bound for power
and is therefore not effective for the purpose of pruning.

3.1.4 3D sampling pruning
2D sampling in [4] picks a fixed number of options in each

opListc in Figure 1 under each capacitance, which has been
shown to bring significant speedup. [4] claims that the num-
ber of distinct capacitive values is small when the distance
between buffer insertion locations are uniform and the slew
rate bound is tight. However, we observe that this num-
ber is not that small for large testcases. Table 2 shows the
statistics of the percentage of the nodes carrying a large
number of distinct capactive values for 4 nets. We can see
from this table that over 50% nodes carry over 50 distinct
capacitive values and over 10% nodes carry more than 100
capacitive values. When the scale of the test case becomes
larger, tree nodes carry larger number of distinct capacitive
values. Therefore, we need to explore more effective sam-
pling rules by taking capacitance into consideration.

node# sink# > 100 > 50
515 299 14% 62%
784 499 17% 64%
1054 699 28% 65%
1188 799 33% 71%

Table 2: The percentage of the nodes carrying a
large number of distinct capactive values

We extend the power-delay sampling [4] to 3D sampling,
during which we get option samples based on all power, de-
lay, and capacitance. The idea is to pick only a certain num-
ber of options among all options uniformly over the power-
delay-capacitance space for upstream propagation. Figure
4 shows (a) a pre-sample and (b) an after-sample option
sets. Each dot corresponds to an option. We divide each
side of the bounding box of all options into equal segments
such that the entire power-delay-capacitance domain is su-
perposed by a cubic grid. For each grid-cube shown in Fig-
ure 4 (a), we retain only one option if there is any. By also
including the smallest power option and the largest RAT
option for each capacitance value, we obtain the sampled
non-dominated option set shown in Figure 4 (b).

Compared to the 2D power-delay sampling in [4], 3D sam-
pling can prune over 75% more options, and achieve about 5
times speedup, while keeping the solution quality (delay and
power) within 1% from the optimal under a sampling grid
of 20x20x20. Therefore, we control the number of options in

each tree node by 3D sampling. That is, given the number
of sampling grid on one side b, the upper bound of option
number in a tree node is b3, and the maximum number of
options retained at all nodes is no more than b3 · n for a
n-node tree. As b is a constant, the growth of options is
effectively linear for DVB problem by using 3D sampling.

3.2 D-Tree problem
As the starting point, we build a grid using the “escape

node algorithm” in [10], and then generate an escape grid
by looking for intersection points between buffer stations
and the grid lines. Escape grid, or Hanan grid, is formed by
shooting horizontal and vertical lines from net terminals.
The intersections of these grid lines form Steiner points,
which does not allow buffer insertion in our formulation. We
insertion buffer insertion points whenever a grid line hits a
buffer station, which are rectangular regions scattered across
the floorplan. In the tree growing process in D-Tree, we need
to record all non-redundant options in each node of the es-
cape gird. To keep track of the sinks and the other nodes
that the current options covered (to avoid cycles), each op-
tion needs to store a sink set S and a reachability set R. An
option for D-Tree is denoted as Φ = (S,R, rat, cap, pwr, θ),
and we re-define the domination of two options as

DEFINITION 3. In node n, option Φ1 = (S1,R1, rat1,
cap1, pwr1, θ1) dominates Φ2 = (S2,R2, rat2, cap2, pwr2, θ2),
if S1 ⊇ S2, rat1 ≥ rat2, cap1 ≤ cap2, and pwr1 ≤ pwr2.

In each node of escape grid, options are divided into sub-
sets indexed by covered sink set. Under each subset, a bal-
anced search tree (see Section 3.1) is maintained. Once a
new option Φ = (S,R, rat, cap, pwr, θ) is generated in an
escape grid node, the most desirable option pruning strat-
egy is to test the redundancy of Φ in all subsets indexed by
the sink set Si ⊇ S. However, we can have up to 2n (where
n is the number of sinks of the net) sink sets in a node,
which we cannot afford to search for all related sink subsets
for each option creation. In our implementation, we check
to see if any options in the full sink set (i.e. the sink set
which includes all sinks) domainates Φ, and if Φ dominates
any option under its own sink set S.

In addition to the speedup techniques presented in Section
3.1, we also apply the following heuristic to further narrow
the search space.

3.2.1 Escape grid reduction
As the number of options grows exponentially with of the

number of grid nodes, we can reduce the number of options
substantially by using grid reduction. Inspired by PMP pro-
posed in Section 3.1.3, we retain those grid nodes p such
that dis(p, ni

s)+ dis(p, nsrc) = dis(ni
s, nsrc) for any sink ni

s,
where nsrc is the source and dis(x, y) is the path length from
node x to node y. This rule implies that we delete all grid
nodes which are not in any rectangles formed by any sink-
source pairs. This is reasonable in buffer tree construction
since a long-distance wire snaking is harmful to delay and
power. We note that grid reduction may sometimes ham-
per the routability, as the within-bounding box grids get
completely blocked by obstacles. To tackle this, we make
the sink-source bounding boxes larger in progressive steps
until we get a connected reduced escape grid. We modify
the reduction rule as: retain those grid nodes p such that
dis(p, si) + dis(p, source) = dis(si, source) + j · dieSize/10

(a) Original grid (b) After reduction

Figure 5: Escape grid reduction for grid.5

for any sink si, where j = 1, 2, · · · . Figure 5 shows an ex-
ample of (b) a reduced grid from (a) a full escape grid.

4. ALGORITHMS AND ANALYSIS

4.1 Fast buffer insertion algorithm for DVB
problem (Fast dBIS)

We integrate our new pruning rules with the DVB algo-
rithm proposed in [4], which is summarized in the pseu-
docode of Alg. 1. An option is denoted as Φ = (c, p, q, θ),
where c, p, q and θ correspond to cap, pwr, rat and θ in Sec-
tion 3.1, respectively. Moreover, we use ck

b , Ek
b , V k

b , and
db(cload) to denote input capacitance, power, Vdd level, and
delay with output load cload of the buffer bk. dn,v and
En,v(V) are the delay and the power of the interconnect
between nodes n and v operating at voltage V . The set of
available buffers Set(B) contains both low Vdd and high Vdd

buffers. We first call Fast-dBIS at the source node nsrc,
which recursively visits the child nodes (line 3) and enumer-
ates all possible options (line 6–19) in a bottom up manner
until the entire tree is traversed.

To speedup the algorithm, we call 3DSampling in line 3
to apply our 3D sampling heuristic on the returned options
from the children nodes. When a new option is generated
(line 9–14), we test the redundancy of this option based on
PMP and PSP (line 15–16). If it is not redundant, we use
this option to prune others based on PSP (line 17–18).

4.2 Fast buffered tree construction algorithm
for D-Tree problem (Fast dTree)

We apply our grid erduction technique in addition to the
pruning heuristics to the D-Tree algorithm [4]. The pseu-
docode is given in Alg. 2. Our Fast dTree algorithm starts
by building a grid using the escape node algorithm in [10]
(line 1). It then performs our escape grid reduction heuristic
(line 2). A queue Q is maintained for options that needed to
be propagated. Options stop propagating once the source is
reached. Each time an option is popped from Q, it tries to
propagate to all its neighbors (line 9–28). As we enumerate
all possible topologies of the routing tree in our algorithm,
the number of options grows exponentially even with prun-
ing strategies. In our impelentation, dominated options un-
der our pruning rules (line 19–20) or filtered options by 3D
sampling (line 12) are freed to save memory.

Algorithm 1: Fast-dBIS (Tn)

1:Set(Φn) = (cs
n, 0, qs

n, false) if n is a sink, else (0,0,∞,false)
2:for each child v of n
3: Set(Φv) = 3DSampling Fast-dBIS(v)
4: Set(Φtemp) = Set(Φn)
5: set(Φn) = φ
6: for each Φi ∈ Set(Φv)
7: for each Φt ∈ Set(Φtemp)
8: for each buffer bk ∈ Set(B)
9: if bk = φ
10: Vn = VH if θi or θt is true, else VL

11: Φnew=(ci + ct, pi + pt + En,v ,
min(qt, qi − dn,v), θi or θt)

12: else if i. V k
b is high; or ii. V k

b is low and θi is false

13: Φnew=(ci + ct, pi + pt + En,v(V k
b) + Ek

b ,

min(qt, qi − dn,v − dk
b (ci + cn,v)),

θtor(ifV k
b = VH))

14: else goto line 8
15: if i. slew rate violation at downstream buffers; or

ii. Φnew is redundant (by PMP); or
iii. Φnew is dominated by any Φz ∈ Set(Φn) (by PSP)

16: drop Φnew

17: else
18: remove all Φz ∈ Set(Φn) dominated by Φnew

19: Set(Φn) = Set(Φn) ∪ Φnew

25:Return Set(Φn)

4.3 Analysis of Fast dBIS and Fast dTree al-
gorithms

As we have mentioned in the previous section, the key
to runtime reduction is to reduce propagated options in the
algorithm. In Section 3.1.4, 3D sampling gives a constant
upper bound on the number of options in each tree node.
Therefore, the growth of options in Fast dBIS is effectively
linear. Figure 6 shows the number of non-redundant op-
tions generated by DVB, PSP+DVB, PSP+PMP+DVB,
Fast dBIS (PSP+PMP+3D sampling), respectively. We find
that the increase of the options in Fast dBIS is much slower
than that in DVB, and it increases in a nearly linear fash-
ion in Fast dBIS, which demonstrates the effectiveness of
3D sampling. The PSP and PMP pruning rules also help
reduce the number of solutions, but it does not guarantee
a controlled growth of options. Since each node now has
roughly the same number of options, it therefore takes ap-
proximately the same time to propagate all options from one
node to the other, making the runtime growth linearly with
respect to the tree size. Figure 7 shows the runtime growing
trend with respect to the number of node, and it is clear
that Fast dBIS has a roughly linear runtime complexity.

Applying all proposed pruning techniques and the grid
reduction heuristic in the Fast dTree algorithm helps signif-
icantly reduce the number of options during runtime. This
is evident from the fact that the Fast dTree algorithm can
handle up to 10-sink net as opposed to only a few sink net in
[4], which is to be demonstrated in Section 5. However, path
search problem is intrinsically an NP-hard problem, there-
fore the runtime increases exponentially with the number
of sinks, as the number of options with non-overlapping or
partially-overlapping sink set increases exponentially. There-
fore, Fast dTree remains an exponential algorithm, although
routing nets of up to 10-sink sufficiently covers most of the
global net instances in practical microprocessor designs.

5. EXPERIMENTAL RESULTS

5.1 Experimental results of Fast dBIS

Algoritm 2. Fast-dTree (nsrc, Set(ns), Set(Blockage), Set(BS))

1: {Set(n),ℵ(Set(n))} = Grid(Set(n), Set(Blockage), Set(BS))
2: Grid Reduction(Set(np),ℵ(Set(n)))
3: for each sink ns ∈ Set(sinks)
4: Φs

n = ({ns}, {ns}, cs
n, 0, qs

n)
5: Set(ns) = {Φs

n}
6: push Φs

n into Q
7: while Q 6= φ
8: if (Φcur

n = pop Q) has been dropped, continue
9: for each neighbor nj ∈ ℵ(ncur)

10: for each subset Set(Φj
n)[Si] indexed by sink set Si in nj

11: if Si ∩ Φcur
n .S 6= φ

12: {Setsamples} = 3DSampling(Set(Φj
n)[Si])

13: for each option Φj
n ∈ Setsamples

14: if Φj
n.R ∩ Φcur

n .R 6= φ
15: form Φnew similar to line 8 to 14 in Fast-dBIS
16: Φnew.R = (Φj

n.R) ∪ (Φnew .R)

17: Φnew.S = (Φj
n.S) ∪ (Φnew.S)

18: if i. slew rate violation at downstream buffers; or
19: ii. Φnew is redundant (by PMP); or
20: iii. Φnew dominated (by PSP)by any

21: Φj
n : (Φnew.S) ⊆ (Φj

n.S), Φj
n ∈ Set(Φj

n)
22: drop Φnew

23: else
24: remove {Φj

n : (Φnew.S) ⊇ (Φj
n.S), Φj

n ∈ Set(Φj
n)}

25: dominated by Φnew

27: Set(Φj
n) = Set(Φj

n) ∪ Set(Φnew)
28: push Φnew into Q if nj 6= nsrc

200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16
x 10

5

Node number

T
he

 n
um

be
r

of
 n

on
−

re
du

nd
an

t o
pt

io
ns

DVB
PSP
PSP+PMP
PSP+PMP+3D

Figure 6: The option increase trends under different
pruning strategies

We test our algorithm on 9 test cases s1–s9 generated
by randomly placing source and sink pins in a 1cm x 1cm
box. We use GeoSteiner package [15] to generate the topolo-
gies of the test cases. We also break interconnect between
nodes longer than 500µm by inserting degree-2 nodes. In
this experiment we assume that every non-terminal nodes
are candidate buffer nodes. We set the RAT at all sinks to
0 and the target RAT at the source to 101% ·RAT∗, where
RAT∗ is the maximum achievable RAT at the source, so
that the objective becomes minimizing the power under 1%
delay slack. We use the same technology related settings
as in [4]. The slew rate bound s̄ is set to 100ps. We have
made buffers using an inverter cascaded with another in-
verter which is four times larger. There are 6 buffers (high
Vdd and low Vdd buffers of 16x, 32x, and 64x) in our buffer
library. In PSP, we use the 16x buffer (high Vdd and low
Vdd) to perform pruning. In PMP, we calculate the unit-

200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Node number

R
un

tim
e

(s
)

DVB
PSP
PSP+PMP
PSP+PMP+3D

Figure 7: The runtime trends under different prun-
ing strategies.

length-min-delay with the settings under 65nm technology
node [16]. We set the 3D sampling grid to 20×20×20, which
we have found to give good accuracy-runtime trade-off. The
experiments are performed on Linux with Intel PM 1.4Ghz
CPU and 1Gb memory.

To illustrate the effectiveness of our three speedup tech-
niques, we perform tests by adding them into the baseline
DVB algorithm [4] incrementally, and collect the runtime in
Table 3. Compared with DVB, PSP achieves 5x speedup
(column “PSP”), PSP+PMP achieves another 2x speedup
(column “SM”), and 3D sampling (column “3D”) achieves
an additional 5x speedup. We observe that PMP is a rela-
tively weak pruning rule by itself, but it achieves a speedup
of 2x when used on top of PSP. 3D sampling is orthogonal
to other rules in terms of pruning capability. Moreover, ap-
plying 3D sampling with PSP and PMP yields better buffer
insertion solution in both delay and power than using 3D
sampling alone. This is due to the fact that PSP and PMP
leaves a pool of options which are more densely populated
with more superior delay and power, from which 3D sam-
pling is able to pick good options. In the case without PSP
and PMP, the option pool from which 3D sampling picks is
littered with options that will be dominated subsequently by
other better options with respect to the predictive pruning
rules, which are lost in the process of 3D sampling.

nets DVB PSP SM Fast dBIS
s1 15 8 1 0
s2 21 11 3 0
s3 40 19 10 1
s4 104 47 10 2
s5 373 109 43 10
s6 536 185 104 17
s7 2354 335 172 28
s8 2521 508 238 43
s9 3719 605 322 49
x 1 5x 10x 50x

Table 3: Runtime of different combination of our
speedup techniques for buffer insertion

To show the performance of Fast dBIS, we compare three
algorithms, which are (i). power-optimal buffer insertion
(PB) algorithm [2] considering only single (high) Vdd buffers,
(ii). SVB/DVB [4], which correspond to the single Vdd and
dual Vdd buffer insertion algorithms in [4] with 2D sampling

grid set to 20 × 20, and (iii). our Fast sBIS/dBIS, which
correspond to our single and dual Vdd buffer insertion algo-
rithms. Table 4 shows experimental results of these three
algorithms. We find that Fast sBIS/dBIS is on average over
50x faster than SVB/DVB. We compare the solution quality
of our Fast sBIS (in terms of power dissipation and RAT at
source) with SVB. From Table 4, we find that the RAT at
source of Fast sBIS are only than 1% smaller than those of
SVB, and the power values of Fast sBIS are 1% larger than
those of SVB. [4] reports that their algorithm incurs no loss
of optimality in RAT and 1% larger power than the opti-
mal, therefore our algorithm is 1% and 2% away from the
optimal delay and power, respectively. In some cases, Fast
sBIS gives even smaller power values than SVB, as PSP and
PMP improves the quality of options after sampling.

Table 6 shows the experimental results of a group of ex-
tremely large test cases for dual Vdd buffer insertion, which
all other power-optimal buffer insertion methodologies [4, 2]
fail to handle. Note that we need only less than six minutes
to find a min-power dual Vdd buffer insertion solution for a
3k-sink net with 23k buffer candidate nodes.

net nodes# sinks# Fast sBIS(s) Fast dBIS(s)
r1 2895 267 13 35
r2 5799 598 27 81
r3 7602 862 37 162
r4 15512 1903 78 239
r5 23499 3101 119 352

Table 6: Runtime for buffer insertion of large test
cases

5.2 Experimental results of Fast dTree
For buffered tree construction, we create 6 test cases by

randomly generating source and sink pins in a 1cm × 1cm
box. We also randomly generate blockages so that it con-
sumes approximately 30% of the total area of the box. Hor-
izontal and vertical BS are randomly scattered in the box
so that the average distance between two consecutive BS is
about 1000um. All other settings are the same as those in
Section 5.1.

Table 5 shows the comparison betwen our Fast dTree
algorithm and the S-Tree/D-Tree algorithms [4]. The ex-
perimental results show that our Fast sTree/dTree (column
“sTree/dTree”) runs over 100x Faster than S-Tree/D-Tree
with solutions having only 1% larger power than that pro-
duced by S-Tree/D-Tree. Fast dTree can get a solution for
10-sink net among 426 nodes grids in about one hour, while
S-Tree/D-Tree fails to finish routing after one day. More-
over, we see the speedup obtained by our grid reduction
heuristic from this table. Column “nl” shows the number of
nodes left after grid reduction. Column “unreduced” shows
the runtime without grid reduction. We find that the grid
reduction achieves about 2x speedup for the first 5 test cases.
As for the last test case (426 nodes and 10 sinks), we cannot
even get a solution without grid reduction. Note again that
the largest examples that can be routed by existing delay-
optimal [9, 10] and power-optimal [4] methodologies are only
up to 6-sink nets.

6. CONCLUSIONS
We have presented efficient algorithms to tackle the power

optimal buffer insertion and buffered routing tree construc-

test cases runtime(s) RAT*(ps) power(fJ)
net nodes# sinks# PB SVB sBIS DVB dBIS SVB sBIS SVB sBIS DVB dBIS
s1 86 19 14 4 0 15 0 -712 -716 5930 5841 4925 4763
s2 102 29 17 7 0 21 0 -811 -819 6827 6283 5671 5535
s3 142 49 39 15 0 40 1 -1119 -1127 10109 9565 8901 8213
s4 226 99 460 60 1 104 2 -963 -965 14043 14042 11671 11502
s5 375 199 2461 149 3 373 10 -1848 -1857 20045 19591 14813 14940
s6 515 299 3744 227 6 536 17 -1742 -1749 25241 25417 18328 18214
s7 784 499 - 448 11 2354 28 -3023 -3041 36339 35436 26065 25327
s8 1054 699 - 1033 15 2521 43 -2484 -2486 41033 41483 27316 27667
s9 1188 799 - 1946 23 3719 49 -2395 -2405 43011 42654 28432 28766

1 < 1/50 1 < 1/50 1 > 99% 1 < 101% 1 < 101%

Table 4: Comparison of runtime and performance for buffer insertion (PB vs. DVB vs. Fast dBIS)

test cases runtime(s) RAT*(ps) power(fJ)
n# s# nl# S-Tree sTree D-Tree dTree unreduced S-Tree sTree S-Tree sTree D-Tree dTree
97 2 36 0 0 0 0 0 -223 -224 1492 1492 1430 1430
165 3 142 19 1 102 5 8 -604 -608 3908 3456 3907 3456
137 4 82 44 2 297 8 23 -582 -583 3426 3426 3131 3131
261 5 162 2849 8 5088 37 65 -532 -533 4445 4355 3979 3989
235 6 143 5200 25 13745 115 193 397 -399 4919 4718 4860 3718
426 10 267 - 2346 - 3605 - - -625 - 7338 - 5915

1 < 1/100 1 < 1/100 1 > 99% 1 < 101% 1 < 101%

Table 5: Comparison of runtime and performance for buffered tree construction (D-Tree vs. Fast dTree)

tion problems using dual Vdd buffers. We show that the so-
phisticated data-structures which has good amortized com-
plexity do not necessarily benefit the runtime, and that
the key to runtime reduction is to reduce propagated op-
tions. We present three speedup techniques, namely pre-
buffer slack pruning, predictive min-delay pruning, and 3D
sampling, and obtain an effectively linear time algorithm at
1% and 2% of delay and power optimality loss, respectively.
In addition to these, we enhance the power-optimal buffered
tree construction by introducing routing grid reduction. Ex-
perimental results show that we obtain over 50x and 100x
speedup compared to the most efficient existing algorithms
for dual Vdd buffer insertion and buffered tree construction
respectively in the literature to-date.

7. REFERENCES
[1] L. P. P. P. van Ginneken, “Buffer placement in

distributed RC-tree networks for minimal Elmore
delay,” in Proc. IEEE Int. Symp. on Circuits and
Systems, pp. 865–868, 1990.

[2] J. Lillis, C. Cheng, and T. Lin, “Optimal wire sizing
and buffer insertion for low power and a generalized
delay model,” in ICCAD, Nov. 1995.

[3] R. Rao, D. Blaauw, D. Sylvester, C. Alpert, and
S. Nassif, “An efficient surface-based low-power buffer
insertion algorithm,” in ISPD, Apr 2005.

[4] K. Tam and L. He, “Power optimal dual-vdd buffered
tree considering buffer stations and blockages,” in
DAC, Jun 2005.

[5] T. Okamoto and J. Cong, “Buffered Steiner tree
construction with wire sizing for interconnect layout
optimization,” in ICCAD, Nov. 1996.

[6] J. Lillis, C. Cheng, and T. Lin, “Simultaneous routing
and buffer insertion for high performance
interconnect,” in GLVLSI Symp., 1996.

[7] C. Alpert, G. Gandham, J. Hu, J. Neves, S. Quay, and
S. Sapatnekar, “Steiner tree optimization for buffers,
blockages and bays,” in ISCAS, May 2001.

[8] J. Hu, C. Alpert, S. Quay, and G. Gandham, “Buffer

insertion with adaptive blockage avoidance,” TCAD,
vol. 22, no. 4, pp. 492–498, 2003.

[9] J. Cong and X. Yuan, “Routing tree construction
under fixed buffer locations,” in DAC, Jun 2000.

[10] W. Chen, M. Pedram, and P. Buch, “Buffered routing
tree construction under buffer placement blockages,”
in ASP-DAC, Jan 2002.

[11] W. Shi and Z. Li, “An o(nlogn) time algorithm for
optimal buffer insertion,” in DAC, Jun 2003.

[12] Z. Li, C. Sze, C. Alpert, J. Hu, and W. Shi, “Making
fast buffer insertion even faster via approximation
techniques,” in ASP-DAC, Jan 2005.

[13] W. Shi, Z. Li, and C. Alpert, “Complexity analysis
and speedup techniques for optimal buffer insertion
with minimum cost,” in ASP-DAC, Jan 2005.

[14] K. Banerjee and A. Mehrotra, “A power-optimal
repeater insertion methodology for global
interconnects in nanometer designs,” TCAD, vol. 49,
no. 11, pp. 2001–2007, 2002.

[15] D. Warme, P. Winter, and M. Zachariasen,
“Geosteiner,” in http://www.diku.dk/geosteiner, 2003.

[16] Semiconductor Industry Association, International
Technology Roadmap for Semiconductors, 2003.

