
Power Modeling and Architecture Evaluation for FPGA
with Novel Circuits for Vdd Programmability ∗

Yan Lin
Electrical Engineering

Department
University of California,

Los Angeles

Fei Li
Electrical Engineering

Department
University of California,

Los Angeles

Lei He
Electrical Engineering

Department
University of California,

Los Angeles

ABSTRACT
Vdd-programmable FPGAs have been proposed recently to
reduce FPGA power, where Vdd levels can be customized
for different circuit elements and unused circuit elements
can be power-gated. In this paper, we first develop an
accurate FPGA power model and then design novel Vdd-
programmable interconnect switches with minimum number
of configuration SRAM cells. Applying our power model
to placed and routed benchmark circuits, we evaluate Vdd-
programmable FPGA architecture using the new switches.
The best architecture in our study uses Vdd-programmable
logic blocks and Vdd-gateable interconnects. Compared to
the baseline architecture similar to the leading commer-
cial architecture, the best architecture reduces the minimal
energy-delay product by 44.14% with 48% area overhead and
3% SRAM cell increase. Our evaluation results also show
that LUT size 4 always gives the lowest energy consumption
while LUT size 7 always leads to the highest performance
for all evaluated architectures.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles

General Terms
Design, Algorithms

Keywords
FPGA architecture, FPGA power model, low power, dual-
Vdd, Vdd programmability

1. INTRODUCTION
FPGA provides an attractive design platform with low NRE (non-

recurring engineering) cost and short time-to-market. Due to a large
∗This paper is partially supported by NSF CAREER award
CCR-0093273, NSF grant CCR-0306682. Address com-
ments to lhe@ee.ucla.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’05, February 20–22, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002 ...$5.00.

number of transistors for field programmability and low utilization
rate of FPGA resources, existing FPGAs are highly power hungry
compared to ASICs. Previous study [1] has shown a 100x energy
difference between FPGA designs and their ASIC counterparts. As
the process advances to nanometer technology and low-energy em-
bedded applications are explored for FPGAs, power consumption
becomes a crucial design constraint for FPGAs. Some recent work
has studied FPGA power modeling and optimization. [2, 3] present
power evaluation frameworks for generic parameterized FPGA ar-
chitectures and show that both interconnect and leakage power are
significant for nanometer FPGAs. [4] analyzes the leakage power of
a commercial FPGA architecture in 90nm technology and quantifies
the leakage power challenge. FPGA power optimization involves
CAD algorithms and novel circuits and architectures. [5] proposes
a configuration inversion method to reduce leakage power of multi-
plexers without additional hardware cost. [7] studies power-gating
to reduce leakage power of unused FPGA logic blocks. [8, 9, 10]
propose dual-Vdd and Vdd-programmable FPGA fabrics to reduce
both dynamic and leakage power. [6] studies a suite of power-
aware FPGA CAD algorithms without changing the existing FPGA
circuits and architectures.

Conventional FPGA architecture has been evaluated using met-
rics of area and delay [17, 18], and recently power [3]. However, the
emerging power-efficient circuits and architectures lead to different
FPGA power characteristics, and therefore call for an architecture
evaluation considering these power optimization techniques. In this
paper, we study Vdd-programmable FPGAs which are originally
proposed in [8, 9, 10]. We first improve the power model in an ex-
isting FPGA power evaluation framework to achieve high accuracy
and fidelity. We then design a set of new Vdd-programmable circuits
and develop several new architecture classes for Vdd-programmable
FPGAs, which dramatically reduce the area overhead for Vdd pro-
grammability. Finally, we study the effect of cluster and LUT sizes
on FPGA energy and delay, and evaluate the power saving by our
new Vdd programmable architecture classes compared to single
Vdd FPGAs.

The rest of the paper is organized as follows. Section 2 first
describes FPGA architecture background, evaluation methodol-
ogy, improved power model, and presents evaluation results for
the baseline architecture class. Section 3 presents the novel cir-
cuit designs for Vdd-programmable and Vdd-gateable interconnect
switches with reduced number of configuration SRAM cells. Sec-
tions 4 and 5 propose three Vdd-programmable architecture classes
and evaluate their energy, delay and area with comparison to the
baseline case. We conclude this paper in Section 6.

2. BACKGROUND

2.1 Cluster-based Island Style FPGAs
We assume cluster-based island style FPGA architecture such

as that in [11, 3] for all classes of FPGAs studied in this paper.
Figure 1 shows the cluster-based logic block, which includes N
fully connected Basic Logic Elements (BLEs). Each BLE includes
one k-input lookup table (LUT) and one flip-flop (DFF). The com-
bination of cluster size N and LUT size k are the architectural
parameters we evaluate in this paper. The routing structure is of the
island style shown in Figure 2. The logic blocks are surrounded by
routing channels consisting of wire segments. The input and output
pins of a logic block can be connected to the wire segments in the
channels via a connection block (see Figure 2 (b)). A routing
switch block is located at the intersection of a horizontal channel
and a vertical channel. Figure 2 (c) shows a subset switch block
[12], where the incoming track can be connected to the outgoing
tracks with the same track number1 . The connections in a switch
block (represented by the dashed lines in Figure 2 (c)) are pro-
grammable routing switches. We implement routing switches by
tri-state buffers and use two tri-state buffers for each connection so
that it can be programmed independently for either direction. We
decide the routing channel width W in the same way as the architec-
ture study in [11], i.e., W = 1.2Wmin and Wmin is the minimum
channel width required to route the given circuit successfully.

I

BLE
#1

BLE
#N

N

N

Outputs

Clock

Inputs
I

k−input
LUT DFF Out

Inputs

Clock

(a) Cluster−based logic block (b) Basic logic element (LUT + DFF)

Figure 1: FPGA logic block and basic logic element.

2.2 Evaluation Framework and
Improved Power Model

Two FPGA power evaluation frameworks have been proposed
recently [2] [3]. This paper uses fpgaEVA-LP [3] as the evaluation
framework but improves its power model. fpgaEVA-LP includes a
BC-netlist generator and a cycle-accurate power simulator. The
BC-netlist generator takes the VPR placement and routing result and
generates the Basic Circuit netlist (BC-netlist) annotated with post-
layout capacitances and delay. The power simulator then performs
cycle-accurate simulation on the BC-netlist to obtain FPGA power
consumption. The mixed-level power model in the power simulator
applies switch-level model to interconnects and macro-model to
Lookup Tables (LUTs). We use five circuits from the MCNC
benchmark set to illustrate the accuracy and fidelity of fpgaEVA-
LP compared to SPICE simulation. The five circuits are chosen so
that the circuit size is within the capability of SPICE simulation.
They are mapped into 4-LUTs and packed into clusters with a

1Without loss of generality, we assume subset switch block
in this paper.

0
1
2
3

31 20

3
2
1
0 0

1
2
3

0 1 32

A C

D

B

switch
connection

 connection switch
(b) Connection block and

in1

SR

SR connection block

logic block

SR

0 1 2 3

connection block switch block

(a) Island style routing architecture

(c) Switch block (d) Routing switches

SR

A B

Figure 2: (a) Island style routing architecture; (b)
Connection block; (c) Switch block; (d) Routing
switches.

cluster size of four. The largest circuit occupies six clusters and the
smallest circuit occupies two clusters. As shown by the comparison
in Figure 3, fpgaEVA-LP with the original power model achieves
high fidelity but consistently underestimates total FPGA power.

Figure 3: Comparison between SPICE simulation
and cycle-accurate power simulation. The new
power model significantly improves accuracy and
still achieves high fidelity.

We improve the power model from [3] and call the new power
evaluation framework with the improved power model as fpgaEVA-
LP2. First, both [3] and [2] assumes that the short-circuit power
of a routing buffer is a constant percentage of buffer switching
power. In reality, a different signal transition time leads to differ-
ent short-circuit power. [3] has shown that the short-circuit power
is proportional to the signal transition time for a given load ca-
pacitance, however, it uses an average transition time and loses
accuracy. In this paper, we store the relation between the percent-
age of short-circuit power in buffer switching power and the signal
transition time (under the Elmore delay model), and calculate the
short-circuit power value according to the signal transition time.
Second, [3] assumes that the output signal transition time is twice

of the buffer delay. This simplistic assumption was originally used
in gate sizing [13] and it is valid when the input signal is a step
function and the output signal is a ramp function. We use SPICE
to simulate a typical routing path in an FPGA, where a routing
switch drives a wire segment and other routing switches. The input
signal is no longer a step function because it is from the output of
a routing switch in the previous stage. The output signal under a
large load capacitance, which is usually the case in FPGAs, is not a
perfect ramp function and the 10%-90% transition time for the out-
put signal can be significantly larger than twice of the buffer delay.
In theory, the output signal transition time tr can be expressed as
tr = α ∗ tbuffer with tbuffer as the buffer delay. We use SPICE
simulations to determine the parameter α for different buffer delays,
which covers the cases of various input signal transition time and
different load capacitance. Table 1 presents the values of α decided
by our experiments and used in fpgaEVA-LP2. Finally, our FPGA
circuits only apply gate-boosting [11] to routing switches in the
channels. The output of multiplexers in logic clusters can have a
voltage level degradation and the local buffers at the multiplexer out-
put will have larger leakage power. We modify the power model in
fpgaEVA-LP so that it can also consider local multiplexers without
gate-boosting. We compare SPICE simulation with fpgaEVA-LP2
in Figure 3. Clearly, we still achieve high fidelity but improve the
accuracy significantly. The average of absolute error is 8.26% for
the five test circuits.

buffer delay < 0.012ns < 0.03ns >= 0.03ns
α 2 4.4 7

Table 1: The Value of Parameter α to determine
signal transition time.

In this paper, we use Berkeley predictive device model [14] and
ITRS predictive interconnect model [15] for semi-global intercon-
nects at the 100nm technology node. Table 2 summarizes the values
of some key model parameters. The device and interconnect models
are used throughout the rest of the paper.

Device model
Vdd (V) NMOS-Vt (V) PMOS-Vt (V)

normal-Vt 1.3 0.2607 -0.3030
high-Vt 1.3 0.4693 -0.5454

Interconnect model
wire width wire spacing wire thickness dielectric const.

0.56um 0.52um 1.08um 2.7

Table 2: Device and interconnect model at 100nm
technology.

2.3 Evaluation Methodology and Results
for Baseline Architecture Class

Our architecture evaluation methodology starts with VPR place-
ment and routing results. For a given FPGA architecture and bench-
mark circuit, VPR can generate different placement and routing re-
sults by using different seeds in its placement algorithm. Figure 4
shows the FPGA energy and delay using ten different VPR seeds
for the same circuit s38584. We label the seed value beside each
data point. The delay variation is 12% and the energy variation is
5%. This variation due to VPR seeds may affect our architecture
evaluation. Because the delay variation is more sensitive to the
VPR seeds than the energy variation, we decide to use the min-
delay solution among all VPR seeds for every benchmark circuit.
Note that the min-delay solution often consumes low energy too.
For the architecture evaluation in this paper, Energy (E), Delay (D)

and Energy-Delay Product (ED) are always the geometric means
of those values over 20 MCNC benchmark circuits.

Figure 4: Impact of random seed on FPGA energy
and delay.

Using the above methodology, we perform an architecture evalu-
ation for the single-Vdd dual-Vt FPGA architectures from [8], also
called FPGA Class0 in this paper. The entire FPGA uses the uni-
form supply voltage 1.3V, but high-Vt is applied to all the FPGA
configuration SRAM cells to reduce SRAM leakage power. The
high-Vt configuration cells do not incur runtime performance degra-
dation because they are constantly in read status after an FPGA is
configured, and their read and write are irrelevant to the runtime
performance. This high-Vt SRAM technique has already been used
in commercial FPGAs [16].

Figure 5: Energy-delay tradeoff for single-Vdd dual-
Vt FPGA class (Class0). The polyline represents
the strictly dominant architectures and the enclosed
area covers the relaxed dominant architectures.

Figure 5 presents the evaluation results for FPGA Class0. Each
data point in the figure is an FPGA architecture represented by a tu-
ple (N, k), where N is the cluster size and k is the LUT size. If one
architecture (N1, k1) has smaller delay and less energy consump-
tion than another architecture (N2, k2), we say that architecture
(N1, k1) is superior to (N2, k2). We define strictly energy-delay
dominant architectures as the set of superior data points in the
entire energy-delay tradeoff space. Those architectures are high-
lighted by the polyline in Figure 5. Our results also show that

some of the architectures may have fairly similar energy and de-
lay such as architectures (N = 8, k = 4), (N = 6, k = 4) and
(N = 10, k = 4), and all of of them can be valid solutions in
reality. To avoid pruning out architectures with similar energy and
delay, we further define relaxed energy-delay dominant archi-
tectures. If architectures (N1, k1) and (N2, k2) have both energy
and delay difference less than r% (relaxation parameter), then
neither of them can dominate the other one. With r = 2 in this
paper, the relaxed dominant architectures are data points inside the
enclosed curve in Figure 5. Min-delay and min-energy architectures
are the two extreme cases among those energy-delay dominant ar-
chitectures. The min-delay architecture is (N = 8, k = 7) and the
min-energy architecture is (N = 8, k = 4) for the FPGA Class0
in Figure 5, and the energy and delay differences between the two
extreme cases are 57% and 14%, respectively. It shows that a signif-
icant tradeoff between energy and delay can be obtained by varying
cluster size and LUT size. Note that our min-energy architecture
(N = 8, k = 4) is also the min-area architecture found by [18].
Commercial FPGAs such as Xilinx Virtex-II [19] coincidently use
a cluster size of 8 and an LUT size of 4, and therefore their ar-
chitectures may have used min-area solution and turn out to be a
min-energy architecture in single-Vdd architecture class.

3. FPGA CIRCUITS FOR VDD
PROGRAMMABILITY

3.1 Previous Work and Overview
Vdd programmability has been introduced in [8, 9] and applied

to logic blocks to reduce FPGA power. In this paper, Vdd pro-
grammability is defined as the flexibility to select Vdd levels for
one used circuit element and the capability to power-gate an unused
circuit element. Figure 6 shows the Vdd-programmable logic block.
Two extra PMOS transistors, called power switches, are inserted
between the conventional logic block and the dual-Vdd power rails
for Vdd selection and power-gating.

Logic Block
Conventional

VddH
VddL

Config. Bit
Config. Bit

power switch

Figure 6: Vdd-programmable logic block.

[10] further extends programmable dual-Vdd to interconnect
switches. Figure 7 shows the original design of Vdd-programmable
interconnect switches (both routing switch and connection switch)
in [10]. A level converter is needed whenever a low Vdd (VddL)
interconnect switch drives a high Vdd (VddH) interconnect switch.
In other cases, the level converter can be bypassed. As shown
in Figure 7 (a), a pass transistor M1 and a MUX together with a
configuration SRAM cell can be used to implement a configurable
level conversion. For Vdd-programmable routing switch as shown
in Figure 7 (b), two PMOS power switches M3 and M4 are inserted
between the tri-state buffer and VddH, VddL power rails, respec-
tively. Turning off one of the power switches can select a Vdd
level for the routing switch. By turning off both power switches,
an unused routing switch can be power-gated. SPICE simulation
shows that power-gating the routing switch can reduce leakage
power by a factor of over 300. As power switches stay either ON or

OFF after configuration and there is no charging and discharging at
their source/drain capacitors, the dynamic power overhead is almost
negligible. The delay overhead associated with the power switch
insertion can be bounded by around 6% when the power switch is
properly sized. Another type of routing resources is the connec-
tion block [11] as shown in Figure 7 (c). The multiplexer-based
implementation chooses only one track in the routing channel and
connects it to the logic block input pin. The buffers between the
routing track and the multiplexer are connection switches. Simi-
lar to the routing switch, programmable-Vdd is also applied to the
connection switch.

in1

logic block

SR

SR co
n

n
ectio

n
 b

lo
ck

SR

SR

V
d

d
L

V
d

d
H

Vdd Programmable
connection switch

LC

SR

M
U

X

i1

i0

M1

In Out

VddH
VddL

SR

SR

SR

M2

M3
M4

BUFF
OutIn

Vdd−programmable
routing switch

(b) Non−decoder based (c) Non−decoder based Vdd−programmable
connection block

(a) Configurable level
conversion

Figure 7: (a) Configurable level conversion;
(b) Vdd-programmable routing switch; (c) Vdd-
programmable connection block. (SR stands for
SRAM cell and LC stands for level converter.)

However, a large number of configuration SRAM cells are intro-
duced to provide Vdd programmability for interconnect switches
in [10]. In this paper, we design two new types of interconnect
switches, Vdd-programmable switch and Vdd-gateable switch, with
reduced number of configuration SRAM cells and call them SRAM-
efficient circuits. Similar to that in [10], a SRAM-efficient Vdd-
programmable switch provides three states which are VddH, VddL
and power-gating. In contrast, our SRAM-efficient design reduces
the number of extra SRAM cells for Vdd programmability, there-
fore reduces SRAM leakage. Different from a Vdd-programmable
switch, a Vdd gateable switch only has two states, to be programmed
as being supplied with a pre-determined Vdd level or being power-
gated when unused, but it can dramatically reduce the number of
SRAM cells for Vdd programmability. The detailed circuit designs
of SRAM-efficient Vdd-programmable and Vdd-gateable switches
are discussed in the following sections.

3.2 SRAM Efficient Vdd-programmable
Interconnect Switch

The Vdd-programmable interconnect switch [10] introduces a
large number of extra configuration SRAM cells. As shown in Fig-
ure 7, there are three SRAM cells for each Vdd-programmable rout-
ing switch. For a connection block containing N Vdd-programmable
connection switches, there are 2N +dlog2Ne configuration SRAM
cells, among which dlog2Ne SRAM cells are for multiplexer and
the other 2N extra SRAM cells are for N Vdd-programmable con-
nection switches. We can use combinational logic such as decoder
to reduce the number of extra SRAM cells introduced by Vdd pro-
grammability. Figure 8 shows the SRAM-efficient design of Vdd-
programmable interconnect switches. As shown in Figure 8 (a), We
first define a Vdd-programmable switch module with three signal

ports, V ddH En, V ddL En and Pass En. By setting these three
control signals, we can program Vdd-programmable switch be-
tween Vdd selection and power-gating. We design SRAM-efficient
Vdd-programmable routing switch in Figure 8 (b). Pass En can
be generated by V ddH En and V ddL En with a NAND2 gate.
Table 3 summarizes the configurations and relevant control signals
for Vdd-programmable routing switch.

SR

SR

SR

in1
Logic block

SR

SRSR

Switch

VddH_En
VddL_En

Pass_EnIn Out

VddL
VddH

Switch

D
e
c
o
d
e
r

Vdd_Sel

Wire tracks

VddH_En VddL_En Pass_En

Dec_Disable

Switch
VddH_En VddL_En Pass_En

Switch
VddH_En VddL_En Pass_En

(a) Vdd−Programmable switch (b) SRAM efficient Vdd−programmable routing switch

(c) SRAM−efficientVdd programmable connection block

N switches

lo
g
 N

 S
R

A
M

 c
e
lls

2

Figure 8: (a) Vdd-programmable switch (b)
SRAM-efficient Vdd-programmable routing switch;
(c) SRAM-efficient Vdd-programmable connection
block.

state V ddH En V ddL En Pass En

VddH 0 1 1
VddL 1 0 1

power-gated 1 1 0

Table 3: Configurations for a Vdd-programmable
routing switch.

Similarly, Figure 8 (c) shows the SRAM-efficient design of Vdd-
programmable connection block. For a connection block contain-
ing N connection switches, we use a dlog2Ne : N decoder and
2N NAND2 gates as the control logic. There is a disable signal
Dec Disable for decoder. Each decoder output is connected to
Pass En of one connection switch. Setting Pass En of a con-
nection switch to ’0’ can power-gate this switch by setting both
V ddH En and V ddL En to ’1’ with NAND2 gates. When the
whole connection block is not used, all N outputs of the decoder
are set to ’0’ to power-gate all the connection switches by asserting
Dec Disable. When the connection block is in use, Dec Disable
is not asserted. By using dlog2Ne configuration bits for the de-
coder, only one Pass En is set to ’1’ and others are set to ’0’, i.e.,
only one connection switch inside the connection block is selected
and connects the one track to logic block input, and other unused
connection switches are power-gated. Another configuration bit
V dd Sel is used to select the Vdd level for the selected connection
switch. Table 4 summarizes the truth table of configurations and
relevant control signals for Vdd-programmable connection switch.

state Dec Disable V dd Sel P ass En V ddH En V ddL En

power-gated 1 - 0 - -
power-gated 0 - 0 - -

VddH 0 1 1 0 1
VddL 0 0 1 1 0

Table 4: Configurations for a Vdd-programmable
connection switch.

For a connection block containing N connection switches, only
dlog2Ne+ 2 configuration SRAM cells are needed to provide Vdd
selection and power-gating capability for each individual connec-
tion switch inside the connection block. Compared to a conven-
tional connection block, only two extra configuration SRAM cells
are introduced for Vdd selection and power-gating. Similar to the
SRAM cell, we use high-Vt transistors for control logic to reduce
leakage overhead as the delay of control logic will not affect system
runtime performance. Similarly, we use minimum width transis-
tors for control logic to reduce area overhead. Table 5 shows the
comparison of the number of configuration SRAM cells, leakage
and area between the original designs of Vdd-programmable rout-
ing switch/connection block in Figure 7 and our SRAM-efficient
designs in Figure 8. As shown in Table 5, we can see that the
SRAM-efficient designs of Vdd-programmable routing switch and
connection block give us smaller area and less leakage. In the
rest part of the paper, we only consider SRAM-efficient deign for
Vdd-programmable interconnect switches.

3.3 Vdd-gateable Interconnect Switch
Compared to Vdd-programmable switch, Vdd-gateable intercon-

nect switch only provides two states between a pre-determined Vdd
level and power-gating, but it can dramatically reduce the number
of extra SRAM cells for Vdd programmability. Figure 9 (a) shows
the circuit design for a Vdd-gateable switch. Based on a conven-
tional tri-state buffer, we insert a PMOS transistor M2 between the
power rail and the tri-state buffer to provide the power-gating ca-
pability. When a switch is not used, transistor M1 is turned off by
the configuration cell SR. At the same time, we can turn off M2 to
perform power-gating for the unused switch. Similarly, both M1
and M2 are turned on by the configuration cell SR when the switch
is used. Thus, we do not need to introduce an extra SRAM cell
for power-gating capability. Figure 9 (b) presents Vdd-gateable
routing switches. We can achieve leakage power reduction by a
factor of over 300 for an unused switch when it is power-gated.
However, there is a delay overhead associated with the M2 inser-
tion. The Vdd-gateable routing switch suffers from delay increase
compared to the conventional switch because M2 is inserted in se-
ries. We properly size M2 for the tri-state buffer to achieve a delay
increase bounded by 6%. Similar to Vdd-programmable switch,
dynamic power overhead associated with the insertion of PMOS
M2 is almost negligible because transistor M2 is always ON when
the routing switch is used and there is no charging or discharging
occur at its source/drain capacitors.

The design of Vdd-gateable connection block is shown in Figure 9
(c). We only need dlog2Ne configuration SRAM cells to control N
connection switches in a connection block via a decoder and achieve
the power-gating capability for each connection switch at the same
time. We use another configuration bit, Dec Disable, to disable the
decoder when we apply power-gating to the whole connection block.
Similar to the SRAM-efficient design of Vdd-programmable switch,
we use high-Vt and minimum width transistor for the decoder to
reduce leakage and area overhead. Alternatively, N configuration
SRAM cells can be used to control the same number of connection
switches without using the decoder. Table 6 shows the comparison
of the number of SRAM cells, leakage and area for a non-decoder

Vdd-programmable routing switch [10] SRAM-efficient Vdd-programmable routing switch compared to
SRAM cells SRAM cells NAND2 baseline [10]

number leakage area number leakage area leakage area ∆ number of ∆ leakage ∆ area
(watt) (watt) (watt) SRAM cells (watt)

3 2.32E-8 21.87 2 1.55E-8 14.58 3.49E-10 2.50 -1 -7.38E-9 -4.79

32:1 connection block
Vdd-programmable connection block [10] SRAM-efficient Vdd-programmable connection block compared to

SRAM cells SRAM cells control logic baseline [10]
number leakage area number leakage area leakage area ∆ number of ∆ leakage ∆ area

(watt) (watt) (watt) SRAM cells (watt)
69 5.32E-7 503.01 7 5.42E-8 43.74 3.30E-8 311 -62 -4.56-E7 -148.27

Table 5: The comparison of the number of SRAM cells, leakage and area between a Vdd-programmable
routing switch/connection block and SRAM-efficient Vdd-programmable routing switch/connection block.
We use 32:1 connection block and the control logic for SRAM-efficient design contains a standard 5:32
decoder and 64 NAND2 gates. Area is presented in terms of the number of minimum width transistor area.

Comparison between non-decoder based and decoder based 32:1 Vdd-gateable connection block
non-decoder based connection block decoder based connection block comparison

SRAM cells SRAM cells 5:32 decoder baseline: w/o decoder
number leakage area number leakage area leakage area ∆ number of ∆ leakage ∆ area

(watt) (watt) (watt) SRAM cells (watt)
32 2.47E-7 233.28 6 4.63E-8 43.74 2.00E-8 94.25 -26 -1.81E-7 -95.29

Table 6: The comparison of the number of SRAM cells, leakage and area between a non-decoder based Vdd-
gateable connection block and a decoder based Vdd-gateable connection block. We use a 32:1 connection
block. For the decoder based Vdd-gateable connection block, we use a 5:32 decoder with complementary
output. Area is presented in terms of the number of minimum width transistor area.

SR
SR

Switch

Switch

SR

SR

Switch

Switch

SR

SR

SR

BA
M1

M2

Vdd

SR

BUFF

Switch

D
eco

d
er

in1
Logic block

Connection switches

(a) Vdd gateable switch

(c) Vdd gateable connection swithes

(b) Vdd gateable routing switches

wire track

Dec_Disable

lo
g

 N
 S

R
A

M
 cells

N switches

2

Figure 9: (a) Vdd-gateable switch; (b) Vdd-
gateable routing switches; (c) Vdd-gateable connec-
tion switches. (SR stands for SRAM cell)

based and decoder based connection block containing 32 connection
switches. As shown in Table 6, the decoder based Vdd-gateable
connection block consumes less area and leakage power compared
to the non-decoder based design. In the rest part of this paper, we
only consider decoder based Vdd-gateable connection block that
only introduces one extra configuration SRAM cell.

4. ARCHITECTURE EVALUATION FOR
VDD PROGRAMMABLE FPGAS

In this section, we first evaluate two architecture classes Class1
and Class2 for Vdd programmable FPGAs. Class1 applies pro-
grammable dual-Vdd to all the logic blocks and routing switches,
and inserts a configurable level conversion circuit in front of each
routing switch as well as at the inputs/outputs of the logic blocks. It

is the same fully Vdd-programmable architecture style proposed in
[10], but we use the SRAM-efficient circuit design for routing and
connection switches to reduce the number of SRAM cells for Vdd
programmability. Class2 applies programmable dual-Vdd only to
logic blocks, and uses Vdd-gateable routing/connection switches
in FPGA interconnects. Therefore, the interconnect switches in
architecture Class2 only have two configurable states: high Vdd
(VddH) and power-gating. As we use VddH for interconnects in
architecture Class2, level converters are only needed at the logic
block outputs, but not at the logic block inputs nor in the routing
channels. Similar to the baseline architecture Class0 in 2.3, the
configuration SRAM cells in both architecture classes use the high
Vt SRAM design. All these architecture classes (with Class3 to be
presented in Section 5) are summarized in Table 7.

Architecture Class Logic block Interconnect

class0 (baseline) single Vdd single Vdd

class1 programmable dual-Vdd programmable dual-Vdd
w/ LCs in the routing

class2 programmable dual-Vdd Vdd-gateable

class3 programmable dual-Vdd programmable dual-Vdd
w/o LCs in routing chann.

Table 7: Summary of baseline architecture class and
Vdd-programmable architecture classes (LC denotes
the level converter).

In our architecture evaluation framework, we use a simple de-
sign flow similar to that in [9, 10]. Starting with a single-Vdd
gate level netlist, we apply technology mapping and timing-driven
packing [11] to obtain the single-Vdd cluster-level netlist. We then
perform single-Vdd timing-driven placement and routing by VPR
[11] and generate the basic circuit netlist (BC-netlist). We assume
that the initial Vdd level is VddH everywhere, and calculate power
sensitivity ∆P/∆Vdd, which is the power reduction by changing
VddH to VddL for each circuit element. The total power P includes
both switching power Psw and leakage power Plkg . A greedy al-
gorithm is carried out for Vdd assignment considering iteratively
updated timing slack (See Figure 10). Note that Vdd assignment is
performed after single-Vdd (VddH) routing, and the placement and

routing solution is the same in all FPGA classes for each benchmark
circuit. For FPGA Class1, the Vdd assignment unit is a logic block
or an interconnect switch. For FPGA Class2, the Vdd assignment
unit is a logic block. For both Class1 and Class2, power-gating is
applied to all unused logic blocks and programmable switches. Fi-
nally, we perform the energy and delay evaluation for the dual-Vdd
design.

Sensitivity-based dual-Vdd assignment algorithm:

Assign VddH to all assignment units;
Calculate power-sensitivity S for all assignment units;
While(∃ assignment units not tried)
{

Assign VddL to the unit with largest S if no
critical path increase;

Update timing slack and mark the unit as tried;
}

Figure 10: Sensitivity-based dual-Vdd assignment
algorithm.

Figure 11 presents the energy-delay tradeoff in terms of differ-
ent architectures, i.e., different combinations of cluster size N and
LUT size k, for three FPGA classes: Class0, Class1 and Class2.
Considering that the optimal VddL/VddH ratio is 0.6 ∼ 0.7 as stud-
ied in [20], we use 1.3v for high Vdd and 0.8v for low Vdd in our
experiments. We only show the relaxed dominant architectures in
the figure and the polyline represents the strictly dominant architec-
tures. Similar to the baseline FPGA class0, the min-delay architec-
ture is (N = 8, k = 7) for both class1 and class2. The min-energy
architecture is (N = 8, k = 4) for class1 and (N = 12, k = 4) for
class2. This shows that LUT size 7 gives the best performance and
LUT size 4 leads to the lowest energy consumption for these Vdd
programmable FPGAs.

We then use the metrics of energy E, delay D and energy-delay
product ED to compare the two classes of Vdd-programmable FP-
GAs (Class1 and Class2) and the baseline FPGA (Class0). We
use the min-energy (min-delay) architecture within each FPGA ar-
chitecture class and obtain the energy saving (delay increase) by
Vdd programmable FPGAs. Compared to baseline architecture
class, FPGA Class1 obtains an energy saving of 22.63% and FPGA
Class2 obtains an energy saving of 44.42%. The delay increase
due to Vdd programmability is only 4% for both FPGA Class1 and
Class2. As the routing solution is same for each benchmark in
single-Vdd FPGA Class0 and Vdd-programmable FPGA Class1,
Class2, this system level performance degradation reflects the im-
pact of delay increase due to Vdd-programmability in circuit level.
We also use the min-ED (i.e., the minimum energy-delay product)
architecture within each architecture class and obtain the ED prod-
uct reduction. FPGA Class1 reduces ED product by 19.48% and
Class2 reduces ED product by 44.14%.

Vdd programmability increases the total number of SRAM cells
required to store those extra configuration bits. However, SRAM
cells are vulnerable to soft errors and the total number of SRAM
cells should be minimized. Table 9 presents the increase in SRAM
cell number and the total device area overhead due to Vdd pro-
grammability. The SRAM cells include those used in LUTs and the
total device area includes both logic block and interconnect device
area. Only dominant architectures are shown in the table. Vdd
programmable FPGA Class1 increases the SRAM cell number by
132%. This shows that fully Vdd programmable FPGAs need a
large number of extra SRAM cells to provide Vdd programmabil-
ity. FPGA Class2 only increases SRAM cell number by 3% because
only two states (VddH and power-gating) are provided for FPGA
interconnect switches and the original SRAM cells for intercon-
nection programmability can be shared for Vdd programmability.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

10 10.5 11 11.5 12 12.5 13

Critical Path Delay (ns)

T
o
ta

l
F

P
G

A
 E

n
er

g
y
/C

y
cl

e
(n

J
)

Class 0 Class 1 Class 2

(8,7)

(6,7)

(6,6)
(10,5)

(8,5)

(12,4) (8,4)(6,4)(8,7)

(10,6) (6,6) (8,6)
(10,5)

(12,4)

(6,7)

(8,5)

(8,7)

(6,7)
(6,6) (8,6)

(10,5)
(8,5)

(12,4)

(8,4)

(6,5)

(6,4)
(10,4)

Figure 11: Energy and delay tradeoff for the base-
line single-Vdd dual-Vt FPGA (Class0) and the two
classes of Vdd-programmable FPGAs (Class1 and
Class2). The figure only shows relaxed energy-delay
dominant solutions and the strictly dominant solu-
tions are represented by polylines.

Considering total device area overhead including the extra SRAM
cells, power switches and level converters, FPGA Class1 has 178%
area overhead and FPGA Class2 has 48% area overhead.

5. IMPROVED FPGA ARCHITECTURES

5.1 FPGA Architectures and Related CAD
Algorithm

By using Vdd-programmable interconnects, we can reduce the in-
terconnect dynamic energy which is not available by Vdd-gateable
interconnects. However, as presented in Section 4, FPGA fully
Vdd-programmable architecture Class1 consumes more energy than
FPGA architecture Class2 which uses Vdd-gateable interconnects.
This is because of the leakage overhead of the large number of
level converters in routing channels, which provides Vdd pro-
grammability for each individual interconnect switch. To achieve

Arch. Class → Class0 Class1 Class2 Class3
(baseline)

min-E arch. (N,k) (8,4) (8,4) (12,4) (12,4)
energy (nJ/cycle) 3.58 2.77 1.99 1.81
energy saving (%) - 22.63% 44.42% 49.41%

min-D arch. (N,k) (8,7) (8,7) (8,7) (8,7)
delay (ns) 10.46 10.88 10.89 10.88

delay increase (%) - 4% 4% 4%

min-ED arch. (N,k) (8,4) (12,4) (12,4) (12,4)
ED product (nJ · ns) 42.82 34.48 23.92 21.75

ED reduction - 19.48% 44.14% 49.21%
device area 7014240 27245631 13943892 21557990

area overhead - 288% 99% 207%

Table 8: Comparison between Vdd programmable
FPGAs (Class1 and Class2) and the baseline FPGA
(Class0) using energy E, delay D, energy-delay prod-
uct (ED) and device area in minimum width tran-
sistor area.

total # of SRAM cells on chip total device area total # of total device area
Dominant Arch. SRAM cells

(N,k) Class0 Class1 Class2 Class0 Class1 Class2 Class3 Class3
baseline (% overhead) (% overhead) baseline (% overhead) (% overhead) (% overhead) (% overhead)

(8,7) 649218 88% 2% 11541440 149% 41% 17% 102%
(6,7) 621929 89% 2% 10689783 164% 42% 20% 116%
(6,6) 469504 128% 3% 10114162 195% 56% 31% 140%
(10,5) 374174 164% 3.4% 9793576 189% 50% 33% 129%
(12,4) 317391 190% 4% 9173613 197% 52% 40% 135%

Average - 132% 3% - 178% 48% 28% 124%

Table 9: Total number of configuration SRAM cells and device area overhead for different Vdd programmable
FPGAs. SRAM cells include those used in LUTs and total device area includes both logic block and inter-
connect area. The device area is in minimum width transistor area.

better energy-delay tradeoff, we design an improved fully Vdd-
programmable FPGA architecture Class3. It uses the same SRAM-
efficient interconnect switches as FPGA architecture Class1, but in-
serts level converters only at logic block inputs and outputs. Since
there is no level converter in routing channels, we need a CAD algo-
rithm to guarantee that no VddL interconnect switch drives VddH
interconnect switch. We tackle the problem by choosing routing
tree as the Vdd assignment unit. Similar to FPGA Class1, the
same design flow and the sensitivity-based Vdd level assignment
algorithm in Figure 10 is used to decide the Vdd level for each
routing tree. The only difference is that we use a routing tree as
the assignment unit for FPGA Class3 while an interconnect switch
is used as the assignment unit for Class1. Since two routing trees
will not intersect with each other in routing channels, we do not
need level converters in routing channels. Same as FPGA Class1,
the Vdd assignment is performed after single-Vdd (VddH) routing
and using a routing tree as the assignment unit does not impose any
additional routing constraint. Figure 12 illustrates the situation that
a VddH routing tree and VddL routing tree can share a same track
without level converters in routing channels.

0
1
2
3

0 1 2 3

connection block VddH routing tree

VddL routing tree

switch block

Figure 12: Improved fully Vdd-programmable
FPGA architecture Class3. No level converter is
inserted in routing tracks.

5.2 Evaluation Results and Discussions
In this section, we evaluate our improved fully Vdd-programmable

architecture Class3. Figure 13 shows the energy-delay evaluation
for our improved architecture Class3 compared to the evaluation
results for architecture Class0, Class1 and Class2. As shown in
Figure 13, we can see that the improved architecture Class3 can
achieve better energy-delay tradeoff than architecture Class1, and
even better than Class2. This is because FPGA Class3 removes
the level converters in the routing channels, but still can reduce

interconnect dynamic energy. This is not available in architecture
Class2 which uses Vdd-gateable interconnect switches.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

10 10.5 11 11.5 12 12.5 13

Critical Path Delay (ns)

T
o
ta

l
F

P
G

A
 E

n
er

g
y
/C

y
cl

e
(n

J
)

Class 0 Class 1 Class 2 Class 3

(8,7)

(6,7)

(6,6)
(10,5)

(8,5)

(12,4) (8,4)(6,4)(8,7)

(10,6) (6,6) (8,6)
(10,5)

(12,4)

(6,7)

(8,5)

(8,7)

(6,7)
(6,6) (8,6)

(10,5)
(8,5)

(12,4)

(8,4)

(6,5)

(6,4)
(10,4)

(8,7)
(6,7)

(10,6) (6,6)
(8,6)

(10,5)
(12,4)(8,5)

Figure 13: Energy and delay tradeoff for the base-
line single-Vdd dual-Vt FPGA (Class0) and the
three classes of Vdd-programmable FPGAs (Class1,
Class2 and Class3). The figure only shows relaxed
energy-delay dominant solutions and the strictly
dominant solutions are represented by polylines.

Similar to Class0, the min-delay architecture is (N = 8, k = 7)
for Class3. The min-energy architecture is (N = 12, k = 4)
for Class3. (N = 12, k = 4) also gives the minimum energy
delay product ED in architecture Class3. We can see that for
our improved FPGA architecture Class3, LUT size 7 always gives
the best performance and LUT size 4 always leads to the lowest
energy consumption. Compared to the min-energy (min-delay)
architecture within baseline architecture Class0, the min-energy
architecture in Class3 obtains an energy reduction of 49.41%, and
the min-delay architecture in Class3 has a 4% delay overhead due
to Vdd programmability. The min-ED architecture in FPGA Class3
reduces energy delay product ED by 49.21%. As shown in Table 8,
FPGA Class3 gives the lowest energy as well as the lowest energy
delay product ED. The total number of configuration SRAM cells
and the total device area of FPGA Class3, compared with FPGA
Class0, Class1 and Class2, are presented in Table 9. FPGA Class3
increases the number of configuration SRAM cells by 28.25% and
the device area by 124% for Vdd programmability. Both Class2
and Class3 introduce smaller number of extra configuration SRAMs
and give a smaller device area overhead while reducing more energy

compared to Class1. Compared to FPGA Class2, Class3 reduces
more energy as well as ED while introducing more configuration
SRAM cells and having a larger area overhead.

6. CONCLUSIONS AND DISCUSSIONS
We have developed an improved FPGA power model with high

fidelity and accuracy, and designed novel Vdd-programmable and
Vdd-gateable interconnect switches with significantly reduced num-
ber of configuration SRAM cells compared to [10]. Using the new
switches, we have evaluated three new classes of Vdd-programmable
FPGA architectures. Class1 applies Vdd programmability to both
logic blocks and interconnects, where Vdd-level converters are in-
serted before each interconnect switch. Class2 uses Vdd-programmable
logic blocks and Vdd-gateable interconnects. Similar to Class1,
Class3 applies Vdd programmability to both logic blocks and in-
terconnects, but it does not insert any Vdd-level converter in routing
channels. The baseline for comparison is Class0, which uses high-
Vdd for both logic blocks and interconnects. High-Vt is applied
to configuration SRAM cells for all four architecture classes, and
the same dual-Vdd levels are applied to Class1∼3. Using the met-
ric of Energy-Delay Product (ED) measured as a geometric mean
over the MCNC benchmark set, the ED reduction for the min-
ED architecture in Class1, Class2 and Class3 is 19.48%, 44.14%
and 49.21%, respectively. The SRAM cell overhead introduced by
Vdd-programmability for Class1, Class2 and Class3 is 132%, 3%
and 28%, respectively. The total device area overhead for Class1,
Class2 and Class3 is 178%, 48% and 124%, respectively. Both
FPGA Class2 and Class3 achieve more energy reduction with less
SRAM and area overhead compared to FPGA Class1. Note that
Class1 is the same as the Vdd-programmable FPGA architectures
proposed in a very recent work [10] but with less power and area
due to the new circuit designs. While FPGA Class3 gives the low-
est energy consumption, FPGA Class2 achieves comparable energy
reduction with significantly reduced number of SRAM cells and
device area overhead. We conclude that Class2 is the best architec-
ture class considering area, power and performance tradeoff. Our
evaluation results also show that, within each architecture class,
LUT size 4 gives the lowest energy consumption while LUT size 7
leads to the highest performance.

In this paper, area is represented by the number of minimum width
transistor area. Our future work includes co-developing CAD algo-
rithms and architectures to increase power reduction and decrease
SRAM cell and area overhead due to Vdd programmability. Partic-
ularly, because high-Vdd wire segments may drive low-Vdd wire
segments without using Vdd-level converters, we will apply dual-
Vdd levels within a routing tree. This may reduce more dynamic
power compared to using high-Vdd in the entire tree. Additionally,
similar to a mix of high-Vdd, low-Vdd, and programmable-Vdd
logic blocks used in [9], we will replace the programmable-Vdd
interconnects in Class3 by an optimal mix of high-Vdd, low-Vdd
and programmable-Vdd interconnects to reduce the area overhead
with bounded or no performance loss.

Acknowledgement
The authors like to thank Mr. Lerong Cheng and Ms. Ho-Yan
Phoebe Wong at UCLA for generating circuit models for a variety
of basic FPGA circuits and for helpful discussions.

7. REFERENCES
[1] E. Kusse and J. Rabaey, “Low-energy embedded FPGA

structures,” in Proc. Intl. Symp. Low Power Electronics
and Design, pp. 155–160, August 1998.

[2] K. Poon, A. Yan, and S. Wilton, “A flexible power model for
FPGAs,” in Proc. of 12th International conference on
Field-Programmable Logic and Applications, Sep 2002.

[3] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation
for power-efficient FPGAs,” in Proc. ACM Intl. Symp.
Field-Programmable Gate Arrays, Feb 2003.

[4] T. Tuan and B. Lai, “Leakage power analysis of a 90nm
FPGA,” in Proc. IEEE Custom Integrated Circuits
Conf., 2003.

[5] J. H. Anderson, F. N. Najm, and T. Tuan, “Active leakage
power optimization for FPGAs,” in Proc. ACM Intl.
Symp. Field-Programmable Gate Arrays, February 2004.

[6] J. Lamoureux and S. J. Wilton, “On the interaction between
power-aware FPGA CAD algorithms,” in Proc. Intl. Conf.
Computer-Aided Design, pp. 701–708, November 2003.

[7] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J.
Irwin, and T. Tuan, “Reducing leakage energy in FPGAs
using region-constrained placement,” in Proc. ACM Intl.
Symp. Field-Programmable Gate Arrays, February 2004.

[8] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using
pre-defined dual-vdd/dual-vt fabrics,” in Proc. ACM Intl.
Symp. Field-Programmable Gate Arrays, February 2004.

[9] F. Li, Y. Lin, and L. He, “FPGA power reduction using
configurable dual-vdd,” in Proc. Design Automation
Conf., June 2004.

[10] Fei Li and Yan Lin and Lei He, “Vdd programmability to
reduce FPGA interconnect power,” in Proc. Intl. Conf.
Computer-Aided Design, November 2004.

[11] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic
Publishers, Feb 1999.

[12] G. G. Lemieux and S. D. Brown, “A detailed router for
allocating wire segments in field-programmable gate arrays,”
in Proceedings of the ACM Physical Design Workshop,
April 1993.

[13] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang,
“An exact solution to the transistor sizing problem for CMOS
circuits using convex optimization,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and
Systems, vol. 12, pp. 1621–1634, Nov. 1993.

[14] U. of Berkeley Device Group, “Predictive technology
model,” in
http://www.device.eecs.berkeley.edu/ ptm/mosfet.html,
2002.

[15] International Technology Roadmap for Semiconductor in
http://public.itrs.net/, 2002.

[16] S. Trimberger, “Private conversation,” 2003.
[17] J. Rose et al, “Architecture of field-programmable gate

arrays: The effect of logic functionality on area efficiency,”
ISSCC, 1990.

[18] E. Ahmed and J. Rose, “The effect of LUT and cluster size
on deep-submicron FPGA performance and density,” in
Proc. ACM Intl. Symp. Field-Programmable Gate
Arrays, pp. 3–12, Feb 2000.

[19] Xilinx Corporation, “Virtex-II 1.5v platform FPGA complete
data sheet,” July 2002.

[20] M. Hamada and et al, “A top-down low power design
technique using clustered voltage scaling with variable
supply-voltage scheme,” in Proc. IEEE Custom
Integrated Circuits Conf., pp. 495–498, 1998.

