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ABSTRACT
This paper studies the impacts of Chemical Mechanical Pol-
ishing (CMP)-induced systematic variation and random chan-
nel length (Leff ) variation of transistors on interconnect de-
sign. We first construct a table look-up based interconnect
RC parasitic model considering CMP effects with optimized
fill insertion. Based on the model, we solve the simultane-
ous buffer insertion, wire sizing and fill insertion (SBWF )
problem under CMP variation. We also extend the SBWF
problem to consider the random Leff variation (vSBWF ).
We approach the resulting vSBWF problem by (1) incorpo-
rating probability density function (PDF) into the SBWF
algorithm; and (2) developing an efficient heuristic for PDF
pruning, whose practical optimality is verified by an accu-
rate but much slower pruning. Experimental results show
that the SBWF design improves timing by 1.0% and re-
duces power by 5.7% on average with 7.4% less buffer area
over the conventional buffer insertion and wire sizing de-
sign followed by fill insertion (SBW + Fill), and that the
vSBWF design reduces yield loss due to CMP and Leff

variations by 44.3% on average over the SBW + Fill de-
sign. The runtime of vSBWF is 8.3× that of SBWF , and
vSBWF for the largest example containing 3103 sinks fin-
ishes in 124 minutes.

1. INTRODUCTION
The economic engine of the semiconductor industry is

based on the promise of ever more complex silicon systems
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delivered to the market at ever-lower prices. High perfor-
mance and high yield are two keys to sustaining such a trend.
However, design uncertainty in nanometer technology nodes
threatens such an economic growth model. The main cause
for design uncertainty is two-fold: systematic manufacturing
process variation and random process variations due to small
geometric dimensions [1]. For example, chemical-mechanical
planarization (CMP) is an enabling manufacture process
to achieve uniformity of dielectric and conductor height in
back-end-of-line (BEOL) process step. However, CMP also
introduces systematic design variations due to dummy fill in-
sertion [2] and dishing and erosion [3]. The channel length
of a transistor Leff greatly affects device performance. But
increasingly shrunk Leff makes it difficult to print the de-
sired geometry exactly on silicon due to the limit of existing
lithographic technology. Moreover, major Leff variation is
attributed to random variation as pointed out by [4]. As a
result of combined systematic and random variations, man-
ufactured circuits exhibit different performance from that
estimated by circuit simulation using nominal circuit param-
eters; therefore, high yield rate is more difficult to achieve
in advanced process.

Despite its importance, there is very limited work on cir-
cuit optimization for yield improvement considering process
variations. For example, statistical timing analysis [5, 6, 7]
has been studied recently, but results mainly focus on analy-
sis rather than design. A recent work [8] on buffer insertion
in a routing tree considers the uncertainty in wire-length es-
timation but not process variations such as CMP effects and
Leff variation.

The first contribution of this paper develops an efficient
algorithm to solve the simultaneous buffer insertion, wiring
sizing and fill insertion (SBWF ) problem. We combine the
conventional dynamic programming framework for buffer in-
sertion [9] with a table look-up based interconnect RC para-
sitic model that considers CMP effects (fill insertion, dishing
and erosion) to produce an efficient algorithm for solving the
SBWF problem. The second contribution of this work ex-
tends the SBWF algorithm to consider random Leff vari-
ation (vSBWF ). By incorporating the efficient piece-wise
linear (PWL) model [10] for cumulative distribution func-
tion (CDF) and an effective probability density function
(PDF) pruning rule into vSBWF , we achieve significant
reduction of yield loss due to both systematic CMP-induced
variation and random Leff variation.

The rest of the paper is organized as follows. In Section
2, we review the CMP-related design variations and propose



an accurate yet efficient table look-up based CMP-aware
RC parasitic models. In Section 3, we present our SBWF
problem formulation, algorithms and experimental results.
In Section 4, we extend the SBWF algorithm to consider
random Leff variation (vSBWF ) and evaluate the impact
of vSBWF on yield optimization. We conclude the paper
with discussion of our future research in Section 5.

2. MODELING OF CMP EFFECTS

2.1 CMP Induced Variations

��

Figure 1: Fill pattern definition.

The following two types of CMP effects are considered
in this paper: dummy fill insertion, and dishing and ero-
sion. Dummy fill insertion improves the uniformity of metal
feature density and enhances the planarization that can be
obtained by CMP. In this work, we assume rectangular,
isothetic fill features aligned horizontally and vertically be-
tween two adjacent interconnects as shown in Figure 1. In
the figure, conductors A and B are active interconnects and
the metal shapes between them are dummy fills. To spec-
ify the amount of fill metal needed in the space and the
resulting metal density, we need the following definitions.

Definition 1. Local metal density ρf – the proportion of
the oxide area between two neighbouring interconnects that
dummy fill metal occupies.

Definition 2. Effective metal density ρCu – the propor-
tion of the area in a planarization window [3] that all metal
features (interconnect + dummy fill metal) occupies.

To achieve CMP planarity and yield optimization, the foundry
usually requires an effective metal density ρCu to be satis-
fied in a “fixed-dissection” regime [2, 11]. Fixed-dissection
fill synthesis typically results in a number of tiles (i.e., square
regions of layout, usually several tens of microns on a side)
wherein prescribed amounts of fill features are to be inserted
to meet individual tile’s metal density requirement. This
translates to assigning the amount dummy fill metal to the
space between interconnects, and such amount is expressed
in terms of local metal density ρf .

It has been shown in [12] that for a given local metal den-
sity ρf requirement between two interconnects, there exists
many possible valid fill patterns that achieve the same re-
quired fill feature area and satisfy all design rules. Accord-
ing to [12], fill insertion significantly increases both Cc and
Cs when compared to the nominal case that does not con-
sider fill insertion; different fill patterns that are nominally

“equivalent” with respect to foundry rules yield a wide range
of Cc and Cs values. Moreover, it has been shown in [12]
that the relative change for Cc can be more than 300%, and
that even though the variation of Cs is less dramatic than
Cc, variation of more than 10% from the nominal Cs can
be observed. Therefore, to obtain robust designs that meet
performance and yield expectation after insertion of dummy
fill, the variation (i.e., increase) of both Cc and Cs must be
considered in the design flow.

Figure 2 illustrates dishing and erosion phenomena due
to CMP [13]. Both dishing and erosion cause loss of metal
thickness and change interconnect cross-sections [3], and
hence may affect interconnect parasitics. According to [12],
dishing and erosion can cause wire resistance to increase by
more than 30%, but have limited impact on interconnect
capacitance

Dielectric

Copper

dielectric level after CMP

dielectric level before CMP

dishing

erosion

Figure 2: Dishing and Erosion in Copper CMP.

2.2 CMP-aware Table-based RC Model
Using QuickCap [14], a commercial signoff-quality tool, to

extract Cc and Cs for different interconnect configurations
with consideration of fill insertion, we organize the extracted
capacitance in a table indexed by active interconnect width,
spacing and local metal density. As different fill patterns un-
der the same pattern density result in different capacitance
values, we only save the capacitance values under the best fill
pattern, which gives the minimum Cc among all patterns.
We employ the closed-form formulae for a multi-step CMP
process to calculate post-CMP interconnect geometries [13]
from which we compute the resistance considering dishing
and erosion. In the following, we denote the resulting RC
models as CMP-aware RC parasitic models. In contrast,
interconnect parasitics without consideration of fill pattern
insertion, dishing or erosion effects are called CMP-oblivious
RC models.

3. CMP-AWARE BUFFER INSERTION AND
WIRE SIZING

In this section, we study the problem of simultaneous
buffer insertion and wire sizing (SBW ) to examine the im-
pact of CMP on interconnect design. We propose a new
method to solve the SBW and the fill insertion problem
simultaneously, and we denote it as SBWF . In contrast,
current designers use a two-step approach which first solves
the SBW problem, then applies either the de facto rule-
based method or the more recently proposed model-based
fill insertion method [15] to determine the amount of fill
needed. We use this two-step approach as our baseline for
comparison, which is denoted as SBW + Fill in this paper.



3.1 Problem Formulation
Consider a routing tree T (V, E), where V consists of a

source node nsrc, sink nodes ns, and Steiner points np, and
E is the set of directed edges (wires) that connect the nodes
in V . The SBWF problem is to find an assignment of buffer
insertion, buffer sizing, wire sizing, and dummy fill insertion,
such that the arrival time (AT ) is maximized at nsrc, subject
to (1) the slew rate constraint η at all ns and buffers’ driving
points; and (2) the effective metal density requirement ρCu

for CMP planarization.
We characterize the source nsrc by its driving resistance

Rsrc; each sink ns by its loading capacitance Ls and the
required arrival time ATs. We associate each edge ei,j with
two center-to-edge wire width w1 and w2 as illustrated in
Fig. 3 1. We express w1 and w2 in terms of multiples of
the minimum wire width w̌. To respect the design rules,
we impose 0.5 · w̌ ≤ wk ≤ sk − w̌, where k = 1, 2 and sk

is the spacing from the center line to the edges of its two
nearest neighboring wires, also in terms of the multiples of w̌.
For every edge ei,j , we define the potential buffer insertion
site at the point closest to the node vi. The buffer receives
input from node vi and drives edge ei,j and the downstream
subtree rooted at node vj . We express the size of buffer
Sbuf in discrete multiples of the minimum sized buffers. All
buffers are 2-stage cascaded inverters.
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Figure 3: Illustration of asymmetric wire sizing.

3.2 Slew Rate Constrained SBW Algorithm
The slew rate constrained SBW algorithm largely follows

the dynamic programming (DP) framework of [9], where
buffer insertion and asymmetric wire sizing is determined in
a bottom-up (sink-to-source), recursive fashion. To obtain
the optimal solution at the source in a deterministic buffer
insertion regime, partial solutions soln at node n (i.e. partial
buffer placement and wire width assignment for the subtree
at node n) must keep track of the downstream capacitance
soln → C and the arrival time soln → AT associated with
soln. The arrival time ATn at node n is defined by

ATn = min
ns∀s

(AT
s
n − d(ns, n))

where d(ns, n) is the delay from the sink node ns to node
n. The pseudo-code in Table 1 summarizes the flow of the
algorithm.

We start procedure DP at the source nsrc, which recur-
sively calls DP on all nodes in a depth first order to create
the solution sets SOLn for all n ∈ V . Upon its return at the
source nsrc, DP gives the set SOLsrc

n , from which we pick

1The asymmetric wire sizing problem was first proposed in
[16] without slew rate constraints, which does not consider
the CMP-induced variation neither.

procedure DP(n)

if (n is a sink) Ci = Ln; ATn = required ATn;
else Cn = 0; ATn = ∞;

add (Cn, ATn) to set SOLn;
for each en,v to downstream node v, do

SOLv = DP(v);
for each solj ∈ SOLv, do
Propagate(en,v, solj, SOLn);

return SOLn;

procedure Propagate(en,v, solj, SOLn)

for each solm in SOLn, do

for each wire size for en,v, do
for each possible buffer Sbuf, do

if (Sbuf = 0, i.e. no buffer)
newC = solm → C + Cei,j

+ solj → C;

else

newC = solm → C + Sbuf → Cin;
newAT = max(solm → AT, Delay(Sbuf ,ei,j,solj));
solnew = (newC, newAT);

if (Sbuf 6= 0 and Slew(solnew) > η)
continue;

if (Prune(solnew, SOLn) = ‘‘survive’’)
add solnew to set SOLn;

Table 1: Pseudo-code for the SBWF algorithm

.

a solution solopt that maximizes ATopt +Rsrc ·Copt. We ob-
tain the actual wire sizing assignment and buffer placement
by a simple backtracking algorithm using solopt.

We use the first order Elmore delay model and slew rate
model [17] in our current implementation due to their high
fidelity over real design metrics. Procedure Delay updates
the ATn of each solution soln at node n by

ATn = AT
n
sol − rn,v · Lv − 0.5 · rn,v · cn,v

−dbuf − Reff · (Ln + cn,v) (1)

where rn,v and cn,v are the resistance and capacitance of
edge en,v, respectively; Ln is the downstream capacitance
at the node n; dbuf and Reff are buffer intrinsic delay and
output resistance, respectively, and both are functions of
buffer size Sbuf . Procedure Slew implements Bakoglu’s slew
rate metric [17] given by ln 9 ·dn

T , where dn
T is the maximum

delay from the output of buffer at node n to the inputs of
other immediate buffers or the sinks ns in the subtree Tn

rooted at n. Note that Delay and Slew can be replaced by
other more accurate delay [18] and slew [19] metrics which
consider higher order moments.

The DP algorithm runs in polynomial time with respect
to the tree size if we prune inferior solutions in SOLn for
each node n. A solution sol1 is said to be inferior to (or
dominated by) another solution sol2 if C1

sol ≥ C2
sol and

AT 1
sol ≤ AT 2

sol. The procedure Prune in the above pseudo-
code compares the newly created solution solnew against all
solutions in the set SOLn to remove inferior or dominated
solutions. If solnew is not dominated by any other solutions,
Prune returns “survive”.

The overall time complexity of the DP is O(|Sbuf | · r|V |)
when slew rate constraint is not considered, where r is the
number of available choices of wire widths, |V | is the number
of nodes in the interconnect tree and |Sbuf | is the number
of possible sizes for buffers. Wire sizing causes exponential
growth of distinct capacitance values Csol as solutions prop-
agate. When slew rate constraint is considered, there is an
upper bound on the distance that a wire can run without
buffering. This translates to the fact that the number of dis-
tinct Csol values is quite tightly upper bounded. Since we
only need to keep one solution under each distinct Csol, the



number of solutions grows in the order of O(|Sbuf |·|Csol|·|V |)
instead, where |Csol| denotes the bounded number of dis-
tinct capacitance values. We experimentally confirm this
observation in Section 4.4.3.

3.3 Extension to SBW + Fill and SBWF

The conventional design flow SBW + Fill has two steps.
The first step solves the slew rate constrained SBW problem
using CMP-oblivious RC parameters only; the second step
inserts the best fill patterns into the space between the wires
of the already buffered and sized routing tree in order to
satisfy the required effective metal density requirement ρCu

for CMP planarization.
In contrast, we propose an integrated approach to solve

the SBWF problem, and such an approach is denoted as
SBWF whenever there is no ambiguity. SBWF uses CMP-
aware table-based RC parasitic model from Section 2.2 for
delay and slew rate calculation while solving the slew rate
constrained SBW problem. For every edge ei,j , we define
two local dummy fill density requirements ρ1

f and ρ2
f that

specify the amount of fill metal in the space between edge ei,j

and its two neighboring wires in order to satisfy the effective
metal density target ρCu. ρ1

f and ρ2
f can be obtained from

algorithms such as [15]. Note that considering different wire
width necessitates the adjustment to ρ1

f and ρ2
f such that

the effective metal density constraint ρCu is still satisfied
after wire sizing. Knowing the width wi, the spacing si

and the adjusted density ρi
f for i = 1, 2, we can lookup

the CMP-aware RC tables to obtain the RC values for the
corresponding best fill pattern to solve the SBW problem.

3.4 Experiment

technology ITRS 65nm [20]
interconnect global interconnect layer
delay model Elmore delay, π-model for interconnect
slew model Bakoglu’s first order metric [17]

device BSIM 4 [21]
Rsrc 100Ω

Lsink & ATsink 10fF & 0ps ∀ti

slew bound η 100ps (under CMP-perturbed RC)
metal density 0∼0.8 (local fill), 0.5 (effective)

Sbuf 20, 40, 80, 120 (x min size)
s1, s2 1.5∼5.5 (x min width)
w1, w2 0.5, 2.5, 4.5 (x min width)

segment length 500 um

test cases r1∼r5: clock trees from [22]
s1∼s10: random Steiner trees

Table 2: Experimental Settings

Table 2 shows the experimental settings used in this pa-
per. We choose typical buffer sizes and wire sizes that are
normally used in real designs. Because there is no phys-
ical layout information in the original test cases obtained
from [22], we randomly generate the neighboring wire spac-
ing data and the local metal density requirements for each
interconnect in all test cases. All experiments are performed
on an Intel Xeon 1.9Ghz Linux workstation with 2Gb of
memory.

We over-constrain the maximum slew rate η in the first
step of SBW + Fill in order to meet the actual slew rate
constraint after fill insertion. The first step of SBW + Fill
algorithm always under-estimates the slew rate as it does not
consider CMP-induced variation on RC. The over-constrain
rate, κ, is defined as the ratio between the over-constrained
slew rate to the actual slew rate constrains. The value of κ

can be obtained via a binary search, in which each iteration
involves an execution of SBW+Fill, and is time-consuming.
In contrast, the proposed SBWF algorithm uses the CMP-
aware RC parasitics while solving SBW problem. There-
fore, it finds an optimum solution that satisfies the slew
rate constrains without repetition. In our current setting,
we use κ = 0.83 for SBW +Fill, which gives maximum slew
rates that satisfy the slew rate bound η in all test cases.

Table 3 compares the experiment results from SBW +Fill
and SBWF in terms of wiring area, buffer area, maximum
slew rate, required arrival time at the source nsrc and power
measured as energy per switch. We verify both SBW +
Fill and SBWF designs under the CMP-aware parasitic
model. A solution with larger AT implies smaller delay and
is therefore more preferable. Comparing SBW+Fill against
SBWF (relative change of values shown in the brackets),
we see that SBWF achieves larger AT for all test cases and
the average increase is 1.0%. Moreover, SBWF also reduces
buffer area by 7.4% on average with moderate wiring area in-
crease (on average 1.6%). Over-constraining the slew rate in
SBW +Fill causes excessive buffer insertion in SBW +Fill
and leads to larger total area of buffers over SBWF , which
does not require over-constraining the slew rate. SBWF
also reduces power by 5.7% on average over SBW + Fill as
a result of significant reduction of buffer area. We also notice
that the runtime also slightly increases from SBW +Fill to
SBWF due to the evaluation of dishing and erosion model.
However, note that the runtime reported in SBW + Fill is
for a single run; in practice designers have to perform mul-
tiple runs in order to determine the over-constrain rate κ as
explained above and therefore costs much more time than
the reported value. From all of these results, we see that
designs considering CMP impacts out-perform the counter-
part traditional designs in terms of delay, buffer area, power
and runtime.

4. YIELD-DRIVEN SBW

4.1 Leff Variation
One of the most important process uncertainty that af-

fects circuit performance is the random variation of devices’
effective channel lengths (Leff ) [23, 4]. The variation of
Leff manifests itself in changing devices’ different charac-
teristics, e.g., input capacitance Cin, effective output resis-
tance Reff , and intrinsic delay dbuf . To understand the
effect of Leff variation on the delay, we show two sets of
measurements on buffers using SPICE [24]. We model Leff

with a Gaussian distribution ∆L with its mean value Leff

equal to its nominal value and the standard deviation
�

Leff

equal to 5% of the mean value.
The first set studies the sensitivity of the effective input

capacitance of buffers to Leff variation. We set the total
Leff of the transistors at the input of an inverter to an un-
likely large value and show that the increase in the input
capacitance as a consequence is small. We size the PMOS
and the NMOS of the buffers with the ratio of 2:1 for sym-
metric rise and fall. Therefore the total input capacitance is
a function of Lα

eff = Ln
eff + 2 · Lp

eff , where Ln
eff and L

p

eff

are the Leff of the NMOS and PMOS transistors respec-
tively. Since Ln

eff and L
p

eff are assumed to be independent
Gaussian random variables having the same Gaussian dis-
tribution ∆L, Lα

eff is also a Gaussian random variable with



SBW + Fill (κ = 0.83) SBWF

test- wire # wire buffer AT power run- wire area buffer area AT power run-
case length sink area area (ps) (pJ) time (mm2) (x min) (ps) (pJ) time

(m) (mm2) (x min) (s) (∆%) (∆%) (∆%) (∆%) (s)
s1 0.03 19 0.11 1100 -510 8 1 0.11 (1.8%) 1100 (0.0%) -510 (0.1%) 8 (0.2%) 1
s2 0.04 29 0.12 1320 -546 10 1 0.13 (4.8%) 1320 (0.0%) -543 (0.7%) 10 (0.5%) 3
s3 0.05 49 0.16 1900 -801 14 1 0.16 (2.4%) 1700 (-10.5%) -801 (0.1%) 12 (-8.1%) 3
s4 0.07 99 0.20 2720 -737 19 5 0.20 (-0.1%) 2460 (-9.6%) -734 (0.5%) 18 (-7.7%) 7
s5 0.10 199 0.29 4440 -1394 31 16 0.29 (-0.0%) 3940 (-11.3%) -1367 (1.9%) 28 (-9.1%) 20
s6 0.13 299 0.34 5700 -1298 40 52 0.34 (0.9%) 5120 (-10.2%) -1297 (0.1%) 37 (-8.1%) 57
s7 0.16 499 0.42 7940 -2243 55 167 0.43 (0.5%) 7580 (-4.5%) -2198 (2.0%) 53 (-3.6%) 177
s8 0.19 699 0.48 9880 -1916 69 307 0.48 (1.4%) 9300 (-5.9%) -1889 (1.4%) 66 (-4.7%) 322
s9 0.21 799 0.51 10760 -1803 75 289 0.54 (5.1%) 10460 (-2.8%) -1762 (2.3%) 73 (-2.0%) 413
s10 0.22 899 0.55 11220 -1692 79 467 0.56 (1.2%) 10580 (-5.7%) -1669 (1.3%) 75 (-4.5%) 591
r1 1.32 267 3.89 36100 -2437 266 67 3.96 (1.9%) 33080 (-8.4%) -2427 (0.4%) 250 (-6.2%) 86
r2 2.60 598 7.66 72180 -3080 531 173 7.75 (1.2%) 64080 (-11.2%) -3044 (1.2%) 486 (-8.5%) 193
r3 3.37 862 9.55 89240 -3684 662 207 9.64 (1.0%) 80440 (-9.9%) -3636 (1.3%) 613 (-7.4%) 257
r4 6.81 1903 19.38 183800 -5372 1358 389 19.52 (0.7%) 163180 (-11.2%) -5319 (1.0%) 1243 (-8.5%) 459
r5 10.20 3101 28.97 273560 -6005 2025 512 29.25 (1.0%) 244720 (-10.5%) -5960 (0.7%) 1865 (-7.9%) 727
avg (1.6%) (-7.4%) (1.0%) (-5.7%)

Table 3: Experimental result from SBW + Fill and SBWF verified under CMP-perturbed RC.

mean 3 · Leff and standard deviation
√

5 ·
�

Leff . The 99%
percentile of Lα

eff is given by

L
α
eff =

√
5 · CDF

−1
gaussian(0.99) ·

�

Leff + 3 · Leff (2)

where CDF−1
gaussian(x) is the inverse Gaussian cumulative

distribution function. We set Leff of the transistors to re-
flect this amount in SPICE and measure the effective input
capacitance. Such Lα

eff happens with a probability of 1%,
and the effective input capacitance only increases by less
than 3% for all sizes of buffers in our experiment. This
is equivalent to a negligibly small 4.1fF increase in the in-
put capacitance for our largest (120×) buffer. Therefore, we
conclude that the effective input capacitance is rather insen-
sitive to random Leff variation and we treat it as constant
in our work without much loss of accuracy.

The second set of measurement shows that Leff variation
has a much larger contribution to the variation of the ef-
fective output resistance Reff and the intrinsic delay dbuf .
We find the joint distribution of Reff and dbuf due to ran-
dom Leff variation by Monte Carlo simulation using SPICE.
Equation (3) shows the covariance matrix M of a 20× buffer,
where Cx,y is the covariance of x and y, and subscripts R and
d refer to Reff and dbuf respectively.

�
CR,R and

�
Cd,d

are about 15% and 6% of the their respective mean, which
shows that Reff and dbuf has significant variation due to
variation in Leff . The large CR,d also demonstrates that
Reff and Leff are highly correlated. Therefore we char-
acterize Reff and dbuf accurately using a joint probability
density function (JPDF) fR,d(Reff , dbuf ).

M = � CR,R CR,d

CR,d Cd,d � = � 771 26.5
26.5 14.0 � (3)

For a buffer with driving load Lbuf , the delay of the loaded
buffer is given by dload = Lbuf ·Reff + dbuf . After transfor-
mation of variables [25], we obtain the probability density
function (PDF) of the loaded buffer delay as

fd(L)(dload) = � ∞

−∞

fR,d(Reff , dload−Lbuf ·Reff )dReff (4)

Using fR,d(Reff , dbuf ) captured from Monte Carlo simula-
tion, we obtain the PDF fd(L)(dload) numerically.

4.2 vSBWF Problem Formulation
We call the SBWF problem considering Leff random

variation as vSBWF . Owing to the statistical nature of
vSBWF , we treat the AT at each node as a random variable
in vSBWF . The objective of vSBWF becomes maximizing
a routing tree’s statistical timing yield. The timing yield is
defined as

Υ = P (ATs ≥ ΓΥ) (5)

where ΓΥ is the yield cut-off point at Υ·100%. This equation
essentially says that the probability of ATs at the source nsrc

being at least ΓΥ is Υ.
There are two challenges in solving the vSBWF problem,

which are (1) how to efficiently represent and compute AT
that is not a deterministic value but a random variable; and
(2) how to define pruning rules that remove statistically infe-
rior solutions and keep the algorithm tractable. We address
these challenges in the following sections.

4.3 Representing and Computing AT
To solve vSBWF via the same DP framework as shown in

Section 3.2, we have to replace the deterministic AT com-
putation with its statistical counterpart. Since a random
variable can be completely characterized by its cumulative
distribution function (CDF), we choose to base all statistical
computation in terms of AT i

sol’s CDF in any solution soli.
In our implementation, we consider the negative of ATsol,

i.e. −ATsol, for the sake of simpler mathematical manipu-
lation. For example, to obtain the new AT z

sol at node nz,
we take the minimum of AT

p

sol and AT
q

sol propagated from
child nodes np and nq. When negative AT is considered,
we take the maximum of −AT

p

sol and −AT
q

sol instead. The
CDF CDFz of AT z

sol is simply given by the closed-form for-
mula CDFz = CDFp · CDFq , where CDFp and CDFq are
the CDFs of AT

p

sol and AT
q

sol respectively.
We represent CDF in the the form of piecewise-linear

curve (PWL) as in [10]. Representing CDF in the form of
PWL has the advantage that operations on a complicated
function become a series of operations on ramp functions,
which often have closed-form solutions. For example, us-
ing PWL reduces statistical addition and maximum to con-
volutions of steps and ramps and multiplication of ramps,
both of which have closed-form quadratic solution. [10] has
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Figure 4: CDF of ATs to illustrate the definition

of timing yield, yield cut-off point and and pruning

rules

depicted operations for Elmore delay calculation and have
provided closed-form quadratic formula. After all opera-
tions on these ramp and step functions, adding the result-
ing quadratic curves forms a “piece-wise quadratic curve”.
This curve is then “sampled” at the pre-defined percentile
to produce the final CDF in the PWL form.

Even though the first order Elmore delay and slew rate
model are used in this work, the application of PWL is not
limited to these first order models. In fact, it can be ap-
plied to other higher order models. For example, delay and
slew rate metrics in [18] and [19] require the computation of
the second moment. The second moment computation in-
volves multiplication of two independent random variables
and squaring of random variables, both of which have ana-
lytical (though not closed-form for general non-linear CDF)
solutions. By modeling CDFs with PWL curves, we can
apply the analytical formula for each ramp component and
proceed with the same methodology to compute CDFs in
the PWL form.

4.4 Efficient Pruning in vSBWF

A useful pruning rule must (1) not discard any partial so-
lution that may lead to the optimal solution solopt at the
source nsrc; and (2) keep the growth of number of solutions
polynomial with respect to the tree size. We propose an
efficient Yield Cut-off Dominance-pruning rule, and the op-
timality of which is experimentally supported by an alterna-
tive slow but theoretically sound CDF Dominance-pruning
rule.

4.4.1 CDF Dominance
Figure 4(a) shows the CDF Dominance relationship. In

the shaded area CDF 1 is on the right-hand-side of CDF
2. As a result CDF 2 is said to be dominated and is dis-
carded under this relationship. To see why pruning under
this relationship preserves optimality, we show mathemati-
cally that CDF ′

1(x) and CDF ′
2(x) computed from CDF1(x)

and CDF2(x) in delay and slew rate computations has the
same relative superiority as CDF1(x) and CDF2(x). Sup-
pose that CDF1(x) ≤ CDF2(x) ∀x. Statistical maximum
corresponds to CDF multiplication, which is obtained by

CDF
′
1(x) = CDF1(x) · CDF (x)

≥ CDF2(x) · CDF (x) = CDF
′
2(x) (6)

since CDF (x) is always non-negative. Statistical addition
corresponds to the convolution of CDF and PDF, which is

given by

CDF
′
i (x) = � ∞

−∞

CDFi(τ) · PDF (x − τ )dτ (7)

where i = 1, 2 and PDF (x) = d
dx

CDF (x). Since CDF2(x)−
CDF1(x) ≥ 0 and PDF (x) ≥ 0 ∀x, we have

� ∞

−∞
(CDF2(τ) − CDF1(τ)) · PDF (x − τ )dτ

= CDF
′
2(x) − CDF

′
1(x) ≥ 0 (8)

and therefore we have CDF ′
1(x) ≤ CDF ′

2(x) again. How-
ever, this dominance relationship does not establish a total
order among ATsol for solutions sol ∈ SOL because one
curve does not dominate another if they cross in the shaded
area of Figure 4(a). Therefore the pruning effect is weak.

4.4.2 Yield Cut-off Dominance
It is clear from figure 4(b) that we only use the yield cut-

off ΓΥ for comparing the CDFs of the ATs. Since Γ1 > Γ2,
CDF 1 is said dominate CDF 2. All options are totally
ordered under this rule, which preserves the property that
for each distinct value of load, we retain only the largest
ΓΥ. Following from the complexity analysis in Section 3.2,
the number of distinct capacitance values are tightly upper
bounded and hence the number of non-dominating solutions
is bounded by O(|Sbuf | · |Csol| · |V |), where |Sbuf |, |Csol| and
|V | are the number of possible buffer sizes, distinct capaci-
tance values and tree nodes respectively. We conceive this
pruning rule from the observation that we pick the optimum
solution solopt at the source nsrc by finding the largest ΓΥ

among all solutions at nsrc. Therefore it is reasonable to
prune solutions at the same yield point Υ at all nodes with-
out considering the part of CDF larger than Υ, which is
irrelevant to obtaining the optimal solution.

Notice that even though pruning under Yield Cut-off Dom-
inance only compares one point, it is different from corner
case designs since we obtain such point from accurate AT
distributions, which are derived from statistical calculation.
In corner case design, we get the worst case AT from extreme
interconnect and buffer parameters. Using such worst case
AT leads to sub-optimal designs.

4.4.3 Evaluating the Pruning Rules

Figure 5: Runtime in log-scale with different prun-

ing rules

Figure 5 shows the log-plot of the runtime trends when
straight wires of different lengths undergo vSBWF algo-



rithm with the two pruning rules. The number of nodes
grows linearly with the length of the wire. The figure shows
that the runtime for CDF Dominance-pruning grows expo-
nentially with respect to the wire length. In contrast, the
curve for Yield Cut-off Dominance-pruning plateaus, which
shows that the runtime is polynomial with respect to the
line length. The algorithm using CDF Dominance-pruning
is able to finish in a reasonable time only for some small test
cases but takes over 24 hours for any of the test benches in
Section 4.5.

CDF Yield Cut-off
Test- Mean SD (ps) Mean (ps) SD (ps)
bench (ps) (ps) (∆%) (∆%)
line -6569 338 -6569 (0%) 338 (0%)

5-sink -11543 505 -11545 (0%) 511 (1.2%)
6-sink -9189 437 -9192 (0.03%) 438 (0.002%)

Table 4: Comparison between pruning using CDF

Dominance and Yield Cut-off Dominance

Table 4 shows the statistics of solutions produced by using
the two-pruning rules. We hand-craft these test cases so that
vSBWF with CDF Dominance-pruning finishes in hours. It
is quite obvious that the heuristic Yield Cut-off Dominance-
pruning loses almost no optimality when used in place of the
theoretically plausible CDF Dominance-pruning. With this
observation and the runtime concern, we shall use Yield Cut-
off Dominance-pruning in practice and in our subsequent
discussion in the experiment section.

To maximize the timing yield Υ, the best solution to pick
at the source nsrc is the one which has the largest yield cut-
off point ΓΥ. The timing yield Υ can be chosen by designers
to fulfill their yield requirement objective.

4.5 Experiment
We carry out the experiment on the same test cases in

Section 3.4. Section 4.1 has already explained the assump-
tions on Leff . The vSBWF problem requires a different
slew rate constraint due to its random nature, therefore the
SBW + Fill algorithm requires a different over-constrain
rate from the one used in Section 3.4 to satisfy the new
constraint. We again rely on the timing consuming binary
search using the SBW + Fill algorithm to find this new
over-constrain rate. We choose the new slew rate constraint
to be P (slew ≤ η) ≥ 99% at all inputs of buffers and sinks
ti, where η = 100ps. This means that the slew rate at all
buffer inputs and sinks ti must have 99% chance meeting
the bound η. Under this new requirement, we have found
that the over-constrain rate κ is 0.75. In contrast, vSBWF
algorithm considers the random variation during optimiza-
tion and therefore directly produces optimum solution solopt

that meet such slew rate constraint. The yield Υ we opti-
mize for is set to 0.9. We use the same computing platform
as in Section 3.4 to perform these experiments.

To compare the solutions produced by SBW + Fill and
vSBWF in the random Leff regime, we use the concept of
timing yield. Figure 6 shows the PDFs of the ATs from the
optimum solutions produced by SBW + Fill and vSBWF
algorithms respectively on a large net. We use the 90% yield
cut-off point Γ90% of vSBWF the optimum AT, which is
7227ps, as the threshold for timing tests. We regard the pro-
portion of the PDF that has AT better than Γ90%=7227ps
as yield. Under this comparison, the yield from the PDF of
SBW + Fill is 25.1%, which is shown in the shaded area

vSBWF

SBW+Fill

Arrival Time (ps)

7227ps

90%25.1%

 0

 0.02
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 0.12
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Figure 6: The definition of yield using CDFs.

under the curve for SBW + Fill. The PDF of vSBWF has
a yield rate of 90% shown in the shaded area under its curve.

Table 5 shows the comparison between SBW + Fill and
vSBWF . We report the yield of SBW +Fill designs in the
fourth column of Table 5. SBW +Fill results in 45.7% yield
loss on average compared to the vSBWF designs. This sug-
gests that our variability-driven design is also a yield-driven
design and that the resulting yield improvement is signif-
icant. It is interesting to notice that the vSBWF design
also reduces buffer area in most cases, but increases wiring
area compared to SBW + Fill. In general, we observe that
considering CMP tends to decreases buffer area due to over-
constraining slew rate as explained in Section 3.4, while con-
sidering random Leff variation tends to increase buffer area
for extra design margin. Wire sizes tend to increase as a re-
sult of both CMP and random variation. Increased wire size
(1) compensates for the increased resistance caused by dish-
ing and erosion; and (2) reduces the effect of the large Reff

variation on delay. The runtime of vSBWF is roughly 8.3×
of SBWF 2, which again shows that vSBWF is a polyno-
mial time algorithm rather than exponential with respect to
the tree size.

5. CONCLUSION
In this paper, we have studied the impacts of Chemical

Mechanical Polishing (CMP)-induced systematic variation
and random channel length (Leff ) variation of transistors
on interconnect design. We have constructed an accurate,
table look-up based RC model considering systematic CMP
variation effects with pre-calculated optimum fill insertion.
Using the model, we have studied the simultaneous buffer
insertion, wire-sizing and fill insertion problem (SBWF ).
Experimental results show that the proposed SBWF de-
signs achieve 1.0% delay reduction, 5.7% power reduction
and 7.4% buffer area reduction on average when compared
to the designs produced from the conventional design flow
which performs fill insertion after buffer insertion and wire
sizing (SBW + Fill). We also approach the SBW prob-
lem considering both systematic CMP variation and random
Leff variation (vSBWF ) by (1) incorporating probability
density function (PDF) into the SBWF algorithm; and (2)
developing an efficient heuristic for PDF pruning, whose
practical optimality is verified by an accurate but much
slower pruning. Experimental results show that vSBWF
increases timing yield by 44.3% on average, compared to
SBW + Fill which considers nominal Leff value.

2Runtime of s1–s5 are not compared since overhead of PWL
calculation dominates the runtime of these small test cases



SBW + Fill (κ = 0.75) vSBW F

test- wire buffer yield run- wire buffer Γ90% yield runtime
case area area (%) time area area (x min) (ps) (%) (s)

(mm2) (x min) (s) (mm2) (∆%)
s1 0.11 1140 50.0% 1 0.11 (6.1%) 1140 (0.0%) -559 90.0% 28
s2 0.12 1460 97.3% 2 0.13 (7.5%) 1440 (-1.4%) -613 90.0% 56
s3 0.15 1860 92.8% 3 0.16 (8.6%) 1680 (-9.7%) -843 90.0% 47
s4 0.20 3040 87.4% 8 0.21 (6.1%) 2780 (-8.6%) -820 90.0% 119
s5 0.28 4540 54.8% 20 0.30 (7.0%) 4340 (-4.4%) -1452 90.0% 205
s6 0.34 6340 3.2% 44 0.36 (6.6%) 5740 (-9.5%) -1344 90.0% 307
s7 0.42 7900 66.8% 145 0.45 (6.5%) 7840 (-0.8%) -2339 90.0% 786
s8 0.48 10820 44.8% 261 0.52 (9.2%) 10480 (-3.1%) -1983 90.0% 1690
s9 0.53 11720 69.5% 320 0.56 (6.0%) 11160 (-4.8%) -1853 90.0% 1823
s10 0.57 12380 95.4% 507 0.61 (7.4%) 12020 (-2.9%) -1801 90.0% 2402
r1 3.98 40940 0.1% 101 4.14 (3.9%) 37780 (-7.7%) -2542 90.0% 1054
r2 7.71 80140 6.7% 213 8.12 (5.4%) 74420 (-7.1%) -3228 90.0% 2126
r3 9.73 100240 5.9% 277 10.26 (5.4%) 94440 (-5.8%) -3798 90.0% 2140
r4 19.57 201720 9.0% 607 20.66 (5.6%) 191060 (-5.3%) -5599 90.0% 4429
r5 29.17 297780 1.5% 972 30.83 (5.7%) 281500 (-5.5%) -6210 90.0% 7440

45.7% 6.5% -5.1% 90.0% 8.3x

Table 5: Experimental result of SBW +Fill and vSBWF verified under random Leff variation and CMP effects

on RC parasitics.

In this work, we assume a fixed routing topology with
buffer insertion and wire sizing as a post layout synthesis
process. In the future, we plan to study simultaneous rout-
ing topology generation with buffer insertion and wire sizing
considering systematic and random variations due to both
CMP and device effects.
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