
POWER AND TIMING MODELLING, OPTIMISATION AND SIMULATION

Leakage current aware high-level estimation for
VLSI circuits

F. Li, L. He, J.M. Basile, R. Patel and H. Ramamurthy

Abstract: The ever-growing leakage current of MOSFETs in nanometre technologies is the major
concern to high performance and power efficient designs. Dynamic power management via power-
gating is effective to reduce leakage power, but it introduces power-up current that affects the
circuit reliability. The authors present an in-depth study on high-level modelling of power-up
current and leakage current in the context of a full custom design environment. They propose a
methodology to estimate the circuit area, maximum power-up current, and minimum and
maximum leakage current for any given logic function. Novel estimation metrics are built based
on logic synthesis and gate-level analysis using only a small number of typical circuits, but no
further logic synthesis and gate-level analysis are needed during the high-level estimation.
Compared to time-consuming logic synthesis and gate-level analysis, the average errors for circuits
from a leading industrial design project are 23.59% for area, 21.44% for maximum power-up
current, 15.65% for maximum leakage current and 6.21% for minimum leakage current. In
contrast, estimation based on quick synthesis leads to an 11� area difference in gate count for
an 8-bit adder.

1 Introduction

Power has become one of the primary design constraints for
both high-performance and portable system designs. As
VLSI technology continues scaling down, leakage power
becomes an ever-growing power component because of (i)
increase of device leakage current due to the reduction in
threshold voltage, channel length, and gate oxide thickness
[1, 2], and (ii) the increasing number of idle modules in a
highly integrated system. For current high-performance
design methodologies, the contribution of leakage power
increases at each technology generation [3]. The Intel
Pentium IV processors running at 3 GHz already have an
almost equal amount of leakage and dynamic power [4].
Dynamic power management (DPM) [5] via power gating
at system and circuit levels is effective to reduce both
leakage and dynamic power. Figure 1a shows a system
with a multichannel voltage regulation module (VRM).
The VRM channels can be configured to supply power inde-
pendently for individual modules. Therefore, modules can
be turned on or off at appropriate times for power reduction
but still maintain the desired functionality and performance.
Power gating at circuit level is also called MTCMOS in [6]
(see Fig. 1b). A PMOS sleep transistor with a high threshold
voltage connects the power supply to the virtual Vdd. The
sleep transistor is turned on when the function block is

needed, and is turned off otherwise. (Instead of the PMOS
sleep transistor, an NMOS sleep transistor can be inserted
between the ground and virtual ground and Ip to be pre-
sented later becomes the discharging current in this case.
For simplicity of presentation, we assume PMOS sleep tran-
sistors in this paper.) With the growing leakage power,
power gating at either system level or circuit level is a
viable alternative to clock gating, as clock gating only
reduces dynamic power. We use MTCMOS to study
power gating in this paper, and the idea can be extended
to VRM design and DPM at system level.

Key questions in applying power gating include: (i) How
to estimate the leakage reduction by power gating and how
to decide the area overhead of power gating? The answer
determines whether power gating is worthwhile for a
given design. Leakage current and power estimation has
been studied [7–9] at transistor, gate and system level.

Fig. 1 Power gating

a System level
b Circuit level

IEE, 2005

IEE Proceedings online no. 20045165

doi:10.1049/ip-cdt:20045165

Paper received 3rd December 2004

F. Li and L. He are with the Electrical Engineering Department, University of
California, Los Angeles, CA 90095, USA

J.M. Basile, R. Patel and H. Ramamurthy are with Intel Corporation, Santa
Clara, CA, USA

E-mail: feil@ee.ucla.edu

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005 747

Most estimation methods consider the input vector-
dependent property of leakage current. The MTCMOS tech-
nique for leakage reduction further introduces power-up
transient current when turning on or off a circuit module.
As shown in [10], all nodes in a power-gated module are
at logic ‘0’ state. They must be brought to valid logic
states by power-up current (Ip) before useful computation
can begin. Similar to leakage current, power-up current Ip

also depends on the input vector. Its maximum value must
be known to design reliable sleep transistors, and evaluate
their area overhead. (ii) How to answer the above question
and make a decision at an early design stage without per-
forming time-consuming logic synthesis and gate level
analysis? Early decision making is needed to deal with
time-to-market pressure. High-level estimation for circuit
area [11, 12], dynamic power [13, 14], and transient switch-
ing current [15] have been studied. However, no previous
work has studied high-level modelling and estimation of
power-up current.

In this paper we propose a method to estimate the gate
count for a given logic function without performing logic
synthesis. We show that the quick synthesis leads to an
11� difference for a simple adder, and further validate
and improve an area estimation technique that was origin-
ally developed for a library with a limited number of cells
[14]. The improved estimation method has an average
error of 23.59%. This paper then presents an in-depth
study of a unified high-level modelling for power-up
current and leakage current by using commercial synthesis
tools such as Design Compiler in the pre-characterisation
stage. We propose a high-level metric to estimate the
maximum Ip without performing logic synthesis and gate-
level Ip analysis. We verify this metric by a newly devel-
oped gate-level analysis for accurate Ip. We then further
extend this high-level estimation methodology to leakage
power estimation. We use the design environment of a
leading industrial high-performance CPU design project.
There are hundreds of cells with various sizes (1� to
65�) in the library. All experiments are carried out on a
number of typical circuits. The circuits are specified in
Verilog and synthesised by Design Compiler to verify our
high-level estimations. Owing to the need for IP protection,
we report normalised values for currents in this paper.

2 Area estimation

2.1 Overview

Table 1 presents synthesis results for adders where synthesis
1 uses logic functions with intermediate variables, and syn-
thesis 2 uses equivalent logic functions without intermedi-
ate variables. An 11� difference in gate count is observed
for an 8-bit adder. It shows that quick synthesis using
Verilog specified at a higher abstraction level does not
necessarily lead to a good estimation. Instead of using
quick synthesis, we apply and improve the high-level area
estimation in [14].

We summarise the estimation flow from [14] in Fig. 2. It
contains a one-time pre-characterisation, where gate-count

A is pre-characterised as a function F of the linear
measure L and output entropy H. Then, a multi-output
function (MOF) is transformed into a single output function
(SOF) by adding a m-to-1 MUX, where m is the number of
outputs in the original MOF. L and H are calculated for the
SOF to look up the pre-characterised table and obtain gate
count. Removing the MUX from this gate count leads to
A for the original MOF.

We improve the original estimation method in two ways.
First, it is claimed in [14] that SOFs with the same output
entropy H and same linear measure L have the same A.
However, we find that it may not be true for VLSI functions
implemented with a rich cell library. Functions with smaller
output probability of logic ‘1’ have a lower gate count under
the same linear measure. Therefore, we have pre-character-
ised A as a function F(L, P), where P is the output prob-
ability. Since complementary probabilities lead to the
same entropy, our pre-characterisation is more detailed
compared to that in [14]. Further, we have developed an
output-clustering algorithm to partition the original MOF
into sub-functions (called sub-MOFs) with minimum
support set overlap, and have improved the efficiency and
accuracy of the high-level estimation. We summarise our
estimation flow with the difference highlighted in Fig. 2,
and describe each step and our implementation details in
the following Sections.

2.2 Linear measure

Linear measure L is determined by on- and off-sets of an
SOF as L ¼ L1þ L0, where L1 and L0 are the linear
measure for the on-set and off-set, respectively. L1 is
further defined as L1(f) ¼

P
i¼1
N cipi (L0 can be defined

similarly). N is the number of different sizes of all the

Fig. 2 Estimation of gate count A

Table 1: Area count based on quick synthesis

Circuit Synthesis 1 Synthesis 2

1-bit adder 3 3

4-bit adder 20 16

8-bit adder 42 490

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005748

prime implicants in a minimal cover of function f. The size
of a prime implicant is the number of literals in it. ci is one
distinct prime implicant size. pi is a weight of prime impli-
cants with size ci and can be computed in the following way.
Suppose all the input vectors to the logic function can occur
with the same probability. Let c1, c2, . . . , cN be sorted in a
decreasing order, and weight pi be the probability that one
random input vector matches all the prime implicants
with size ci but not by the prime implicants with size
from c1 to ci21, 1 , i � N. For i ¼ 1, p1 is just the
probability that one random input vector matches prime
implicants with size c1. Here ‘a matching’ means that
the intersection operation [16] between the vector and the
prime implicant is consistent. Note that pi satisfies the
equation

P
i¼1
N pi ¼ P(f), where P(f) is the probability to

satisfy function f.
The minimum cover of an SOF can be obtained by two-

level logic minimisation [17]. To compute the weight pi, a
straightforward approach is to make the minimum cover
disjoint and compute the probability exactly. However, in
practice, this exact approach turns out to be very expensive.
In our experiments, when the number of inputs is larger than
10, the program using the exact approach does not finish
within reasonable time. But with pi defined as the prob-
ability, L1(f) can be viewed as a random variable L1(f)
with certain probability distribution. For each random
input vector, the variable L01(f) takes a certain value ‘ran-
domly’. With probability of 1 2 P(f), L1(f) takes the
value ‘0’. Then L1(f) becomes the mean of the random
variable L01(f). By assuming that the variable L01(f) takes
a Gaussian distribution, we use the Monte Carlo simulation
technique to estimate the mean value efficiently.

2.3 Output probability and gate-count recovery

The output probability can be obtained as a byproduct
of Monte Carlo simulation. Since weight pi satisfiesP

i¼1
N pi ¼ P(f), we can keep record of all the pi during

the Monte Carlo simulation. When the simulation process
satisfies the stopping criteria, the output probability can
be obtained easily. To recover the gate count of the original
MOF, the estimated gate count for the transformed SOF is
subtracted by aAmux.Amux is the gate count of the complete
multiplexer we have inserted, and a is the coefficient to
obtain the reduced multiplexer gate count due to the logic
optimisation.

2.4 Output clustering

As the number of primary outputs increases, the time to
calculate the minimum cover of a function increases non-
linearly. To make the two-level optimisation more efficient,
one may partition the original MOF into sub-MOFs by
output clustering, and then estimate for each sub-MOF indi-
vidually. The gate count of the original MOF is the sum of
gate counts for all the sub-MOFs. However, estimation
errors may be introduced due to the overlap of the support
sets of the sub-MOFs. We propose to partition the outputs
with minimum support set overlap (see Fig. 3). A PO-
graph is constructed with vertices representing the
primary outputs (POs). If two POs have support set
overlap, there is an edge connecting the two corresponding
vertices. The edge weight is the size of the common support
set. The vertex weight is the sum of the weights of all edges
connected to this vertex. There are two loops in the algor-
ithm. In each iteration of the inner loop, the vertex with
the minimum weight is deleted and the weights are
updated for edges and vertices that connect the deleted

vertex. It continues until the number of remaining vertices
is less or equal to the pre-specified cluster size. The PO-
graph is then re-constructed with all the POs that have not
been clustered. The algorithm continues until all the
outputs are clustered and the PO-graph becomes empty.

2.5 Experimental results

We compare area estimation methods in Fig. 4, where the
x-axis is the circuit ID number and the y-axis is the gate
count. During the Monte Carlo simulation to calculate the
linear measure, we choose the parameters of confidence
and error as 96% and 3%, respectively. The actual gate
count is obtained by the synthesis using Design Compiler.
The method with random output clustering has an average
absolute error of 39.36%. By applying our output clustering
algorithm to minimise support set overlap, we reduce the
average absolute error to 23.59%. Such estimation errors
are much smaller compared to the 11� gate-count differ-
ence in Table 1. Note that different descriptions of a
given logic function do not change the L and P, and there-
fore do not affect the estimation results by our approach.
High-level estimation costs over 100� less runtime com-
pared to logic synthesis.

Fig. 4 Comparison between actual and predicted gate-count

Fig. 3 Output clustering algorithm

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005 749

3 Power-up current estimation

Given the Boolean function f of a combinational logic block
and the target cell library, our high-level estimation finds
the maximum power-up current Ip(f) when the logic
block is implemented with the given cell library for
power gating. A Boolean function can be implemented
under different constraints, but we assume the min-area
implementation in this paper.

We propose the following high-level metric Mp for
Ip(f):

Ipð f Þ/Mpð f Þ ¼ Iavg � A ð1Þ

where A is the gate count estimated using the method in
Section 2, and Iavg is the weighted average Ip to be
discussed in Section 3.2. Because an accurate gate-level
estimator is required for the calculation of Iavg and verifica-
tion ofM(f), we introduce our gate-level estimation in the
next Section.

3.1 Gate-level estimation

3.1.1 Background knowledge: The following obser-
vation has been shown in [10]:

Observation 1: All the internal nodes in a circuit with
PMOS sleep transistors are at logic ‘0’ after the circuit
stays in the power-off state for a long enough time.

Power-up current (Ip) occurs when the power supply is
turned on for a circuit module and it is different from the
normal switching current (Is). Is depends on two successive
circuit states S1 and S2, which are determined by two suc-
cessive input vectors V1 and V2 for combinational circuits.
As discussed in Section 1, Ip can be viewed as a special
case of Is where the state S1 before power-up is logic ‘0’
for all the nodes. Because no input vector leads to a
circuit state with all nodes at logic ‘0’ for nontrivial circuits,
the maximum Ip is, in general, different from the maximum
Is. Moreover, the Ip of a circuit is solely decided by the
circuit state S2, and therefore decided by a single input
vector when the circuit is powered up. To illustrate that Ip

depends on the input vectors, we present the Ip obtained
by SPICE simulation for an 8-bit adder under two different
input vectors in Table 2. The difference of the maximum Ip

is about 24%. Ip is greatly affected by the input vector when
the circuit is powered up. We define Ip element to be the
power-up current generated by an individual gate, and
give the following observation related to timing:

Observation 2: If a set of gates are controlled by one single
sleep transistor, all these gates are powered up simul-
taneously, i.e. all the Ip elements for these gates have the
same starting time.

Further, we study the effects of the turn-on time (i.e. the
time to turn on the sleep transistor in a MTC-MOS circuit)
by simulating a five-stage inverter chain and an eight-bit
adder. We use random SPICE simulation with large
enough number of vectors for different turn-on times from
0.1 ns to 10 ns (see Table 3). Based on the results, we
conclude:

Observation 3: Ip is very sensitive to turn-on time; Ip

reduces when turn-on time increases.

Even though a large turn-on time can help reduce the
power-up current, a small turn-on time is preferred for
high-performance designs. A careful study is needed to

achieve the best trade-off between performance and
reliability/cost related to a small turn-on time.

ATPG-based algorithms have been proposed in [10]. It is
assumed that the power-up current is proportional to the
total charge in the circuit after power-up, and the charge
for one single gate with output value ‘1’ is proportional to
its fanout number. Therefore, the gate fanout number is
used as the figure of merit of the power-up current (Ip) for
the gate with output value ‘1’. The ATPG algorithm is per-
formed to find the logic vector that maximises the figure of
merit. However, this algorithm does not take the current
waveform in the time domain into account. The vector
obtained by ATPG algorithm has to be further used in
SPICE simulation to obtain the Ip value.

To achieve a more accurate estimation and obtain the Ip

value directly, we need a current model that can capture
the current waveform. We apply the piecewise linear
(PWL) function to model the Ip element. SPICE simulation
is used to get the power-up current waveform, and the wave-
form is linearised at different regions to build the PWL
model for each cell in the library (see Fig. 5). Our PWL
model considers the following dimensions: gate type,
input pin number, gate size, fanout number, turn-on time,
and post-power-up output logic value. Note that a much
simplified PWL model, the right-triangle current model,
has been successfully used in [18] for maximum switching
current estimation.

3.1.2 Genetic algorithm: Since exhaustive search for the
input vector that generates the maximum Ip is infeasible, we
apply genetic algorithm (GA) in our gate-level estimation.
We encode the solution (i.e., input vector) into a string so
that the length of the string is equal to the number of

Table 3: Turn-on time against power-up current

Turn-on time (ns) Power-up current (mA)
Inv chain (5-stage) Adder8

0.1 60 2400

1 11.2 629

10 4.49 260

Fig. 5 PWL current model

Table 2: Maximum Ip of an 8-bit adder

Circuit Vector1 Vector2 Difference

Adder8 1830 2260 23.50%

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005750

primary inputs. Each bit in the string is either ‘1’ or ‘0’. The
initial population is randomly generated. The population
size is proportional to the number of primary inputs. The
fitness value is chosen as the maximum Ip value under the
input vector represented by the string. The Ip value is
obtained by waveform simulation with the PWL current
model.

Tournament selection [19] is used in our selection
process. From the current generation, we randomly pick
two strings and select the one with the higher fitness value.
After that, the two strings are removed from the current gen-
eration. We repeat this procedure until the current generation
becomes empty. By doing this, we divide the original strings
into inferior and superior groups. We keep record of the
strings in the superior group and put these two groups
together to carry out tournament selection again. The two
superior groups generated in the two tournaments are com-
bined to go through crossover and mutation, and produce
the new generation. The string with the highest fitness will
be selected twice so that the best solution so far will stay
in the next generation. Since strings with lower fitness
have higher probability of being dropped, the average
fitness tends to increase by each generation.

The crossover scheme we use is the one-point crossover
algorithm. One bit position is randomly chosen for two
parent-strings and they are crossed at that position to get
the two child-strings. After crossover, we further use a
simple mutation scheme that flips each bit in the string
with equal probability. The new generation is produced
after crossover and mutation, and is ready to go through a
new iteration of natural selection. The algorithm stops
after the number of generations exceeds a pre-defined
number. We summarise the algorithm in Fig. 6.

We carry out experiments and compare the results of
genetic algorithm to that by simulations with 5000
random vectors (called ‘random 5000’) in Table 4. Under
the same PWL current model, GA achieves up to 27% esti-
mation improvement to approach the upper bound of
power-up current. The average improvement for all the
circuits is 6%.

Moreover, we compare the Ip obtained by SPICE simu-
lation of the entire benchmark circuit with the best vector
from genetic algorithm to the Ip calculated by our PWL
model in Fig. 7(a). Even though the Ip by PWL model is
different from that given by SPICE simulation, there is a
close correlation between these two currents. Therefore,
our PWL model has a high fidelity versus SPICE simulation
and gives a conservative estimation. Owing to the high
fidelity, we propose to scale the Ip from the PWL model
by a constant K, and compare the Ip values by the new

scaled PWL model and SPICE simulation. As shown in
Fig. 7(b), the difference between Ip values is greatly
reduced. The derivation of the scaling constant K will be
discussed in Section 3.2.

3.2 Calculation of Iavg and experimental results

Iavg is not simply the average Ip element for all cells in a
library. The frequency of cells used in logic synthesis
should be taken into account. We assume that the logic syn-
thesis results for a few typical circuits (or random logic

Fig. 6 Generic algorithm for gate-level estimation

Table 4: Experiments for gate-level estimation

Circuit ID Random
5000

Genetic
algorithm

Estimate
improvement (%)

1 12234.00 12234.00 0.00

2 11756.12 11756.12 0.00

3 147989.14 150437.28 þ1.65

4 138497.98 143767.61 þ3.80

5 193818.20 193818.20 þ0.00

6 80758.16 92024.79 þ13.95

7 26190.60 28170.35 þ7.56

8 13124.87 13975.08 þ6.48

9 15205.17 16349.61 þ7.53

10 30649.70 30964.78 þ1.03

11 16687.65 16687.65 þ0.00

12 18042.84 18577.41 þ2.96

13 42066.13 42565.20 þ1.19

14 20261.80 25710.94 126.89

15 42982.51 49502.92 þ15.17

16 84997.98 94697.20 þ11.41

17 105486.86 113573.73 þ7.67

18 123394.24 124298.63 þ0.73

19 100145.88 100798.74 þ0.65

20 18250.63 18907.54 þ3.60

21 20560.78 21486.25 þ4.50

22 85656.30 85981.01 þ0.38

23 11911.55 12599.41 þ5.78

24 38598.95 41482.89 þ7.47

25 81358.29 92199.21 þ13.32

26 35530.71 40449.54 þ13.84

Average improvement þ6.06

The turn-on time is 0.1 ns for results in columns 2 and 3

Fig. 7 Maximum Ip obtained by genetic algorithm

a Under PWL model and SPICE model
b Under-scaled PWL model and SPICE model

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005 751

functions) are available. We calculate Iavg in a regression-
based way as follows. We compute the average maximum
Ip per gate for n typical circuits by applying the gate-
level estimation. We then increase n until the resulting
value becomes a ‘constant’. We treat this constant value
as Iavg. In Fig. 8a, we plot Iavg with respect to the
number of circuits used to calculate Iavg. The
Figure shows that the change of the Iavg value is relatively
large when the number of circuits is small (less than 10 in
the Figure). After the number of circuits increases to 20,
the value of Iavg becomes very stable and can be used as
our high-level metric Mp.

To validate our regression-based Iavg, we use the com-
puted value of Iavg under the PWL model and the accurate
gate count to obtain the high-level metricMp. We compare
the gate-level estimation Ip(ckt) by the genetic algorithm to
the metric Mp in Fig. 8b. The average absolute error
between Ip(ckt) and Mp is 12.02%. Note that the circuits
in Fig. 8b are different from those used to compute Iavg

for the purpose of the verification of metricMp.
Our high-level estimation methodology is also directly

applicable for SPICE current model. We run SPICE simu-
lation using the best vector obtained by the genetic algor-
ithm to calculate Iavg(SPICE). As shown in Fig. 9, a
stable Iavg(SPICE) is also reached quickly. In addition,
we can apply Iavg to calibrate our gate-level estimation.

Let Ip(PWL) and Ip(PWL) be the Ip values based on PWL
and SPWL current model, respectively. Then we have
Ip(SPWL) ¼ Ip(PWL)/K, where K is the scaling constant
defined in Section 3.1.2 and Fig. 7b can be calculated as
Iavg(PWL)/Iavg(SPICE).

Furthermore, we compare the maximum Ip using esti-
mated Iavg and estimated A to the maximum Ip obtained
via logic synthesis followed by gate-level analysis.
Table 5 shows that the average estimation error is
21.44%. We measure gate-level analysis runtime as the
time for logic synthesis and genetic algorithm, and
measure the high-level estimation runtime as the time for
area estimation and application of the formula
Mp(f) ¼ Iavg. A (pre-characterisation only has one-time
cost and is ignored in the runtime comparison). Our high-
level estimation achieves more than 200� run-time
speedup for large test circuits.

4 Leakage current estimation

High-level estimation of leakage current is necessary for
evaluating the feasibility of various leakage reduction tech-
niques at a very early design stage. The fact that leakage
current also depends on one single input vector means
that leakage current shares similar properties with the
power-up current that we have studied. Therefore, we
believe that a similar high-level metric Iavg

lkg can also be
applied to high-level leakage current estimation. We

Fig. 8 Iavg(PWL) and Ip(ckt)

a Iavg(PWL) against number of circuits
b Comparison between gate-level estimation Ip(ckt) and high-level

metricMp, where accurate gate count is assumed

Fig. 9 Iavg(SPICE)

Turn-on time ¼ 0.1 ns

Table 5: Results of high-level Ip estimation

PWL current model

Circuit id Gate-level
est. Ip(ckt)

High-level
est. Ip(ckt)

Abs.
err(%)

1 12234.00 14626.98 19.56

2 11756.12 13857.14 17.87

3 150437.28 133374.96 11.34

4 143767.61 87569.42 39.09

5 193818.20 175523.76 9.44

6 92024.79 58700.38 36.21

7 28170.35 24442.45 13.23

8 13975.08 15589.28 11.55

9 16349.61 18283.73 11.83

10 30964.78 15011.90 51.52

11 16687.65 12702.38 23.88

12 18577.41 13664.68 26.44

13 42565.20 33488.08 21.33

14 25710.94 15781.74 38.62

15 49502.92 45420.62 8.25

16 94697.20 91418.62 3.46

17 113573.73 121442.42 6.93

18 124298.63 93343.23 24.90

19 100798.74 80833.31 19.81

20 18907.54 16166.66 14.50

21 21486.25 14049.60 19.81

22 85981.01 96422.59 12.14

23 12599.41 10970.23 12.93

24 41482.89 28676.58 30.87

25 92199.21 61009.90 33.83

26 40449.54 49847.21 23.23

Average 21.44

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005752

calculate the high-level metric Iavg
lkg for leakage current in a

similar way. We apply the genetic algorithm in the gate-
level estimation for a few typical circuits, and obtain the

metric Iavg
lkg for both maximum and minimum leakage

current. Our gate-level estimation uses an input-pattern-
dependent leakage current model built by SPICE
simulation.

In Fig. 10, we show the metric Iavg
lkg with respect to the

number of circuits used to calculate Iavg
lkg . Characterising

only a few typical circuits (less than 20) is enough to
obtain the stable value of Iavg

lkg . This justifies the application
of our high-level metric to leakage current estimation. With
the metric Iavg

lkg and area estimation, we apply high-level
leakage current estimation to our test circuits using the
formula:

Plkg ¼ Ngate � I
lkg
avg � Vdd ð2Þ

The estimation results are presented in Table 6. The average
estimation error is 15.65% for the maximum leakage current
and 6.21% for the minimum leakage current. Again, the cir-
cuits used in Table 6 are different from those in Fig. 10 for
the purpose of verification.

A simple leakage power model at the architectural level
has been proposed in [20]. They modelled leakage power
by the equation Pstatic ¼ Vcc

. N . kdesign
. Îlkg, where Vcc is

the supply voltage, N is the number of transistors. kdesign is
an empirically determined parameter representing the
average characteristics of library cells. Îlkg is a technology-
dependent parameter representing the per-device sub-
threshold leakage. However, it is unclear how these
parameters are determined for different technologies and
cell libraries. Our high-level metric Iavg

lkg with a well-
defined calculation mechanism can be viewed as a com-
bination of parameters kdesign and Îlkg. In addition to its
simplicity, our calculation of Iavg

lkg can take into account
how frequently the library cells are used by the synthesis
tool and the fact that leakage current is input pattern
dependent.

4.1 Temperature and Vdd scaling

Considering that leakage power also depends on supply
voltage Vdd and temperature, we further characterise the
temperature and voltage scaling of Iavg

lkg based on the
following SPICE BSIM4 model. We distinguish sub-
threshold leakage and gate leakage due to their different
temperature scaling trend. The BSIM4 subthreshold
leakage current model [3] is as follows:

Isub ¼ A exp
ðVGS � VT � g 0VSB þ hVDSÞ

nVTH

� �

� 1� exp
VDS

VTH

� �� �
ð3Þ

A ¼ m0Cox

W

Leff

VTH2 e1:8 ð4Þ

where VGS, VDS and VSB are the gate-source, drain-source
and source-bulk voltages, respectively; VT is the zero-bias
threshold voltage, VTH is the thermal voltage kT/q, g 0 is
the linearised body-effect coefficient, h is the drain
induced barrier lowering (DIBL) coefficient, m0 is the
carrier mobility, Cox is gate capacitance per area, W is the
width and Leff is the effective gate length.

From (3) we can see the temperature scaling for subthres-
hold leakage current is T2e1/T, where T is the temperature,
and the voltage scaling for leakage current is eVdd. Based on
these observations, we propose the following formula for
subthreshold leakage metric Iavg

sub considering temperature

Fig. 10 Verification of high-level metric for maximum and
minimum leakage current

Table 6: Leakage current: gate-level estimation Ilkg(ckt)
against high-level metric Mlkg for both maximum and
minimum leakage current

Gate no. Max leakage current Min leakage current
Ilkg(ckt) Mlkg Ilkg(ckt) Mlkg

136 1079.05 1187.92 731.64 800.16

134 1202.57 1170.45 709.90 788.39

1351 10015.90 11800.62 8264.34 7948.64

1361 10045.15 11887.96 8215.79 8007.47

1758 11174.98 15355.65 10552.79 10343.23

865 7792.39 7555.54 4913.03 5089.24

273 2649.79 2384.58 1516.68 1606.20

159 1609.78 1388.82 922.25 935.48

151 1511.27 1318.94 895.70 888.41

247 1809.43 2157.48 1266.02 1453.23

145 1569.37 1266.54 860.62 853.11

95 1075.89 829.80 539.92 558.93

389 3191.86 3397.81 2274.26 2288.69

377 2516.43 3292.99 1708.89 2218.09

350 3389.71 3057.15 2206.68 2059.23

863 8046.87 7538.07 4604.20 5077.48

1078 12735.66 9416.04 5923.57 6342.43

680 5009.85 5939.61 4116.00 4000.79

764 5370.14 6673.33 4584.77 4495.01

191 1907.51 1668.33 1083.49 1123.75

217 2221.62 1895.44 1267.53 1276.72

485 4245.67 4236.34 3331.65 2853.51

108 1159.54 943.35 635.71 635.42

311 3300.93 2716.50 1772.74 1829.77

861 7090.33 7520.60 4389.23 5065.71

452 5433.82 3948.10 2530.96 2659.35

Average abs. error (%):

15.65 6.21

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005 753

and voltage scaling:

I sub
avg ðT ;VddÞ ¼ I sub

s ðT0;V0Þ � T
2 � exp

as1 � Vdd þ bs1

T

� �
ð5Þ

where I s
sub is a constant current at the reference temperature

T0 and voltage V0. as1 and bs1 in (5) are empirical constants
decided by circuit designs.

In the BSIM4 model, gate leakage current is modelled as
gate direct tunnelling current – including tunnelling current
between gate and substrate (Igb) and current between gate
and channel (Igc). The formulas for both Igb and Igc are:

Igb ¼ Weff � Leff � X1 � ðEXPacc þ EXPinvÞ ð6Þ

Igc ¼ Weff � Leff � X2 � expf�B3 � Tox

� ða3 � b3 � VoxdepinvÞ � ð1þ g3 � voxdepinvÞg ð7Þ

where

X1 ¼ Ar � ToxRatio � Vgb � Vuax ð8Þ

EXPacc ¼ expf�B1 � Tox

� ða1 � b1 � VoxaccÞ � ð1þ g1 � VoxaccÞg ð9Þ

EXPinv ¼ expf�B2 � Tox � ða2 � b2 � VoxdepinvÞ

� ð1þ g2 � VoxdepinvÞg ð10Þ

X2 ¼ A2ToxRatioVgseVuax ð11Þ

A1, A2, B1, B2, B3, a1, a2, a3, b1, b2, b3, g1, g2 and g3 are all
empirical constants given by the BSIM4 gate leakage model,
Weff and Leff are the channel width and length, respectively;
ToxRatio, Vuax are defined in BSIM4 gate leakage model.

Combining subthreshold leakage and gate leakage, we still
keep the format of the formula in (2), but take into account the
different scaling feature for subthreshold leakage and gate
leakage. The total leakage for a logic circuit can be modelled:

Plkg ¼ Ngate � I
lkg
avg � Vdd ð12Þ

I lkg
avgðT ;VddÞ ¼ IsðT0;V0Þ � favgðT ;VddÞ ð13Þ

where Plkg is the total leakage power for a logic circuit, Iavg is
the total leakage current per gate, Is is the Iavg at given temp-
erature T0 and supply voltage V0, favg(T, Vdd) is the scaling
function to characterise temperature and Vdd scaling consider-
ing both subthreshold and gate leakage. It can be expressed as
follows:

f ðT ;VddÞ ¼

A � T2 � exp
a � Vdd þ b

T

� �
þ B � expfg � Vdd þ dg ð14Þ

where A, B, a, b, g, and d are empirical constants for different
circuit types, technologies and designs.

We obtain the constants in (5) and (14) empirically by
determining the power consumption for different circuit

types at multiple temperatures using SPICE simulations
and then applying curve fitting. Table 7 compares Iavg

lkg by
SPICE simulation at different temperature and Vdd to our
Iavg

lkg calculated by our temperature and Vdd scaling formulae.
We use the average leakage current for data-path circuits:
adder (4-bit, 16-bit and 32-bit), shifter (8-bit, 16-bit and
32-bit), and multiplier (4-bit, 5-bit and 6-bit). The esti-
mation error for Iavg

lkg at scaled temperature and Vdd is less
than 1%. This high-level leakage model considering temp-
erature and Vdd scaling can be used in the architectural
and system-level simulations. We have applied our high-
level leakage power model in a coupled thermal and
power microarchitecture simulator, PTscalar [21], which
studies the interdependence between leakage and tempera-
ture and impact on processor performance [22].

5 Conclusions and discussions

Using design examples and design environment of a leading
industrial CPU project, we have presented an improved
high-level area estimation method. The estimation has an
average error of 23.59% for designs using a rich cell
library. We have also proposed a high-level metric to esti-
mate the maximum power-up current due to power gating
for leakage reduction. Compared to time-consuming logic
synthesis followed by gate-level analysis, our high-level
estimation has an average error of 21.44% for power-up
current. We further extend our high-level estimation meth-
odology to leakage current and the average estimation error
is 15.65% and 6.21% for maximum and minimum leakage
current, respectively. We also develop the high-level
metric for leakage current considering temperature and
supply voltage (Vdd) scaling. The estimation error for the
metric is less than 1% at different temperatures and
supply voltages.

Our high-level estimation method can be readily applied
to estimate the area overhead due to the sleep transistor
insertion in power gating. There are two primary constraints
for the sleep transistor. One constraint is the IR voltage drop
that introduces a performance penalty. Appropriate sizing
of the sleep transistor can be performed to satisfy this con-
straint based on the maximum switch current. The high-
level estimation of maximum switch current has been
studied in [15]. There is a reliability constraint for sleep
transistors (i.e. avoidance of damaging the sleep transistor
by a large transient current). We can obtain the maximum
transient current as the larger one between the maximum
power-up current and maximum switching current, and
size the sleep transistor to satisfy the reliability constraint.
In addition to that, our high-level leakage model con-
sidering temperature and Vdd scaling can also be applied
in architectural and system-level simulations. One of the
applications is that our high-level leakage model has been
successfully used in a coupled thermal and power micro-
architectural simulator PTscalar [21, 22].

Table 7: Comparison between our high-level leakage model and SPICE simulation

Circuit Temperature (8C) Vdd Iavg
lkg (mA) Abs. err. (%)

Formula SPICE

Logic circuits including adder, 100 0.95 23.44 23.56 0.49

multiplier, and shifter 100 1.05 29.56 29.63 0.23

80 0.95 19.44 19.54 0.56

80 1.05 25.14 25.21 0.27

60 0.95 16.00 16.11 0.65

60 1.05 21.33 21.39 0.31

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005754

6 Acknowledgments

This research was partially supported by the NSF CAREER
Award 0093273, SRC grant 2002-HJ-1008 and a grant from
Intel Design Science and Technology Committee.

7 References

1 Taur, Y., and Ning, T.H.: ‘Fundamentals of modern VLSI devices’
(Cambridge University Press, 1998)

2 Thompson, S., Packan, P., and Bohr, M.: ‘MOS scaling: Transistor
challenges for the 21st century’, Intel Technol. J., 3rd quarter 1998

3 Chandrakasan, A., Bowhill, W.J., and Fox, F.: ‘Design of high-
performance microprocessor circuits’ (IEEE Press, 2001)

4 Grove, A.S.: ‘Changing vectors of Moore’s law’. Keynote speech, Int.
Electron Devices Meeting, Dec. 2002

5 Benini, L., Bogliolo, A., and Micheli, G.D.: ‘Dynamic power
management of electronic systems’. Proc. Int. Conf. on Computer
Aided Design, Nov. 1998, pp. 696–702

6 Kao, J.T., and Chandrakasan, A.P.: ‘Dual-threshold voltage
techniques for low-power digital circuits’, IEEE J. Solid-State
Circuits, 2000, 35, pp. 1009–1018

7 Cheng, Z., Johnson, M., Wei, L., and Roy, K.: ‘Estimation of standby
leakage power in CMOS circuits considering accurate modeling of
transistor stacks’. Proc. Int. Symp. on Low Power Electronics and
Design, Aug. 1998

8 Johnson, M.C., Somasekhar, D., and Roy, K.: ‘Models and algorithms
for bounds on leakage in CMOS circuits’, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., 1999, 18, pp. 714–725

9 Jiang, W., Tiwari, V., de la Iglesia, E., and Sinha, A.: ‘Topological
analysis for leakage prediction on digital circuits’. Proc. 7th Asia

and South Pacific Design Automation Conf., joint with 15th Int.
Conf. on VLSI Design, 2002

10 Li, F., and He, L.: ‘Maximum current estimation considering power
gating’. Proc. Int. Symp. Phys. Design, 2001, pp. 106–111

11 Cheng, K.T., and Agrawal, V.: ‘An entropy measure for the
complexity of multi-output Boolean functions’. Proc. 27th ACM/
IEEE Design Automation Conf., 1999, pp. 302–305

12 Nemani, M., and Najm, F.: ‘High-level area prediction for power
estimation’. Proc. IEEE Custom Integr. Circuits Conf., 1997,
pp. 483–486

13 Nemani, M., and Najm, F.N.: ‘Towards a high-level power estimation
capability’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
1996, 15, pp. 588–598

14 Nemani, M., and Najm, F.: ‘High-level area and power estimation for
VLSI circuits’, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., 1999, 18, pp. 697–713

15 Bodapati, S., and Najm, F.N.: ‘Energy and peak-current per-cycle
estimation at RTL’, IEEE Trans. VLSI, 2003, 11, (4), pp. 525–537

16 Abramovici, M., Breuer, M.A., and Friedman, A.D.: ‘Digital systems
testing and testable design (IEEE Press, 1990)

17 Micheli, G.D.: ‘Synthesis and optimization of digital circuits
(McGraw-Hill, New York, 1994)

18 Krstic, A., and Cheng, K.-T.: ‘Vector generation for maximum
instantaneous current through supply lines for CMOS circuits’. Proc.
Design Automation Conf., June 1997, pp. 383–388

19 Miller, B.L., and Goldberg, D.E.: ‘Genetic algorithms, tournament
selection and effects of noise’, Complex Syst., 1995, 9, pp. 193–212

20 Butts, J.A., and Sohi, G.S.: ‘A static power model for architects’. Proc.
33rd Int. Symp. on Microarchitecture, Nov. 2000, pp. 191–201

21 ‘PTscalar’, http://eda.ee.ucla.edu/PTscalar/, 2004
22 Liao, W., He, L., and Lepak, K.: ‘Temperature and supply voltage

aware performance and power modeling at microarchitectural level’,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2005, 24,
(7), pp. 1042–1053

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005 755

