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Thermal Via Allocation for 3D ICs Considering
Temporally and Spatially Variant Thermal Power
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Abstract— The existing 3D thermal-via allocation methods
are based on the steady-state thermal analysis and may lead
to excessive number of thermal vias. This paper develops an
accurate and efficient thermal-via allocation considering the
temporally and spatially variant thermal-power. The transient
temperature is calculated using macromodel by a one-time struc-
tured and parameterized model reduction, which also generates
temperature sensitivity with respect to thermal-via density. The
proposed thermal-via allocation minimizes the time integral of
temperature violation, and is solved by a sequential quadratic
programming algorithm using sensitivities from the macromodel.
Compared to the existing method using the steady-state thermal
analysis, our method in experiments is 126X faster to obtain
temperature, and reduces the number of thermal vias by 2.04X
under the same temperature bound.

Index Terms— Cooling technology, Thermal power manage-
ment, 3D IC design, Structured and parameterized macromodel,
Sequential programming

I. INTRODUCTION

The existing two-dimensional (2D) high-performance
system-on-chip (SoC) design is limited by the interconnect
delay and device density. Three-dimensional (3D) integration
[1]–[4] to stack multiple active layered integrated-circuits
(ICs) is effective to improve the interconnect performance
and increase the transistor packing density. Fig. 1 shows
the diagram of typical 3D IC design including the active
device layers, vertical through vias, and the substrate. Due
to the increased power density, heat removal is extremely
important in 3D-ICs [1]. It is well known that excessively high
temperature can significantly degrade interconnect and device
reliability, and cause functional or timing failures through
the electro-thermal coupling [5]–[13]. The temperature-aware
physical design, therefore, becomes important from the early
planning stage to the final verification stage [14]–[18].

Because vertical through vias are effective thermal con-
ductors, one effective heat removal approach in 3D IC is to
use vertical through vias to remove heat from stacked silicon
layers to the heat-sink that is often on top of the stack. Same
as the existing work [16]–[18], we assume that the vertical
through vias are aligned through layers and called as thermal
vias. The 3D thermal via planning is thereby to allocate vias
in order to alleviate the temperature hotspots at each silicon
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layer. Since thermal vias consume the routing resource its
number ought to be constrained. Assuming a steady-state
thermal analysis (based on thermal resistance model), thermal-
via allocation has been studied during the placement [16]
and routing [17]. The steady-state analysis, however, ignores
the temporal and spatial variations of the thermal-power in
the modern VLSI design. Due to different workloads and
dynamic power management techniques such as clock gating,
power has both temporal and spatial variations [8], [19]–[21].
A transient thermal-power is thereby the running average of
the cycle-accurate (nanosecond) power over the scale of the
thermal time-constant at the range of millisecond [19]. To
obtain a solution without the thermal violation, the methods
in [16], [17] have to assume a “steady” maximum thermal-
power simultaneously for all regions. Because it is rare if not
impossible for different regions to simultaneously reach their
maximum thermal-power, the methods in [16], [17] may lead
to excessive number of thermal vias.

A cycle-accurate “dynamic” thermal simulator Hotspot [8],
[13] has been developed at the micro-architecture level. It
is based on a thermal RC model to calculate the transient
temperature. However, [8], [13], [16], [17] directly solve the
matrix-formed state equation. It is inefficient to calculate the
nominal temperature and its sensitivity with respect to the
thermal-via density for large scale designs. Moreover, there
is no effective interaction between the simulator and the
optimizer. The design procedure is either based on iterations
[16], or based on an approximated square-root relation [17]
between temperature and thermal-vias. It may not converge
or may lead to inaccurate results. As a result, it is needed
to develop an accurate and efficient solution to consider the
transient temperature and to help the optimization with use of
the sensitivity.

In this paper, an accurate yet efficient thermal-via allocation
is proposed with consideration of the temporal and spatial
variations of the thermal-power. We assume that the signal
routing congestion is known a priori, and calculate the tran-
sient temperature using macromodel provided by a structured
and parameterized model reduction, which also generates the
temperature sensitivity with respect to the thermal-via density.
By defining a thermal-violation integral based on the transient
temperature, a nonlinear optimization problem is formulated to
allocate thermal-vias and minimize thermal violation integral
under the signal routing constraint. This optimization problem
is transformed into a sequence of quadratic programming
(SQP) subproblems using sensitives provided by the macro-
model. Experiments show that compared to the steady-state
thermal analysis, our method is 126X faster to obtain the
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Fig. 1. The typical 3D IC techniques including: (a) Cu-Cu wafer bonding and (b) crystallization of α-Si. They both have active device layers, inter-layer
dielectrics, vertical through vias, and the substrate.

temperature profile, and reduces the number of thermal vias
by 2.04X under the same temperature bound.

The rest of the paper is organized as follows. In Section
II, we present the preliminary for 3D thermal model and
analysis. In Section III, we formulate a nonlinear optimization
to accurately allocate the thermal-via driven by the thermal-
violation integral, and propose a sequential programming to
efficiently solve the optimization. In Section IV, we discuss a
structured and parameterized macromodel to efficiently gener-
ate the nominal transient temperature and its sensitivities. In
Section V, we present the overall algorithm for the thermal via
allocation and experimental results. We conclude in Section
VI. The preliminary results of this paper was presented in
[22].

II. 3D THERMAL MODEL AND ANALYSIS

In this Section, we present how to build a parameterized
thermal model for 3D IC layout, discuss the time-variant
thermal power and thermal analysis, and briefly review the
existing macromodeling approach.

A. Dynamic and Parameterized Thermal Model

There is a well-known duality between electrical and ther-
mal systems as shown in Table I. As temperature is analogous
to voltage, the heat flow can be modeled by a current passing
though a pair of thermal resistance and capacitance driven by
the current source, modeling the power dissipation. Moreover,
because the transient temperature needs to become stable when
the steady state is reached after sufficient time, the boundary
condition at the chip-surface needs to be specified as the
ambient temperature. In this paper, the C4 package is assumed
and the packaging and heat-sink are modeled by a simple
1D resistor network with attached external voltage sources to
model the ambient temperature.

Each active device layer and the inter-layer dielectric in
3D layouts can be uniformly discretized into N tiles by

TABLE I
THERMAL AND ELECTRICAL DUALITY

Temperature Voltage state variables (x(t))
Input Thermal-Power Input Current sources (u(t))
Thermal conductance Electrical conductance (G)
Thermal capacitance Electrical capacitance (C)

the finite difference method. As shown in Fig. 2, in steady-
state analysis, tiles connected by thermal resistance R. Heat
sources modeled as time-invariant current sources. Steady-
state temperature can be obtained by directly solving a time-
invariant linear equation. In contrast, as for the transient
analysis, tiles connected by thermal resistance and capacitance
RC. Heat sources modeled as time-variant current sources.
Usually, the granularity of discretized 3D IC smaller than
thermal space constants might not be necessary [13]. Because
the proposed method is targeted at the physical design, the
granularity of discretized thermal model in this paper can be
smaller than those for the microarchitecture design [8], [13].
Moreover, the designs in 3D IC usually requires to consider
many heterogeneous components in one system, it can lead to
a more complicated thermal model than that for the 2D ICs.

In addition, there are two types of specified tiles: critical
tiles and input tiles. Critical tiles are those tiles with hottest
temperatures that can cause thermal violations leading to the
reliability or timing/functionality failures at those locations.
The critical tiles can be pre-characterized during the early
design stage, or from an initial full-chip transient simulation.
To probe these critical tiles, a topological matrix L (adjacent
matrix) can be specified. Input tiles are those tiles with the
time-variant heat-dissipation u(t) averaged at the scale of the
thermal time constant. To inject heat at these input ports, a
topological matrix B (adjacent matrix) can be specified.

Note that our design parameter here is the thermal-via
density. The larger the thermal-via density in one tile, the more
heat that can be convected away through layers to the heat
sink. An ith tile has a thermal-via area Ai, which is related to
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Fig. 2. The thermal models extracted for the steady-state analysis and the
transient analysis.

the thermal-via density ρi by

ρi = Ai/a,

where a is the unit area of thermal-via determined by the
process. Therefore, Ai is used to represent the thermal-via
density at ith tile in the sequel. In addition, we assume that
thermal vias have a continuous conduct from the bottom to
the top with alignment.

Then, thermal vias are inserted as follows. An insertion
(incident) matrix X (∈ RN×N ) is used to record the location
and the number of added vias. If a via is added between two
nodes m and n of two vertical-adjacent layers, its insertion
matrix is

X(k, l) = X(l, k) =





−1 if k = m, l = n∑
l |X(k, l)| if k = l

0 else
. (1)

Accordingly, given the width w and the thickness t of one
thermal via, we have the topological matrix gi/ci for one
inserted unit-via conductance/capacitance

gi = (k1/t)Xi ci = (k2t)Xi,

where k1 and k2 are thermal conductive/capacitive constants
of the thermal via.

The parameterized thermal model is then constructed as
follows. We first define the parameterized state matrices

G = G0 +
K∑

i=1

Aigi C = C0 +
K∑

i=1

Aici. (2)

Note that G0 and C0 (∈ RN×N ) are nominal conductive and
capacitive matrices of discretized thermal networks, which
entry is simply composed of the thermal conductance and
capacitance. Moreover,

∑K

i=1 Aigi and
∑K

i=1 Aici are the
parameterized conductive and capacitive matrices of thermal
vias, where via density Ai is the parameter and K is the
number of critical titles.
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Fig. 3. The definitions of the cycle-accurate power, transient thermal-power
signature, and maximum thermal-power signature at the different scale of time
constant.

Accordingly, the thermal RC circuit can be described by
the modified nodal analysis (MNA)

Gx(A, t) + C
dx(A, t)

dt
= Bu(t)

y(A, t) = BT x(A, t) (3)

or in the frequency (s) domain with the Laplace transformation

(G + sC)x(A, s) = Bu(s)

y(A, s) = LT x(A, s), (4)

where A = [A1, ..., AK ] is the parameter-vector of thermal-
via density, and B and L (∈ RN×p) are the adjacent matrices
to select the input tiles u and critical tiles y.

Note that u (∈ Rp×1) is the current source to model
the thermal-power input. As defined in [19] (See Fig. 3), a
transient thermal power is the running average of the cycle-
accurate (often in the range of ns) power over several thermal
time constants (often in the range of ms), and a constant maxi-
mum thermal-power is defined as the maximum of the transient
thermal-power. Due to the increasing use of dynamic power
managements, the (thermal) power density is time-variant [8],
[19]–[21]. As a result, the temperature varies not only spatially
but also temporally. In addition, the temporal variation of
temperature can also result from different applications (work-
loads). Therefore, the previous via planning [16], [17] based on
the steady-state thermal analysis has to assume the maximum
thermal-power simultaneously for all chip regions. However, it
is rare if not impossible for different regions to simultaneously
reach their maximum thermal-power. The planned via using
steady-state analysis thereby may lead to excessive numbers
of vias. This becomes the motivation of this paper to study
the via planning problem using a dynamic or transient thermal
model.

B. Macromodel by Moment Matching

On the the hand, blindly applying the thermal transient anal-
ysis is expensive because it is not efficient to solve (4) for large
sized N thermal circuits. Similar to the macromodeling for
the interconnect network, the moment matching based model
order reduction can be used to obtain a 3D IC macromodel
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with compact sized q (q << N ), which not only has a smaller
matrix size but also preserves the dominant system response.

The existing macromodeling approach is mainly based on
the subspace projection [23], [24]. By defining two moment
generation matrices (expanded at s0) as

A = (G + s0C)−1C R = (G + s0C)−1B,

it is easy to verify that the solution of (4) is contained in the
subspace spanned by A and R

span{R,AR, · · ·An−1R, ...}.

Accordingly, a nth-order block Krylov subspace can be de-
fined by

K(A,R, n) = span{A,AR, · · · An−1R}

where n = bq/pc. By applying the Block Arnoldi orthonor-
malization [24], the spanned subspace by a smalled dimen-
sioned projection matrix V (∈ RN×q) can be found to contain
the Krylov subspace

K(A,R, n) ⊆ span{V }.

Using such a V to project the original state matrices (RN×N )
respectively,

Ĝ = V T GV, Ĉ = V T CV, B̂ = V T B, L̂ = V T L

a dimension reduced macromodel (Rq×q)

Ĥ(s) = L̂T (Ĝ + sĈ)−1B̂

can be obtained. Note that Ĥ can accurately approximate the
original system H

H(s) = LT (G + sC)−1B

by matching the first n block moments expanded at one
selected frequency s0 [23], [24]. Usually, as the time-constant
of a thermal RC network is much larger than that of an elec-
trical RLC network, its dynamic response can be accurately
characterized by a few dominant poles using the subspace-
projection-based moment matching [23], [24]. The error of
reduced model depends on the selection of reduced order q
with a detailed analysis of numerical error bound of moment
matching in [23].

To further obtain the sensitivity information, the
parametrized moments [25] can be obtained by expanding
(4) at selected parameter points. However, because the
parameterized moments have coupled frequency and
parameter variables, its dimension grows exponentially,
preventing practical use. This is improved in [26] by
separately expanding moments of parameters from the
frequency. It results in an augmented state matrix containing
the nominal state and the expanded states, i.e., sensitivities
with respect to parameters. Nevertheless, all these approaches
[23]–[26] apply a flat projection during the reduction. The
reduced state matrices are dense and the reduced state
variables have coupled nominal values and sensitivities. It
is unknown how to separate parametrized sensitivities from
the reduced macromodel, and apply those sensitivities in the

optimization. This will be addressed in Section IV, and we
summarize notations used in this paper below.

• N : number of tiles

• K: number of critical tiles

• p: number of input ports

• q: order of reduced models

• s/h: frequency point/time-step

• G0: nominal thermal conductance state matrix

• C0: nominal thermal capacitance state matrix

• B/L: topology matrix describing input/output ports

• Ai: via density of ith tile

• A: via density vector of a set of critical tiles

• X : topology matrix describing where to insert vias

• g/c: conductance/capacitance of one via with unit area

• x/y: state variable of temperature (at output)

• x(0)/y(0): nominal temperature (at output)

• x(1)/y(1): 1st-order sensitivity (at output)

• x(2)/y(2): 2nd-order sensitivity (at output)

• f : the thermal-violation integral

• Tceiling : the targeted ceiling temperature

III. THERMAL-VIA ALLOCATION PROBLEM

In this Section, to consider an accurate figure of merit for the
transient thermal integrity, a thermal-violation integral is first
defined, and a thermal-via allocation problem is consequently
formulated as a nonlinear optimization problem, which is
relaxed and solved by a sequence of quadratic programmings
with use of sensitivities.

A. Thermal-Violation Integral

A thermal-violation integral is the integral of the tran-
sient temperature above a user-specified ceiling temperature
Tceiling :

fi(A) =

∫ tp

t0

max[y(A, t), Tceiling ]dt

=

∫ te

ts

[y(A, t) − Tceiling ]dt, (5)
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where t0 and tp define the evaluation time-period, which is a
sequence that sufficiently contains the possible schedule of the
dynamic power management, or the given possible workloads.
In addition, note that the interval [ts, te] is determined by
comparing

max[y(A, t), Tceiling ],

which can contain multiple intervals. Recall that A is the
parameter-vector of the thermal-via density at K critical tiles.

As shown in Fig. 4, the integral is actually the area above
the Tcelling . This definition captures the fact that a thermal
violation occurs only when the temperature is above the
temperature bound for a long enough period. A similar merit
is used for noise estimation in [27].

Moreover, the figure of merit for a group of K critical
tiles needs to be defined. Because it is seldom to happen that
different critical tile reaches its targeted ceiling temperature
simultaneously, a global thermal violation integral

fg(A) =

K∑

i=1

fi(A) (6)

is defined in addtion to those local thermal violation integral
fis. Accordingly, a thermal violation integral vector is defined
by

f(A) = [f1(A), ..., fK(A), fg(A)]. (7)

The thermal-violation integral vector f(A) is used as an
accurate objective function in the sequel to be minimized
by allocating thermal vias. Moreover, to compute f(A), the
evaluation period t is discretized into finite intervals and
Problem 1 becomes semi-definite [27], which can be solved
with the provable convergence.

Note that for the steady-state analysis, the input of the
maximum thermal-power signature results in a constant max-
imum temperature Tmax. Hence the hotspot reduction by the
steady-state solution is equivalent to reduce a rectangular
area defined between Tmax and Tceiling , obviously an over-
estimated violation integral (See Fig. 4). It becomes even
worse for the total violation integral. The reason is that each
critical tile has a different transient thermal-power signature,
and hence their maximum usually does not happen at the same
time. As a result, the thermal-violation integral from a transient
solution is more accurate to guide the thermal-via allocation
than from a steady-state one.

B. Problem Formulation

To minimize the total violation integral, thermal vias are
allocated at each pair of adjacent layers. With consideration
of the congestion from vertical signal vias, Amax and (Ai)max

are the total available space and local-tile available space for
inserting thermal vias, which are assumed to be provided by
the user. Accordingly, an nonlinear optimization problem is
formulated as

Problem 1 : min f(A)

s.t.
K∑

i=1

Ai ≤ Amax, (8)

0 ≤ Ai ≤ (Ai)max, (i = 1, ..., K). (9)
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Fig. 4. Figure of merit using thermal-violation integral with defined ceiling
temperature under an input of transient thermal-power signature.

The constraint (8) is a global constraint implying that the total
thermal-via density is limited by the Amax, and the constraint
(9) is a local constraint implying that the local thermal-via
density at ith tile is limited by (Ai)max. Note that Amax is
not always the simple summation of (Ai)max. It is decided by
not only the total available routing resources, but also other
considerations such as the fabrication cost at different regions.
In this paper, we assume that Amax and (Ai)max are provided
by designers.

Moreover, the above local and global constraints in Problem
1 can be unified into one constraint with use of one topology
matrix U (∈ R(K+1)×(K))

U =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . . . . 1
1 1 . . . 1




. (10)

As a result, we have

UA ≤ Amax, (11)

where Amax = [(A1)max, (A2)max, ..., (AK)max, Amax]T .
To efficiently solve Problem 1, the below Lagrangian relax-

ation can be used. The constraint function can be added to
the objective function using a vector of Lagrangian multiplier
λ = [λ1, ..., λK ]. As a result, the primal problem (Problem 1)
has a following dual problem:

Problem 2 : L(A, λ) = f(A) + λ · h(A), (12)

where
h(A) = UA −Amax. (13)

It can be transformed into a sequence of subgradient optimiza-
tion [28] problems as discussed below.

C. Sequential Programming

In general, fk(A) is a nonlinear function with respect to all
Ais (i, k = 1, ..., K). However, if the via density (area) Ai is
only changed by a small amount δAi (δAi = Ai−A

(0)
i ) around



6

the nominal value A
(0)
i , the corresponding change of fk(A)

can be linear or quadratic with respect to δAi. Therefore,
fi(A) can be approximated with the Taylor’s expansion at
the nominal values f

(0)
k (A(0)) by

fk(A) ≈ f
(0)
k (A0) +

K∑

i=1

∂fk

∂Ai

δAi +

K∑

i,j=1

∂2fk

∂Ai∂Aj

δAiδAj .

(14)
hk(A) can be expanded in a similar fashion.

Therefore, a sequence of subgradient optimization problems
can be formulated for Problem 2:

Problem 3 :

min ∇f(A)T δA +
1

2
δAT HδA + λ · ∇h(A)δA. (15)

Note that
∇f =

∫ tp

0

y(1)dt

is the first-order sensitivity, and

H =




∫ tp

0
y
(2)
1,1dt . . .

∫ tp

0
y
(2)
1,Kdt

...
. . .

...∫ tp

0
y
(2)
K,1dt . . .

∫ tp

0
y
(2)
K,Kdt




is the Hessian matrix composed by the second-order sensitiv-
ity. In addition, ∇h = const.

At one iteration, the solution from the quadratic program-
ming problem is used as the intermediate solution of the origi-
nal nonlinear problem. Then, those coefficients ∇f and H are
updated and employed to form a new quadratic programming
at the new nominal values. The optimization terminates when
the convergence criterion is achieved. This called as sequential
quadratic programming (SQP) [28]. Note that the convergence
of the SQP depends on the range of the calculated δA. The
quadratic programing may not be accurate to approximate
the original nonlinear programming if this range is too large.
On the other hand, the quadratic programing may converge
slowly if this range is too small. As shown in Algorithm 1, a
geometric regression procedure [28] is utilized in this paper to
select an optimized subgradient. As a result, the range of δA
can be properly determined in our experiment, and hence the
sequence of quadratic programs converges in a few iterations
with the required accuracy.

However, directly solving (4) is still inefficient for such
a sequential programming. The key to this problem is to
efficiently calculate and update the sensitivities y(1) and y(2).
This can be solved by a structured and parameterized model
order reduction as discussed below. The detailed outline of
this Algorithm will be presented in Section V.

IV. SENSITIVITY BY STRUCTURED AND
PARAMETERIZED MACROMODEL

In this Section, we will show that the separated nominal
temperature and its sensitivities can be obtained by a structured
and parameterized reduction, which is general for any linear
network. We apply this technique to obtain a structured and
parameterized macromodel for the thermal RC network. Here
the parameter to be expanded is the thermal-via density Ai.

A. Parameterized and Structured Model Order Reduction

Because the output sensitivity is large with respect to the
frequency but small with respect to the geometric param-
eter, the temperature state variable x(A1, ..., AK , s) can be
approximated by the Taylor expansion with only respect to
the geometrical parameters A:

x(A, s) =

∞∑

i1

· · ·

∞∑

iK

x
(i1+...+iK)
1,...,K (s)(δA1)

i1 · · · (δAK)iK .

(16)
This is similar to the method in [26] modeling process
variations for the electrical system. Substituting (16) in (4),
and explicitly matching the moment for each Ai up to the
second-order, we can reformulate (4) into an augmented and
parameterized state equation:

(Gap + sCap)xap = Bapu(t), yap = LT
apxap, (17)

with

Gap =




G0 0 . . . 0 0 0 . . . 0
A1g1 G0 . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

AKgK 0 . . . G0 0 0 . . . 0
0 A1g1 0 . . . G0 0 . . . 0
0 A2g2 A1g1 0 . . . G0 . . . 0
...

...
...

...
. . .

...
. . .

...
0 0 . . . AkgK . . . 0 . . . G0




(18)
and

xap = [x
(0)
0 , x

(1)
1 , ..., x

(1)
K , x

(2)
1,1, ..., x

(2)
K,K ]T

Bap = [B, 0, ..., 0, 0, ..., 0]T

Lap = [L, δA1L, ..., δAKL, δA1δA1L, ..., δAKδAKL]T .

Note that Cap has the same lower-triangular structure as Gap

does.
In addition, the system state variable yap at output for those

critical tiles can be also divided into three parts: nominal
value y(0) = y

(0)
0 (∈ R1), first-order sensitivity y(1) =

{y
(1)
1 , ..., y

(1)
K } (∈ RK), and second-order sensitivity y(2) =

{y
(2)
1,1, ..., y

(2)
K,K} (∈ RK×K). As a result, solving (17) results in

the nominal value of temperature y(0), and its according first-
order sensitivity y(1) and second-order sensitivity y(2) with
respect to each parameter Ai.

Because the dimension of the system equation (17) is large,
its order needs to be reduced using projection with preserved
moments (of s) up to q-th order. A small dimensioned projec-
tion matrix V can be constructed recursively using the Arnoldi
method [26]. However, the obtained V has no structure.
Directly projecting (17) by V leads to a reduced macromodel
losing the lower-triangular block structure of Gap and Cap. In
addition, y(0), y(1) and y(2) are coupled with each other and
can not be solved separately.

Instead of using the flat projection matrix V , we introduce
a structured projection matrix

V = diag[V0, V1, ..., VK︸ ︷︷ ︸
K

, VK+1, ..., VK2︸ ︷︷ ︸
K2

], (19)
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by partitioning V according to the dimension of x(0), x(1) and
x(2), and stacking the partitioned blocks into a block-diagonal
form. As a result, the order-reduced state matrices become

G̃ap = VT GapV , C̃ap = VT CapV ,

B̃ap = VT Bap, L̃ap = VT Lap.

In addition, the structured and parameterized macromodel

H̃ap = L̃ap(Ĝap + sĈap)
−1B̃ap

has the following property:
Theorem 1: The first q block moments expanded at s0 are

identical for H̃ap(s) and H(s).
Because span{V } ⊆ span{V}, a q-th ordered projection by
V still preserves at least q moments according to [23].

B. Sensitivity Generation

Moreover, the time-domain transient response of the re-
duced model can be solved by Backward-Euler method. The
reduced system equation at time instant t with time step h is

(G̃ap +
1

h
C̃ap)x̃ap(t) =

1

h
C̃apx̃ap(t − h) + B̃apu(t)

ỹap(t) = L̃T
apx̃ap(t). (20)

where

G̃ap =




G̃0 0 . . . 0 0 0 . . . 0

A1g̃1 G̃0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
AKgK 0 . . . G̃0 0 0 . . . 0

0 A1g̃1 0 . . . G̃0 0 . . . 0

0 A2g2 A1g̃1 0 . . . G̃0 . . . 0
...

...
...

...
. . .

...
. . .

...
0 0 . . . Ak g̃K . . . 0 . . . G̃0




(21)
and

ỹap = [ỹ(0), ỹ(1), ỹ(2)]T = [ỹ
(0)
0 , ỹ

(1)
1 , ..., ỹ

(1)
K , ỹ

(2)
1,1, ..., ỹ

(2)
K,K ]T .

Note that the reduced C̃ap has the same structure as G̃ap.
Because the reduction preserves the block structure, the

reduced nominal value ỹ(0), first-order sensitivity ỹ(1) and
second-order sensitivity ỹ(2) at output (critical tiles) can be
solved independently. The temperature profile at those critical
tiles perturbed by the parameter is

ỹ(A, t) = ỹ(0)(A, t) + ỹ(1)(A, t) + ỹ(2)(A, t), (22)

The advantages of such a structured and parameterized
model order reduction are two fold. Firstly, the nominal re-
sponse only requires one-time transient simulation, and hence
we only need to solve the perturbed response, i.e., the sensi-
tivity, during each iteration. Next, the solved sensitivity can
be utilized during any gradient-based optimization procedure
including the sequential programming discussed in Section III.
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(a) G before reduction
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(b) G after reduction
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(d) C after reduction

Fig. 5. The non-zero (NZ) pattern of the parameterized state matrices G and
C before and after the structured model order reduction.

Algorithm 1 Subgradient Optimization using Structured Pa-
rameterized Macromodel

Initialize: (A0, α0, λ0, H0, k);
Solve: ỹ0 using (20);
Solve: δA0 = quadprog(λ0, ỹ0);
Set: s0 = UA0−Amax

||UA0−Amax||
;

Set: λ1 = λ0 + α0 · s0;
while |L(λk+1) − L(λk)| > TOL do

sk = UAk−Amax

||UAk−Amax||
;

λk+1 = λk + αk · sk;
δAk = quadprog(λk, ỹk);
Ak+1 = Ak + δAk;
Update (Gap)k+1 and (Cap)k+1 with Ak+1;
Solve ỹk+1 using (20) with updated macromodel;
k = k + 1;

end while

V. ALGORITHM AND EXPERIMENTS

A. Overall Algorithm

The sequential subgradient optimization procedure is out-
lined in Algorithm 1, where αk is the step size usually
determined through a geometric regression procedure [28].
The structured and parameterized macromodel provides a con-
venient interface between the simulation and the optimization.
The Algorithm 1, therefore, can be efficiently solved. Because
the projection (19) preserves the lower-triangular structure,
(20) can be efficiently solved using block back substitution,
where there is only one factorization cost from the diagonal
block, i.e., the reduced block of nominal state matrix

G̃0 +
1

h
C̃0.

Moreover, the reduced state matrices can be repeatedly used
when updating the new parameter vector A. In addition, since
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Fig. 6. Transient temperature responses of exact and structured and
parameterized macro (SP-Macro) models at port 3, 18, and 58 of layer-1
with step-response input. The macromodels are visually identical to those
exact models.

the reduced model is much smaller than the original one, its
nominal value and sensitivities can be efficiently solved from
(20). As shown by experiments, the optimization procedure
in Algorithm 1 is computationally efficient compared to the
direct matrix-solver.

B. Numerical Results

Our structured and parametrized macromodeling (called
SP-Macro) and thermal-via allocation are implemented in
MATLAB and C++, and run on Linux workstation with
Intel Pentium IV 2.66G CPU and 2G RAM. The examples
have following settings. k1 (thermal conductive constant) is
100W/m · K for silicon and 400W/m · K for copper, and
k2 (thermal capacitive constant) is 1.75 × 106J/m3 · K for
silicon and 3.55 × 106J/m3 · K for copper. The substrate
is 500um thick, the device layer is 6um thick and interlayer
thickness is 1um thick. 4 silicon layers are used and the
thermal-via is assumed to be copper. The unit via area is
2× 2um2. The overall chip size is 2× 2cm2, and the number
of individual modules and its according size are from MCNC
benchmarks. We increase the model complexity by increasing
the number of discretized tiles and the number of critical
tiles. The critical titles are selected manually according to
the functionary/reliability of benchmark circuit and hence may
show a different differently increasing rate.

The power distribution at each title is chosen similarly as
[16], where 90% of tiles have power densities from 0 to
2 × 106W/m2, and their clock gating pattern has a period
of 500ms, where the power in the standby mode is 5% of the
running mode. The other 10% of tiles having power densities
from 3× 106W/m2 to 9× 106W/m2, and their clock gating
pattern has a period of 250ms where the power in the standby
mode is 20% of the running mode. In addition, note that a
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Fig. 7. Iterative optimizations showing the hotspot reduction by thermal-via
allocation under the input of transient thermal-power signature at port 32 of
layer-1. The ceiling temperature is 52◦C.

single-input-multi-output (SIMO) [24] is assumed when the
port number in B is large.

1) Structured and Parameterized Macromodel: One de-
tailed 3D thermal RC circuit is used to verify the proposed
algorithm. It has 4 layers and each layer contains about 1K
tiles. 64 tiles of each layer are selected as critical tiles. The
total thermal-via density constraint is 3000, and the local
via number constraint is randomly generated from 50 to
400. Structured and parameterized model reduction is first
applied to generate SP-Macro for the thermal-via allocation
considering the transient effect. Then the entire circuit is used
to generate the steady-state map of the temperature profile.

For the SP-Macro and original models, Fig. 5 shows the
parameterized state matrix structure before and after the re-
duction. The parameterized state matrix show a lower-block
triangular structure, and the structured reduction preserves
such a low-block triangular structure. As a result, the reduced
model can be solved efficiently by the backward substitution
with only one factorization cost coming from the reduced
nominal state matrix in the diagonal. As shown below, it
is efficient to apply such a structured and parameterized
macromodel during the optimization.

Moreover, Fig. 6 compares the time-domain transient tem-
perature at selected three critical tiles (3, 18, 58) using (22).
16 moments are used for the moment matching. Clearly, the
reduced models are visually identical to original ones.

2) Sequential Programming: Furthermore, for the same 3D
thermal circuit above, Fig. 7 shows the successive temperature
cooling by allocating the thermal-via according to the cal-
culated transient sensitivity. The thermal-violation integral is
minimized until the the ceiling temperature is 52◦C is meet. In
addition, Fig. 8 shows the subgradient optimization procedure
after 4 iterations, where the dual problem quickly converges
with the primal problem at one normalized value 0.7. Clearly,
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TABLE II
EXPERIMENT SETTING AND RESULTS OF THERMAL-VIA PLANNING TIME AND NUMBER. THE ALLOCATED THERMAL-VIA OF STEADY-STATE ANALYSIS IS

BASED ON THE REDUCED MACROMODEL WITH THE USE OF THERMAL-VIOLATION INTEGRAL DEFINED BY THE MAXIMUM TEMPERATURE.

total/critical global via original/ceiling Steady-state(direct) Transient(SP-macro)
tile# bound T (◦C) solve solve allo- opt- redu solve qp-prog allo- opt-

dc (s) tran (s) via T(◦C) ckt (s) sens (s) plan (s) via T(◦C)
256/30 704 120/40 1.64 10.27 440 40.4 0.12 0.19 0.15 360 40.2
1024/60 2818 120/40 12.62 130.12 2281 41.5 1.08 0.96 0.42 1609 41.7
4096/80 5980 140/50 341.13 3872.98 5620 52.1 12.92 6.28 1.92 3217 51.9

8192/100 8218 140/50 7809.12 NA 8021 53.3 46.27 16.92 8.98 4382 53.1
16384/120 18000 160/60 NA NA 17600 63.6 120.89 101.23 23.65 9280 63.4
32768/200 24000 160/60 NA NA 23800 65.4 262.12 257.21 42.78 11660 65.3
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Fig. 8. Convergence of subgradient optimization of primal and dual problems.
The hotspot is represented by violation integral normalized to the maximum.
α0 here is set to 0.7.

Fig. 9. Thermal-via distribution under two different settings of critical titles.

our sequential programming could effectively minimize the
thermal-violation integral efficiently.

3) Thermal-via Allocation: With use of the transient anal-
ysis by our macromodel, Fig. 9 further shows the allocated
via density distribution for the same 3D thermal circuit above.
To study the impact of critical tiles, two power inputs with
different clock-gating period are injected. It results in a dif-
ferent set of locations for those critical tiles. Therefore, the
allocated via in Fig. 9 (a) shows a little difference with Fig. 9
(b). Therefore, the worst-case power input or workload needs

to be assumed that could lead to the worst-case temperature,
which accordingly determines the critical tiles.

Moreover, Fig. 10 and 11 further show the steady-state
temperature map across the top layer (layer-1). The initial
chip temperature at the top layer is around 150◦C, and its
temperature profile at steady-state is shown in Fig. 10. In
contrast, the allocation results in a cooled temperature profile
that closely approaches the ceiling temperature as shown in
Fig. 11. In addition, note that because the transient thermal-
violation integral is used as the figure of merit, the spatial
distribution of allocated thermal-via shows a little difference
from the temperature hot-spots at the steady-state.

Table II further analyzes the runtime scalability and allo-
cated thermal-via density by the proposed method and the
steady-state analysis. The parameterized state equation (17)
in the steady-state is used to calculate the transient response
and the sensitivity. In addition, as discussed in Section III.
A (See Fig. 4), a rectangular area formed by the “steady”
maximum temperature and the ceiling temperature is used as
the objective instead of the “dynamic” violation integral. Then,
the problem is also again solved by a sequential programming.

Because directly solving steady-state equation needs to
handle large sized matrix, it consumes runtime and memory
during the sequential optimization. In contrast, the macro-
model can efficiently match the transient response using
around 20 moments. For a circuit with 8192 tiles, our model
reduces runtime by 126X (62s versus 7809s) compared to the
steady-state analysis. More importantly, due to the use of our
accurate figure of merit, the thermal-violation integral, which
considers the transient effect, our allocated thermal-via density
is much smaller than the one by steady-state analysis under
the same targeted ceiling temperature. Because directly solving
steady-state equation can not generate the sensitivity for the
optimization, the allocated thermal-via of steady-state analysis
is based on the reduced macromodel, where the thermal-
violation integral is defined by the maximum temperature (See
Fig. 4). For a circuit with 32768 tiles, our design reduces
2.04X (11660 versus 23800) thermal vias compared to the
steady-state analysis.

VI. CONCLUSIONS AND DISCUSSIONS

The previous thermal-via allocations [16], [17] for 3D IC
use the direct steady-state analysis, ignore the temporal and
spatial variations of the thermal-power, and hence may result
in the excessive number of thermal vias. In this paper, to
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Fig. 10. Steady-state temperature map of top layer (layer-1) before thermal-
via allocation.

Fig. 11. Steady-state temperature map of top layer (layer-1) after thermal-via
allocation using transient temperature profile.

consider the temporally and spatially variant thermal-power
input, a thermal-violation integral of the transient tempera-
ture is proposed to accurately capture the thermal violation,
and a nonlinear optimization is then used to minimize the
thermal-violation integral. The nonlinear programming can be
solved through the sequential quadratic programing, where
sensitivities are calculated and updated efficiently from a
structured and parameterized macromodel. Experiments show
that compared to the existing method using the steady-state
thermal analysis, our method is 126X faster to obtain the
temperature profile, and reduces the number of thermal vias
by 2.04X under the same temperature bound.

Clearly, the proposed structured and parameterized macro-
model can be used for a number of integrity-driven physical
synthesis. For example, we have recently presented a 3D
via planning for simultaneous power and thermal integrity
[29], where the vias are allocated to satisfy constraints on
power resonance of power/ground planes in the package and
constraints on maximum temperature in stacked IC dices.
Again, the structured and parameterized macromodel is used
to develop an efficient yet effective algorithm, which reduces
via number compared to the sequential power and thermal
integrity optimization.

Note that a “dynamic” thermal-violation integral for the
thermal integrity is used in this paper instead of using a
“steady” maximum temperature. Both the “dynamic” thermal-
violation integral and the “steady” maximum temperature
can be obtained from a worst-case temperature profile. As
discussed in [19], the worst-case temperature profile and its
accordingly related critical titles can be characterized from
the thermal-power when the workload is available and guard-
land can be used to avoid the under-design. However, it is
computationally expensive if not possible to determine the
the worst-case temperature profile from all kinds of dynamic
workloads. The stochastic characterization approach such as
the principal component analysis (PCA) can be applied to
find a set of principal temperature and its accordingly related
principal tiles.

In addition, we assume that the thermal vias are aligned
for all layers in this paper. Though the proposed approach
is general to consider the non-aligned vias, it may introduce
additional cost to build the parameterized macromodel to
provide more design freedoms. In the future, we will study
a layer-wised via-relocation to incrementally transform the
parameterized model with aligned vias into the one with non-
aligned vias by perturbation.
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