
Optimal Wiresizing for Interconnects with Multiple Sources * 

Jason Cong and Lei He 
Department of Computer Science 

University of California, Los Angeles, CA 90095 
cong@cs.ucla.edu 

Abstract The optimal wiresizing problem for nets 
with multiple sources is studied under the distributed 
Elmore delay model. We decompose such a net into 
a source subtree (SST) and a set of loading subtrees 
(LSTs), and show the optimal wiresizing solution sat- 
isfies a number of interesting properties, including: 
the LST separability, the LST monotone property, the 
SST local monotone property and the general domi- 
nance property. Furthermore, we study the optimal 
wiresizing problem using a variable g r i d  and reveal the 
bundled refinement property. These properties lead t o  
eficient algorithms t o  compute the lower and upper 
bounds of the optimal solutions. Experiment results 
on nets from an Intel processor layout show an inter- 
connect delay reduction of up t o  35.9% when compared 
to the minimum-width solution. In addition, the algo- 
rithm based on a variable grid yields a speedup of two 
orders of magnitude without loss of accuracy, when 
compared with the fixed grid based methods. 

1 Introduction 

Interconnect optimization for delay minimization 
has drawn much attention recently. Previous work 
falls into two categories. One is topology optimization, 
such as the construction of bounded-radius bounded- 
cost trees[2], A-trees[G], and low-delay trees[l]. The 
other is wiresizing optimization, which was first intro- 
duced in [6, 71 to  minimize a weighted average inter- 
connect delay, then extended with a sensitivity-based 
heuristic in [ll] to minimize the maximum intercon- 
nect delay. Moreover, both delay and power dissipa- 
tion were optimized in [4] by simultaneous driver and 
interconnect sizing, and the circuit-level critical path 
delay (rather than the Elmore delay used in other 
work) was reduced in [lo] by a sensitivity based, si- 
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multaneous gate and interconnect sizing. 
All these methods assume that there is a unique 

source in each interconnect tree and minimize the de- 
lay between the source and a set of critical sinks. 
Thus, they are only applicable to  single-source inter- 
connect trees (SSITs). However, there exist many in- 
terconnect trees with multiple potential sources, each 
driving the interconnect tree at a different time. None 
of the existing methods consider such multi-source in- 
terconnect trees (MSITs), except a very recent work by 
Cong and Madden [5], where an MSIT topology op- 
timization method based on the construction of min- 
cost min-diameter A-trees was developed. 

In this paper, we study the optimal wiresizing prob- 
lem for MSITs under the distributed Elmore delay 
model, and the optimal wiresizing problem using a 
variable grid rather than a fixed grid used in previ- 
ous work. The remainder of this paper is organized 
as follows: In Section 2, we present the formulation 
of the MSIT wiresizing problem. In Section 3 and 4, 
we study the properties of the optimal wiresizing solu- 
tions for MSIT designs, respectively under a fixed grid 
and a variable grid. These properties lead to  efficient 
algorithms given in Section 5. Section 6 shows exper- 
imental results. Section 7 concludes the paper with 
discussions of future work. Proofs and more detailed 
experimental results can be found in [3]. The reader is 
strongly recommended to  be familiar with the results 
in [7, 41, which are referred to  several times in this 
paper. 

2 Problem Formulation 

2.1 Wiresizing for MSIT 

Given an MSIT, each pin can 
sink, or both. Let src(MSIT) be 

be a source, or a 
the set of sources, 

and sink(MSIT) the set of sinks. We assume that no 
two sources are active at the same time. 

A node refers to  either a pin or a Steiner node 
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in the MSIT. A segment connects two nodes. Let 
{SI, SZ, . 3 ,  S-} be the set of segments in the MSIT. 
In practice, a grid is superimposed on the routing 
plane. Each segment is divided into a sequence of grid 
edges (:or simply called edges). Let { E l ,  Ez ,  . . . , En} 
be the set of all edges in the MSIT. The wiresizing 
problem is to find a wire width from a set of given 
choices{Wl,Wz,...,W,}(Wl < W z < . . . < W , ) f o r  
each edge. We assume that the wire width within an 
edge does not change and follow the same modeling 
technique used in [4], where an interconnect tree is 
modeled by a distributed RC circuit and a source is 
modeled by a fixed-value driver resistor (connected to 
a voltage source). 

In order to handle multiple source-sink pairs, we 
introduce a weighted Elmore delay formulation. 

where W E  and I E  are respectively the (wire) width and 
length of edge E ,  Kp, Kz, . . . , ICs are constants only 
depending on the IC or MCM fabrication technology, 
and f " j (E ,  E') ,  gij(E) and Hij (E)  are constants only 
depending on the topology of the MSIT. 

Assume that Xij's are normalized, the objective 
function (1) becomes: 

t ( M S I T ,  Q, W )  (3) 

Nl Estnk(MSrT) 
l E  . lEI 

K3. F(E,E ' ) . -  + 
W E  where t i j ( (MSIT ,G ,W)  is the Elmore delay [8] be- E,E' EMSIT 

1; tween the source Ni and the sink N j .  It is a function 
of the grid G and the wiresizing solution W ,  with the 

With these definitions, we give the general formu- 
lation of the multi-source interconnect tree wiresizang 
(MSWIS) problem as follows: 

K 4 .  G ( E ) . $  + K5. H ( E ) . -  
W E  penalty weight X i j  to indicate its priority. EEMSIT  EEMSIT  

where 
xii . c KO = 

N,Esrc(MSIT),Nl Esink(MS1'T) 

Formulation 1 Given an MSIT, a grid G and a set 
of possible wire width choices, the MSWS problem for 
de lay  minimization is to determine a wiresizing solu- 
tion MI which gives a width assignment W E  for ev- 
ery edge E under G, such that the weighted delay  
t ( M S I T ,  Q, W )  is minimized. 

When there is only one source in an interconnect tree, 
the M S  WS problem becomes the single-source wiresiz- 
ing (SSWS) problem studied in [7, 41. Also, a slightly 
more general wiresizing problem, the multi-source 
wiresizing problem with a variable grid (MSWS/G) 
will be formulated in Section 4. 

2.2 Weighted Delay Formulation 

Given in [3], the Elmore delay t i j  between source 
Ni andl sink N j  is: 

EEMSIT  

X G  . f i j ( E ,  E') F(E,E ' )  = c 
N,Esrc(MSIT),N, Esink(MS1'T) 

H ( E )  = c 
N,Esrc(MSIT),N, Es ink(MSYT)  

Although this weighted delay formulation for multi- 
ple sources and sinks is very similar to that for the 
single source and multiple sinks in [4], the coefficient 
functions F ,  G and H have very different properties, 
which lead to much higher complexity and very differ- 
ent properties for the MSWS problem when compared 
to the SSWS problem. These properties will be dis- 
cussed in Section 3. 

3 Properties of Optimal MSWS Solu- 
tions 

3.1 Review of SSWS Properties 

When there is only one source in the routing tree, 
each edge has a unique signal flow direction. We can 
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define the “ancestors” and “descendants” with respect 
to the signal flow in the tree. The following properties 
of optimal SSWS solutions were given in [7]. 

A. Separability Given the wire width assignment 
of a path P originating from the source in an SSIT, 
the optimal wire width assignment for each subtree 
branching off from P can be carried out independently. 

B. Monotone Property Given an SSIT, there 
exists an optimal wiresizing solution W such that 
W E  2 WE, if edge E is an ancestor of edge E‘. 

Given two wiresizing solutions W and W’, W dom- 
inates W’ means that W E  2 w(E for every edge E.  

Given a wiresizing solution W on a routing tree, 
for any particular edge E in the routing tree, a local 
refinement on E is the operation to optimize the width 
of E ,  while keeping the assignment of W on the other 
edges. 

C. Dominance Property Suppose that W* is an 
optimal wiresizing solution for an SSIT. If a wiresizing 
solution W dominates W * ,  then any local refinement 
of W still dominates W*.  Similarly, if W is domi- 
nated by W * ,  then any local refinement of W is still 
dominated by W*. 

The presence of multiple sources greatly compli- 
cates the wiresizing problem. For example, with mul- 
tiple sources, even a monotone wiresizing is not well 
defined. Nevertheless, our research have revealed a 
number of interesting properties of the optimal wire- 
sizing solutions for an MSIT, some of which general- 
ize the results on the SSWS problem, and others are 
unique for the MS WS problem. 

3.2 Decomposition of an MSIT 

In order to reduce the complexity with the MSWS 
problem, we decompose an MSIT into a source subtree 
(SST) and a set of loading slsbtrees (LSTs) (see Figure 
1). The SST is the subtree spanned by all source 
nodes in the MSIT. After we remove the SST from the 
MSIT, the remaining segments form a set of subtrees, 
each of them is called an LST. When every pin of an 
MSIT can be a source at different times, the SST is 
the entire MSIT and there is no LST. 

Parallel to the ancestor-descendent relation in an 
SSIT, the left-right relation is introduced in an MSIT. 
We choose an arbitrary source as the leftmost node 
Lsrc. The direction of the signal (current) flowing 
out from Lsrc is the right direction along each edge E .  
Under such definitions, the signal in any LST always 
flows rightward, but the signal may flow either leftward 
or rightward in an edge in the SST. 

lNote that SST defined in this paper is different from that 
defined in [7], where SST is used to denote a single stem tree. 

A Source YT 

Figure 1: An MSIT can be decomposed into a source 
subtree SST, and a set of subtrees (three LSTs here) 
branching off from the SST. 

3.3 Properties of Optimal MSWS Solu- 
tions 

A. LST Separability 

Theorem 1 Given the wire width assignment of the 
SST, the optimal width assignment for  each LST 
branching 08 from the SST can be carried out inde- 
pendently. Furthermore, given the wire width assign- 
ment of both the SST and a path P originated from 
the root of an LST, the optimal wire width assignment 
f o r  each subtree branching off from P can be carried 
out independently. 

B. LST Monotone Property 

Theorem 2 For an MSIT, there exists an optimal 
wiresizing solution W* where the edge widths de- 
crease monotonically rightward within each LST in the 
MSIT. 

C. SST Local Monotone Property 

Given an MSIT, for any edges El and E2 within a 
segment S ,  it is not difficult to show that F(E1,  E2) 
is an invariant 4 ( S )  if El is left to E2, and F(E1,  Ez)  
is another invariant Fr(S) if El is right to Ez. 

Theorem 3 There exists an optimal wzresizang solu- 
tion for  an MSIT, such that the edge widths wathan 
each segment is monotone: (I) i f  Fl(S) > Fr(S), the 
edge widths in S decrease monotonically rightward. 
(2) if Fz(S) = F,(S), the edges in S have the same 
width. (3) if Fi(S) < Fr(S), the edge widths in S 
increase monotonically rightward. 

Of course, the local monotone property holds for 
segments in LSTs, where the Fi(S) is always greater 
than F‘(S) (in fact, F,(S) = 0) and the edge widths 
always decrease rightward, just as given by the LST 
monotone property. 

D. Dominance Property 
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Theorem 4 With respect to the definitions of the lo- 
cal refinement operation and the dominance relation 
an Section 3.1, the dominance property holds for the 
MSWS problem. 

Although the dominance property was proven based on 
the ancestor-descendant relation in [7] for the SS WS 
problern, we showed that it is a general property nei- 
ther dependent on the ancestor-descendent relation, 
nor on the left-right relation. 

Theorem 4 enables efficient computations of lower 
and upper bounds of the optimal wiresizing solution 
by the G WSA algorithm in [7]. It uses the local refine- 
ment operation iteratively to tighten the lower bound 
or the upper bound for one edge at a tree. A much 
more powerful refinement operation, bundled refine- 
ment operation, which may tighten the lower bound 
or the upper bound for a number of edges by only one 
operation, will be introduced in the next section. 

4 Properties of Optimal MSWS/G So- 
lu tions 

Up to now, both the MSWS problem defined in this 
paper and the SS WS problem defined in all previous 
work [7, 4, 11, 101 were only investigated and solved 
using a fixed grid. The grid controls how often the 
wire wadths are allowed to change. However, it is dif- 
ficult to choose a proper grid structure. For the best 
accuracy, a very fine, uniform grid is usually chosen, 
which results in very high memory usage and compu- 
tation time due to the large number of edges. We now 
investigate methods to obtain the optimal wiresizing 
results using a non-uniform and coarser grid. 

A novel contribution of our work is to introduce a 
variable-grid formulation for the MS WS problem. The 
grid maybe finer in some regions but coarser in others. 
Moreover, we begin with a coarser grid then proceed to 
a finer one. Theorem 5 to be presented in Section 4.2 
justifies this strategy and leads to much more efficient 
algorithms with the same accuracy when compared 
with previous work. 

All properties in this section hold for both the 
MS WS problem and the SS WS problem, but we shall 
concentrate on the MS WS problem because the SS WS 
problem can be treated as a special case. 

4.1 Grid Refinement and Bundled Edges 

Given an MSIT, let 6 0  be the grid with each seg- 
ment in the MSIT as an edge, GF the uniform grid with 
the finest grid unit 6 everywhere (6 is determined by 

the design rules). If each edge in grid corresponds 
to one or several edges in grid G’, 9’ is a refinement 
of G. A grid 6 is valid only if G is a refinement of GO 
and the length of every edge is a multiplle of 6. Then, 
among all valid grid, GO is coarsest and !SF is finest. 

With these definitions, the variable-grid multi- 
source wiresizing (MSWS/G) problem, can be formu- 
lated as follows: 

Formulation 2 Given an MSIT, the ,finest unit 6 ,  
and a set of possible wire width choices, ,the MSWS/G 
problem for delay minimization is to determine both 
a grid G and a wiresizing solution W ,  such that the 
weighted delay t ( M S I T ,  Q, W )  is minimized. 

The dominance relation can be extended to consider 
the variable-grid cases. 

Definition 1 (Dominance) Given two wiresizing 
solutions W and W‘, W‘ dominates W if wk 2 W E  
for every edge E under GF. 

Definition 2 (Bundled Edge) Given an MSIT, a 
segment S and the finest grid GF,  let E11, . . . , Ep be a 
maximal sequence of successive edges under GF,  within 
S and with the same wire width in the optimal wiresiz- 
ing solution under G F ,  we say that they form a bundled 
edge. 

Corollary of Theorem 3 Each segment in an MSIT 
has at most T bundled edges where T is the number of 
possible wire width choices. 

We shall compute the optimal width for each bun- 
dled edge directly, instead of treating it as a sequence 
of edges of length 6 under the grid Q F .  

4.2 Bundled Refinement Operations 

Let W be a wiresizing solution which dominates 
the optimal solution W * ,  and E be an edge under 
the current grid G and in segment S.  Without loss 
of generality, we assume PI(,”) 2 F,(S) and treat E 
as two edges El and z. El is the left end of E and 
with length 6, a is the remaining part of E (recall 6 
is the grid unit in the finest grid G F ) .  Let wk, be the 
optimized width for El based on the objective function 
(3) while keeping the assignment of W on and any 
edge E‘ other than E. Then, WE, is regarded as a 
refined upper bound of the entire edge E (not only El). 
This operation is called a bundled refinement operation 
for the upper bound (BRU). 

The rational for the BRU operation is as follows: 
if Fl(S) 2 F,.(S), El is always wider than all edges 
under G p  in (the local monotone property), and 
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a refinement of an upper bound of El also gives an 
(possibly refined) upper bound for any edge under GF 
in z. Nevertheless, E will not be divided into El 
and % when performing the BRU operation on edges 
other than E.  

Similarly, the bundled refinement operation for the 
lower bound (BRL) can be defined for a wiresizing so- 
lution W dominated by w*. Again, assuming Fl(S) > 
Fr(S), we treat E as two edges E, and E,. E, is the 
right end of E and with length 5 ,  is the remaining 
part of E.  Let w>, be the optimized width for E,. 
based on the objective function (3) while keeping the 
assignment of W on E, and any edge E' other than 
E.  Then, w& is regarded as a refined lower bound of 
the entire edge E.  

We have proven the bundled refinement property: 

Theorem 5 Let W* be an optimal wiresizing solution 
under G F .  If a wiresizing solution W domanates W', 
then the wiresizing solution obtained b y  any BRU op- 
eration under any grid 6 on W still dominates W*.  
Similarly, if W is dominated by W * ,  then the wiresiz- 
ing solution obtained b y  any BRL operation under any 
grid 6 on W is still dominated b y  W*. 

5 Optimal Wiresizing Algorithm 

Given an MSIT, we first compute a lower bound 
and an upper bound of the optimal wiresizing solution. 
If the lower bound and the upper bound meet, which 
is very likely in practice, we get the optimal wiresizing 
solution immediately. Otherwise, a bounded enumera- 
tion technique combined with a dynamic programming 
technique is carried out between the lower and upper 
bounds where they do not meet. 

5.1 OWBR Algorithm 

Compared with the G WSA algorithm [7,4] working 
on a fixed grid to refine the lower/upper bounds of the 
optimal wiresizing solution, our Optimal Wiresizing 
algorithm with Bundled Refinement (0 WBR)  refines 
both the wiresizing grid and the lower/upper bounds 
of the optimal wiresizing solution for an MSIT. 

Starting with the coarsest grid GO, we perform BRU 
and BRL iteratively through an MSIT as follows. We 
first assign the minimum width to all edges (in this 
case, an edge is a segment in the M S I T ) ,  then tra- 
verse the MSIT and perform BRL operation on every 
edge. This process is repeated until no improvement 
is achieved on any edge in the last round of traversal. 
The result is a lower bound of the optimal wiresizing 

solution. Similarly, we assign the maximum width to 
all edges and perform BRU operations, obtain an up- 
per bound of the optimal wiresizing solution. This is 
the first pass of 0 WBR. 

After each pass,  we check the lower and upper 
bounds. If there is a gap between the lower bound 
and the upper bound for an edge E (called an uncon- 
vergent edge) and its length is still larger than 6, we 
divide E into two edges of almost equal lengths (they 
may differ by S in order to maintain a valid grid), each 
of which inherits the old lower and upper bounds. Af- 
ter the refinement of all unconvergent edges, another 
pass of lower/upper bound refinements is carried out 
on all unconvergent edges in the refined grid. 

This process is repeated until we either have the 
identical lower and upper bound for all edges under 
current grid, or each unconvergent edge is of length S. 

Definition 3 If a wiresizing solution W dominates 
the optimal solution W* and can not be further refined 
b y  any local refinement operation under the finest grid 
GF,  W is an GF-tight upper bound. Similarly, W is 
an Gptight lower bound if W is dominated b y  W* 
and can not be further refined by any local refinement 
operation under 6 F 2 .  

Theorem 6 The lower and upper bounds provided b y  
0 WBR are Gp-tight. 

Theorem 7 The worst-case complexity of GWSA is 
O(r  . n3). The average-case complexity of OWBR is 
O(T . m3 . in4 no). 

Where, r is the number of wire-width choices, m is 
the number of segments in the MSIT, n is the total 
wire length of the MSIT and no is the wire length of 
the longest segment in the MSIT (both in terms of 6). 
Note that m 5 2(k-l) ,  where IC is the number of pins. 
Since k is a constant bounded by the size of the largest 
multi-source net (normally no larger than 32), m is 
also a constant, plus Inno << n, OWBR is much more 
efficient than G WSA. This has been further confirmed 
by experimental results. 

5.2 Bounded Enumeration 

Because the separability and the monotone property 
hold in LSTs, the optimal single-source wiresizing al- 
gorithm, named 0 WSA [7], can be used for LSTs. The 
0 WSA algorithm is a dynamic programming method 

'There may exist more than one Pptight upper (or lower) 
bounds of an W* 
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to compute an optimal wiresizing solution between the 
lower and upper bounds. 

Without the separability in SST, the wire width as- 
signment for unconvergent edges in the SST need to 
be enuimerated subject to the local monotone property. 

Our experiments show that 0 WBR gives the con- 
vergent bounds on all edges in an MSlTfor most cases. 
For those cases which have unconvergent edges, the 
percentage of unconvergent edges is very small. More- 
over, the gap between the lower and upper bounds 
on each unconvergent edge is also very small (usually 
being one in our experiments). Therefore, the enumer- 
ation procedure on unconvergent edges in the SST is 
very fast in practice. 

6 Experimental Results 

We have implemented the OWBR algorithm and 
tested it on a large number of MSITs for both the 
MCM and the IC technologies. We shall present both 
the comparison of different wiresizing solutions and 
the comparison between the OWBR algorithm and 
the G WSA algorithm. The delays reported in this sec- 
tion are computed using HSPICE. The use of HSPICE 
simulation results, instead of calculated Elmore delay 
values, verifies not only the quality of our MS WS solu- 
tions but also the validity of our interconnect modeling 
and the correctness of our MSWS problem formula- 
tion. 

Technology: 1 CMOS I MCM I 
Driver Resistance(C2) I 156 I 25 I 

c 
r 

Wire Resist a x e (  ill 0 j 0.044 
Loading Capacitance(fF) 3.720 1000 

Wire Capacitance(aFlpm2) 1 41.3 1 :::: 1 . .  I 

ringing Capacitance(aF/pm) I 150 1 50.4 
Finest Grid Unit(pm) I 10 1 100 

Table 1: Parameters for CMOS and MCM designs. 

The parameters used in the optimal wiresizing algo- 
rithms and HSPICE are summarized in Table 1. The 
wire width choices are {W~,2Wl,3Wl,4Wl,SWl},  
where W1 is the minimum wire width (0.95,um in 
the IC! technology and 10,um in the MCM technol- 
ogy). Note that our algorithms are still valid if the 
wire widths are not integral multiples of the minimum 
width. 

6.1 Comparison of Different Wiresizing 
Solutions 

A. Results on Simple Artificial Nets Let 

min-width be the wiresizing solution with wire width 
W1 everywhere, optssws be the wiresizing solution 
given by the optimal SSWS algorithms[7, 41, and 
opt-msws be the wiresizing solution given by our op- 
timal MSWS algorithms. Results on an 4-pin H- 
topology interconnect tree where each pin can be both 
a source and a sink are shown in Table 2. Compared to 
the min-width solutions, the opt-ssws solutions may 
have larger maximum delay (along a net) and consume 
larger routing area, while our opt-msws solutions re- 
duce the maximum delay and the (weighted) average 
delay by up to 33% and 27%, respective1,y. The single- 
source wiresizing method is clearly not applicable to 
the MS WS problem. 

B. Results on Industrial Nets We also tested 
our algorithms on several multi-source nets provided 
by Intel. These nets were extracted from the top- 
level floorplan of a high-performance microprocessor. 
Most pins of these nets can serve as both inputs and 
outputs, and all pairs between sources and sinks (ex- 
cluding feedthrough pins) are considered1 to be timing 
critical. We use the l-Steiner tree algorithm [9] to 
route these nets. As shown in Table 3, the opt-msws 
solutions consistently outperform the min-width solu- 
tions with as much as 36% and 17% reduction on the 
maximum delay and the average delay. 

It is interesting to observe that although the 
(weighted) average delay is the objective of our al- 
gorithms, all experimental results show that this for- 
mulation reduces the maximal delay as well. Also, 
the delay reduction for nets with larger span is more 
significant. 

6.2 Speed-up Using Variable (Grid Com- 
putation 

Ten %pin nets with pins randomly distributing in a 
1000 x 1000 grid and routed by the l-Steiner algorithm 
are wiresized. The CPU times used by the 0 WBR al- 
gorithm and the G WSA algorithm to obtain the lower 
bound and the upper bound of the optimal solution 
are reported in Table 4. We observed speed-ups rang- 
ing from a factor of 2 orders of magnitude to 3 orders 
of magnitude. 

7 Conclusions and Future Work 

The results in this paper have shown convincingly 
that proper sizing of the wire segments in multi-source 
nets can lead to significant reduction in the intercon- 
nect delay. We have also developed an efficient wire- 
sizing algorithm using a (coarse) variable grid , which 
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Net Length 300 p m  
IC Wiresizing min-width optssws optlnsws 

Maximum Delay (ns) 0.345 0.347(+0.6%) 0.287(-16.8%) 
Average Delay (ns) I 0.303 0.290(-4.3%) 0.268(-11.5%) 
Normalized Area I 1 2.13 2.33 

Net Length 3000 p m  
MCM Wiresizing min-width optssws optmsws 

Maximum Delay (ns) 0.417 0.425(+1.9%) 0.355(-14.86%) 
Average Delay (ns) 0.361 0.359(-0.6%) 0.321(-11.1%) 
Normalized Area 1 2.39 2.00 

Table 2: Comparison of min-width, opt-ssws and opt-msws solutions on a 4-source tree with H-topology 

3000 pm 
min-width optssws optmsws 

2.58 2.47(-4.3%) 1.73(-32.7%) 
2.08 1.89(-9.1%) 1.55(-25.5%) 

1 2.42 3.44 
30000 pm 

min-width optssws optmsws 
4.76 4.94(+4.3%) 3.23(-32.1%) 
3.70 3.46(-6.5%) 2.71(-26.7%) 

1 2.49 3.44 

I net length 

GWSA Run Time ( s )  
OWBR RunTime (s) 

Speedupfactor 

1.000 
2.006 
2.020 
3.039 

113.18 39.15 42.52 87.82 66.60 87.12 66.10 49.75 160.98 31.88 
0.98 0.01 0.03 0.3 0.05 0.17 0.03 0.05 1.83 0.2 
2 100 2 1000 2 1000 2 100 2 1000 2 100 2 1000 2 100 2 100 2 100 

Table 3: Multi-source wiresizing results on several nets in an Intel microprocessor layout 

Table 4: Performance comparison between 0 WBR and G WSA 

achieves the same accuracy in the wiresizing solutions 
as the fixed grid based optimal wiresizing algorithms 
on the finest grid, but uses much less memory and 
computation time. To the best of our knowledge, it 
is the first work which presents an in-depth study of 
both the optimal wiresizing problem for multi-source 
interconnect trees and the optimal wiresizing problem 
using a variable grid. 

In order to further reduce the interconnect delay in 
multi-source nets, we plan to study the simultaneous 
driver and wiresizing problem for multi-source nets. 
Also, we would like to develop efficient multi-source 
wiresizing algorithms for multiple-objective optimiza- 
tion to minimize delay, area, and power dissipation 
and explore the tradeoff among these objectives. 

The authors would like to 
thank Heming Chen at Intel Design Technology De- 
partment for providing the multiple source routing ex- 
amples, and Cheng-Kok Koh and Patrick Madden at 
UCLA for their helpful discussions. 

Acknowledgments 

References 

[l] K. D. Boese, A. B. Kahng, and G. Robins, “High- 
Performance Routing Trees With Identified Critical Sinks”, 
Proc. ACM/IEEE DAC, 1993, pp. 182-187. 

[2] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and 
C. K. Wong, “Provably Good Performance-Driven Global 

Routing“, IEEE Trans. on CAD, 11(6), June 1992, pp. 739- 
752. 

[3] J. Cong and L. He, “Optimal Wiresizing for Inter- 
connects with Multiple Sources”, UCLA Computer Sci- 
ence Dept. Tech. Report CSD-00091, 1995 (available a t  
http://ballade.cs.ucla.edu/:8080/ tong/publications.htm). 

[4] J. Cong and C.-K. Koh, “Simultaneous Driver and Wire 
Sizing for Performance and Power Optimization”, IEEE 
Trans. 

[5] J. Cong and P. H. Madden, “Performance-Driven Routing 
with Multiple Sources”, Proc. IEEE ISCAS, 1995, pp. 203- 
206. 

[6] J. Cong, K. S. Leung, and D. Zhou, iiPerformance- 
Driven Interconnect Design Based on Distributed RC Delay 
Model”, Proc. ACM/IEEE DAG, 1993, pp. 606-611. 

[7] J. Cong and K. S. Leung, “Optimal Wiresizing Under the 
Distributed Elmore Delay Model”, IEEE Trans. on CAD, 
14(3), March 1995, pp. 321-336. 

[8] W. C. Elmore, “The Transient Response of Damped Linear 
Network with Particular Regard to Wideband Amplifier”, 
J .  Applied Physics, 19(1948), pp. 55-63. 

[9] A. B. Kahng and G. Robins, “A New Class of Iterative 
Steiner Tree Heuristics with Good Performance”, Proc. 
IEEE ICCAD, July 1992, pp. 893-902. 

[IO] N. Menezes, S. Pullela, and L. T. Pilegi, “Simultaneous 
Gate and Interconnect Sizing for Circuit-Level delay Opti- 
mization”, Proc. ACM/IEEE DAG, 1995, pp. 690-695. 

1111 S. S. Sapatnekar, “RC Interconnect Optimization Under 
the Elmore Delay Model”, Proc. ACM/IEEE DAG, 1994, 
pp. 387-391. 

on VLSI,  2(4), December 1994, pp. 408-423. 

574 

http://ballade.cs.ucla.edu/:8080

