
~,,%2)i,.~#~ $ 1 , , 4 . , ~, .. ;,, ,? ,

ELSEVIER INTEGRATION, the VLSI Journal 21 (1996) 1 94

lUt lll11111
theVLSIjournal

INTEGRATION Report (Invited)

Performance optimization of VLSI interconnect layout
Jason Cong*, Lei He, Cheng-Kok Koh, Patrick H. Madden

Department of Computer Science, School of Engineering and Applied Science, University of California,
4711 Boelter Hall, Los Angeles, CA 90095, USA

Received 8 July 1996; revised 15 August 1996

Abstract

This paper presents a comprehensive survey of existing techniques for interconnect optimization during the VLSI physical
design process, with emphasis on recent studies on interconnect design and optimization for high-performance VLSI circuit
design under the deep submicron fabrication technologies. First, we present a number of interconnect delay models and
driver/gate delay models of various degrees of accuracy and efficiency which are most useful to guide the circuit design
and interconnect optimization process. Then, we classify the existing work on optimization of VLSI interconnect into
the following three categories and discuss the results in each category in detail: (i) topology optimization for high-
performance interconnects, including the algorithms for total wire length minimization, critical path length minimization,
and delay minimization; (ii) device and interconnect sizing, including techniques for efficient driver, gate, and transistor
sizing, optimal wire sizing, and simultaneous topology construction, buffer insertion, buffer and wire sizing; (iii) high-
performance clock routing, including abstract clock net topology generation and embedding, planar clock routing, buffer
and wire sizing for clock nets, non-tree clock routing, and clock schedule optimization. For each method, we discuss
its effectiveness, its advantages and limitations, as well as its computational efficiency. We group the related techniques
according to either their optimization techniques or optimization objectives so that the reader can easily compare the
quality and efficiency of different solutions.

Contents

1. Introduction
2. Preliminaries

2.1. Interconnect delay models
2.2. Driver delay models

3. Topology optimization for high-performance
interconnect
3.1. Topology optimization for total wirelength

minimization
3.1.1. Minimum spanning trees
3.1.2. Conventional Steiner tree algorithms

2 3.2. Topology optimization for path length
3 minimization 21
5 3.2.1. Tree cost/path length tradeoffs 21

11 3.2.2. Arboresences 23
3.2.3. Multiple source routing 26

16 3.3. Topology optimization for delay minimization 28
4. Wire and device sizing 31

17 4.1. Device sizing 31
17 4.1.1. Driver sizing 32
17 4.1.2. Transistor and gate sizing 33

* Corresponding author. Tel.: 1 310 206 2775; Fax: 1 310 825 2273; e-mail: cong@cs.ucla.edu.

0167-9260/96/$15.00 Copyright (~) 1996 Elsevier Science B.V. All rights reserved
PH S01 6 7 - 9 2 6 0 (9 6) 0 0 0 0 8 - 9

2 J. Cong et al . / INTEGRATION, the VLSIJournal 21 (1996) 1-94

4.1.3. Buffer insertion
4.2. Wire sizing optimization

4.2.1. Wire sizing to minimize weighted delay
4.2.2. Wire sizing to minimize maximum delay

or achieve target delay
4.3. Simultaneous device and wire sizing

4.3.1. Simultaneous driver and wire sizing
4.3.2. Simultaneous gate and wire sizing
4.3.3. Simultaneous transistor and wire sizing
4.3.4. Simultaneous buffer insertion and

wire sizing
4.4. Simultaneous topology construction and sizing

4.4.1. Dynamic wire sizing during topology
construction

4.4.2. Simultaneous tree construction, buffer
insertion and wire sizing

5. High-performance clock routing
5.1. Abstract topology generation

5.1.1. Top-down topology generation

37 5.1.2. Bottom-up topology generation 57
38 5.2. Embedding of abstract topology 59
39 5.2.1. Zero-skew embedding 59

5.2.2. Bounded-skew embedding 62
44 5.2.3. Topology generation with embedding 66
47 5.3. Planar clock routing 68
47 5.3.1. Max-Min planar clock routing 68
48 5.3.2. Planar-DME clock routing 69
49 5.4. Buffer and wire sizing for clock nets 70

5.4.1. Wire sizing in clock routing 71
51 5.4.2. Buffer insertion in clock routing 74
51 5.4.3. Buffer insertion and sizing in clock

routing 78
52 5.4.4. Buffer insertion and wire sizing in

clock routing 79
52 5.5. Non-tree clock routing 81
54 5.6. Clock schedule optimization 82
55 6. Conclusion and future work 83
56 References 86

1. Introduction

The driving force behind the rapid growth of the VLSI technology has been the constant reduction
of the feature size of VLSI devices (i.e. the minimum transistor size). The feature size decreased
from about 2 ~tm in 1985, to about 1 ~tm in 1990, and to 0.35-0.5 ~tm today (1996). The prediction
is that it will be reduced to about 0.18 Bm in year 2001 [1]. Such continual miniaturization of VLSI
devices has strong impact on the VLSI technology in several ways. First, the device density on
integrated circuits grows quadratically with the rate of decrease in the feature size. As a result, the
total number of transistors on a single VLSI chip has increased from less than 500000 in 1985
to over 10 million today. The prediction is that it will reach 64 million in year 2001 [1]. Second,
the devices operate at a higher speed, and the interconnect delay becomes much more significant.
According to the simple scaling rule described in [2], when the devices and interconnects are scaled
down in all three dimensions by a factor of S, the intrinsic gate delay is reduced by a factor of
S, the delay of local interconnects (such as connections between adjacent gates) remains the same,
but the delay of global interconnects increases by a factor of S 2. As a result, the interconnect delay
has become the dominating factor in determining system performance. In many systems designed
today, as much as 50-70% of clock cycle are consumed by interconnect delays. This percentage
will continue to rise as the feature size decreases further.

Not only do interconnects become more important, they also become much more difficult to
model and optimize in the deep submicron VLSI technology, as the d i s t r ibu t ed na ture of the in-
terconnects has to be considered. Roughly speaking, the interconnect delay is determined by the
driver/gate resistance, the interconnect and loading capacitance, and the interconnect resistance. For
the conventional technology with the feature size of 1 Bm or above, the interconnect resistance in
most cases is negligible compared to the driver resistance. So, the interconnect and loading gates
can be modeled as a lumped loading capacitor. In this case, the interconnect delay is determined
by the driver resistance times the total loading capacitance. Therefore, conventional optimization

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 3

techniques focus on reducing the driver resistance using driver, gate, and transistor sizing, and
minimizing the interconnect capacitance by buffer insertion and minimum-length, minimum-width
routing. For the deep submicron technology which became available recently, the interconnect re-
sistance is comparable to the driver resistance in many cases. As a result, the interconnect has
to be modeled as a distributed RC or RLC circuit. Techniques such as optimal wire sizing, opti-
mal buffer placement, and simultaneous driver, buffer, and wire sizing have become necessary and
important.

This paper presents an up-to-date survey of the existing techniques for interconnect optimization
during the VLSI layout design process. Section 2 discusses interconnect delay models and gate
delay models and introduces a set of concepts and notation to be used for the subsequent sections.
Section 3 presents the techniques for interconnect topology optimization, where the objective is
to compute the best routing pattern for a net for interconnect delay minimization. It covers the
algorithms based on total wirelength minimization, pathlength minimization, and delay minimization.
Section 4 presents the techniques for device and interconnect sizing, which determines the best
geometric dimensions of devices and interconnects for delay minimization. It includes driver sizing,
transistor sizing, buffer placement, wire sizing, and combinations of these techniques. Section 5
discusses techniques for high-perjbrmance clock routing, including clock tree topology generation
and embedding, planar clock routing, buffer and wire sizing for clock nets, non-tree clock routing,
and clock schedule optimization. Section 6 concludes the paper with suggestions of several directions
for future research.

2. Preliminaries

VLSI design involves a number of steps, including high-level design, logic design, and physical
layout. Designs are generally composed of a number of functional blocks or cells which must be
interconnected. This paper addresses the interconnection problems of these blocks or cells.

A net N is composed of a set of pins {s0,s~, s2,.. . , sn} which must be made electrically connected.
So denotes the driver of the net, which supplies a signal to the interconnect. In some cases, a net
may have multiple drivers, each driving the interconnect at a different time (such as in a signal bus).
These nets are called multi-source nets. The remaining pins in a net are sinks, which receive the
signal from the driver.

The interconnection of a net consists of a set of wire segments (often in multiple routing layers)
connecting all the pins in the net. It can be represented by a graph, in which each edge denotes
a wire segment and each vertex denotes a pin or joint of two wire segments. Interconnections are
generally rectilinear.

In this paper, we will primarily be interested in interconnect trees, in which there exists a unique
simple path between any pair of nodes. We use Path(u, v) to denote the unique path from u to v in
the interconnect tree. dT(u, v) denotes the path length of Path(u, v). The source node So will generally
be referred to as the root of an interconnect tree, each node v in a tree is connected to its parent
by edge el,. We use T~ to denote the subtree of T that is rooted at v. Given an edge e, we use
Des(e) to denote the set of edges in the subtree rooted at e (excluding e), Ans(e) to denote the set
of edges {e ' [e E Des(d)} (again, excluding e), and Te to denote the subtree of T rooted at e, i.e.,
Des(e) tg {e}. The topology of an interconnect tree T refers to an abstraction of T on the Manhattan

4 J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

So

[] T
[]

Fig. 1. The abstract topology of an interconnect tree, and its embedding.

plane, without considering the wire width, routing layer assignment, and all electrical properties. In
this paper, we often use an interconnect tree and its topology interchangeably.

However, we distinguish an interconnect tree T from its abstract topology G, which is a binary
tree (with the possible exception at the root) such that all sinks are the leaf nodes of the binary tree.
The source driver is the root node of the tree, and may have a singleton internal node as its only
child. Consider any two nodes, say u and v, with a common parent node w --- p(u) = p(w) in the
abstract topology; then the signal from the source has to pass through w before reaching u and v
(and their descendants). The topology of an interconnect tree T is an embedding of the abstract
topology G, i.e. each internal node v E G is mapped to a location l(v) = (x~,y~) in the Manhattan
plane, where (x~., y~:) are the x- and y-coordinates, and each edge e E G is replaced by a rectilinear
edge or path. Fig. 1 shows an abstract topology and its embedding (which is not unique). Some
interconnect optimization algorithms first compute a good abstract topology and then generate an
optimal or near-optimal embedding.

The definitions and notation for interconnect tree T also apply to abstract topology G. For example,
we also use Path(u, v) to denote the unique path from u to v in the abstract topology G. Furthermore,
we define the level of a node in an abstract topology. The root node of the abstract topology is at
level 0, and the children of a node at level k are at level k + 1. A node with a smaller level number
is at a higher level of the hierarchy.

In this paper, we are mainly concerned with the Manhattan (rectilinear) distance metrics. We use
d(u, v) to denote the Manhattan distance between points u and v. If edge e connects u and v, then
]el >~d(u,v). Note that we differentiate between d(u,v) and dT(u,v); in general, dT(u,v)>~d(u,v).
The distance between two pointsets P and Q is defined as d(P,Q) = min{d(p ,q) lp E P,q E Q},
while the diameter of a point set P is diameter (P) = max{d(p ,q) lp, q E P}, and the radius of a
point set P with respect to some point c is radius(P) = max{d(p ,c) l p E P}.

An interconnect tree T is evaluated on a number of attributes, including cost and delay. Generally,
the cost of edge e refers to its wire length, and is denoted by le[. For instances where we consider
variably sized wires, with the width of edge e denoted by we, the cost of edge e may refer to its
area (i.e., the product of its length and width, lelwe). ITI denotes the total cost of all edges in tree T.

Let t(u,v) denote the signal delay from node u to node v. Then, t(So, S~) denotes the delay from
source to sink si. For simplicity, we use ti to denote t(So,S~). A brief discussion on the various delay

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 5

models can be found in Sections 2.1 and 2.2. We are also interested in the skew of the clock signal,
defined to be the difference in the clock signal delays to the sinks. One common definition of the
skew of clock tree T is given by skew(T) = maxs,.~cs Iti - tjl.

Let r, c~ and cr denote the unit square wire resistance, unit area capacitance, and unit length
fringing capacitance (for 2 sides), respectively. Then, the wire resistance of edge e, denoted re, and
the total wire capacitance of e, denoted Ce, are given as follows:

rlel
We

ce =c.lelw + fleJ.

We use Cap(v) to denote the total capacitance of T,,. We will use Rd as the resistance of the driver,
and c~, to denote the sink capacitance of si. We will use C a p (J) as the capacitance of all the sink
nodes. We will use sink(T~) to denote the set of sinks in T,.

2.1. Interconnect delay models

As VLSI design reaches deep submicron technology, the delay model used to estimate interconnect
delay in interconnect design has evolved from the simplistic lumped RC model to the sophisticated
high-order moment matching delay model. In the following, we will briefly describe a few commonly
used delay models in the literature of interconnect performance optimization. Although our discussion
will center around RC interconnect, some of the models are not restricted to RC interconnect. For a
more comprehensive list of references on RLC interconnect, the interested reader may refer to [3].

In the lumped R C model, "R" refers to the resistance of the driver and "C" refers to the total
capacitance of the interconnect and the total gate capacitance of the sinks. The model assumes that
wire resistance is negligible. This is generally true for circuits with feature sizes of 1.2 I.tm and
above since the driver resistance is substantially larger than the total wire resistance. In this case,
the switching time of the gate dominates the time for the signal to travel along the interconnect and
the sinks are considered to receive the signal at the same time due to the negligible wire resistance.

However, as the feature size decreases to the submicron dimension, the wire resistance is no
longer negligible. Sinks that are farther from the source generally have a longer delay. For example,
under the path length (or linear) delay model, the delay from u to v in an interconnect tree is
proportional to the sum of edgelengths in the unique u-v path, i.e., t (u ,v) oc ~e,,EPath(u,v)]ewl. The
limitation of the path length delay model is that it ignores the wire resistance but consider only wire
capacitance along the path. Moreover, it ignores the effect of edges not along the path. The merit
of the path length delay model is that routing problems for path length control or optimization are
generally much easier than delay optimization under more sophisticated delay models to be presented
below.

The delay models presented in the remainder of this section consider both wire resistance and
capacitance of the interconnect. Under these models, the interconnect is modeled as an RC tree,
which is recursively defined as follows [4]: (i) a lumped capacitor between ground and another
node is an RC tree, (ii) a lumped resistor between two non-ground nodes is an RC tree, (iii) an RC
line with no dc path to ground is an RC tree, and (iv) any two RC trees (with common ground)
connected together to a non-ground node is an RC tree. We can extend the above definition for
RLC tree easily by considering inductors and RLC lines.

6 J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

Given an RC tree, Rubinstein et al. [4] compute a uniform upper bound of signal delay at every
node, denoted te, as follows:

tp = ~ RkkCk, (1)
all nodes k

where C~ is the capacitance of the lumped capacitor at node k and Rki is defined to be the resistance
of the portion of the (unique) path Path(s0, i) that is common to the (unique) path Path(s0,k). In
particular, Rkk is the resistance between the source and node k. There are a few advantages of this
model: (i) it is simple, yet captures the distributed nature of the circuit; (ii) it gives a uniform
delay upper bound and is easier to use for interconnect design optimization; and (iii) it correlates
reasonably well with the Elmore delay model, which will be discussed next.

The Elmore delay model [5] is the most commonly used delay model in recent works on inter-
connect design. Under the Elmore delay model, the signal delay from source So to node i in an RC
tree is given by [4]

t(so, i) = ~ R e G . (2)
all nodes k

Unlike the upper bound signal delay model in Eq. (1), each sink (and in fact, all nodes in the RC
tree) has a separate delay measure under the Elmore delay model. It is used to estimate the 50%
delay of a monotonic step response (to a step input) by the mean of the impulse response, which is
given by f o t h (t)d t where h(t) is the impulse response. The impulse response h(t) can be viewed
as either (i) the response to the unit impulse (applied at time 0) at time t, or (ii) the derivative
of the unit step response at time t. The 50% delay, denoted ts0, is the time for the monotonic step
response to reach 50% of VBD, and it is the median of the impulse response. 1 It can be shown that
the Elmore delay gives the 63% (= 1 - l /e) delay of a simple RC circuit (with a single resistor
and a single capacitor), which is an upper bound of the 50% delay. In general, the Elmore delay of
a sink in an RC tree is a (loose) absolute upper bound on the actual 50% delay of the sink under
the step input [6].

The main advantage of the Elmore delay is that it provides a simple closed-form expression with
greatly improved accuracy for delay measure compared to the lumped RC model. In the following,
we illustrate that the Elmore delay can be expressed as a simple algebraic function of the geometric
parameters of the interconnect, i.e., the lengths and widths of edges, and parasitic constants such as
the sheet resistance, unit wire area capacitance and unit fringing capacitance of the interconnect.

Consider an interconnect T in Fig. 2. To model an interconnect as an RC tree, an edge e in the
interconnect in (a) can be modeled as a n-type circuit with a lumped resistor of resistance r~ and
two capacitors, each of capacitance c~/2, where re and Ce are the wire resistance and capacitance of
edge e as shown in (b). Other lumped circuit models such as L- and T-type circuits may be used to
model an edge as well [2]. It is also possible to model an edge as a distributed RC line as shown
in (c).

In the case of each wire segment modeled as a n-type circuit as in Fig. 2(b), we can write the
Elmore delay from the source to sink si in terms of the geometry of the interconnect, i.e., le[and

In general, the x% delay, denoted tx, is the delay time for the signal to reach x% of VDD.

J. Con9 et al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94 7

esl~ s,
v 1

e v l ~ - - ~
es2~ '~ S 2

(a) re re

~%C e

(b) (c)

Fig. 2. Modeling of an interconnect tree as an RC tree: (a) an interconnect tree, (b) each edge is modeled as a ~z-type
circuit, and (c) each edge is modeled as an RC line.

w,,, and the parasitics o f the interconnect as follows [7, 8]:

t (So , S i) = ~ F e , (C e , / 2 "~ C a p (u))
e, CPath(s0. si)

= _ _ rCf levi 2
rc~ ~ levi 2 + - - Z
2 e, EPath(so,si) 2 e, CPath(so,s,) We,

le~,l] e, I we,,
- - + r c a E E

e~ EPath(s(r.si) e.CDes(e~) We,

_ _ cslevl +rce ~ ~ le~lle.I + r ~ Z i , (3)
erEPath(so~i) e~,CDes(e,) Wec e, EPath(so. Si) uEsink(T~) We~

where c~,S = c s,3, if sink sj is at node v and c,S: = 0 otherwise. The above algebraic expression allows
analysis o f how topology and wire widths affect Elmore delay, which leads to interconnect topology
optimization algorithms such as [9, 10] and wire sizing algorithms such as [7, 11, 12].

The approximation o f the 50% signal delay by the Elmore delay is exact only for a symmet-
rical impulse response, where the mean is equal to the median [6]. Although the Elmore delay
model is not accurate, it has a high degree of f idel i ty: an optimal or near-optimal solution ac-
cording to the estimator is also nearly optimal according to actual (SPICE-computed [13]) delay

8 J. Con# et al . /INTEGRATION, the VLSI Journal 21 (1996) 1 94

for routing constructions [14] and wire sizing optimization [15]. Simulations by [16] also showed
that the clock skew under the Elmore delay model has a high correlation with the actual (SPICE)
skew. The same study also reported a poor correlation between the path length skew and the actual
skew.

In fact, one can show that the Elmore delay is the first moment of the interconnect under the
impulse response. More accurate delay estimation of the interconnect can be obtained using the
higher orders of the moments. In the remainder of this section, we show how to compute the
higher-order moments efficiently and present several interconnect delay models using the higher-order
moments.

We first define m o m e n t s of the impulse response of a linear circuit. Let h(t) be the impulse
response at a node of an interconnect (which may be an RC interconnect, an RLC interconnect,
a distributed-RLC or transmission line interconnect). Let Vin(t) be the input voltage of the linear
circuit, v(t) be the output voltage of a node of interest in the circuit, Vin(s) and V(s) be the Laplace
transform of vin(t) and v(t) , respectively; then, H (s) = V(s)/V.,,,(s) is the transfer function. Applying
Maclaurin expansion to the transfer function H (s) , which is the Laplace transform of h(t) , we
obtain

H (s) = h (t) e - S t d t = t ' h (t)d t . (4)
i=0 i. J0

The ith-moment of the transfer function mi is related to the coefficient of the ith power of s in Eq.
(4) by z

mi = ~. t ih (t)d t . (5)

For any linear system, the normalized transfer function can also be expressed as

1 + ats + a2s 2 + . . . + a,,s"

H (s) = 1 + bv~ + b2s 2 + ' ' ' + b m Sin' (6)

where m > n. Expanding H (s) into a power series with respect to s, we have

H (s) = mo - mls + m2s 2 (7)

The Ehnore delay model is in fact the first moment m~ = f o t h (t) d t of the impulse response
h(t) . Note that ml = bl - al where al and bl are terms in Eq. (6), and it can also be shown that
the upper bound delay tp (Eq. (1)) is in fact bl [4].

Several approaches have been proposed to compute the moments at each node of a lumped RLC
tree, where the lumped resistors and lumped inductors are floating from the ground and form a tree,
and the lumped capacitors are connected between the nodes on the tree and the ground [19-21].

In the following, we present a method proposed by Yu and Kuh [21] for moment computation in
an RLC tree. Consider a lumped RLC tree with n nodes. Let k be the parent node of node k, and
Tk be the subtree rooted at node k. Let Ck be the capacitance connected to node k, Rk and Lk be the

2 From the distribution theory, the ith moment of a function h(t) is in fact defined to be f~'~ t'h(t)dt. In some previous
works [17, 18, 3], a variant of the moment definition mi = ((1) ' / i!) f ~ tih(t)dt was used. In this case, H(s) in Eq. (7)
becomes H(s) =mo + m~s + m2s 2 +

J. Cong et a l . / I N T E G R A T I O N , the VLSI Journal 21 (1996) 1-94 9

resistance and inductance of the branch between k and k. Let Hk(s) = Vk(s)/Vin(s) be the transfer
function at node k, where Vk(s) is the Laplace transform of the output voltage at k, denoted vk(t).
Let ik(t) be the current flowing from k to k; then its Laplace transform Ik(s) is given by [21]

5(s) = E Cjs .(s). (8)
jcr~

Let Rki and L~ be the total resistance and inductance on the portion of the path Path(s0, i) that is
common to the path Path(s0,k), respectively; then, the total impedance along the common portion
of paths Path(s0, i) and Path(s0,k) is Zk~ = R~ + s . Lk~. The voltage drop from root So to node k is
[21]

Vin(s)- V ~ (s) = E Z ~ i C i s V i (s) . (9)
i

Then the transfer function Hk(s) = Vk(s)/Vin(s) becomes [21]

Hk(s) = 1 - - ~ Z k i C i s H i (s) . (10)
i

P be the pth-order moment of Hk(s). Expanding Hk(s) and Hi(s) in Eq. (10) by the expression Let m k
in Eq. (7), and equating the coefficients of powers of s, the pth-order moment at node k under a
step input can be expressed as [21]

0
p 1

'

if p = - 1 ,
if p = 0 ,

i f p > 0 .
(l l)

P (for p > 0) Let C~'~ = ~jcvmPCj , which is the total pth-order weighted capacitance of irk; then m~
can be written recursively as [21]

p ~" 0 if k is the root So,
mk = "[mP + RkC~-' - LkC;'~ 2 i f k C s 0 . (12)

Therefore, given the (p - 1)th-order and (p - 2)th-order moments, the pth-order moments of all
nodes can be computed by first computing C~ -~ and C~ -2 in O(n) time in a bottom-up fashion.

p Then, m~ can be computed in a top-down fashion for all nodes in the interconnect tree in O(n)
time. Therefore, the moments up to the pth-order of an RLC tree can be computed in O(np) time.

For moment computation of a tree of transmission lines, several works first model each trans-
mission line as a large number of uniform lumped RLC segments [17, 22] and then compute the
moments of the resulting RLC tree. However, this approach is usually not efficient nor accurate.
Kahng and Muddu [23] showed that using 10 uniform segments to approximate the behavior of a
transmission line entails errors in the first and second moments of around 10% and 20%, respec-
tively. In [23,21], the authors improve both accuracy and efficiency by considering non-uniform
segmentation of the transmission line. Yu and Kuh [21] found that for exact moment computation
of up to the pth-order, each transmission line should be modeled by [3p/2J non-uniform lumped
RLC segments. Combining the non-uniform lumped RLC segment model by [23, 21] with the mo-
ment computation algorithm by [21], the moments of a transmission line tree interconnect up to the

10 J. Con9 et a l . / I N T E G R A T I O N , the VLSI Journal 21 (1996) 1 94

order of p can be computed in O(np 2) time, where n is the number of nodes in the tree. Another
work of Yu and Kuh [24] computes the moments of a transmission line tree interconnect directly,
without first performing non-uniform segmentation of the transmission lines. This algorithm also has
a computational complexity of O(np2).

Higher-order moments are extremely useful for circuit analysis. In general, higher-order moments
can be used to improve the accuracy of delay estimation. For example, Krauter et al. [25] proposed
metrics based on the first three central moments, which are the moments of the distribution of the
impulse response. From the distribution theory, the second central moment provides a measure of
the spread of h(t) and the third central moment measures the skewness of h(t). Since the accuracy
of the Elmore delay is affected by the spread and skewness of the impulse distribution, the three
central moments may be used to reduce the relative errors of Elmore delay [6]. 3

Another advantage of using higher-order moments for circuit analysis is that it can handle the
inductance effect. When the operating frequencies of VLSI circuits are in the giga-hertz range and
the dimension of interconnect is comparable to the signal wavelength, inductance plays a significant
role in signal delay and signal integrity. An inherent shortcoming of the Elmore delay model and
other simpler delay models is that they cannot handle the inductance effect.

The asymptotic waveform evaluation (AWE) method proposed by Pillage and Rohrer [17] is an
efficient technique to use higher-order moments in interconnect timing analysis which can handle
the inductance effect. It constructs a q-pole transfer function/~(s), called the q-pole model,

q ki
/ J (s) = (13)

i - IS -- P i '

to approximate the actual transfer function H(s), where Pi are poles and ki are residues to be
determined. The corresponding time domain impulse response is

q

t~ t) = Eki ep't. (14)
i--I

The poles and residues in H(s) can be determined uniquely by matching the initial boundary con-
ditions, denoted m_l, and the first 2 q - 1 moments mi of H(s) to those of /Q(s) [17]. The choice
of order q depends on the accuracy required but is always much less than the order of the circuit.
In practice, q <~ 5 is commonly used.

When q is chosen to be two, it is known as the two-pole model [26-30]. In this model, the first
three moments m0 (which is normalized), ml, and m2 are used. A closed-form expression of m2 is
given and an analytical formula relating the performance of an RLC interconnect to its topology and
geometry is derived by Gao and Zhou [28]. This provides a closed-form formula for the topology
optimization algorithm in [27]. However, the expression of m2 is much more complicated than that
of m~ (the Elmore delay). Moreover, the method of [26, 28, 30] calculates the second moment by
replacing the off-path admittance by the sum of the total subtree capacitance. This is correct only
to the coefficient of s in the subtree admittance. Thus, such a method underestimates the subtree
impedance. As a result, the response obtained is a lower bound of the actual response, and the
delay estimate is an upper bound on the actual delay. To compute the second moment exactly, the

3 The three moments were also used to detect underdamping, determine the conditions of critical damping for series
terminated transmission line nets, and estimate the delay of the properly terminated line [25].

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 11

admittance of off-path subtrees must be calculated correctly up to the coefficient of s 2. This was
done in [19,31,21].

Based on the two-pole methodology, Kahng and Muddu [31] derived an analytical delay model
for RLC interconnects. Consider a source driving a distributed RLC line with total resistance Re,
total inductance LL, and total capacitance CL. The source is modeled as a resistive and inductive
impedance (Zd = Rd + SLd). The load CT at the end of the RLC line is modeled as a capacitive
impedance (ZT = 1/sCT). The transfer function is truncated to be [31]

1
H(s) ~ 1 + bls + b2 $2' (1 5)

where

bt = RaCk + RLCT + - - + RLCT,

RaRL C~ RdRL CL CT (RLCL)2 R2L CL CT L~CL
b2 + 2 + 2 ~ ÷ ~ + La CL + La CT ÷ - - _ _ + LL CT.

The first and second moments ml and m2 can be obtained from bl and b2, i.e., ml ---- bl and m2 =
b~ -- b2. The authors separately derive the sink delay at the load CT, denoted tT, from the two-pole
response depending on the sign of b~ - 4b2 [31]:

{Kr
mt + v/4m2 - 3m~ if b~ - 4b2 > 0, i.e., real poles,

2

2(m~ - m2) if b~ - 4b2 < 0, i.e., complex poles,
tT = Kc x/3m 2 _ 4m2

Kd ~ if b~ - 4b2 = 0, i.e., double poles,

where Kr, Kc, and Kd are functions of bl and b2 as described in [31]. The model is further extended
to consider RLC interconnection trees [31] and ramp input [32].

While the methods in [31,32] used only the first two moments, Tutuianu et al. [33] proposed an
explicit RC-circuit delay approximation based on the first three moments of the impulse response.
The model uses the first three moments (m~,m2, and m3) to determine stable approximations of
the first two dominant poles p~ and p2 of H(s). By matching the first two moments of the actual
transfer function, the two residues kl and k2 can be obtained. The explicit approximation of the delay
point is a single Newton-Raphson iteration step, using the first-order delay estimate (which can be
expressed in terms of the poles and residues) as the initial guess. The reader is referred to [33] for
the exact expressions of p~, p2, kj, k2, and the delay function.

2.2. Driver delay models

In interconnect-driven layout designs, gate/buffer design need to be optimized according to the
interconnect load. Moreover, the design of a gate/buffer also affects interconnect design and opti-
mization considerably. It is common that each gate or buffer has a set of implementations with
varying driving capabilities. These implementations are normally characterized by input (gate) ca-
pacitance, effective output (driver) resistance, denoted Rd, and internal delay, derived from either
analytical formulas or circuit simulation.

12 J. Con9 et aL / INTEGRATION, the VLSI Journal 21 (1996) 1-94

(a)

Rmin = Rp d p ~ . ~ ~
= Rndn,

(b)

Fig. 3. A switch-level RC model of (a) an n-transistor and (b) an inverter with equal pull-up and pull-down strength by
adjusting the p- and n-transistor sizes dp and dn, respectively.

In the following, we collectively refer to gates, buffers and even transistors as drivers. Given an
input signal, we are interested in modeling the response waveform of a gate, buffer or transistor at
the output of the driver. We define the Jall time, denoted tr, as the time for the response waveform
to fall from 90% to 10% of its steady-state value. The delay time for the falling signal, denoted
tdf, is the time difference between input transition (50%) and the 50% output level. Similarly, we
can define the rise time, denoted tr, and the delay time for the rising signal, denoted tdr. We use
td to denote delay time for the signal if we do not distinguish between rising and falling signal. In
general, the input has an input transition time, denoted tt, which is the input rise or fall time.

We first use a transistor to illustrate the simple switch-level RC model, where a transistor is
modeled as an effective resistance discharging or charging a capacitor [34]. Fig. 3(a) shows a simple
switch-level RC model of an n-transistor. Let the minimum n-transistor resistance be Rn. The gate
capacitance and output diffusion capacitance of the minimum n-transistor are denoted d' 8 and C~,
respectively. We normalize the transistor size such that a minimum-size transistor has unit size.

In the simple switch-level RC model, for an n-transistor of size d ~> 1, its effective resistance Rd
is Rn/d. The capacitances are directly proportional to the transistor sizes, i.e., the gate capacitance
is Cgd and the diffusion capacitance is C~d. Assuming a step input, the fall time of the signal at
the gate output is given by [34]

CL
tf = k (16)

n
flmin d VDD

where k is typically in the range of 3-4 for values of VDD in the range of 3-5, fi~n is the gain
factor for the minimum n-transistor, and CL is the loading capacitance driven by the transistor. The
delay time for the falling signal can be approximated to be t~f = tr/2 [34]. Note that since the
effective resistance Rd is proportional to l/fimind, we can simply approximate tdf by the product
of the effective transistor resistance and the loading capacitance CL. The above discussion can be
applied to a p-transistor by simply replacing the superscript n by p and the fall time by the rise
time.

An inverter consists of an n-transistor and a p-transistor, and can be modeled by the simple
switch-level RC model as shown in Fig. 3(b). The output capacitance of the inverter is the sum of
the diffusion capacitances due to the p- and n-transistors. Similarly, the input gate capacitance of the
inverter is the sum of the gate capacitances due to both transistors. It is a common practice to size
the p- and n-transistors in the inverter to a fixed ratio, called the p/n ratio. In this case, the size of

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 13

an inverter is defined to be the scaling factor with respect to the minimum-size inverter (with the
fixed p/n ratio). Other CMOS gates can be modeled similarly.

A shortcoming of the simple RC model is that it cannot deal with the shape of the input waveform.
In practice, the effective resistance of a transistor depends on the waveform on its input. A sharp
input transition allows the full driving power of the driver to charge or discharge the load and
therefore results in a smaller effective resistance of the driver. On the other hand, a slow transition
results in a larger effective resistance of the driver. Hedenstierna and Jeppson [35] consider input
waveform slope and provide the following expression for the delay time of a falling signal:

tf tt (2 V t ~) (17)
t d f = ~ + ~ 1 + VDD '

where tt is the input transition time (more specifically, the input rise time in this case) and Vt~ is
the threshold voltage of n-transistor.

In the slope model (first proposed by Pilling and Skalnik [36]), a one-dimensional table for the
effective driver resistance based on the concept of rise-time ratio is proposed by Ousterhout [37].
The effective resistance of a driver depends on the transition time of the input signal, the loading
capacitance, and the size of the driver. In the slope model, the output load and transistor size are
first combined into a single value called the intrinsic rise time of the driver, which is the rise time
at the output if the input is a step function. The input rise time of the driver is then divided by the
intrinsic rise time of the driver to produce the rise-time ratio of the driver. The effective resistance
is represented as a piecewise linear function of the rise-time ratio and stored in a one-dimensional
table. Given a driver, one first computes its rise-time ratio and then calculates its effective resistance
Ra by interpolation according to its rise-time ratio from the one-dimensional table. The driver rise-
time delay is computed by multiplying the effective resistance with the total capacitance. Similarly,
we can have a look-up table for the fall-time ratio of the driver.

Another commonly used driver delay model precharacterizes the driver delay of each type of
gate/buffer in terms of the input transition time tt, and the total load capacitance CL in the following
forms of k-factor equations [34, 38]:

tat-= (k. + k2G~)t~ + k3C~ + k4CL + ks, (18)

tf -~ (k; + k~CL)tt + k~C~ + k4CE + k;, (19)

where kl...5 and kl... 5 are determined based on detailed circuit simulation (e.g. using SPICE [13])
and linear regression or least-squares fits. Similar k-factor equations can be obtained for the delay
and rise time of the rising output transition.

More generally, a look-up table can be used to characterize the delay of each type of gate. A
typical entry in the table can be of the following form: {(tdf, tf),tt, CL}. Given an input transition
time tt and an output loading capacitance, the look-up table for a specific gate provides the delay
and rise/fall time. The table look-up approach can be very accurate, but it is costly to compute and
store a multidimensional table.

All these driver delay models use the loading capacitance for delay computation. In first-order
approximation, the loading capacitance is simply computed as the total capacitances of the intercon-
nects and the sinks (Figs. 4(a) and (b)). However, not all the capacitance of the routing tree and
the sinks are seen by the driver due to the shielding effect of the interconnect resistance, especially

14 J. Con q et a l . / I N T E G R A T I O N , the V L S I Journal 21 (1996) 1 94

~a)

Ct°tal
tt

(b) t t . ~ ~ Gel f

R (d)

tt
(c)

Fig. 4. (a) An inverter driving an RC interconnect. (b) The same inverter driving the total capacitance of the net in (a).
(c) A ~-model of the driving point admittance for the net in (a). (d) The same inverter driving the effective capacitance
of the net in (a). The input signal has a transition time of 6.

for fast logic gates with lower driver resistance. Qian et al. [38] propose the effective capacitance
model which first uses a re-model [39] to be discussed next (Fig. 4(c)) to better approximate the
driving point admittance at the root of the interconnect (or equivalently, the output of the driver),
and then compute iteratively the "effective capacitance" seen by the driver, denoted Cen, using the
k-factor equations.

In [39], O'Brien and Savarino construct the ~z-model load of an interconnect using the first three
moments yl, y2 and Y3 of the driving point admittance. The three moments of the driving point
admittance are computed recursively in a bottom-up fashion, starting from the leaf nodes of the
interconnect. The ~z-segment is characterized by C~, C2 and R which are computed as follows:

Ct = Y~/Y3, C2 = YL - - (Y2/Y3),2 R ~- --(y3/Y2).2/3 (20)

For an unbranched uniform distributed RC segment, Cl, C2 and R are 5CL/6, Cc/6 and 12RL/25,
respectively, where Cc is the total capacitance of the line and Rc is the total resistance of the line.
Simulation results show that the response waveform obtained using the re-model is very close to the
response waveform of the actual interconnect at the gate output [39].

Kahng and Muddu [40] further simplify the modeling of the interconnect tree. They equate it to
an open-ended RLC line with resistance RL, inductance LL, and capacitance CL which are equal to
the total interconnect resistance, inductance, and capacitance, respectively, as shown in Fig. 5(b). It
was in turn simplified to a re-model with C~ = 5CL/6, C2 = Cc/6, R = 12Rc/25, and L = 12Lc/25
(Fig. 5(c)) by matching the first three moments of the driving point admittance of the RLC line. It
was shown that this simple open-ended RLC rc model gives gate delay and rise/fall time which are
within 25% of SPICE delays [40].

The ~z-models computed above are usually incompatible with the commonly used k-factor equa-
tions, the slope model, and the table look-up method since these driver delay models assume a single
loading capacitance. Qian et al. [38] proposed to compute an "~ffective capacitance" iteratively from
the parameters R, C1 and C2 in the ~-model (Figs. 4(c) and (d)) using the following expression:

c2+c [, Rc xj2 + e JRCL , e xJRC]

J. Cony et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 15

RL ' LL ' CL R = 12/25R L L = 12/25 L L

(aJ (b) (c)

C1=5/6 C L

Fig. 5. An open-ended RLC line to capture an RLC interconnect tree, and the RLC 7r model.

t t ' ~ ~ Ceff

(a)

i

~-ddr,tr~7 !~'
(b~

v(t t d ~ r - -

tt tr ~t

(c)

Fig. 6. Compute the effective resistance from the 50% and 90% points.

where tD : tdf + tt/2 and tx = t D - tf/2, and tar and tf can both be obtained from the k-factor
equations in terms of the effective capacitance and the input transition tt. The iteration starts with
using the total interconnect and sink capacitance as the loading capacitance CL to get an estimate of
tD and tx through the k-factor equations. A better estimate of the effective capacitance is computed
using Eq. (21) and it is used as the loading capacitance for the next iteration of computation. The
process stops when the value of Cefr does not change in two successive iterations.

Qian et al. [38] also observe that the slow decaying tail portion of the response waveform is not
accurately captured by the effective capacitance model. This is due to the CMOS gate behaving like
a resistor to ground beyond some timepoint ts, and its interaction with a re-model load yielding a
vastly different response than the effective capacitance. Therefore, [38] uses the effective capacitance
model to capture the initial delay and a resistance model (R-model) to capture the remaining portion
of the response. They calculate the effective driver resistance by [38] (Fig. 6)

ts0 - ts
Rd : Cefr In v(ts)/V(tso)' (22)

where ts0 is the 80% point delay computed by the k-factor equations and V(ts) can be estimated
from the Cefr model. The computation of ts is given in [38]. Then, the voltage response at the gate
output after time ts can be expressed as a double exponential approximation [38]:

Vz(t) = :~le p'(t-ts) + c~2 ep2(t-t~), (23)

16 J. Conget al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94

where ~j, ~2, Pl, and P2 can be obtained from Rd, the :z-model parameters (R, CI, and C2), and the
initial conditions on the 7r-model as described in [38]. Note that the driver resistance Ra, together
with /'dr and tr (or tdf and t f) computed by the k-factor equations, and the RC interconnect, can be
used to estimate the input transition time and delay for the sinks using models described in Section
2.1.

The models described above are used mostly in the works on wire sizing optimization since an
accurate estimate of the driver resistance prevents oversizing of the wire widths. They are also crucial
in the works that consider sizing of drivers, together with the optimization of the inter-connect.

3 . T o p o l o g y o p t i m i z a t i o n f o r h i g h - p e r f o r m a n c e i n t e r c o n n e c t

In this section we address the problem of topology optimization for high-performance interconnect.
Two major design goals must be considered for this problem: the minimization of total interconnect
wire length, and the minimization of path length or signal delay from a driver to one or several
timing-critical sinks.

Wire length minimization is of interest for the following reasons:
- When the wire resistance is negligible compared to the driver resistance, minimization of total

wire capacitance (and hence, net wire length) provides near optimal performance with respect to
delay [41].

- Even when wire resistance is considered, the total wire capacitance still contributes a significant
factor to interconnect delay [41].
Interconnect wiring contributes to circuit area. Reduction of wire length reduces circuit area,
lowering manufacturing costs and increasing fabrication yield.

- Wire capacitance contributes significantly to switching power. Reduction of wire length also
reduces power consumption and the amount of energy to be dissipated.

From the discussion of delay models in the previous section, one can conclude that for interconnect
topology optimization, of major concern are the total wire length and the resistance of the paths
from the driver to the critical sinks. Therefore, high-performance interconnect topologies must strike
a balance between path length and tree length optimization.

We will first address the minimization of interconnect tree length, a problem which has been
widely studied by both the VLSI design community and by researchers in many other areas of
computer science. While these methods do not explicitly address delay concerns, they form the
foundations of many algorithms for delay optimization.

We next consider the optimization of interconnect topologies for critical nets in cases where the
interconnect resistance is not negligible. In general, we are interested in reducing the path length or
resistance from the source to the timing critical sinks, while avoiding a large penalty in the total
tree length. We first survey works which provide "geometrical" approaches to topology construction,
addressing the problem of path length minimization from a source to critical sinks. We then consider
methods designed for the "physical" model, in which VLSI fabrication parameters and physical delay
models influence the net topologies.

Many of the early problems and algorithms on interconnect topology optimization surveyed in this
section are discussed in depth in [42], which is highly recommended to the reader who is interested
to know more details of the results presented here.

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 17

3.1. Topoloyy optimization for total wirelength minimization

A problem central to any area of interconnect optimization is the minimization of the wire length
of a net. Research on the construction of minimum spannin9 trees (MST) and Steiner minimal
trees (SMT) is directly applicable to problems in VLSI interconnect design. Note that we use the
abbreviation SMT for Steiner minimal trees to avoid ambiguity with the abbreviation MST.

3.1.1. Minimum spannin9 trees
The MST problem involves finding a set of edges E which connect a given set of points P with

minimum total cost. Two classic algorithms solve this problem optimally. Kruskal's algorithm [43]
begins with a forest of trees (the singleton vertices), and iteratively adds the lowest cost edge which
connects two trees in the current forest (forming a new tree), until only a single tree which connects
all points in P remains. Prim's algorithm [44] starts with an arbitrary node as the root of a partial
tree, and grows the partial tree by iteratively adding an unconnected vertex to it using the lowest cost
edge, until no unconnected vertex remains. Both algorithms construct MSTs with the minimum total
cost. For a problem with n vertices, we can construct a Voronoi diagram [45] to constrain the number
of edges to be considered by the two algorithms to be linear with n. With this constraint on the
number of edges, both algorithms can be made to run in O(n log n) time. Naive implementations have
slightly higher complexity. We use MST(P) to denote the minimum spanning tree of point set P.

3.1.2. Conventional Steiner tree algorithms
MST constructions are restricted to direct connections between the pins of a net, which is not

necessary in VLSI design. Interconnect topology construction is in fact a rectilinear Steiner tree
problem, which has been studied extensively outside the VLSI design community, and goes well
beyond the scope of this paper. We will discuss several typical and commonly used algorithms here,
and recommend a more detailed survey by Hwang and Richards [46] to the interested reader.

The Steiner problem is defined as follows: Given a set P of n points, find a set S of Steiner
points such that MST(P US) has the minimum cost. For interconnect optimization problems, the set
P consists of the pins of a net. Note that the inclusion of additional points to the spanning tree can
reduce the total tree length.

While the MST problem can be solved optimally in polynomial time, construction of a SMT is
NP-hard for graphs, and for both rectilinear and Euclidean distance metrics [47]. We shall present
several effective SMT heuristics for the rectilinear distance metric, which is most relevant to VLSI
interconnect design.

Clearly, the set of potential Steiner points is infinite. For the rectilinear metric, however, Hanan
[48] showed that the set of Steiner points which need to be considered in the construction of a
SMT can be limited to the "Hanan grid", formed by the intersections of vertical and horizontal
lines through the vertices of the initial point set. Given this observation, optimal SMT algorithms
which utilize branch-and-bound techniques can be constructed, but these algorithms have exponential
complexity and are applicable to only small problems. Given that construction of an optimal SMT is
NP-hard, it is natural to look for heuristics. An interesting result, due to Hwang [49], is that the ratio

3 The bounded of tree lengths between a rectilinear MST and a rectilinear SMT is no worse than ~.
performance of MST constructions has made the Prim and Kruskal algorithms popular as the basis
of Steiner tree heuristics. We choose to present three general heuristic approaches which are effective

18 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

[] [D----

D. n

Fig. 7. A conventional spanning tree improvement through the merging of edges.

. i

i i

\
Fig. 8. Non-separable and separable MSTs. In the first example, the bounding boxes of non-adjacent edges el and e2

intersect. The second example shows a separable MST for the same point set.

and commonly used for SMT construction. One approach uses "edge merges", a second involves
iterative Steiner point insertion, and a third involves iterative edge insertion and cycle removal.

Many Steiner tree heuristics follow the general approach of improving an initial minimum spanning
tree by a series of edge merges. For a pair of adjacent edges in a spanning tree, there is the possibility
that by merging portions of the two edges, tree length can be reduced. An example of this is shown
in Fig. 7. There may be more than one way in which edges can be merged; the selection of edges
and the order of their merging is a central concern of many Steiner tree heuristics.

The best-known example of this approach is that of Ho et al. [50]. They first compute a separable
M S T in which no pair of non-adjacent edges have overlapping bounding boxes. They showed that
for any point set P, there exists a separable MST on P. Given a separable MST, their method
constructs the optimal length SMT that can be achieved by edge merging. Examples of non-separable
and separable MSTs are shown in Fig. 8.

A separable MST can be computed through a variant of Prim's algorithm. The three-tuple (d (i , j) ,
--]Yi- Yj[,--max(xi,xj)) is used to weight each edge for MST construction. Since the edge weights
are compared under the lexicographic order, the total cost of a separable MST will be equal to that
of an ordinary MST.

Given a separable MST, the authors then find the optimal orientation of edges to maximize the
amount of overlap obtained by edge merging (minimizing the total tree cost of the derived Steiner
tree). Marking an arbitrary leaf node as the root, a recursive process is used to determine the

J. Cong et aI./INTEGRATION, the VLSI Journal 21 (1996) 1-94 19

A difficult problem for merge-based
Steiner heuristics.

0 0 0

0 0 0

0 0 0

• Best merge-based improvement of the
spanning tree.

I_ o o

An initial Minimum Spanning Tree

O~ ~ 0

0 - ~ ~ 0 ~ 0

O~ ~ 0

The optimal Steiner tree solution.

Fig. 9. A pathological case for conventional merge-based Steiner tree heuristics. The minimum spanning tree for the
vertices is unique, resulting in limited improvement through edge merging.

orientation of edges in each subtree, from bottom to top. At any level, only a constant number
of possibilities need be considered, resulting in a linear-time algorithm. The algorithm obtains an
improvement of roughly 9% over MST tree cost on average.

While improvement of an MST through edge merging can be effective at minimizing tree length on
average, there exist pathological cases in which merge-based Steiner heuristics can exhibit the worst-
case performance [51]. In Fig. 9, one such case is shown. For this point set, the tree constructed by
any MST algorithm is unique. Traditional merge-based heuristics have relatively little gain, as only
the three leftmost edges will be able to merge. The optimal Steiner tree, however, has significantly
lower wire length. The ratio of tree lengths of a merge-based heuristic and an optimal Steiner tree
can be arbitrarily close to the 3 bound.

In [52], Georgakopoulos and Papadimitriou considered the 1-Steiner problem, which is to find a
point s such that IMST(P)] - IMST(PUs)] is maximized. The point s is known as a "l-Steiner
point." The authors presented an O(n 2) method to determine this point for the Euclidean plane.
Kahng and Robins [51] adapted this result for the rectilinear metric, and presented the iterated 1-
Steiner heuristic. This algorithm represents our second heuristic class, and constructs a Steiner tree
through iterative point insertion. At each step, a 1-Steiner point is added to the point set, until no
Steiner point can be found to reduce the MST length. The algorithm is explained in Fig. 10. The
same method was proposed for general graphs earlier [53].

The l-Steiner algorithm has very good performance in terms of wire length minimization; on
random point sets, the trees generated by this algorithm are 11% shorter than MSTs on average.
The best possible improvement is conjectured to be roughly 12% on average [54], so the 1-Steiner
algorithm is considered to be very close to optimal. While this algorithm constructs trees which
are close to optimal in terms of length, it suffers from relatively high complexity. A sophisticated
implementation is O(n3), while a naive approach may be O(nS); this may make it impractical for
problems with large numbers of vertices.

The third approach we discuss is an MST-based heuristic by Borah et al. [55]. It produces results
that are comparable to the 1-Steiner algorithm, but with a complexity of only O(n2). Rather than
optimizing a MST by merging edges, their method improves an initial MST by finding the shortest
edge between a vertex and any point along an MST edge. If the edge is inserted, a cycle is gen-
erated; removal of the longest edge on this cycle may result in a net decrease in tree length. The

20 J. Con 9 et a l . / INTEGRATION, the VLS1 Journal 21 (1996) 1-94

Initial Minimum First inserted Second inserled
Spanning Tree Steiner point Steiner point

I-], I~, ~ ,q
I I

Fig. 10. A 1-Steiner construction. Starting from an initial minimum spanning tree, a single Steiner point is inserted
iteratively, until no further improvement can be found.

Initial spanning tree

Inse~ed edge

413

[3

U

-43 Edges of cycle

Longest edge
on cycle

After removal of
the longest cycle
edge

ffl

O

- -O

[2

Fig. l 1. A Steiner heuristic which inserts a redundant edge between a node and a tree edge. For each node, the nearest
location on a non-adjacent edge is determined, and the gain obtained by insertion of a new edge, and removal of a

redundant edge, is determined.

algorithm operates in a series of passes. For each vertex, the shortest connection to an existing edge
is determined, and the improvement of inserting the connection and then breaking the cycle is deter-
mined. In one pass, candidate modifications for all nodes are determined, and then are implemented
(if possible) according to the decreasing order of their gains. After all modifications have been
made, the algorithm makes another pass, until no gain can be found. This algorithm is explained in
Fig. 11.

As there are O(n) vertices and edges, determination of the shortest distance from any edge to a
vertex is no worse than O(n). For each candidate edge, the most costly edge on the generated loop
can be determined with a linear-time search. Thus, determination of candidate modifications is no
worse than O(n2). The number of passes required is generally very small, with cases where more

J, Cony et a l . / INTEGRATION, the VLSI Journal 21 (1996) 1 94 21

than four passes are required being rare. The authors noted that the algorithm complexity can be
improved to O(n log n) through the use of more complex data structures and algorithms.

3.2. Topolo9), optimization for path lenyth minimization

If we wish to reduce the delay from a net driver to a critical sink, and the interconnect resistance
between the two is significant, an obvious approach is to reduce this resistance. Assuming uniform
wire width, constraining path lengths between source and sink clearly realizes this goal.

In this subsection, we discuss approaches to delay minimization through the "geometric" objective
of path length reduction or minimization.

3.2.1. Tree cost~path lenyth tradeoffs
Cohoon and Randal [56] presented an early work which addressed the problem of constructing

interconnect trees for the VLSI domain, considering path length while not requiring shortest paths.
Their heuristic method attempts to construct a maximum performance tree (MPT), defined as a
tree which has minimum total length among trees with optimized source-to-sink path lengths. Their
method consists of three basic steps: trunk generation, net completion, and tree improvement.

In their study, the authors observed that trees which had relatively low path lengths usually
had "trunks", monotonic paths from the source to distant sinks. Other sink vertices generally were
connected to a trunk at a nearby location. Trunk generation consists of constructing paths from
the source to the most distant sinks. Five methods of trunk generation were studied. Four involve
the insertion of an S-shaped three segment monotonic path from the source to a distant sink. The
middle segment location is determined by finding either the mean or median of the point set. The
fifth method constructs trunks by building a rectilinear shortest path tree on the graph, and then
keeping the paths derived for the most distant sinks as the basis of the MPT.

Net completion involves the attachment of the remaining sink vertices to the trunks that have
been formed. The authors use three techniques: a rectilinear MST (RMST) algorithm, a rectilinear
shortest path tree (RSPT) algorithm, and a hybrid of the two. The hybrid works as follows: if
the RMST connection of a sink does not result in a path length greater than the radius of the
net, the connection is used; otherwise, an RSPT connection is used. For each connection, the edge
routing which results in the maximum overlap with the existing tree is selected, and the edges are
merged.

Tree improvement involves a series of edge merges (similar to the merge-based Steiner tree
heuristics of [50], described in Section 3.1.2) and edge insertions and deletions. The operations are
performed such that the path length from the source to the most distant sink is not increased, and
this phase terminates at the local optimum. In experiments with a variety of point sets, the authors
observed that their heuristic produced an average of 25% reductions in path length with increases
of 6% in wire length, when compared to the Steiner tree heuristic of [50].

While the MPT algorithm provides a measure of control over the tradeoff between path length
and tree length, a number of authors have attempted to refine this control. Some algorithms are able
to bound the maximum tree length, the maximum path length, or both, with constant factors.

In [57], Cong et al. proposed an extension of Prim's MST algorithm known as Bounded Prim
(BPRIM). This algorithm bounds radius by using a shortest path connection for a sink when the
MST edge normally selected would result in a radius in excess of a specified performance bound.

22 J. Cong et a l . / INTEGRATION, the VLSI Journal 21 (1996) 1 94

While BPRIM produces trees with low average wire length and bounded path length, pathological
cases exist where the tree cost is not bounded.

In order to compute a spanning tree with bounded radius and bounded cost, Cong et al. [58]
extended the shallow-light tree construction by Awerbuch el al. [59], which was originally designed
for communications protocols. The algorithm of [59] constructs spanning trees which have bounded
performance for both total tree length and also maximum diameter. This class of constructions are
known as shallow-light trees. Total tree length for their algorithm is at most (2 + 2/e) times that of
a minimum spanning tree, while the diameter is at most (1 + 2~,) times that of the diameter of the
point set. The e, parameter may be adjusted freely, allowing a preference for either tree length or
diameter.

The bounded radius bounded cost (BRBC) spanning tree of [58] uses the shallow-light approach,
and works as follows.

(1) Construct an MST TM and an SPT Ts for the graph.
(2) Perform a depth-first traversal of TM. This traversat defines a tour of the tree, and each edge is

traversed exactly twice.
(3) Construct a "line-version" L of TM, which is a path graph containing the vertices in the order

that they were visited during depth-first traversal. Note that each vertex appears twice in L, and
that the cost of L is at most twice the total cost of TM.

(4) Construct a graph Q by traversing L. A running total of the distance in Q from the source is
maintained; if the distance exceeds 1 + e times the radius, a shortest path from So to the current
vertex is inserted.

(5) Construct a shortest path tree T' in Q.
The resulting tree has length no greater than 1 + 2/e times that of a minimum spanning tree, and

radius no greater than 1 + e times that of a shortest path tree. An example of tree construction using
the BRBC method is shown in Fig. 12. Khuller et al. [60] developed a method similar to BRBC
contemporaneously.

Alpert et al. [61] proposed AHHK trees as a direct trade-off between Prim's MST algorithm and
Dijkstra's shortest path tree algorithm. They utilize a parameter 0~<c~ 1 to adjust the preference
between tree length and path length. Their algorithm iteratively adds an edge epq between vertices
p E T and q ~ T, where p and q minimize (c , dT(so, p))+d(p,q) .

The authors showed that their AHHK tree has radius no worse than c times the radius of a shortest
path tree. For pathological cases in general graphs, their tree may have unbounded cost with respect
to a minimum spanning tree. They conjectured that the cost ratio may be bounded when the problem
is embedded in a rectilinear plane.

Most of the algorithms presented in this subsection so far are focused on bounded radius span-
ning tree construction, and do take advantage of Steiner point generation. In [62], Lim et al. pro-
posed perjbrmance-oriented rectilinear Steiner trees for the interconnect optimization problem. Their
heuristic method attempts to minimize total tree length while satisfying distance constraints between
the net driver and various sink nodes.

Their method utilizes a "performance-oriented spanning tree" algorithm repeatedly during Steiner
tree construction. Spanning tree construction proceeds in a manner similar to that of BPRIM, with
edge selection being based on finding the lowest cost edge which does not violate a distance bound
by its inclusion. Note that the constructed tree is not necessarily planar, and can have cost higher
than that of an MST. The Steiner variant of their algorithm proceeds as follows. Beginning with

J. Cong et al . / INTEGRATION, the VLSI Journal 21 (1996) 1 94 23

An initial spanning tree•

Additional edges inserted to
ensure radius bound•

/ "¢.::......
•, , . %**

(:"

- 2

The "line" graph L, constructed
by a depth first tour of the graph.

The shortest path tree based
on the depth first tour and inserted

Fig. 12. A bounded-radius bounded-cost construction.

the driver as the root of a partial tree, the Steiner tree grows by a single Hanan grid edge from the
partial tree towards a sink node. As the tree grows, certain edges may be required for inclusion (to
meet path length bounds); these edges are inserted automatically. If there are no edges that must
be included, their heuristic assigns weights to edges of the Hanan grid, and selects the edge with
highest weight. Edge weighting is done by maintaining a score for grid edges and grid points, based
on the number of performance-oriented spanning tree edges which may contain the Hanan grid edge.
An example of their Steiner tree construction method is shown in Fig. 13.

3.2.2. A r b o r e s e n c e s

At the extreme of path length minimization objectives are constructions which provide shortest
paths from the source to sink nodes. While this clearly minimizes path resistances, we also want to
minimize the total tree capacitance. Cong et al. [41] showed that a minimum-cost shortest path tree
is very useful for delay minimization. Given a routing tree T, they decomposed the upper bound
signal delay tp at any node in T under the Rubinstein et al. [4] model as follows (see Eq. (1)):

tp = t l (T) + t2(T) + t3(T) + t4(T), (24)

24 J. Con,q et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

m
m

[]

[3

[]
[]

m
m

R

m
m

m
m

[-3

[]
?

Fig. 13. Performance optimized minumum rectilinear Steiner tree construction. At each step, a few of the Hanan grid
edges are candidates for inclusion. In some instances, the included edge can is determined by path length constraints; in
other instances, the edge is selected based on a heuristic weighting.

where

t, (T) = Rdcl T I, (25)

t 2 (T) = r ~ c~,[dt(so,sk)l, (26)
all sinks st,

t3(T) = r c ~ IdT(So, v)l, (27)
vE T

t 4 (T) = R d C c,~k. (2 8)
all sinks s/~

Here c denotes the unit length capacitance. The first term q(T) is minimized when IT I is mini-
mized, corresponding to a minimum wirelength solution. The second term t2(T) is minimized by a
shortest path tree. The third t3(T) term is the sum of path lengths from the source to every node in
the tree (including non-sink nodes), which is affected by both the path length and total tree length.
The fourth term is a constant. This analysis shows the importance of constructing a minimum-cost
shortest path tree.

For a shortest paths spanning tree construction, the classical method by Dijkstra can be used
to construct a shortest paths tree (SPT) in a graph [63], in which every vertex is connected
to the root (or source) by a shortest path. While the original algorithm only ensures that all
paths are shortest paths, it can be easily modified to construct the minimum-cost shortest path
tree.

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 25

Initial problem

[]

[]

[]

N
[]

O

[] []

1

4

[]

n

[]

0
---t3

[3--

[3---13

[]

2

,Y
5

n

[]--O

13----13

Fig. 14. The H heuristic, applied to a single quadrant problem.

For a shortest paths Steiner tree construction, Rao et al. [64] posed the following problem for the
rectilinear metric: Given a set of vertices V in the first quadrant, find the shortest directed tree rooted
at the origin, containing all vertices in V, with all edges directed towards the origin. Such a tree is
known as an arboresence, and clearly results in shortest paths from the root to every vertex. The
authors of [64] were concerned with the construction of rectilinear minimum spanning arboresences
(RMSA) and rectilinear Steiner minimal arboresences (RSMA), for total wire length minimization

3 performance bound between an RMST and an RSMT in both cases. First, they showed that a
does not hold for arboresences. Instead, they have [RMSA[/[RSMA[= (2(n/ logn) as a tight bound,
indicating that as the size of the problem grows, the length of a spanning arboresence grows faster
than the length of a Steiner arboresence. For large problems, the length of a spanning tree solution
may be much larger than that of the Steiner solution.

Next, they presented a simple heuristic for the RSMA construction problem. Let min(p, q) denote
the point at (min(xp,Xq), min(yp, yq)), which is called the merging point of p and q. Their heuristic
algorithm constructs an arboresence H iteratively by connecting a pair of vertices p and q to
min(p,q). The pair p and q are chosen to maximize the distance between min(p,q) and the root,
i.e., the pair with the merging point furthest from the root are selected first. An example of tree
construction using this heuristic is shown in Fig. 14.

Despite its simplicity, the algorithm provides an interesting bound on total tree length: IT I ~<2 x
IRSMAI, i.e., the length of a tree generated by the heuristic is no worse than twice the optimal
Steiner arboresence length.

When the problem is not restricted to one quadrant, the heuristic can be applied in the following
manner. If we assume the root to be located at the origin, we can restrict the tree to contain the

26 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

x-axis in the range from a to b, a~<0~<b. Similarly, we can restrict the tree to the y-axis for
values c ~<0 ~<d. By considering the single-quadrant solutions given various values of a, b, c, and
d, and then finding the best performing combination, their heuristic constructs a tree in O(n31ogn)
time.

In [41], Cong et al. also addressed the construction of rectilinear Steiner arboresences, and pre-
sented the A-tree algorithm. The A-tree algorithm constructs trees by starting with a forest of points
(the source and all sinks), and then iteratively merges subtrees until all components are connected.
In addition to the merging operation used in [64], the authors of [41] identify three types of "safe
moves" for optimal merging at each step. In other words, the safe merge moves preserve the tree
length optimality during the construction process; if only safe moves are applied, the resulting tree
will have optimal length. The A-tree algorithm applies safe moves whenever possible. On average,
it was shown that 94% of merge moves were optimal, and the trees constructed by the A-tree al-
gorithm were within 4% of the optimal arboresence length, in experiments on random nets under
the 0.5 ~t CMOS IC technology, the A-tree constructions produced delay improvements approaching
20% over l-Steiner [51] constructions.

3.2.3. Multiple source routing
The existence of multiple source nets, such as signal buses, complicates interconnect topology

construction, as a topology which provides good performance for one source may perform poorly
for another. An example of such an instance is shown in Fig. 15. A method proposed by Cong and
Madden [65] constructs interconnect topologies which limit the maximum path length between any
pair of pins to the diameter of the net, while using minimal total wire length. Their minimum-cost
minimum diameter A-tree (MCMD A-Tree) algorithm consists of three main steps: determination
of the net diameter, identification of a feasible region for the root of a minimum diameter tree, and
construction of a shortest-path tree rooted at the selected root point.

For the Euclidean metric, Ho et al. [66] presented a method to construct a minimum diameter tree.
They determine the smallest enclosing circle for the point set, and then construct a shortest path tree
from the center of this circle. The method of [65] follows a similar approach. For the rectilinear
metric, determination of the equivalent of the smallest enclosing circle is simple. A tilted rectangular
region (TRR) is defined to be a rectangle with sides having slopes of ±1. The rectilinear equivalent
of the smallest Euclidean circle, a smallest tilted square (STS) can be constructed from the smallest
TRR enclosing the points. The STS has diameter equal to that of the point set, with points si and
s j on opposing sides having distance d(si, s/) = diameter(P). For a point c at the center of an STS,
we have d(c, s~)<~ ½D for any si in the net. By constructing a shortest-path tree rooted at c, any path
from si to sj will clearly have length no greater than D.

It was noted in [65] that the feasible position for the root c of a minimum diameter rectilinear tree
J is overly restrictive. In fact, the feasible region is not unique, and that the constraint d(c,s~)~-jD

(FR) of the root position of a minimum diameter rectilinear tree can be characterized by the set
{c[d(si, c)+d(c,s/)<<.D, Vs~,sj E P}. For each pair of pins si and s j, the equation d(si, c)+d(c, sj)<~D
defines an octilinear ellipse (OE). The intersection of the OEs for all pairs defines the FR for the
point set. Figure 16 shows the octilinear ellipses for a set of points, and their intersection which
results in the FR. Straightforward computation of the FR takes O(n 2) time by intersecting O(n 2)
OEs; a linear-time method to construct the FR was presented in [67].

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 27

Tri-state gate
input

enable--~

output

Fig. 15. A multisource routing problem. When each vertex may act as either a driver or as a sink, diameter minimization
(rather than radius minimization) may be the preferred goal.

\ / "/
Fig. 16. The .feasible region for the root of a minimum diameter tree. Each pair of points constrains the root to an area
(an octilinear ellipse) on the plane. The intersection of these octilinear ellipses gives the set of points that can serve as
the root of the tree.

The authors use the A-tree algorithm [41] to construct a shortest path tree T f rom a root point

within the FR to the pins o f the net. As dT(c, si) = d(c, si) in the A-tree, and c satisfies d(si, c) +
d(c,s/)<~D, clearly dT(Si, C) + dT(C, Sj)<.D for all pairs s~ and sj. While any point within the FR
provides a feasible root point for a min imum diameter construction, some root points result in lower
wire length solutions; an example is shown in Fig. 17. The root points considered are restricted to
the comer points o f the FR, the intersections o f Hanan grid lines with the FR, and Hanan grid points

28 J. Con 9 et a l . / INTEGRATION, the VLSI Journal 21 (1996) 1-94

Maximum diameter of 12, tree length Maximum diameter of 12, tree length
of 18. of 17.

Fig. 17. The length of a minimum diameter may be reduced by the selection of an appropriate root location. The center
of the smallest enclosing rectilinear circle is not necessarily the best root point.

contained by the FR. In the worst case, there may be O(n 2) candidate root points for a problem
with n pins.

The authors used the Elmore delay model to select the tree with best performance among the A-
trees rooted at candidate different positions in the FR; HSPICE simulation showed that on random
nets under the 0.5 ~ CMOS IC technology, their MCMD A-tree constructions showed an average
of 11.4% reductions in the maximum interconnect delay when compared to 1-Steiner [51] tree
constructions. Industrial examples showed as much as a 16% delay reduction.

3.3. Topology optimization for delay minimization

While delay was an implied objective in the two previous subsections, the methods discussed there
used geometric measures for optimization. Geometric objectives are in general more tractable than
physical delay models, but can be inaccurate measures for signal delay. In this subsection, we discuss
a number of methods which employ more accurate physical delay models to guide optimization.

Prasitjutrakul and Kubitz [68] presented an early method as part of their timing-driven global
router. As this method was a part of their global router, they utilized global delay constraints in their
optimization. Individual sink pins had unique delay requirements, resulting in differing required arrival
times for signals (and differing slack values). Their approach for interconnect topology construction
was to iteratively add an unconnected sink to a partial tree, using a path that would maximize the
slacks of all sinks already connected, and the target sink. The target sink was selected to minimize
the distance between the sink and the partial tree. The algorithm uses the A* search technique, with
delay calculated by a method described in [69].

In [70], Hong et al. propose two tree construction methods. The first, called the iterative Dreyfus-
Wagner (IDW) Steiner tree algorithm. This method modifies the optimal Steiner tree construction
method of Dreyfus and Wagner [71] to utilize a physical delay model from [69]. Through successive
runs of the Dreyfus-Wagner method, three terms which capture resistance, capacitance, and their
product, are adjusted iteratively; the convergence of these terms produces the optimum solution.

A second approach in [70] is based on a constructive force directed method. This method begins
with an initial forest of points, computes the "weighted medium point" for each vertex, and then
grows the smallest weighted subtree, This process is iterated until all vertices are connected. The
weighted medium point, subtree weights, and direction of growth, are all heuristically determined.

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 29

In [27], Zhou et al. presented a heuristic method to construct routing trees based on their analysis
using a 2-pole RLC delay model. Their model has been described in Section 2.1. The authors
were concerned with minimizing signal delay using an accurate model, and with obtaining signal
waveforms which did not exceed target voltages by a wide margin. Their tree construction method
adds sink nodes one by one, in a manner somewhat similar to Prim MST algorithm. Rather than
constructing a spanning tree, their algorithm connects nodes to vertices or Steiner points that could
be contained by the partial tree. Their algorithm utilizes a 2-pole simulator to evaluate signal delay
and waveform integrity at each step.

In [9], Boese et al. define the Critical-sink routing tree (CSRT) problem as: Given signal net N,
construct T (N) which minimizes ~ ~i * t(si). This formulation allows for the weighting of individual
sinks to account for the varying importance of specific delay paths. They utilize the Elmore delay
model for their optimization.

Two methods for this problem were proposed, one for the construction of spanning trees, and the
other for the construction of Steiner trees.

Their Elmore routing tree (ERT) algorithm constructs a spanning tree over the pins by iteratively
adding edges, in a method similar to Prim's MST algorithm. In each step, vertices p 6 T and q ~ T
are selected, such that the addition of an edge from p to q minimizes the maximum Elmore delay
to all sinks in the new tree. The ERT algorithm was generalized to allow Steiner points, resulting
in the Steiner Elmore routing tree (SERT) algorithm. At each step, the edge selected was allowed
to connect to any vertex or to any Steiner point that could be contained by the partial tree. The
complexity of this algorithm is O(n4). If only a single sink is critical, the algorithm is known as
SERT-C.

The authors used random point sets and 0.8 ~t CMOS IC design parameters to evaluate the per-
tbnnance of their SERT algorithm. On average, improvements of 21% in delay over 1-Steiner [51]
constructions were obtained. When compared to the AHHK [61] algorithm described in Section
3.2.1, delay improvements of 10% were obtained.

The basic SERT method was extended to utilize branch-and-bound optimization, resulting in the
branch-and-bound Steiner optimal routing tree (BB-SORT) algorithm [10]. Tree construction is re-
stricted to the Hanan grid, making the problem tractable. This approach has exponential time com-
plexity, but pruning of the search space makes its application feasible for small problem
sizes.

For any weighted linear combination of sink delays, BB-SORT-C was shown to construct an
optimal tree. For minimizing the maximum sink delay, however, it was shown that the optimal tree
may not fall on the Hanan grid [10], which prevents the BB-SORT-C algorithm from finding the
optimal solution.

Experiments showed that the delays of SERT constructions were very close to those of BB-SORT
constructions. For random problems with 9 points, using 0.5 ~t CMOS IC parameters, the SERT delays
were only 3.9% above those of BB-SORT [10]. In [72], it was also shown that the trees constructed
using the Elmore delay model as an objective provided good performance under SPICE simulation.
The authors enumerated all possible topologies for small nets, and ranked them by delay using the
Elmore delay model and SPICE; they found that the rankings were nearly identical, indicating that
Elmore delay is a high fidelity objective for interconnect topology construction.

In [73], Vittal and Marek-Sadowska presented an algorithm which constructs interconnect topolo-
gies that are competitive in terms of delay with the SERT and BB-SORT methods described above,

30 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

14 4 3 2 4

Fig. 18. An example of alphabetic tree. The optimum length is 14 + 3 • (4 + 3 + 2 + 4) - 53.

but with a complexity of only O(n 2). Their approach is through the construction of alphabetic trees
(which are abstract topologies).

The alphabetic tree problem is defined as: given an ordered set of weights, find a binary tree such
that the weighted sum of path lengths from the root to the leaves is minimum among all such trees,
and the left to right order of the leaves in the tree is maintained. The weights are associated with
sinks of the net, while edges are of unit length (as the tree is an abstract topology). An example of
an alphabetic tree is shown in Fig. 18.

The construction in [73] uses the circular ordering with respect to the driver to order the sinks,
and uses the sink capacitance as the weight fore each sink. The authors first construct the alphabetic
tree as an abstract topology. They then merge subtrees of the abstract topology in a similar way to
the heuristic of [64], described in Section 3.2.2. Afterwards, a post-processing procedure is applied
to perform heuristic local optimization to further minimize the delay.

Recently, Lillis et al. [74] addressed performance driven interconnect topology problem through
the construction of Permutation-constrained Routing Trees or P-Trees. Their algorithm first constructs
a MST for the point set, and then derives its abstract topology. Rather than considering the node
weights and path lengths from the root, as is done in [73], the authors consider the tour length
of traversing from sink to sink, using an ordering of the sinks that is consistent with the abstract
topology. Using dynamic programming methods, their P-Tree algorithm finds the optimal permutation
of sinks to minimize tour length, while maintaining consistency with the abstract topology. Given an
abstract topology and an ordering of sink nodes, the algorithm can then find the optimal embedding
of the topology into the Hanan grid (through a dynamic programming approach which considers
possible locations for the internal nodes of the abstract topology). Solutions are chosen to optimize
the Elmore delay of the topology.

In all of the works mentioned earlier in this section, we have been interested in the construction
of routing trees, and have not allowed multiple connections between pairs of nodes.

Recent work, however, has considered the relative merits of non-tree routings. Xue and Kuh
[75, 76] have suggested "multi-link insertion" as a method to reduce the resistance between a driver
and critical sinks in a tree. In some respects, this can be considered as a generalization on the
variable wire width formulations which are detailed in a subsequent section. At the heart of this
approach is the observation that additional paths from a driver to a sink may substantially reduce the
effective interconnect resistance, with a nominal penalty to total interconnect length. Multiple paths

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 31

between source and sink complicate the delay analysis of an interconnect topology, and have higher
interconnect length than tree constructions. At present, the use of non-tree interconnect topologies is
not widespread.

4. Wire and device sizing

Both device sizing and interconnect sizing can be used to reduce the delay. A larger driver/gate at
the source of an interconnect tree has a stronger driving capability (or equivalently, smaller effective
driver resistance), reducing the delay of this interconnect. But a larger driver/gate also means a
heavier load (larger sink capacitance) to the previous stage and thus increases its delay. The device
sizing problem is to determine the optimal size of each driver/gate to minimize the overall delay; this
has been extensively studied in the past. Interconnect sizing, often called wire sizing, on the other
hand, was investigated only recently. If the width of a wire is increased, the resistance of the wire
will go down, which may reduce the interconnect delay, but the capacitance of the wire will go up,
which may increase the interconnect delay. The wire-sizing problem is to determine the optimal wire
width for each wire segment to minimize the interconnect delay. When the interconnect resistance
can be neglected as in the early days, the interconnect can be modeled as a lumped capacitor.
In this case, the minimum wire width is preferred for delay minimization and only device sizing
is necessary. But in the current deep submicron technology where the interconnect resistance can
no longer be neglected, both device and wire sizing are needed to reduce the interconnect delay.
Techniques for both device and wire sizing for delay minimization will be surveyed in this section.
Sections 4.1 and 4.2 will present works on device sizing only and wire sizing only, respectively.
Section 4.3 will focus on simultaneous device and wire sizing works, and Section 4.4 on simultaneous
topology construction and sizing works. Because this survey deals mainly with interconnect design
and optimization, more emphasis will be given on wire sizing and simultaneous device and wire
sizing.

4.1. Device sizing

The device sizing problem is equivalent to determining the transistor channel width in CMOS
logic since the transistor channel length is usually fixed to the minimum feature size. The following
device sizing techniques are commonly used:
- Driver sizing: A chain of cascaded drivers is usually used at the source of an interconnect tree

for heavy capacitive load. The driver sizing problem is to determine both the number of driver
stages and the size for each driver.

- Transistor or gate sizing: The transistor sizing problem is to determine the optimal width, either
continuous or discrete, for each transistor to optimize the overall circuit performance. Similarly,
the gate sizing problem includes both the continuous and the discrete gate sizing problems. The
continuous gate sizing problem assumes that all transistors in a gate can be scaled by a common
factor, which is called the size of a gate. The discrete gate sizing problem assumes that each gate
has a discrete set of predesigned implementations (cells) as in a given cell library, and one needs
to choose an appropriate cell for each gate for performance optimization.

32 Z Cong et al./INTEGRATION, the VLS1 Journal21 (1996) 1-94

DO D1 Di Dn-1 - -

Fig. 19. The cascaded drivers for a heavy capacitance loading.

- Buffer insertion: A buffer can be a pair of inverters or a single inverter, 4 and they may have
different sizes. The buffer insertion problem is to determine both the placement and the size of
each buffer in a routing tree. In a uniform view, the driver sizing problem is a special case of
buffer insertion with buffers only at the source of the routing tree.

4.1.1. Driver sizing
For an interconnect tree with heavy load (due to large interconnect capacitance or/and sink ca-

pacitance), a chain of cascaded drivers is usually used at the source. The 0th stage is a small, often
minimum size, driver, and the driver size increases until the last stage is large enough to drive the
heavy loading capacitance (see Fig. 19). An early result on the optimal driver sizing problem was
reported in [77]. Let Di be the driver of the ith stage, and Ci and R~ be its input gate capacitance
and effective driver resistance, respectively. The stage ratio is defined to be f~ = (C~/C(s_ ~))(i > 0),
it was shown that

Lin-Linholm Theorem. I f the loading capacitance is' CL and the stage number is N, the optimal
stage ratio at each stage is' a constant (CL/Co) 1/m in order to achieve the minimum delay.

Let 30 = RoC0, where Co and R0 are the input gate capacitance and the effective driver resistance
for Do, respectively. Under the constant stage ratio f and the switch-level driver model, we have
Ri = R 0 / f i and Ci = Coil. Therefore, every stage has the same delay fro, and the total delay of
N stages is ta = Nfzo . When N is not fixed, the optimal stage number is N = ln(CL/Cq)/ln(f) .
The total delay becomes Nfro = In(CLICk)fro~In(f). It is minimized when f / l n (f) is minimum,
which leads to f = e, the base of natural logarithms. This is the well-known optimal stage ratio for
delay minimization presented in most textbooks (such as [78]).

The output capacitance of a driver is not considered in the above derivation. In [35], a more
accurate analytical delay formula was developed with consideration of the input waveform slope and
the output capacitance of the driver. Based on their delay formula, the optimal stage ratio f satisfies

f =- e(~+/)//,

where c~ is the ratio between the intrinsic output capacitance and the input gate capacitance of the
inverter. Since typical c~ is about 1.35 for the technology they used, the optimal stage ratio is in
the range of 3-5 instead of e. It is easy to find that the optimal stage ratio is still e if ~ -- 0. The
stage number N can be determined by the optimal stage ratio f as N = ln(Ck/Co)/ln (f) . Then, f

4 For single-inverter buffers, the signal polarity needs to be considered during buffer insertion.

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 33

is used for all stages, except that the last stage has a little bit larger ratio for delay minimization
[35].

Most recently, Zhou and Liu [79] discussed the optimal driver sizing for high-speed low-power
ICs. The increasing stage ratios J~ = f0(1 +7) i are used, where 7 is a modification factor determined
by the I V curve of the transistor. The typical value of 7 is around 0.2. The reason for the increasing
stage ratio is the following: if the step waveform is applied at the input of the very first stage, the
waveforms become increasingly "softer" at the subsequent stages, i.e., the input waveform to the
following stage is no longer a step so an increasingly larger delay is expected for each following
stage. Thus, an increasing stage ratio is applied to maintain equal delay in different stages. The
authors derived an analytic relationship between signal delay, power dissipation, driver size and
interconnect loading. They show that

fo = e("/2~+V/2'¢CL:C")-I and f i = f0(1 + 7) i

are the optimal stage ratios for delay minimization. We would like to point out that all studies
in [77, 35, 79] also discussed the optimal driver sizing for power minimization. Another study on
optimal driver sizing for low power can be found in [80].

4.1.2. Transistor and gate sizing
In addition to sizing drivers which usually drive global interconnects, the sizes of all transistors and

gates in the entire circuit or a subcircuit can also be adjusted properly according to their capacitive
loads for performance or power optimization. The transistor sizing problem has been approached
using both sensitivity-based methods and mathematical-optimization-based methods. The gate sizing
problem has been classified into both continuous and discrete gate sizing problems, and solved by
different approaches.

4.1.2.1. Sensitivity-based transistor sizing
Fishbum and Dunlop [81] studied the transistor sizing problems for synchronous MOS circuits.

Let x~, . . . ,xi , . . . ,xn be the transistor sizes, A the total active area of transistors and T the clock
period. If K is a positive constant, there are three forms for the transistor sizing problem as follows:
1. Minimize A subject to the constraint T < K.
2. Minimize T subject to the constraint A < K.
3. Minimize AT x.

Let a transistor be modeled by the switch-level model, then the gate, source and drain capacitance
are all proportional to the transistor size, and the effective resistance is inversely proportional to it.
A CMOS gate will be modeled by a distributed RC network. The Elmore delay (Eq. (3)) is used
to compute the worst-case delay of the gate, which is the delay through the highest resistive path
in the RC network. The delay of a PI-PO path is the sum of delays through all gates in the path.
It is not difficult to verify that the delay of a PI-PO path can be written into this form

Z ai/x: b~ + ~ - - , (29)
l<~i,j<~N " X / l<~i<~NXi

where the aq and bi are non-negative constants. In fact, aq is non-zero only when transistors i and
j are dc-connected.

34 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

Furthermore, the authors of [81] show that Eq. (29) and the area A = ~ x i are posynomials
and the transistor sizing problems of the three forms are all posynomial programs. 5 Even though
posynomial programming methods can be used to optimally solve the three forms of the transistor
sizing problem, it is computationally expensive to be used for an entire circuit. Thus, the transistor
sizing tool TILOS (Timed LOgic Synthesizer) was developed to minimize A subject to T < K based
on the following scheme: First, the minimal size is assigned to all transistors. Then, timing analysis
is performed to find the critical delay T. If T is larger than K, the sensitivities of all transistors
related to the critical path will be computed. The sensitivity is defined as the delay reduction due to
per transistor size increment. The size of the transistor with the largest sensitivity will be multiplied
by a user defined factor (BUMPSIZE) and then the algorithm goes to the timing analysis again. This
procedure will be terminated when the timing specification is satisfied or there is no improvement
in the current loop, i.e., all sensitivities are zero or negative. The performance of TILOS is quite
good. Circuits with up to 40 000 transistors have been tested. Based on the experiments, the results
are reasonably close to the optimum under their delay model. However, it assumes that the effective
resistance for a transistor is independent of the waveform slope of the input. But, in fact, the input
slope has a significant effect on the transistor effective resistance. Another sensitivity-based transistor
sizing work is [82] which also performs iterative transistor sizing to reduce the critical path delay.
In contrast to TILOS, it changes the size of more than one transistor in each iteration. In addition, a
sensitivity-based transistor sizing is presented by Borah et al. [199] to minimize power consumption
of CMOS circuit under delay constraint.

4.1.2.2. M a t h e m a t i c a l - p r o g r a m m i n g - b a s e d trans&tor sizing

Note that the method in [81] does not guarantee the optimality of the result. Studies have been
done to formulate the transistor sizing problem as mathematical programming problems to obtain an
optimal solution. Methods in [83-85] formulate the transistor sizing problem as non-linear programs
and solve them by the method of Lagrangian multipliers. Methods in [86-88] apply the following
two-step iterations. First, the delay budget is distributed to each gate; then, the transistors in each
gate are sized optimally to satisfy the time budget.

Later, a two-phase algorithm was presented in [90] to minimize the circuit area under timing
constraints: first, TILOS [81] is used to generate an initial solution; then, a mathematic optimization
is formulated and solved by using feasible directions to find the optimal solution. The variables in

5 According to [89], a posynomial is a fi.mction of positive vector X E R m having the form g(X) = ~ - 1 u,(X) with

ui(X) a,, =cixj xe"...x,,, , i = 1,2 N,

where the exponents ai/ are real numbers and the coefficients ci are positive. A posynomial program is the following
minimization problem:

rain g0(X),
subject to gk(X)<<. 1,

k - 1,2 p a n d X > 0,

where each gk (k = 0, 1,2 p) is a posynomial. The posynomial program has the important property that the local
optimum is also the global optimum. In fact, the concepts of posynomial and posynomial program play an important role
in many wire and device sizing works to be presented.

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 35

the optimization problem, however, are not sizes of all transistors in the circuit, but only sizes of
those transistors that have been tuned by TILOS, thus it is still possible to lose the optimal solution
with respect to the whole circuit. Experimental results of circuits with up to 500 transistors have
been presented.

More recently, Sapatnekar [91] developed a transistor sizing tool iCONTRAST, again, to minimize
the circuit area under timing constraints. It employs the analytical delay model developed in [35]
which can consider the waveform slope of input signals to transistors, but assumes that the transition
time is twice the Elmore delay of the previous stage. Under the delay model, the transistor sizing
problem is a posynomial program that can be transformed into a convex program and the convex
programming method [92] was implemented to solve the transformed problem. When using the
simple delay model of TILOS [81], and the timing specification is loose, the area of the solution
obtained by TILOS is close to that of the solution obtained by the iCONTRAST algorithm. However,
as the time specification is tightened, the TILOS-solutions have larger area when compared with
the iCONTRAST-solutions. Experimental results of circuits with up to 800 transistors have been
presented.

4.1.2.3. Continuous gate sizing
The continuous gate sizing problem assumes that all transistors in a gate can be scaled by a

common factor, which is called the size of a gate. In essence, it is very similar to the transistor
sizing problem, but has much lower complexity for a given design, since all transistors in a gate are
scaled by the same factor. Hoppe et al. [93] developed analytical models for signal delay, chip area
and dynamic power dissipation and formulated a non-linear problem to minimize the weighted linear
combination of delay, area and power. The non-linear problem is solved by the Newton-Raphson
algorithm. A 64K-SRAM was optimized on a mainframe computer in 2 hours.

In order to speed up the gate sizing problem, the linear programming (LP) formulation has been
proposed. Berkelaar and Jess [94] used a piecewise-linear (PWL) function to linearize the delay
function. More precisely, one divides the gate sizes into subranges so that the delay of a gate is a
linear function of gate sizes within each subrange. Thus, the gate sizing problem can be formulated
as a LP problem. Their LP formulation [94] is to minimize the power subject to a delay constraint.
Experimental results on circuits with up to 500 gates were presented. Later on, their LP-based
method was expanded [95] to compute the entire area or power-consumption versus delay trade-off
curve. Results on MCNC'91 two-level benchmarks with up to 4700 gates were reported. Recently,
Tamiya et al. [96] proposed another LP-based method where the latest and the earliest arrival times
are introduced so that the setup and hold time constraints can be handled. The objective is to
minimize the weighted linear combination of clock period, area and power. Result on a chip of
13000 transistors was reported. Note that gate sizing works in [94-96] assume that the gate delay
is a convex function of gate sizes, which is needed to make sure that the error introduced by the
PWL approximation is small. However, the gate delay in fact is not a strict convex function.

More recently, Chen et al. [97] removed the convex delay model assumption in previous LP-based
works. They also divided the the gate sizes into subranges, but different from the previous works
[94-96] where only one LP problem is formulated over the whole gate size range with the delay
being a PWL function in this LP formulation, a LP problem is formulated for every subrange with
the delay being a linear function for each LP formulation. When the subrange is small enough, the

36 J. Cong et a l . / INTEGRATION, the VLSI Journal 21 (1996) 1 94

error introduced by the non-convexity will be small. The linear programming is performed iteratively,
and subranges of gate sizes are updated according to the result from the previous step. Experimental
results for ISCAS85 benchmarks with up to 3500 gates were reported.

4.1.2.4. Discrete gate sizing
The resulting optimized design by the continuous gate sizing formulation may be impractical or

expensive to implement since a large number of manually designed cells or a smart cell generator
are needed. Thus, the discrete gate sizing problem is studied by assuming that each gate has a
discrete set of predesigned implementations (cells) as in a given cell library and one needs to choose
an appropriate cell for each gate for performance optimization. In general, the discrete gate sizing
problem is NP-complete: Chan [98] showed that the double-sized discrete gate sizing problem to find
discrete gate sizes to satisfy both maximum and minimum delay constraints is NP-complete, even
without consideration of area minimization. Hinsberger and Kolla [99] proved the single-sided (with
only maximum delay constraint) discrete gate sizing problem in a DAG (directed acyc[ic graph) is
NP-comp[ete under three objectives: to minimize the maximum delay, to minimize the maximum
delay under an area constraint, and to minimize the area under a maximum delay constraint. Li [100]
further showed that the discrete gate sizing problem under both area and maximum delay constraints
is strongly NP-hard even for a chain of gates.

The methods which are optimal for logic networks of certain structures have been proposed. For
the double-sided problem, a branch and bound algorithm [98] was developed to find the optimal
solution for tree structures. For the single-sided problem, an optimal dynamic programming method
to minimize the maximum delay was proposed, again for tree structures [99]. It assumes that the
delay for a gate could be determined locally, i.e., the delay could be determined only by the sizes of
the gate and its fanout gates, and works in a bottom-up manner. Furthermore, an exact algorithm to
minimize area subject to a maximum delay constraint (single-sided) was presented for series-parallel
circuits [101]. A simple series circuit is solved by a dynamic programming method and a simple
parallel circuit is solved by a number of transformations. All series-parallel circuits can be solved
recursively.

Heuristics have been proposed to expand the optimal algorithms for trees or series-parallel circuits
to the general cases in [98, 101]. Furthermore, the following methods have been developed: L i n e t
al. [102] use the weighted sum of sensitivity and criticality to choose cell sizes for standard-cell
designs. The sensitivity of a cell is defined as -Adelay/Aarea, where both delay and area are in
terms of the cell. The criticality is inversely proportional to the slack of a cell so that a cell in
a non-critical path will not be over-sized. 6 Chuang et al. [103, 194] presented a three-step method
to minimize the area subject to the single-sided delay constraint. First, they formulate a linear
programming (LP) problem to obtain a continuous solution. Then they map the continuous solution
onto the allowed discrete gate sizes; Finally, they adjust the gate sizes to satisfy the delay constraint.
Also, the three-step algorithm was modified in [105] to minimize the area under the double-sided
delay constraint. It is worth mentioning that the work in [103, 194] further formulated gate sizing
and clock skew optimization as a single LP problem not only to reduce the circuit area but also to
achieve faster clocks. Another method to combine both gate sizing and clock skew optimization can

6 Since the method in [81] only sizes those transistors in the critical path based on their sensitivities, criticality has

been considered implicitly.

J. Cong et al. /INTEGRATION, the VLSI Journal 21 (1996) 1 94 37

(a)

.,.- "'--.... .." . "-.. ..-" ql-- "...

i ~ S i n k i . i : ' : : "-) Sink -

(b)

Fig. 20. (a) Legal position for buffer insertion; (b) an option in a legal position.

be found in [106]. In addition, Chuang and Sapatnekar proposed another LP formulation to address
the continuous gate sizing problem for power optimization in [104].

4.1.3. Buffer insertion
Buffer (also called repeater) insertion is a common and effective technique to reduce interconnect

delay. As the Elmore delay of a long wire grows quadratically in terms of the length of the wire,
buffer insertion can reduce interconnect delay significantly. Bakoglu [2] gives a closed-form formula
to determine the number and sizes of buffers (inverters) that are uniformly placed in a long intercon-
nect line for delay minimization. Let k be the number of inverters and h the uniform size for every
inverter; then the optimal values for an interconnect line of uniform wire width are the following:

/0.4RintCift ~-0 Cint
k = V h =

w h e r e Rint and C~,t are the total resistance and capacitance for the interconnect line, respectively, and
R0 and Co the driver resistance and the input capacitance of the minimum-size inverter, respectively.

A polynomial-time dynamic programming algorithm was presented in [107] to find the optimal
buffer placement and sizing for RC trees under the Elmore delay model. The formulation assumes that
the possible buffer positions (called legal positions), possible buffer sizes, and the required arrival
times at sinks are given. The optimal buffer placement and sizing is chosen so that the required
arrival time at the source is maximized. For simplicity, the buffer of two inverters with the fixed
size is used and the polarity of the signal can be ignored. Legal positions were assumed to be right
after the branching points in the tree (see Fig. 20(a)).

The algorithm includes both bottom-up synthesis and top-down selection procedures. It begins
with the bottom-up synthesis procedure, where for each legal position i for buffer insertion, a set
of (qi, ci) pairs, called options, is computed for possible buffer assignments in the entire subtree
rooted at i. Each qi is a required arrival time at i and c~ is the capacitance of dc-connected subtree 7
rooted at i corresponding to qi (Fig. 20(b)). Note that c~ is not the total capacitance in T,.

A wire segment in the routing tree is modeled by a re-type circuit and only the wire area capaci-
tance is considered. Recall that r and ca are the resistance and the area capacitance for a unit-length

7 "dc-connected" means "directly connected by wires".

38 J. Con9 et a l . / I N T E G R A T I O N , the V L S I Journal 21 (1996) 1-94

wire, respectively. When a wire segment with upstream node k is added at i, an option (qk, ck) will
be generated at k for every (qi,ci) at i as the following:

qk = qi - rl(c--l 2 + ci),

Ck z Ci ~- c l ,

where l is the length of the wire segment.
A buffer is modeled by the input gate capacitance Cbuf, the driver resistance Rbuf and the intrinsic

delay Dbuf. When a buffer with input node k is inserted at i, an option will be generated at k for
every (qi, ci) at i as the following:

qk = qi - Dbuf -- R b u f C i ,

C k ~ Cbu f.

When two subtrees T, and Tj are merged at node k, for every pair of (qi, ci) and (qj, cj) (at i and
j , respectively) an option (qk, ck) will be generated at k as the following:

q~ = min(qi, q j),

c~ = ci + cj.

The following pruning rule is used to prune a suboptimal option during the computation of options.
For two options (q,c) and (q' ,c ') in the same legal position, if c'>~c and q' < q then (qr, c') is
suboptimal, thus, it can be pruned from the solution space. If the total number of legal positions is
N, it was shown in [107] that the total number of options at the source of the whole routing tree is
no larger than N + 1 even though the number of possible buffer assignments is 2 N.

After the bottom-up synthesis procedure, the optimal option is the one which has the maximum
requirement time at the source pin of the whole interconnect tree. Then, the top-down selection
procedure is carried out to trace back the buffer placement (in general, also the buffer sizes) which
led to the optimal option. Several extensions can be made. It is easy to allow buffers of different
types (sizes) to be placed. With different Rbuf, Cbuf and Dbuf values for each type of buffer, there may
be an extra option generated in every legal position for every extra buffer type. Let B be the number
of buffer types and N, again, be the total number of legal positions, the total number of options at
the root of the whole tree is bounded from above by N + B. In general, the time complexity of the
algorithm is O((N + B) 2 + k), where N is the total number of legal positions for buffer insertion, B
the total number of buffer types and k the total number of sinks.

4.2. Wire sizing optimization

It was first shown by Cong et al. [41] that when wire resistance becomes significant, as in the deep
submicron CMOS design, proper wire sizing can further reduce the interconnect delay. Their work
presented an optimal wire-sizing algorithm for a single-source RC interconnect tree to minimize
the uniform upper bound of the delay (Section 2.1, Eq. (1)). Later on, single-source wire-sizing
algorithms were presented in [108, 7, 11, 76, 109, 110] using the Elmore delay model, in [111] using
a higher-order RC delay model and in [112] using a lossy transmission line model. In addition,
the wire-sizing problem for multiple-source nets was formulated and solved in [12]. Furthermore,

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 39

wire sizing was carried out simultaneously with device sizing in [8, 113, 18, 114-116]. We classify
the wire-sizing works according to their objective functions and present them in Sections 4.2.1 and
4.2.2, and then discuss the simultaneous device and wire sizing in Section 4.3.

4.2.1. Wire sizin9 to minimize weighted delay
In order to reduce the delays to multiple critical sinks in an interconnect tree with a single source,

the wire-sizing algorithms in [7] minimize a weighted combination of Elmore delays from the single
source to multiple critical sinks. The authors of [12] extended this formulation to the multiple-source
net case, where the objective is to minimize the weighted combination of Elmore delays between
multiple source-sink pairs. Wire sizing works in [7, 12] assumed that the wire widths are discrete
and uniform within a wire segment or subsegment. Most recently, in [109], an optimal wire-sizing
formula was derived to achieve the continuous and non-uniform wire width for each wire segment,
again to minimize the weighted combination of Elmore delays from a single source to a set of
critical sinks. All these works assume that the weights of the delay penalty between the source and
each sink or each source-sink pair are given a prior.

4.2.1.1. Discrete wire sizin9 for single-source RC tree
In [41], Cong et al. modeled an interconnect tree as a distributed RC tree and applied the upper-

bound delay model shown in Eq. (1). They showed that when the driver resistance is much larger
than the wire resistance of the interconnect, the interconnect can be modeled as a lumped capacitor
without losing much accuracy and that the conventional minimum wire width solution often leads
to an optimal design. However, when the resistance ratio, i.e. the driver resistance versus unit wire
resistance, is small, optimal wire sizing can lead to substantial delay reduction. In addition, they
developed the first polynomial-time optimal wire-sizing algorithm. Since the uniform upper bound
delay model does not distinguish the delays at different sinks and may lead to oversizing, Cong and
Leung [108,7] extended the work to the Elmore delay formulation Eq. (3). Their formulation and
method are summarized as follows.

Given a routing tree T, let sink(T) denote the set of sinks in T, ~¢/~ be the wire-sizing solution
(i.e., wire width assignment for each segment of T) and ti(~U) be the Elmore delay from the source
to sink st under ~/¢/~. The following weighted combination of delays is used as the objective function
for wire-sizing optimization.

t (~f3 = ~ ; J t (~) , (30)
s E sink(T)

where fit is the weight of the delay penalty to sink si. The larger)~i, the more critical sink si is.
The following monotone property and separability were shown in [7].

Monotone property. Given a routing tree, there exists an optimal wire-sizing solution ~¢¢/ such that
we>~We, if segment e E Ans(e') .

Separability. Given the wire width assignment of a path P originated from the source, the optimal
wire width assignment for each subtree branching off from P can be carried out independently.

Based on these two properties, the optimal wire-sizing algorithm (OWSA) was developed. It is
a dynamic programming method based on the wire-sizing solution for a sinyle-stem tree, which

40 J. Con q et aL / INTEGRATION, the VLSI Journal 21 (1996) 1-94

Stem

_ J - Root Node

Ec~

1 st SS-Subtree (a)

2nd SS-Subtree

(b)

Fig. 21. (a) A single-stem tree consists of a stem and a set of single-stem subtrees. In this example, e is the stem of the
single-stem tree sst(e), and sst(ecl) and sst(ec2) are the single-stem subtrees of sst(e) (eol and ec2 are the children of e).
(b) Any general tree T can be decomposed into a set of independent single-stem trees.

is a tree with only one segment (called the stem segment of that tree) incident on its root (see
Fig. 21(a)). We use sst(e) to denote the single-stem tree with stem e.

According to the separability, once e and every ancestor segment of e are assigned the appropriate
widths, the optimal wire width assignment for the single-stem subtrees sst(ecl), sst(ecz) sst(e~h)
of the tree sst(e) (with respect to the width assignment of e and its ancestors) can be independently
determined, where the segments ecl,...,e~b are the children of e. Therefore, given a set of possible
widths { WI, W2,..., Wr}, OWSA enumerates all the possible width assignments of e. For each possi-
ble width assignment Wk of e (1 ~<k ~<r), the optimal wire sizing is determined for each single-stem
subtree sst(eci) (1 ~< i ~ b) of sst(e) independently by recursively applying the same procedure to each
sst(e~i) with {W1, W2,..., Wk} as the set of possible widths (to guarantee the monotone property).
The optimal assignment for e is the one which gives the smallest total delay.

If the original routing tree T is not a single-stem tree, we can decompose it into b single-
stem trees, where b is the degree of the root of T, and apply the algorithm to each individual
single-stem tree separately (see Fig. 21(b)). The worst-case time complexity of OWSA is O(nr),
which is much faster than brute-force enumeration O(r n), where n is the number of wire segments
and r is the number of possible wire widths. However, OWSA algorithm can be slow when r is
large.

In order to further speed-up the OWSA algorithm, the greedy wire-sizing algorithm (GWSA) was
developed based on the local refinement and the dominance property to compute the lower and upper
bounds of the optimal wire widths.

Given two wire-sizing solutions ~#/" and ~#/", ~/g is defined to dominate ~#~' if We >~ W' e for every
segment e. Given a wire-sizing solution ~ for the routing tree, and any particular segment e in the
tree, a local refinement on e is defined to be the operation to optimize the width of e while keeping
the wire width assignment of ~ / on other segments unchanged. The following dominance property
was shown in [7].

J. Cong et al./INTEGRATION, the VLSI Journal21 (1996) 1 94 41

A Source LST1 LST2

A Source / ,

Both a source and a sink LST3

Fig. 22. An MSIT can be decomposed into the source subtree SST, and a set of loading subtrees (three LSTs here)
branching off from the SST. The dark segments belong to the SST.

Dominance property. Suppose that ~ * is an optimal wire-sizing solution. If a wire-sizing solution
¢~ dominates ~U*, then any local refinement of ~¢/ still dominates 3q#*. Similarly, if ~// is dominated
by ~/¢/*, then any local refinement of 3¢U is still dominated by u,¢#*.

The GWSA algorithm works as follows: starting with the minimum-width assignment, GWSA
traverses the tree and performs a local refinement on each segment whenever possible. This process
is repeated until no improvement is achieved on any segment in the last round of traversal. According
to the dominance property, a lower bound of the optimal wire width on every segment is obtained.
An upper bound of the optimal wire width assignment can be obtained similarly by starting with
the maximum-width assignment. In most cases, GWSA obtains identical lower and upper bounds
on all segments, which gives an optimal wire-sizing solution. In cases when the lower and upper
bounds do not meet on a few edges, the gaps are usually small and the OWSA algorithm can be
applied very efficiently to obtain the optimal wire-sizing solution. The worst-case time complexity
of GWSA is O(n3r). Experiments using SPICE simulation have shown that, for the 0.5 ~m CMOS
technology, the optimal wire sizing solution can reduce the maximum delay by up to 12.01% when
compared to the minimum wire width solution.

4.2.1.2. Discrete wire sizing for multi-source RC tree
The wire-sizing problem for the multiple-source interconnect tree (MSIT) was studied by Cong

and He in [12]. They decompose an MSIT into the source subtree (SST) and a set of loading
subtrees (LSTs) (see Fig. 22). The SST is the subtree spanned by all sources in the MSIT. After
the SST is removed from the MSIT, the remaining segments form a set of subtrees, each of them
is called an LST.

Parallel to the ancestor-descendent relation in the single-source interconnect tree, the left-right
relation is introduced in an MSIT. An arbitrary source is defined as the leftmost node (Lsrc). The
direction of the signal (current) flowing out from Lsrc is the right direction along each segment.
Under such definitions, the signal in any LST always flows rightward, but the signal may flow either
leftward or rightward in the SST.

The following properties were shown in [12] for the wire-sizing problem for MSITs (the MSWS
problem):

LST separability. Given the wire width assignment of the SST, the optimal width assignment for
each LST branching off from the SST can be carried out independently. Furthermore, given the wire
width assignment of both the SST and a path P originated from the root of an LST, the optimal
wire width assignment for each subtree branching off from P can be carried out independently.

42 J. Con(] et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

LST monotone property. For an MSIT, there exists an optimal wire-sizing solution ~#/* where the
wire widths decrease monotonically rightward within each LST in the MSIT.

Because of the two properties, the polynomial-time OWSA algorithm developed for single-source
wire sizing in [7] can be applied to compute the optimal wire widths independently for each LST
when given the wire width assignments for the SST. Furthermore, the authors of [12] proved that the
MSWS problem has the dominance property presented in Section 4.2.1.1. Thus, the GWSA algorithm,
again developed in [7] for the single-source wire-sizing problem, can be applied to compute the
lower and upper bounds for the optimal solution of the MSWS problem. When the lower and upper
bounds do not meet for all segments, the authors propose to enumerate the wire width assignment
for the SST between the lower and upper bounds. During each enumeration of the SST, OWSA is
applied independently for each LST to compute an optimal wire-sizing solution between the lower
and upper bounds. Because the identical lower and upper bounds are often obtained by the GWSA
algorithm for all segments, the optimal wire-sizing solution can be achieved very efficiently in
practice. Experiments using SPICE simulations showed that the optimal wire-sizing solution reduces
the maximum delay by up to 36.9% (for an MSIT from the industry with the total wire length of
31980 pm) when compared to the minimum wire width solution in the 0.5 pm CMOS technology.

4.2.1.3. Discrete wire sizing using variable segment-division
An assumption is made for wire-sizing algorithms presented in Sections 4.2.1.1 and 4.2.1.2 that

the wire width does not change within a segment. Intuitively, better wire-sizing solutions may be
achieved when variable wire width is allowed within a segment. An approach based on the bundled
refinement property was proposed by Cong and He in [12] to decide the appropriate segment-division
during the wire-sizing procedure. It can be used for both single-source and multi-source wire-sizing
problems. For the simplicity of presentation, we assume the multi-source wire-sizing problem since
the single-source wire-sizing problem is a simple case of it.

First, the concepts of uni-segment and min-segment were introduced. Each segment is divided into
a sequence of uni-segments and each uni-segment has a uniform wire width within it. The wire-
sizing problem is formulated to find an optimal wire width for every uni-segment. A min-segment
is a uni-segment of the minimum length, which is set by the user or determined by the technology.
The finest segment-division is the one with each uni-segment being a min-segment.

Then, the following property was revealed in [12], even though the signal direction in the SST
of an MSIT may be changed with respect to different sources.

Local monotone property. There exists an optimal wire sizing solution for a routing tree, such that
the wire widths within any segment e is monotone: (1) if Fl(e) > Fr(e), the wire widths within
e decrease monotonically rightward; (2) if F / (e) : Fr(e), the wire within e has a same width; and
(3) if F/(e) < Fr(e), the wire widths within e increase monotonically rightward. Both Ft(e) and
Fr(e) are functions that can be determined before the wire-sizing procedure.

Let a bundled-segment be a maximal sequence of successive rain-segments in a wire segment
such that all these min-segments have the same wire width in the optimal solution under the finest
segment-division. Based on the local monotone property, if there are r possible wire widths for a wire
segment, there are at most r bundled-segments, even though the total number of min-segments could

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 43

~ ~ ' - ~ ~ J (a)

~\\\\\\~ (b)

Fig. 23. (a) Twelve uni-segments (min-segments) under the finest segment-division; (b) three bundled-segments with the
same wire sizing accuracy.

be arbitrarily large (see Fig. 23). It is not difficult to see that the optimal wire-sizing solution under
the segment-division defined by bundled-segments has the same accuracy as the optimal wire-sizing
solution under the finest segment-division, but requires much less computation.

The bundled refinement operation finds optimal wire width assignment for bundled-segments
instead of min-segments. Let ~ be a wire-sizing solution which dominates the optimal solution ~¢F*
under the finest segment-division. Without loss of generality, assume F~(e)>~Fr(e) for the segment
e. Segment e may contain many min-segments. Instead of performing local refinements on all these
min-segments, the following will be carried out: e is treated as two uni-segments, el and U¢. el is
the leftmost min-segment in e and ~ is the remaining part of e. Clearly, the local refinement of
el provides an upper bound for the optimal wire width for el according to the dominance property.
Furthermore, this local refinement is also an upper bound for the optimal wire width of ~ , because
it is always narrower than the optimal wire width for el according to the local monotone property.
This operation to treat the local refinement of e~ as local refinements for all min-segments in e is
called bundled refinement for the upper bound (BRU). The bundled refinement for the lower bound
(BRL) can be defined similarly. For ~/¢# dominated by ~ * , if Fe(e)~>Fr(e), the local refinement of
the rightmost min-segment er is treated as the local refinement for all min-segments in segment e.
The following property was proved in [12].

Bundled refinement property. Let 3qF* be an optimal wire-sizing solution under the finest segment
division. If a wire-sizing solution ~ dominates ~¢~*, then the wire-sizing solution obtained by
any bundled refinement under any segment-division on Y¢/ still dominates Y/#*. Similarly, if ~¢/
is dominated by ~¢/*, then the wire-sizing solution obtained by any bundled-refinement under any
segment-division on ~ is still dominated by ~ * .

Based on this property, the bundled wire-sizing algorithm BWSA works as the follows: Starting
by treating each segment as a uni-segment, we assign the minimum width to all uni-segments,
then traverse the MSIT and perform bundled refinement operations for the lower bound on each
uni-segment. The bundled refinement operation is repeated until no improvement is achieved on
any uni-segment in the last round of traversal. We obtain a lower bound of the optimal wire-
sizing solution under the finest segment-division. Similarly, we assign the maximum width to all
uni-segments and perform bundled refinement operations for the upper bound, and obtain an upper
bound of the optimal wire-sizing solution. This is the first pass of the BWSA algorithm.

After each pass, one checks the lower and upper bounds. If there is a gap between the lower and
upper bounds for a uni-segment, it is non-convergent. For every non-convergent uni-segment longer
than a min-segment, it will be divided into two uni-segments of equal length and each inherits the
lower and upper bounds of their parent. Then, another pass to compute the lower/upper bounds is
carried out by performing bundled refinement operations under the refined segment-division.

44 J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

The BWSA algorithm iterates through a number of passes until either identical lower and upper
bounds are achieved for all uni-segments or each non-convergent uni-segment is a min-segment. It
was shown in [12] that the lower and upper bounds obtained by the BWSA algorithm under the
iteratively refined segment-division is as tight as those obtained by the GWSA algorithm under the
finest segment-division where every uni-segment is a min-segment. Both algorithms have the same
worst-case complexity; however, experiments showed that the BWSA algorithm often runs 100x
times faster than the GWSA algorithm under the finest segment-division. In addition to replacing
the GWSA algorithm in both the single-source and multi-source wire-sizing problems, the BWSA
algorithm can be used in the simultaneous driver and wire-sizing problem [8] to be presented in
Section 4.3.1.

4.2.1.4. Continuous and non-uniform wire-sizing for single-source R C tree
Another alternative to achieve non-uniform wire width within a segment is the optimal wire-sizing

formula proposed in [109] very recently. Let f (x) be the wire width at position x of a wire segment.
When given the driver resistance and the loading capacitance for the wire segment, Chen et al. show
that the Elmore delay through the wire segment is minimized when f (x) = ae -bx where a and b
are constants. Furthermore, when the lower and upper bounds for the wire width of a wire segment
are given, the optimal wire width function is one of the six truncated forms of ae -bx. In both cases,
formulas can be determined in constant time. A drawback of this method is that it did not model
the fringing capacitance.

In order to apply the optimal wire-sizing formula to a routing tree, the authors propose to minimize
the weighted combination of Elmore delays from the source to multiple sinks. A procedure like the
GWSA algorithm developed in [7] is used. First, the minimum wire width is assigned to every
segment. Then, the optimal wire sizing formula is iteratively applied to each wire segment until no
improvement can be achieved. In contrast to the case of a single wire segment, the total upstream
weighted resistance is used to replace the driver resistance, and the total downstream capacitance
to replace the loading capacitance. The resulting wire width is continuous and non-uniform within
a wire segment. Note that when a discrete wire-sizing solution is needed, the mapping from a
continuous solution to a discrete solution may lose its optimality.

4.2.2. Wire sizinq to minimize maximum delay or achieve target delay
In addition to minimizing the weighted combination of delays, wire-sizing methods have been

developed to minimize the maximum delay or achieve a target delay. We will present first the
wire-sizing work [11] to minimize the maximum delay in Section 4.2.2.1, where the Elmore delay
model is used, then the wire-sizing work [111] to achieve the target delay in Section 4.2.2.2, where
a higher-order RC delay model is used, and finally the wire-sizing work [112] to minimize the
maximum delay for a tree of transmission lines in Section 4.2.2.3, where a lossy transmission line
model is used. Note that the Elmore delay model is suitable for formulations that minimize the
weighted sum of delays for current CMOS designs, since it has high fidelity with respect to the
SPICE-computed delay for the wire-sizing optimization, which is verified by the experiments in
[15] based on the 0.5 ~tm MOS designs. On the other hand, in order to achieve the target delay
or handle MCM designs, more accurate delay models are required as in [111,112]. Furthermore,
several iterations of the procedures to minimize the weighted delay can be used to minimize the

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 45

maximum delay or achieve the target delay by adjusting the weight penalty assignment in practice.
Particularly, the Lagrangian relaxation wire-sizing work [110] proposes an optimal method to assign
the weight penalty, which will be presented in Section 4.2.2.4.

4.2.2.1. Single-source R C tree under Elmore delay model
Sapatnekar [11] studied the wire-sizing problem to minimize the maximum delay under the Elmore

delay formulation of Eq. (3). First, he showed that the separability no longer holds for minimizing
the maximum delay. So, the dynamic programming based approach in [41,108] does not apply.
However, since the Elmore delay in an RC tree is a posynomial function of wire widths as first
pointed out in [81], it has this property that the local optimum is also the global optimum; thus a
sensitivity-based method like that used in [81] can be applied.

The algorithm in [11] goes through a number of iterations. In each iteration, the sink with the
largest delay is identified and the sensitivity Si given in the following is computed for each wire
segment i on the path from the source to the identified sink:

Delay(Fwi) - Delay(w/)

(F - 1)wi

where Delay(wi) is the delay from the source to the identified sink and F is a constant larger than
1 (set to 1.2 or 1.5 in [11]). Intuitively, the sensitivity is the delay reduction of unit wire area
increment. For all wires on the path from the source to the identified sink, the width of the wire
with the minimum negative sensitivity will be multiplied by F > 1. The iteration is stopped when
no wire has a negative sensitivity or the delay specification is satisfied.

Since a posynomial function can be mapped into a convex function, the convex programming
technique developed in [91,92] was applied in [117] by Sancheti and Sapatnekar to achieve the
exact solution at higher computation costs. Note that both algorithms in [11,117] produce wire-
sizing solutions assuming continuous wire width choices, and then map them into the discrete wire
widths. The optimality of the wire sizing solution may be lost after mapping.

4.2.2.2. Single-source R C tree under higher-order R C delay model
In [111], a moment-fitting approach is used to wire-size RC interconnect trees to achieve the

target delays and slopes at critical sinks. Let target moments be moments for the two-pole transfer
functions that have the target delays and slopes at critical sinks, and real moments those for the
transfer function under the current wire width assignment for the RC tree. Menezes et al. propose
to modify the wire width assignment in the RC tree to match the real moments with the target
moments so that the target delays and slopes will be obtained.

The sensitivities of real moments with respect to the wire widths are used to guide the search
for the proper wire widths. The method works as follows: First, for each sink, a two-pole transfer
function is generated so that it has the target delay and slope at the sink. For each transfer function,
the first four target moments are obtained. Then, the first four real moments are computed for each
sink based on the recursive method developed in [17], which computes the higher moments from
the lower moments, and a O(MN 2) method is proposed to compute the sensitivities with respect
to the wire widths for real moments, where M is the number of critical sinks and N the number
of wire segments. Finally, such sensitivity values guide the search for wire widths to minimize the

46 J. Cony et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

mean square error between the first four target moments and the first four real moments for every
critical sink.

Furthermore, the following is proposed in order to achieve the solution with smaller area: each
wire is assigned a weight in order to favor those wires which are related to the more critical sinks
and those wires with respect to which the critical sinks exhibit larger Elmore delay sensitivities.
Widening those wires has the maximum effect on delay with a minimal area penalty. Moreover,
the delay sensitivity with respect to the driver area is also computed and compared with the delay
sensitivity with respect to the interconnect area to determine empirically whether a larger driver
should be used. The approach is extended in [113] to conduct simultaneous gate and interconnect
sizing, which will be presented in Section 4.3. Note that the algorithm in [111], similar to [11, 117],
assumes continuous wire width choices for their wire-sizing solutions.

4.2.2.3 Sinyle-source tree o f transmission lines under lossy transmission line model
The wire-sizing work by Xue and Kuh in [112] takes the wire inductance into account by modeling

each wire segment as a lossy transmission line, and sizes the wire segments in an interconnect tree
to minimize the maximum delay. The maximum delay and its sensitivities with respect to wire
widths are computed via high-order moments. Based on the exact moment matching method in [24],
the higher moments and their sensitivities with respect to the wire widths are computed recursively
from the lower moments and the sensitivities can be computed analytically. Thus, the maximum
delay and its sensitivities with respect to the wire widths can be computed efficiently. The following
procedure is repeated to reduce the maximum delay: First, one computes the high-order moments,
the maximum delay (td) and its sensitivity with respect to every wire width (OQ/Ow~). Then, if a
wire segment e, has the maximum I Ot~/Ow~ l, ei will be assigned either the next larger or smaller
wire width, based on the polarity of Otd/~w~. The procedure iterates until the sensitivities of the
maximum delay becomes small.

Xue and Kuh [112] showed the following experimental results: The two-pole transfer function with
moments m0, m~ and m2 (m0 = 0) is reasonably accurate when compared to SPICE2. The approach
can reduce the rising delay in the critical sink by over 60% with a small penalty in routing area. 8 The
monotone property is still true under this lossy transmission line formulation. The final wire-sizing
solution reduces the overshoot and is more robust under parameter variation.

4.2.2.4 Weiyhted delay formulation versus maximum delay formulation
All the wire-sizing algorithms presented in Section 4.2.1 for minimizing the weighted sum of

delays can be used to minimize the maximum delay by iteratively adjusting the weights so that the
sinks with larger delays have higher weights. In particular, Chen et al. [110] showed that for the
continuous wire-sizing formulation where the wire width can be any value between the lower and
upper bounds, the weighted delay formulation is able to minimize optimally the maximum delay

8 Note that the delay in a tree of transmission lines is the sum of flying time and the rising delay of the response
waveform. Wire sizing only affects the rising delay, and the delay reduction means the reduction of the maximum rising
delay at threshold voltage of 0.5 V dd.

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 47

among all sinks. They formulated the following Lagrangian relaxation problem:

m i n i m i z e /max + ~ 2i(t~(~#/) - tmax),
si E sink(T)

subject to t i (~ ') < tmax,

where t i(~ ~) is the delay from the source to sink si under the current wire-sizing solution ~U and
tmax is the maximum delay from the source to all sinks.

The following two-level algorithm was proposed in [110]: in the outer loop, the weights associated
with the delays from the source to sinks are dynamically adjusted, which are basically proportional
to the delays at the sinks. In the inner loop, the continuous wire-sizing solution is computed for the
given set of weights, by the wire-sizing algorithm [109] (Section 4.2.1.4) to minimize the weighted
linear combination of delays. They showed that the Lagrangian relaxation iteration will converge to
an optimal solution in terms of maximum-delay minimization. Moreover, the authors expanded their
Lagrangian relaxation based algorithm to simultaneous wire and buffer sizing for buffered clock trees
to minimize the weighted combination of delay, power and area minimization, and to address the
problem of skew and sensitivity minimization for clock trees.

4.3. Simultaneous device and wire sizing

The device sizing works presented in Section 4.1 model the interconnect as a lumped loading
capacitor and do not consider the possibility of sizing the interconnect. On the other hand, the wire
sizing works presented in Section 4.2 model the driver as a fixed effective resistor and do not consider
the need to size the device again after interconnects have been changed. Both approaches may lead
to suboptimal designs. As a result, a number of recent studies size both devices and interconnects
simultaneously. These methods will be discussed in this subsection.

4.3.1. Simultaneous driver and wire sizing
The simultaneous driver and wire-sizing problem for delay minimization (SDWS/D problem) was

studied by Cong and Koh in [8]. The switch-level model is used for a driver and both the gate and the
drain (output) capacitances of the transistor are taken into account, while the interconnect tree is mod-
eled by a distributed RC tree as was used in [7]. The objective function is to minimize the summation
of the delay for cascaded drivers and the weighted delay for the RC tree. The SDWS/D algorithm
is based on the following important relation between the driver size and the optimal wire sizing.

Driver and wire sizing relation [8]: Let Rd be the effective resistance for the last stage driver and
~//* be the optimal wire-sizing solution for driver resistance Ra. If Rd is reduced to R~, the new
corresponding optimal wire-sizing solution ~¢/~'* dominates ~/U*.

The core for the SDWS/D algorithm is the procedure to compute the optimal driver and wire sizing
when given a stage number k, which works as follows. First, the algorithm starts with the minimum
wire width assignment and computes the capacitive load of the routing tree. Then, it computes the
optimal sizes of the k cascaded drivers based on Lin-Linholm Theorem in Section 3. Next, the
optimal wire-sizing algorithms (GWSA followed by OWSA) developed in [7] are performed on the

48 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

routing tree based on the effective resistance of the last driver. If the wire width assignment changes,
the new driver sizes are obtained according to Lin-Linholm Theorem. Then, the optimal wire sizing
solution will be computed again based on the new size of the last driver. The process is repeated
until the wire width assignments do not change in consecutive iterations. In this case, the lower
bounds are obtained for the optimal sizes of both the drivers and the wire segments.

The upper bound for the optimal sizing solution can be obtained similarly by beginning with
the maximum wire width assignments. If the lower and upper bounds meet, the optimal solution is
achieved, which occurs in almost all cases as shown in the paper. Otherwise, the size of the last
driver is enumerated between the lower and upper bounds. The corresponding optimal wire sizes and
the first (k - 1) driver sizes are computed, and the optimal k-driver SDWS/D solution is selected
for this set.

The overall SDWS/D algorithm computes the optimal number of stages by a linear search, in-
creasing k starting with k -- 1. The process terminates when stage k does not perform better than
stage k - 1 (i.e. when adding an additional driver actually slows down the circuit). Then, the op-
timal sizing solution for the k - 1 stage drivers and the corresponding optimal wire sizing is the
optimal SDWS/D solution. In practice, the runtime of SDWS/D is on the same order as k times
the runtime of the GWSA algorithm followed by the OWSA algorithm to compute the optimal
wire-sizing algorithm. Note that the BWSA algorithm [12] presented in Section 4.2.1.3 can be used
to greatly speed-up the computation of the optimal wire-sizing solution. The simultaneous driver
and wire-sizing problem for power minimization was also studied in [8] and the efficient optimal
algorithm was developed. Accurate SPICE simulation shows that the method reduces the delay by
up to 12-49% and power dissipation by 26-63% compared to the existing design methods. Very
recently, Cong et al. [118] extended the work on SDWS to handle driver/buffer and wire sizing for
buffered interconnects. However, both Cong and Koh [8], and Cong et al. [118] do not consider the
waveform slope effect during the computation of the optimal driver/buffer sizes.

4.3.2. Simultaneous gate and wire sizing
Recently, Menezes et al. [113, 18] studied the simultaneous gate and wire sizing problem for

different objectives: to achieve the target delays in [113], and to find the minimal-area solution to
satisfy the performance requirement in [18].

4.3.2.1. Simultaneous gate and wire sizing to achieve target delay
The algorithm in [113] is the extension of the moment-fitting method for wire sizing [l 1 l] (Section

4.2.2.3) to the simultaneous gate and wire sizing problem. Again, let target moments be moments
for the two-pole transfer functions that has the target delays, and real moments those for the transfer
function under the current widths of all wires and gates, the sensitivities of the real moments with
respect to the wire and gate widths will guide the search for wire and gate widths to match the real
moments and target moments.

A higher-order RC delay model is used for the interconnect tree as in [111]. Meanwhile, all
transistors in a gate are assumed to scale by the same factor, which allows that a gate can be
described by its "width" Wg. The gate is modeled by the single-resistor voltage-ramp model as
proposed in [119] (see Fig. 6), which can accurately estimate the driver delay as well as output
waveform slope. The sensitives with respect to the gate and wire widths for real moments can be

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 49

computed, which are used to guide the changes of gate and wire widths to achieve the target delay
for a stage by the aforementioned moment-fitting method (in this work, a stage is a dc-connected
path from the voltage source in the gate model to a sink).

Furthermore, the algorithm in [113] handles a path, which contains cascaded stages. It is also based
on the sensitivity guided moment-fitting method. The following assumption is made to simplify the
sensitivity computations: given two successive stages n and n + 1 in a path, first, except the gate of
stage n + 1, no wire/gate in stages n + l ,n + 2,.. . affects the delay in stage n; second, sizing the
gate or a wire in stage n only affects the input transition time to the gate in stage n + 1, not those
in stages n + l, n + 2 In their experiment, the objective for each PI-PO path was a 50% delay
reduction, through gate sizing only and simultaneous gate and wire sizing, respectively. It was shown
that for larger delay reductions, simultaneous gate and wire sizing could achieve lower area and that
gate sizing only could not reach 50% delay reduction because the path delay was dominated by the
interconnect delay. The trade-off between the area and the delay reduction was shown as well.

4.3.2.2. Simultaneous gate and wire sizing to satisfy perjormance requirement
The simultaneous gate and wire sizing approach [18] is aimed at finding the minimal-area solution

to satisfy the performance requirement. First, the driver is modeled by a fixed resistance driven by
a step waveform and the delay of the interconnect tree is modeled by the Elmore delay model. The
path delay in this case is a posynomial function of both gate and wire widths and the simultaneous
gate and wire sizing problem is a posynomial programming problem which can be transformed into
a convex programming problem. The sequential quadratic programming (SQP) 9 is used to solve
this transformed convex programming problem to achieve an optimal solution.

Then, the delay of the interconnect tree is modeled by the higher-order RC delay while the driver
is modeled by a fixed resistance. Although the path delay is no longer a posynomial function of gate
and wire widths, the authors assumed that it was near-posynomial so that the SQP method could be
applied. A q-pole transfer function is used and the sensitivity computation of the poles and residues
is conducted during the SQP procedure.

Finally, the driver is modeled by the more accurate single-resistor voltage-ramp model [119].
Again, the near-posynomial is assumed for path delay and the SQP method is applied. The sizing
results showed that the fixed-resistance driver model could lead to undersized solutions. RC meshes
(non-tree interconnects) can be handled by the SQP method, again under the assumption that the
delay formulation is near-posynomial.

4.3.3. Simultaneous transistor and wire sizing
Very recently, the simultaneous transistor and interconnect(wire) sizing (STIS) problem is formu-

lated and solved by Cong and He [115, 116]. In order to minimize the delay along multiple PI-PO
paths, they propose to minimize the weighted combination of delays for all stages in these PI-PO
paths by choosing the discrete or continuous transistor sizes and wire widths.

9According to [120], the SQP method reduces the non-linear optimization to a sequence of quadratic programming
(QP) subproblems. At each iteration, a QP subproblem is constructed from a quadratic linearization of both the objective
function and the constraints about the solution from the previous iteration. The solution of the current iteration is then
used as an initial solution for the next iteration. The iteration converges to a solution for a convex programming problem.

50 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

Rather than developing ad hoc methods for STIS problems under different delay models, the
authors study the optimization problems whose objective functions have the following form:

api(Xi) q
f (X) : ~ ~ ~ ~ ~i p bqj(Xj)Xj,

p=O q=O i:1 j=l,jTdi

where

api(Xi)>/O and bqj(Xj)>>,O,

L<.X<.U. (31)

When coefficients are constants, the class of functions, named simple CH-posynomials, is a subset
of posynomials defined in [89]. Furthermore, they define the following general CH-posynomials,
which are no longer posynomials.

General CH-posynomial. Eq. (31) is a general CH-posynomial if coefficients satisfy the following
conditions: (i) api(Xi) is a function of xi. It monotonically increases with respect to an increase of xi
but api(Xi)/xi p still monotonically decreases with respect to an increase of xi. (ii) bqj(xj) is a function
of xj. It monotonically decreases with respect to an increase of XJ but bq~(Xj)X q still monotonically
increases with respect to an increase of xi.

Let the optimization problem to minimize a simple/general CH-posynomial be a simple~general
CH-posynomial program. After generalizing the concepts of local refinement operation and the
dominance property in [7] (presented in Section 4.2.1.1), the authors of [115,116] showed the
following important theorem:

Theorem (Cong-He [117]). The dominance property holds for both the simple and the general
CH-posynomial programs.

The theorem provides an easy way to verify the dominance property for both the single-source
and the multi-source wire sizing problems in [7, 12], respectively, since both objective functions are
instances of the simple CH-posynomial. Furthermore, the theorem leads to efficient algorithms, for
example, the generalizations of the GWSA algorithm [7] or the BWSA algorithm [12], to compute
a set of lower and upper bounds of the optimal solution to a CH-posynomial program by the local
refinement operation and the bundled refinement operation very efficiently (in polynomial time).

The authors of [115,116] further show that the STIS problem is a CH-posynomial program under
the RC tree model for interconnects and a number models for the transistors, including both sim-
ple analytical transistor models or more accurate table-lookup-based transistor models obtained by
detailed simulation to consider the effect of the waveform slope. Thus, the BWSA algorithm [12]
is generalized to compute the lower and upper bounds for the optimal widths for both wires and
transistors.

Experiments show that in nearly all cases, the optimal solution to the STIS problem is achieved
because the recursive application of local refinement operations using the dominance property leads
to identical lower and upper bounds. In contrast to the transistor sizing algorithm in [81] which is
not able to consider the waveform-slope effect for transistors, the dominance-property-based STIS
algorithm can be efficiently applied to either analytical or table-lookup-based transistor models with
consideration of the waveform-slope effect. The simultaneous driver and wire sizing problem (for

J. Cong et a l . / I N T E G R A T I O N , the V L S I Journal 21 (1996) 1-94 51

multi-source nets) and the simultaneous buffer and wire sizing problem have been solved as special
cases of the STIS problem, and a smooth area-delay trade-off has been yielded for the transistor
sizing problem for circuits implemented by complex gates.

4.3.4. Simultaneous buffer insertion and wire sizing
The polynomial-time dynamic programming algorithm for the buffer insertion problem [107] was

generalized by Lilles et al. in [114] to handle the simultaneous wire sizing and buffer insertion for
both delay and power minimization. The slope effect on the buffer delay was also taken into account.
Only the delay minimization feature will be discussed in the following.

Different from [107], when a wire segment of length l (with upstream node k) is added at the
root i of a dc-connected subtree, a new option (qk,ck) will be generated at k for every wire width
choice w and every (qi, ci) at i as the following:

: _ q- C i , qk qi w

Ck = Ci q- CaWI.

The non-uniform wire sizing can be easily carried out by just introducing two-degree Steiner points
within a wire segment, and the other two bottom-up rules to compute new options (with extension to
multiple inverter sizes and consideration of signal polarity) and the rule to prune suboptimal options
given in [107] can be applied without any modifications. The number of total options at the source
of the routing tree is still polynomial bounded.

According to [35], the delay of an inverter is the delay under the step input plus an increment
due to the input slope. The increment is proportional to the input waveform transition time. By
assuming that the delay increment due to the input slope is proportional to the Elmore delay Dprev
in the previous stage, the authors further formulated the following buffer (inverter) delay for the
downstream capacitance ck:

buf_delays(b, c~) = buf_delay(b, ck) + 2bDprev,

where buf_delay(b, ck) equals to Dbuf + RbufCk with Dbuf being the intrinsic delay of an inverter and
Dprev being the Elmore delay of the previous wire path.

Because the dynamic programming works from the bottom-up and Dprev is unknown, the option is
redefined as (f , c) instead of (q,c) when considering the slope effect, where f is a piecewise linear
function and f (x) = q is the optimal required arrival time q for the downstream capacitance c and
Dprev = x. With this new definition for the option, the number of total options at the source of a
routing tree is no longer polynomially bounded in the theoretical sense. However, it was observed
in [114] that the run time of the new version is comparable to that of its simpler version assuming
step-input to buffers.

4.4. Simultaneous topology construction and sizing

All wire and device sizing works presented up to now assume that the topology of interconnects is
given, which can be called static sizing. Recently, dynamic wire sizing has been studied, where the
wire sizing is performed during interconnect construction. Furthermore, simultaneous interconnect

52 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

construction, buffer insertion and sizing, and wire sizing has been studied in order to achieve even
better designs.

4. 4.1. Dynamic wire sizing during topology construction
Hodes et al. [121] propose a method to do wire sizing dynamically during tree construction. They

combine the Elmore routing tree (ERT) algorithm [9] (Section 3.3) and the GWSA algorithm [7]
(Section 4.2.1) as follows: starting with a degenerate tree initially consisting of only the source pin,
grow the tree at each step by finding a new pin to connect to the tree in order to minimize the
Elmore delay in the current wire-sized topology. In other words, in each step they invoke the GWSA
algorithm for each candidate edge and add the edge that yields the wire-sized tree with the minimal
maximum delay. After the construction spans the entire net, the GWSA algorithm is invoked once
more to wire size the entire tree, starting with the minimal width.

Recently, Xue and Kuh [76, 75] propose insertion of multi-links into an existing routing tree and
do dynamic wire sizing during the link insertion in order to minimize the maximum delay. The
Elmore delay formulation for RC meshes in [122] is used. The algorithm works as follows: Given a
routing tree with a performance requirement, the sink n with the maximum delay is identified. A
wire link e is established between the source and nm~x. While the performance requirement is not met
and nm~x remains the most critical (i.e., still has the max-delay), e is assigned with non-uniform wire
width. Suppose n'ma x becomes the most critical sink after wire sizing on e. If there is a direct link e'

' is no longer the most ' then the algorithm sizes the wire of e' instead until nma x from source to nmax,
e' will be critical sink or the delay requirement is met. If there is no direct link e' from source to n

established only if further wire sizing of e cannot satisfy the performance requirement with less area
than creating the new link e'. The wire sizing is formulated as a sequential quadratic programming
(SQP) problem. Moreover, non-uniform wire sizing is achieved by dividing every segment into a
number of subsegments defined by the user. Because the sink with the maximum delay also has the
maximum skew, minimization of the maximum delay also minimizes the maximum skew.

4.4.2. Simultaneous tree construction, buffer insertion and wire sizing
Most recently, Okamoto and Cong [123] study the simultaneous tree construction, buffer inser-

tion and wire sizing problem J0 The following techniques are combined to develop a wire-sized
buffered A-tree (WBA-tree) algorithm: the A-tree algorithm for tree construction [41], the simulta-
neous buffer insertion and wire sizing algorithm [107, 114], critical path isolation, and a balanced
load decomposition used in logic synthesis. In logic synthesis, when one or several sinks are timing
critical, the critical path isolation technique (Fig. 24(a)) generates a fanout tree so that the root gate
drives only the critical sinks and a smaller additional load due to buffered non-critical paths. On the
other hand, if required times at sinks are within a small range, balanced load decomposition (Fig.
24(b)) is applied in order to decrease the load at output of root gate. These transformations are
applied recursively in a bottom-up process from the sinks in the same manner as the A-tree and the
simultaneous buffer insertion and wire sizing algorithms.

As in the buffer insertion algorithm of [107] (Section 4.1.3), the WBA algorithm includes two
phases: the bottom-up synthesis procedure and the top-down selection procedure. Similar definitions
of the option and the pruning rule are used. Recall the heuristic move in the A-tree algorithm

10 An early version of this work considers only simultaneous topology construction and buffer insertion [124].

J. Cono et al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94 53

~ _ t _ . ~ .signal
(a) Critical signal isolation

Z3-

(b) Balanced load decomposition

Fig. 24. Fanout optimization in logic synthesis.

[41] merges subtrees recursively in the bottom-up manner, starting from the set of subtrees, each
containing a single sink. Let T~ be subtree rooted in node i, the following basic steps are iterated in
the bottom-up synthesis procedure.
- Select v and w with considering critical path isolation and balanced load decomposition.

- Merge T,~ and Tw to Tr, and compute a set of options at r.
In order to select the pair of v and w (equivalent to T~, and Tw) to merge, first, the following

concepts are defined: The distance between the source and the merging pair of v and w, denoted
D,~w, is defined as D,,w = min(vx, wx) ÷ min(vy, Wy). This definition is for the case that v and w are
in the first quadrant with So at the origin. Other cases can be defined in a similar way.

The maximum possible required time at the root r of subtree Tr generated by merging of T,, and
Tw, denoted R~w, is defined as R,,w = maxzez, qz, where r is the merging point of T,, and Tw, and Z~
is a set of options at r.

The maximum R~w among all possible merging pairs v and w in the set of roots ROOT of the
current subtrees, denoted Rmax(ROOT), is defined as Rmax(ROOT) = max~.weROOT Rr,.. The merging
cost for v and w is defined as merge_cost (v, w, ROOT) = ~ . R,,w + (1 - e) . D~,w where c~ is a fixed
constant with 0 ~< c~ ~< 1.0.

Then, the v and w pair with the maximum merge_cost is the one to be merged. The idea behind it
is as follows: we want to maximize the required arrival time in the source pin so that we wish that
the R~,w is as large as possible. Meanwhile, we want to minimize the total wire length, intuitively,
we wish that D~w is as large as possible. Note that, when e = 0, it is equivalent to the heuristic
move in [41].

The option computation and pruning can be carried out in a manner similar to [107, 114] after
each merging of T~, and Tw. Overall, after the bottom-up synthesis procedure to construct tree and
compute options, the top-down selection procedure is invoked. It chooses the option which gives
the maximum required time and the minimum total capacitance at the source pin, then traces back
the computations in the first phase that led to this option. During the back-trace, the buffer positions
and wire width of each segments are determined.

Similarly, Lillis et al. studied~the simultaneous tree construction and wire sizing problem [74]
and the simultaneous tree construction and buffer insertion problem [125], respectively. In fact, their
method can be generalized to handle the simultaneous tree construction, buffer insertion and wire-
sizing problem as well. In short, during the dynamic program scheme to construct a P-tree [74]
(Section 3.3) in a bottom-up manner for a given permutation, a set of options are computed for
each subtree as in [107, 114] and the same option pruning rule is applied.

54 J. Cony et al . /INTEGRATION, the VLSI Journal 21 (1996) 1 94

5. High-performance clock routing

In layout synthesis, the distribution of clock signals is critical to both the operation and per-
formance of synchronous systems. If not properly controlled, the clock skew, defined to be the
difference in the clock signal delays to registers, can impact the performance of the system and even
cause erratic operations of the system, e.g., latching of an incorrect data signal within a register. At
the same time, the routing solutions to distribute the clock signals should have low wiring area to
reduce the die size and the capacitive effects on both performance and power dissipation. Due to
technology scaling where long global interconnect becomes highly resistive as the wire dimensions
decreases, the clock routing problem has become increasingly important since clock nets generally
have very large fanout and span the entire chip. Thus, clock synthesis has generated tremendous
interests within both the industrial and academic communities over the past several years.

In general, the clock routing problem can be formulated as follows: Given a set { l(sl) , . . . , l(sn)} C
.~2 of sink (register) locations and skew constraints on various pairs of registers, construct a
minimum-cost clock tree that satisfies the skew constraints. Most of the works deal with zero-
skew clock tree (ZST) construction where all sinks are required to have identical clock delay. There
are possibly other constraints and/or objectives to the problem:

(i) We want to impose a constraint on the rise/fall times of the clock signal at the sinks since
it is critical to keep the clock signal waveform clean and sharp.

(ii) We want to minimize the delay of clock signal, which is closely related to the rise/fall time.
(iii) We want to minimize the total power dissipation since a clock signal typically operates at a

very high frequency and dissipates a large amount of the power.
(iv) We want the clock tree to be tolerant of process variations, which cause the wire widths

and device sizes on the fabricated chip to differ from the specified wire widths and device sizes,
respectively, resulting in so-called process skew, i.e. clock skew due to process variations.

In the rest of the discussion on clock routing, we consider the following clock routing problem:
Given a set of sink locations and a skew bound B ~> 0, construct a minimum-cost clock tree T that
satisfies skew(T)~<B where skew(T) = maxi,j] t i - tjl. In most works, B = 0, i.e., they attempt
to achieve zero-skew for the clock net. This formulation requires the clock signal to arrive at all
sequential elements almost at the same time, which is commonly used in random logic design. For
data path design, however, it is possible to optimize the circuit performance by planning the clock
arrival times (clock schedule) at all registers more carefully; "intentional" clock skews are used
constructively to improve system performance. Clock schedule optimization will be discussed in
Section 5.6.

Recent works on clock skew minimization have accomplished exact zero skew under both the path
length delay model [126-128] and the Elmore delay model [129, 126, 130, 131]. The deferred-merge
embedding (DME) a lgor i thmby [126, 130, 127] can be either applied to a given clock topology or
combined with a clock topology generation algorithm to achieve zero skew with a smaller wire length
[132]. The methods in [133,134, 16] address the bounded-skew tree (BST) construction problem
under the path length and Elmore delay models by extending the DME algorithm for zero-skew
tree to BST/DME algorithms by the enabling concept of a merging region, which generalizes the
merging segment concept of [126, 130, 127] for zero-skew clock trees. Recent studies on clock routing
have also led to new methods for single-layer (planar) clock routing [135-137]. Furthermore, a
number of authors have applied wire-sizing optimizations and/or buffer optimizations to minimize

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 55

H S P I C E
S k e w
(ps)

71X)0
6500
6000
5500
5000,
450(I
40(X)<

3500
3(X10
2500
2000

11

i - - - i ~ - - - T - - ~

- - - 50 100 150 200 250
P a t h l e n g t h S k e w (p m)

HSPICE
Skew
(ps)

600 7- , w - - - -

i 5oo ,P / / ~

400 b / 7 /
[

3001

2ooi
1 0 0 ~

0 100 200 300 400 500
E l m o r e S k e w (ps)

Fig. 25. Plots of (a) path length skew and (b) Elmore delay skew versus actual (SPICE simulation) delay skew for routing
solutions obtained by Greedy-BST/DME algorithm [16] under path length delay and Elmore delay for benchmark r3.

phase delay [13 8-141], skew sensitivity to process variation [13 8, 142-144], and/or power dissipation
[138, 145].

Most of these works are based on the path length and Elmore delay models. In practice, bounding
path length skew does not provide reliable control of actual delay skew [16]. For example, Fig.
25(a) plots HSPICE delay skew against path length delay skew for routing trees generated by the
Greedy-BST/DME algorithm under path length delay [133,134] on MCNC benchmark circuit r3
[129]. Not only is the correlation poor, but the path length-based BST solutions simply cannot meet
tight skew bounds (of lOOps or less). On the other hand, Fig. 25(b) demonstrates the accuracy and
fidelity of Elmore delay skew to actual skew for routing trees constructed by the Greedy-BST/DME
algorithm under Elmore delay [16]. Nevertheless, for completeness, we will discuss studies under
both path length and Elmore delay models. The clock routing problem under the path length problem
is more tractable and theoretically interesting. Many important results are obtained under the path
length delay model. Also note that most of the studies on clock routing are first based on the path
length delay model and later extended to handle the Elmore delay model.

We will present various works on clock routing based on the following classification: (i) abstract
topology generation, (ii) embedding of abstract topology, (iii) planar routing, (iv) buffer and wire
sizing, (v) non-tree clock routing, and (vi) clock schedule optimization. Many results in (i)-(iii)
were also surveyed in [42]. While we aim to cover all recent works on interconnect design and
optimization in high-performance clock routing in this section, this is not a comprehensive survey
on clock synthesis and we left out some related topics. For example, there is a clock synthesis
algorithm that specifically targets towards low-power design using gated clock [146]. Two-level
clock routing with the upper level routing in multichip module substrate has also been studied [147].
In addition, there are studies that target hierarchical data path design (instead of fiat logic design)
[148-150] and consider retiming [151-153] using skew information. Interested reader may also refer
to [154] for a survey on different aspects of clock synthesis.

5.1. Abstract topology generation

There are generally two approaches in generating the abstract topology: top-down and bottom-
up. In the top-down approach, the idea is to perform bipartitioning of sinks. A set S of sinks is
bipartitioned into two sets $1 and $2 where each set (S, $1 and $2) corresponds to a node in the
abstract topology and S is the parent of S~ and $2 in the topology. On the other hand, the basic

5 6 J. Conget al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

4

~3[

4
: t

4 4

4 ~ 4
0

4 4

....... ! I
4 4

4

213

'I
4

t 4

3

4

Fig. 26. H-clock tree. Nodes labeled 4 are equi-distant from the origin labeled 0.

idea in the bottom-up approach is to perform clustering, i.e. merging two sets S~ and $2 into S. The
recursive clustering also defines an abstract topology. Many methods actually generate the abstract
topology and embed the topology in one pass. But, we separate abstract topology generation from
embedding since once the abstract topology is given, embedding can be done optimally (under the
path length delay model) or near-optimally using the algorithms to be described in Section 5.2.

5, 1.1. Top-down topology 9eneration
In an H-tree topology [155, 195,156-158], the basic building block is a regular H-structure. ~1 All

four comers of the H-structure are equi-distant from the center of the structure. The H-tree algorithm
minimizes clock skew by repeating the H-structure recursively top-down as shown in Fig. 26. In the
figure, all points labeled 4 are path length equi-distant from the origin labeled 0.

H-trees, while effective in equalizing path lengths from a driver to a set o f sinks, have seri-
ous limitations. These trees are best suited for regular systolic layouts, and are not easily adapted
to irregular placements with varying sink capacitances, which are common for cell-based designs.
Moreover, tree lengths can be excessively high for large clock nets, impacting circuit area, power
consumption, and clock rates for large circuits.

The method o f means and medians (MMM) algorithm proposed by Jackson et al. [159] generalizes
the H-tree algorithm; the idea is to perform partitioning along x and y directions alternatively. Given
a set of sinks S = {s~,s2, . . . ,sn} to be partitioned, the MMM method first computes the center of
mass o f S, denoted c(S), by calculating the means of the x- and y-coordinates of sinks in S:

xi ~ y,
xc.(s) -- , To(s) -- 11 n

The set of sinks are then ordered by their x- and y-coordinates. If S is to be partitioned in the x (y)
direction, then sinks in the first half of the ordered sink set are grouped in the S~et;(Sbottom) partition
and the rest of the sinks belong to the Sright(gtop) partition. The algorithm then routes from the center

t l Another scheme that yields equal-length interconnections is the X-clock tree, where the basic building block is an
X-structure [2]. It can be verified easily that for the simple case of four sinks at the comers of a unit square, an X-tree
connection can be embedded on a rectilinear plane using a cost of 4 units, whereas an H-tree connection requires only a
cost of 3 units. An X-tree is more costly due to overlapping routing when it is realized on a rectilinear plane [136].

J. Con9 et al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94 57

of mass c(S) to centers of mass of partitions, c(Sleft) and c(Sright) (or, c(Sbottom) and c(Stop)). Then, it
routes on the subsets &eft and Sright (or, Sbottom and Stop) recursively until a partition has only one sink.
Instead of routing alternatively between the horizontal and vertical directions, the MMM method is
also extended to allow one level of "look-ahead" to determine the more favorable direction.

Chao et al. [130] presented another top-down topology generation approach called the balanced
bipartition (BB) method. The heuristic divides the sink set recursively into two partitions with nearly
equal total loading capacitance. It is more general than the MMM method which uses only horizontal
and vertical cuts. Given a set S of sinks, the BB method first computes the smallest octagon that
bounds S and obtains the octagon set of S, Oct(S), which is defined to be the set of sinks in S that
lie on the boundary of the smallest boundary octagon. The sinks in Oct(S) are sorted in circular
order based on their locations on the boundary of the smallest boundary octagon.

The BB method computes a balanced bipartition by considering IOct(S)l/2 reference sets, denoted
REFi for t<~i<~lOct(S)l/2, where each REFi contains IOct(S)l/2 consecutive sinks in Oct(S). For
each REFi, the sinks are sorted in ascending order of their weights, where the weight of sink p with
respect to REF~ is defined to be min,.cRE~, d(p,r)+ maxrcREv, d(p,r). Each sink is then added to a
partition $1 according to the sorted order until the difference between the sum of capacitances in $1
and one-half the total capacitance is minimized. The rest of the sinks are placed in ~ and REF~
has a partition cost of diameter(S~)+ diameter(S2). The reference set REFi (and its bipartitions)
with the least partition cost are selected. As in the MMM algorithm, recursion then continues on the
subsets S~ and 4 . Note that BB is a purely topology generation algorithm. It relies on the embedding
algorithm to be presented in Section 5.2 to embed the abstract topology generated.

5.1.2. Bottom-up topology generation
In contrast to the top-down approaches of [159, 130], the KCR geometric matching algorithm was

proposed by Kahng et al. [160, 161] as the first bottom-up approach for clock tree abstract topology
generation. It constructs a routing tree by iteratively joining pairs of subtrees which are "close",
and can handle cell-based design with asymmetric distributions of clock pins and general-cell design
[162, 161]. The KCR algorithm starts with a sets of trees, each containing a single sink of the clock
net. At each iteration, a minimum-weight maximum matching is performed on the set of roots of
the current subtrees, where the weight of a matched edge is equal to the distance between the two
vertices (or tree roots) connected by the edge. The matching operation selects]SI/2 edges that pair
up the roots of all trees such that no root appears in two edges in the matching.

For each edge in the matching, the pair of subtrees are connected by the edge and a balance
point on the edge is computed to minimize path length skew to the leaves of its two subtrees, i.e.
the maximum difference in the path length delays from the balance point to the sinks in the two
subtrees is minimized. This balance point also serves as the root of a tree in the next iteration. An
example to illustrate the KCR algorithm is shown in Fig. 27.

Note that it is possible that no balance point along the edge can be found to achieve zero skew.
A further optimization, called H-flipping is used to minimize clock skew when two trees are merged
in the matching iteration (see Fig. 28). ~2

~: An H-structure in the KCR algorithm is not a regular H-structure in H-tree algorithm.

58 J. Con 9 et a l . / I N T E G R A T I O N , the V L S I Journal 21 (1996) 1 -94

o o

o

o o
o

o

o
o

o
o

o
o

o

Fig. 27. Geometric matching on a set of 16 terminals.

H • " g ~ > e ~ o-i-e FI,pp,n

no zero-skew zero-skew

Fig. 28. Example of flipping an H to minimize clock skew: the tree on the left has no zero-skew balance point along the
middle segment of the "H", while the tree on the right does.

Since the number of trees is reduced by half at each iteration of the matching, the complete clock
tree topology can be computed after log n matching iterations. The time complexity of the KCR algo-
rithm is O(M log n) where M is the time complexity of the matching algorithm. To solve problems of
practical interest, efficient matching algorithms are chosen over optimal matching algorithm. Several
efficient heuristic matching algorithms were recommended by [161]. However, heuristic matching
algorithms may produce a matching with crossing edges. In the KCR algorithm, intersecting edges
in such a matching are uncrossed to reduce routing cost.

The authors also generalized the idea of bottom-up iterative matching to route clock nets in
building block layouts, in which a circuit is partitioned into a set of arbitrarily sized rectangular
blocks. After the blocks are placed by a placement algorithm, a floorplan and the corresponding
channel intersection 9raph is obtained. Routing is carried out in the channels between blocks. In
a floorplan, a vertical channel and a horizontal channel may intersect. These intersection points are
vertices in the channel intersection graph. In the channel intersection graph, vertices u and v are

J. Cong et al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94 59

connected by an edge if and only if there is a channel from u to v not containing any other vertex.
An augmented channel intersection graph (ACIG) is used to capture the location of clock pins (or
clock entry points) of functional elements. Each entry point is also a vertex in the ACIG. The entry
point also introduces an auxiliary vertex on the channel, and an edge is created between the block
entry point and the auxiliary vertex in order to complete the routing.

For the KCR algorithm to work in an ACIG, instead of using the geometric distance as the cost
of the edge between two subtrees, the shortest distance on the channel graph is used as the cost
of the edge connecting two points. Therefore, an additional component in the KCR algorithm for
general cell design is the shortest path algorithm to compute the shortest paths between all pairs
of vertices in each iteration. For each pair of matched vertices, a balance point along the shortest
path connecting the two vertices is computed, and the balance point then serves as a vertex to be
matched in the next iteration.

In general, the KCR algorithm performs better than the MMM algorithm, in terms of both routing
cost and clock skew (under the path length delay model). The algorithms were evaluated using ran-
dom point sets. Moreover, two MCNC benchmark circuits, named Primaryl and Primary2, reported
in [159] were also used in the experiment. No data for the BB method are available since BB
produces only an unembedded binary tree topology. Note that both the MMM and KCR algorithms
cannot guarantee zero-skew routing, although the routing solutions constructed by the KCR algorithm
have skews very close to zero.

The two benchmark circuits, Primaryl and Primary 2, together with the other five benchmark
circuits rl-r5 reported in [129], would later become the most commonly used benchmark circuits to
evaluate the quality of routing solutions generated by various clock routing algorithms. Otherwise
specified, the experimental results reported by various papers will be presented with respect to these
benchmark circuits.

5.2. Embedding of abstract topology

Given a prescribed abstract topology, the deferred-merge embedding (DME) algorithm, proposed
independently by Edahiro [127], Chao et al. [130], and Boese and Kahng [126], achieves exact zero
skew for both path length and Elmore delay models. The enabling concept is that of a merging seg-
ment. The problem of bounded-skew embedding was first addressed independently by Cong and Koh
[133], and Huang et al. [134] under the path length delay model. Cong et al. [16] later extended the
works to handle bounded-skew embedding under the Elmore delay model. The BST/DME algorithms
proposed by [133,134, 16] generalize the merging segment concept and introduce merging region
for bounded-skew embedding. These embedding algorithms (both zero-skew and bounded-skew) can
also be combined with bottom-up topology generation to produce clock trees with less routing costs
[128, 133,134, 16].

5.2.1. Zero-skew embedding
The key idea of the DME algorithm is the delayed embedding of internal nodes of the abstract

topology [127, 130, 126]. In general, given two zero-skew trees, there can be a number of locations
at which two zero-skew trees can be joined with the minimum wire length such that zero skew is
achieved at the higher level. For example, in Fig. 29(b), any point l(x) on the line segment ms(x)
is equi-distant from sinks sl and s2, i.e., we obtain a zero-skew subtree rooted at l(x) with sinks s~

6 0 Z Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

i : i $ 2 : r n s (x)

S X ~ ~~...~-t y /

:: j
s, s2 s3s4 / m

s 3

(a) Topology (b) Bottom-Up Merging Phase

$ 1

S 2

\
m X

,,.." S 4

y " ~ s 3
Cost = 17, Skew = 0

(c) Top-Down Embedding Phase

Fig. 29. A walk-through of the DME algorithm: (a) topology of a clock source so and 4 sinks sl..4, (b) merging segments
of internal nodes x, y and so, and (c) zero-skew clock tree with a total wirelength of 17 units.

and s2. This contrasts with the KCR algorithm where there is only a single balance point when two
subtrees are connected by a matching edge.

Given a set of sinks S and an abstract topology G, the DME algorithm exploits this flexibility and
embeds internal nodes of G via a two-phase approach: (i) a bottom-up phase that constructs a tree
of merging segments which represent loci of possible placements of internal nodes in a zero-skew
tree (ZST) T; and (ii) a top-down embedding phase that determines exact locations for the internal
nodes in T. Note that the embedding can actually be done in a single-phase process. We will present
the single-phase DME algorithm in Section 5.3.2.

In the bottom-up phase, each node v E G is associated with a merging segment, denoted ms(v),
which represents a set of possible placements of v in a minimum-cost ZST. The segment ms(v) is
always a Manhattan arc, i.e., a segment (with possibly zero length) that has slope +1 or -1 . Let
a and b be the children of node v in G. The construction of ms(v), placements of v, depends on
ms(a) and ms(b), hence the bottom-up processing order. We seek placements of v which allow a
and b to be merged with minimum added wire le, I + [e0l while preserving zero skew in T~.

We first illustrate the computation of [e,] and [eh[under the path length delay model [126, 127].
Given t(a) and t(b), the delays from a and b to their respective sinks in T, and T0, it requires that
lea] +t(a) = leo] + t (b) to ensure that the delays from v to sinks in Ta and T0 are equal. Let l denote
the distance between ms(a) and ms(b), i.e., d(ms(a) ,ms(b)) = I. If I t (a) - t(b)l ~ l , then there is
no detour, i.e., lea] +]eb[= 1. Let ms(v) be xl units of distance from ms(a) where x is between 0
and 1. Then,

1 t (b) - t (a)

x = ~ + 21

Suppose I t (a) - t(b)[> l. Without loss of generality, let t(a) > t(b). Then, the merging cost is
minimized by setting le.] = 0 and le0l = t(a) - t(b). In this case , detour occurs, i.e., lea] + [eb[> I.

J. Cony et al. /INTEGRATION, the VLSI Journal 21 (1996) 1-94 61

length(ea) = 0
length(e a) ms(a) = trr(a)

(eb) 'b)

trr

b)

trr(b)

(a) no detour (b) with detour

Fig. 30. Intersection of trr(a) and trr(b) to obtain ms(v).

Under the Elmore delay model, we can compute x as follows [129]:

t(b) - t(a) + rl(Cap(b) + cl /2)
X =

rl(cl + Cap(a) + Cap(b)) '

where Cap(a) and Cap(b) are the total capacitances of subtrees Ta and Tb, respectively, and r and
c are the unit length resistance and capacitance, respectively. If 0~<x ~< 1, we have found lea[= x l
and [e b l = l - lea]. Otherwise, detour occurs, i.e. lea[+]eb] > l. Again, without loss of generality, let
t(a) > t(b). Then, Je~[=0 , and [eb[is obtained by solving the following equation [129]:

t(a) = t(b) + r[ebl(eap(b) + cleb[/2).

Note that the above computation assumes both edges ea and eb have unit wire width. A simple
extension can be made to achieve zero-skew merging even when ea and eb have different widths
[139].

Given lea[and ms(a), the DME method computes the largest tilted rectangular region (a rectangle
rotated by 45 °) such that all points in the tilted rectangular region, referred to as trr(a), is of
a distance of at most le~] from ms(a). Similarly, trr(b) is computed. Then, ms(v) is obtained by
taking the intersection of trr(a) and trr(b) as shown in Fig. 30. At the end of the bottom-up merging
process, a tree of merging segments is computed. We call such a tree a merging tree. Also, the
edge length le,,I is known for each node v in the merging tree.

Given the merging tree, the top-down phase embeds each internal node v of G as follows: (i) if
v is the root node, then DME selects any point in ms(v) to be /(v); or (ii) if v is an internal node
other than the root, DME chooses I(v) to be any point on ms(v) that is of distance levi or less from
the embedding location of v's parent.

Fig. 29 gives an example of the DME algorithm under the path length delay model for a clock
source So and sinks sl-s4 with a topology shown in Fig. 29(a). Fig. 29(b) gives the merging segments
ms(x), ms(y), and ms(s0) of the internal nodes x, y, and So, respectively. Each internal node is then
embedded at a point on its merging segment that is closest to its parent as shown in Fig. 29(c). For
path length delay, DME returns the optimal solution, i.e., a tree with minimum cost and minimum
source-sink path length for any input sink set S and topology G. DME is not optimal under the
Elmore delay model [126].

Using the topologies generated by the KCR algorithm, the DME algorithm averages more than 9%
and 15% cost reductions over the clock routing trees constructed by the KCR and MMM algorithms
only, respectively. The results are marginally better than those produced by combining BB with

62 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

s
ms[x)

% t
\

SO S 1

so
Sl S 2 S 3 $4

(a) Topology

ms,so
/

~ sa
I~ ~ ms(y)

Cost = 17, Skew = 0

(b) Zero-skew routing by DME

S2

S l r ~ ~ 4,z_._.lrnr(y)

so " ~ _ _ l l s 3

Cost = 16, Skew = 2

(c) Bounded-skew routing by BST/DME

Fig. 31. Comparison of DME zero-skew routing in (b) and BST/DME bounded-skew routing in (c) for the prescribed
topology G in (a). BST/DME lowers the routing cost by allowing non-zero skew bound. Note that in (b) the merging
segments are depicted by dashed lines, and in (c) the merging regions are depicted by shaded polygons.

DME. As we shall see in Section 5.2.3, further cost reduction can be obtained when we interleave
topology generation with embedding.

5.2.2. Bounded-skew embedding
While the DME algorithm considers only zero-skew, the BST/DME algorithms proposed by

[133,134, 16] consider bounded-skew clock routing. Similar to the DME algorithm for zero-skew
tree, the BST/DME algorithms compute a bounded-skew routing tree (BST) for a prescribed topol-
ogy in two phases: bottom-up and top-down. The enabling concept is that of a merging region,
which generalizes the concept of merging segment in [126, 130, 127] for zero-skew clock trees. Fig.
31 highlights the difference between the DME algorithm for zero-skew routing and the BST/DME
algorithms for bounded-skew routing. In the BST/DME algorithms, the bottom-up process constructs
a tree of merging regions (in contrast to merging segments for zero-skew tree) which contains pos-
sible locations of the internal nodes in the BST. The top-down process then determines the exact
locations of all internal nodes.

Two approaches were proposed to construct the merging regions: (i) the boundary merging and
embedding (BME) method [133,134] and (ii) the interior merging and embedding (IME) method
[16]. We consider only the path length delay formulation as in [133,134]. Extension to the Elmore
delay model can be found in [16].

Boundary merging and embedding (BME). The BME method utilizes only the boundaries of
merging regions to construct new regions: Given merging regions mr(a) and mr(b) of v's children,
the merging region mr(v) is constructed by merging the nearest boundary segments of mr(a) and
mr(b). The nearest boundary segments are called joining segments. A point p in the joining segment
of mr(a), denoted JS(a), can merge with a point q in the joining segment of mr(b), denoted JS(b) ,

if d(p, q) = d(mr(a), mr(b)).
There are several interesting properties of a merging region under bounded-skew routing which

allow it to be computed in constant time. Note that each point p in the merging region has two
delay functions: max-delay and min-delay which gives the maximum and minimum delays from p
to sinks in subtree Tp rooted at p, i.e., the maximum and minimum sink delays in Tp. A merging
region under path length delay is convex and is bounded by at most 8 well-behaved segments, which

J. Con9 et al . / INTEGRATION, the VLSI Journal 21 (1996) 1 94 63

. t1..

/ ~ max-delay = max(x+ 1 -x+9)~- - -~ "... ~
La ' l ' l / " - i x+l ' x + 7 - - ' : : V'q mtn-delay- m n(, - ') ~".. " ~ " [LY" "

mr(a) J. ~ - j . . - - S - - ~ , - - - ; ~ \J V l / : :

(o
t ::::::i: :: :i::::: :i: : :: i:: ' " ".. ."

' : 2 2 : " "'i :elL1_) iL:..:.) ::,. :' j 7 ~
y x ~ i : - i - i : i ! i " : i ' : 4~b) ~ ' " ' " ' ~ m i n T d e l a y

. " ' : : T : FMR(I)

I b ' skew decr(I)l skew_incr(I)
x = d(p, L a) skew const(I)

(a) (b)

Fig. 32. Merging mr(a) with mr(b) using Manhattan arcs La and Lh, respectively. Each pair of coordinates associated
with a Manhattan arc (or point) represent (max-delay, min-delay) of the line segment (or point). (a) the max-delay and
rain-delay of any point p along a shortest path connecting two points on La and Lb with length = d(La,L~). (b) Properties
of path length delays and skew over a line segment l connecting two points a C La and b E Lb. The first and second
coordinate pairs associated with points a and b represent (max-delay, rain-delay) before and after merging, respectively.

are Manhattan arcs (-4-45 ° lines) and rectilinear line segments (horizontal or vertical line segments)
with the following properties:

(i) All points along a boundary Manhattan arc have constant max-delay and constant min-delay
and thus, the skew value along a boundary Manhattan arc is constant.

(ii) The max-delay along a boundary rectilinear line segment is strictly decreasing with a slope of
- l and then increasing with a slope of + 1. On the other hand, the min-delay along a boundary rec-
tilinear line segment is increasing and then decreasing. Therefore, the skew values along a boundary
rectilinear line segment are linearly decreasing, then constant, then linearly increasing (Fig. 32(b)).
Locations which define the interval of constant skew region are called skew turning points.

Therefore, the joining segments from mr(a) and mr(b) are either parallel Manhattan arcs or
parallel rectilinear line segments. Let JS(a) and JS(b) be the two joining segments, and Tjs(~) and
Tjs(b) be subtrees rooted under JS(a) and JS(b), respectively. To merge two parallel Manhattan
joining segments JS(a) and JS(b), m r (v) is computed as follows (Fig. 33):

(i) Given the constant max-delay of Tjs~), and the constant max-delay of Tjs(b), use the delay
balancing method in Section 5.2.1 for zero-skew merging to find a Manhattan arc l such that the
max-delay from l to sinks in Tjs(~) and Tjs(b) are the same, i.e.,

m a x { t (p , x) [p E l ,x E sink(Tjs(~))} = m a x { t (p , x) l p C 1,x E sink(Tjs(b))}.

Similarly, find l' such that the min-delay from l' to sinks in Tjs(,) and Tjs(b) are the same. l and l'
bound a region as shown in Fig. 33(a).

(ii) Expand the region bounded by l and l' towards JS(a) and JS(b) by ½{B- max(skew(Tjs(,)),
skew(Tjs~b)))}, where B is the skew bound (Fig. 33(b)). The expanded region is ms(v).

To merge two parallel rectilinear joining segments, for p either a skew tuming point or an end
point of the joining segments, merge p with the point directly opposite it on the other joining
segment by the two step computation given above. A set of merging regions is therefore produced.

64 J. Con9 et a l . / INTEGRATION, the VLS1 Journal 21 (1996) 1 94

i i i i i ! iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiliiiiiiiill
i i i (1~6 12)

i i J S (a) ~) a i a n c e m i n i d e l a y , I'

Bala ce max-delay, J .~ . i i........., i i

(a) (b)

Fig. 33. Merging of two Manhattan joining segments JS(a) and JS(b): (a) balance the max- and rain-delays (given in the
pair of coordinates) of Ta and Th, and (b) expand the region bounded by 1 and l' towards JS(a) and JS(b) by 1 unit for a
skew bound of 6.

(11,3) (8,6) (7,5) (10,2)

i i ! i i ~ i i i i

......... l i

(11,7) (9,9) (14,4)

(11,3) (8,6) (7,5) (10,2)

................... i i

(11,7) (9,9) (14,4)

(a) (b)

Fig. 34. Merging of two rectilinear joining segments: (a) for each skew turning point and each segment endpoint, compute
the merging regions of the point with the point opposite it on the other segment, and (b) perform a walk to join the
vertices of these merging regions.

Subsequently, a walk is performed to join the vertices of these merging regions to produce the new
merging region as shown in Fig. 34.

Interior Mergin9 and Ernbeddin9 (IME). IME uses a set of sampling segments (possibly with
points interior to the merging regions) from each child merging region, instead of only one joining
segment from a merging region as in the BME method. Merging interior points has the advantage
of better utilizing the skew budget throughout the bottom up merging process, which may result in
a larger merging region at a parent node and possibly reduce the total merging cost (Fig. 35).

Only well-behaved line segments are used to sample a merging region. Merging of two regions
involves two sets of sampling segments and generates a set of merging regions for the parent node

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 65

S4

ss~ (5,5) ss3(7,3)
Sl x ~

mr(x)
• i s3 S2 S 2

(a) Sample mr/x) by 3 segments (b) Merge s 3 with sampling
segments of x

S4

D

s1
I

S3

Fig. 35. Interior merging for a skew bound of 2 units between mr(x) and sink $3 (a) The merging region mr(x) (due to
merging of Sl and s2) is sampled by three Manhattan arcs {ss:{,ss~, ss~}. (b) Merging these sampling segments with sink
s3 produces three merging regions where R, is produced by merging s3 with ss~. R] is also the merging region obtained
by BME when mr(x) merges with s3. Note that it is smaller than R3.

(Fig. 35). For efficient and practical implementation, the IME method limits the number of regions
associated with a node by a constant, say k. Each region is in turn sampled by exactly s sampling
segments when the region is being merged with other regions of the sibling node. A key step in the
IME method lies in choosing, via dynamic programming, a set of "best" merging regions (no more
than k of them) among the set ~ of (at most) k2s 2 regions generated for the parent node.

A merging region R E ~ is associated with three values: (i) Cap(R), the total capacitance rooted
at region R which is a constant for all point in R, (ii) rain_skew(R), the minimum possible skew
among all points in R, and (iii) max_skew(R), the maximum skew possible within the merging
region. A merging region R of v is said to be "redundant" if there exists another merging region R'
of v such that min_skew(R') < min_skew(R) and Cap(R') < Cap(R) (see Fig. 36(a)). Let IMR(v) =
{R~,R2, . . .R , , } denote the set of irredundant merging regions of v with Ri's arranged in descending
order of Cap(Ri); then min_skew(Ri) < min_skew(R/+l) for all i with 1 ~ i < m.

The set of irredundant merging regions forms a staircase with m - 1 steps as shown in Fig. 36(b).
The area of the staircase of a set of merging regions of node v, denoted area(v), is defined to be
the area under the staircase between the skews rain_skew(R]) and min_skew(Rk):

m - I

area(v) = ~ {min_skew(Ri+l) - min_skew(Ri)} × Cap(Ri)
i=l

In order to retain a good spectrum of no more than k merging regions from IMR, the IME method
solves the following (m,k)-sampling problem optimally using a dynamic programming approach:
Given a set of m irredundant merging regions, IMR, find a subset of k (2 ~<k ~< m) merging regions
such that after removing each of the m - k intermediate merging regions, the remaining regions
IMR' has minimal error, i.e., a r e a (I M R ') - area(IMR) is minimal.

In summary, to compute the merging regions for a node, IME first computes kes 2 merging regions
due to merging of its children. Redundant merging regions are then removed and a dynamic pro-
gramming algorithm is applied to select among the m irredundant merging regions, k "best" merging
regions to be associated with the node.

66 J. Con(] et e l . / INTEGRATION, the VLSI Journal 21 (1996) 1 94

capacitance
e n

I ' O

........... 5/ 1 ~=
f ' - -- redundant merging ii o

........................ ro,~,~no ~
I ~

i i f)

I

irredundant merging ~ '~ I
• I regions ~ i

I

skew
(a) Set of Merging Regions

capacitance

non-physical
merging points
/

:i
. i

area(v)

. m

skew
(b) Irredundant regions form a staircase

capacitance

error of new staircase

Cap(!i.1) ~ ~ - ~ ~ l ~ s t e p removed

-Cap(Ri) L~!~ I

min_skew(R i+1)!
- min_skew(Ri)

skew
(c) Staircase with a step removed

Fig. 36. (a) Set of merging regions. (b) Set of irredundant merging regions form a staircase. (c) Removing an intermediate
step results in a new staircase with an error depicted by the shaded region.

The IME method requires a longer run time than the BME method due to the (m,k)-sampling
algorithm. The run time can be improved if we use other faster selection heuristics such as choosing
k merging regions with the smallest total capacitances. However, the impact on the quality of the
routing solutions is not clear. On the other hand, the advantage of the IME method is that it
considers interior merging points and might generate larger merging regions and therefore reduce
merging cost at the next level. Although the IME method is expected to produce routing solutions
with smaller costs when compared to solutions constructed by the BME method, this is not always
the case as shown in the experimental results of [16]. However, this could be due to the use of small
sampling sets (k = 5 and s = 7) with only Manhattan arcs as sampling segments in the experiment.
IME performs marginally better than BME for fixed topology. However, in the case of combining
topology generation with embedding (Section 5.2.3), both methods have comparable results, with
IME producing better results for larger circuits when the skew bound is large.

A very recent work by Oh et el. [163] can construct an optimal minimum-cost bounded delay
routing for a given topology using linear programming under the path length delay model. The
bounded delay routing tree satisfies the upper and lower bound delay constraints imposed by the
designer. Clearly, the bounded delay routing tree is also a bounded-skew tree. However, for a skew
bound B, there are many combinations of the upper and lower bound delays. It is difficult to choose
a "good" combination of upper and lower bounds for a specific allowed skew bound. The authors
also noted that the approach cannot be extended to handle Elmore delay easily [163].

5.2.3. Topology 9eneration with embedding
Since DME requires an input topology, several works [126, 128, 130] have thus studied topology

constructions that lead to low-cost routing solutions when DME is applied. These methods interleave

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 67

topology construction with merging segment computation using DME. The works by [133,134, 16]
adopt a similar approach to construct BSTs by interleaving topology construction with merging
region computation using BME or IME.

Greedy-DME. The most successful method in this class is the Greedy-DME method of Edahiro
[128], which determines the topology of the merging tree in a greedy bottom-up fashion. Let K
denote a set of merging segments which initially consists of all the sink locations, i.e., K = {ms(s,)}.
Greedy-DME iteratively finds the pair of nearest neighbors in K, i.e. ms(a) and ms(b) such that
d(ms(a) ,ms(b)) is minimum. A new parent merging segment ms(v) is computed for node v from a
zero-skew merge of ms(a) and ms(b); K is updated by adding ms(v) and deleting both ms(a) and
ms(b). After n - 1 operations, K consists of the merging segment for the root of the topology.

In [132], O(nlog n) time complexity was achieved by finding several nearest-neighbor pairs at
once, i.e., the algorithm first constructs a "nearest-neighbor graph" which maintains the nearest
neighbor of each merging segment in K. Via zero-skew merges, IKi/k nearest-neighbor pairs are
taken from the graph in non-decreasing order of distance, where k is a constant typically between
2 and 4. In some respects, this approach is similar to the KCR algorithm in which a matching is
computed in each iteration [161]. The solution is further improved by a post-processing local search
that adjusts the resulting topology (cf. "CL+I6" in [132]). Greedy-DME achieves 20% reduction in
wiring cost compared to the results which were obtained by using BB followed by DME [130].

Chou and Cheng [164] proposed a simulated annealing approach to construct a zero-skew tree.
A "tree grafting perturbation" operation is used to swap two subtrees during the annealing process.
The algorithm has been applied to both Manhattan and Euclidean geometries. For the Manhattan
distance metric, the heuristic produces tree lengths which are about 2% worse than those generated
by CL+I6 [132].

Greedy-BST/DME. Similar to the Greedy-DME algorithm, Huang et al. [134] proposed a Greedy-
BST/DME algorithm to construct a bounded-skew tree. A key difference between the Greedy-
BST/DME algorithm and the Greedy-DME algorithm is that the former algorithm allows merging
at non-root nodes, whereas Greedy-DME always merges two subtrees at their roots.

In DME, two merging subtrees are always merged at their roots so as to maintain zero skew.
However, the shortest connection between two bounded-skew trees may not be between their roots.
Indeed, subtrees may be merged at non-root nodes as long as the resulting skew is ~<B. This
flexibility allows reduced merging cost and is the key merit of the Greedy-BST/DME approach.
Consider the example in Fig. 37(a), where the eight sinks are equally spaced on a horizontal line.
When B is near zero, the minimum tree cost can be obtained by merging subtrees 7"1 and T2 at their
roots as shown in the top example. However, this topology is bad when B is large, even if the costs
of the two subtrees can be minimum. When the skew bound is large, ideally one should adjust the
subtree topology so that the roots of subtrees become closer while the subtree costs remain the same
or increase slightly. This is shown in the bottom example in Fig. 37(a). Effectively, Tt and T2 are
merged at non-root nodes.

Fig. 37(b) illustrates in more details how the tree topology is adjusted. First, the root is moved
down to some tree edge, say eu = uv, so that the root becomes the parent of nodes u and v. Then
the tree topology is adjusted accordingly by adding, deleting, and redirecting some edges. The costs
of the two subtrees may increase but the overall cost of the tree after merging may be better.

Merging with non-root nodes is a powerful topology generation method. The work by Cong and
Koh [133] is a simple extension of Greedy-DME, i.e., it considers merging of root nodes only. The

68 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

r

"" " ' " r q

1 2 3 4m5 6 7 8

T'I r T' 2 ~ z & / ' ~

zQ'Y"r
(a) (b)

Fig. 37. (a) An example showing that given skew bound B >> 0, changing the subtree topology before merging will
reduce the merging cost. (b) Repositioning the root in changing the topology.

wire length reduction averages 19% when the allowed skew increases from 0 to oc. The Greedy-
BST/DME algorithm by Huang et al. [134] can achieve an average of 42% wire length reduction
when varying the skew bound from 0 to oo. In fact, it very closely matches the performance of the
best-known heuristics for both the zero-skew [132, 165] and infinite-skew limiting cases, i.e. Steiner
routing (Section 3.1.2).

For realistic skew bounds in the range 0-150ps, the Greedy-BST/DME algorithms in [16] averages
26.6% wire length reduction when compared to the best reported zero-skew solutions by the CL+I6
algorithm in [132].

5.3. Planar clock routing

It is preferable to route clock nets on the metal layer with the smallest RC delay since this avoids
the use of vias in the clock net and makes the layout more tolerant of process variations. This
motivates the following papers on planar clock routing. In these papers, they assumes Euclidean
planarity, i.e. all edges in the tree do not cross when an edge is represented by a straight line
segment (instead of rectilinear line segments for the Manhattan geometry) on a Euclidean plane.
Nevertheless, the cost of an edge is still in the Manhattan distance metric. It is not difficult to see
that given a routing solution with Euclidean planarity, we can always embed a straight Euclidean
segment by a rectilinear staircase to get a planar rectilinear routing solution.

5.3.1. Max-Min planar clock routing
The planar clock routing problem was first studied by Zhu and Dai [135]. They proposed the

Max-Min algorithm which assumes a given source location. At the start of the algorithm, the source
forms a single-node tree T. At each iteration, the algorithm grows T by selecting a sink si not
attached to T and connecting si to T. The algorithm stops with a planar clock routing tree after all
sinks are attached to T, i.e., after n iterations.

One of the two key components of the Max-Min algorithm is the order in which an unattached
sink is connected to T, which is akin to topology construction. The other key step of the algorithm
is to connect the selected sink to the tree such that zero path length skew is maintained. A branching
point on T such that the selected sink can be connected to while satisfying the zero-skew constraint
is called a balance point. A balance point is feasible if it does not violate the planarity constraint.
There are many feasible balance points for an unattached sink. The feasible balance point with the

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 69

minimum Manhattan distance to the sink is the minimal balance point and the Manhattan distance
between the sink and the minimal balance point is the minimal balance distance.

The two key components of the Max-Min algorithm are governed by the Max-rule and the Min-
rule, respectively. The two rules are given as follows: (i) Max-rule: at each iteration, always choose
the unattached sink whose minimal balance distance is the maximum among all unattached sinks, and
(ii) Min-rule: an unattached sink is always connected to the minimal balance point. The Max-rule
ensures planarity of the routing tree and the Min-rule aims to reduce the routing cost. The two rules
guarantee that the tree produced by the algorithm is planar and has zero path length skew and the
path length delay is minimal.

5.3.2. Planar-DME clock routing
The key to the Planar-DME algorithm proposed by Kahng and Tsao [136, 137] is that a single

top-down pass can produce the same output as the two-phase DME algorithm at the expense of
computation time under the path length delay model. This stems from the following facts [126]:

(i) Given a set of sinks S with diameter diameter(S), if one constructs for each sink si in S a
tilted rectangular region TRR(si) centered at si such that all points in TRR(si) is of a distance of
diameter (S)/2 from s~, then the intersection of all TRRs of sinks gives the merging segment of the
root node for any topology of S.

(ii) For any internal node a of a topology, if a 's parent is v, then the edge eu connecting v to a
has length = rad ius (S ,) - radius(S~,) where radius(S) = diameter(S)/2 for set S, and S,(S~.) is the
set of sinks under a(v).

Therefore, given a topology, it is possible to determine the merging segment ms(v) (from (i)) and
the edge length le~,l (from (ii)) of an internal node v without going through the bottom-up process. In
other words, in a single top-down pass, one can compute ms(v) and le~,[and then perform embedding
for any node v in the topology.

The basic idea of planar-DME is that the topology is determined based on the existing routing
(such that future routing will not interfere with the existing routing) using the concept of (Euclidean)
convex polygon. At each iteration, Planar-DME is given the location l(p) of a parent node p, S' C S
and a convex polygon Ps, containing S' and l (p) such that the existing routing occurs outside or
on the boundary of Ps,. We want to compute a planar tree of S' rooted at node v, with parent p.
Note that l (p) has already been determined earlier in the top-down process.

Based on fact (i), ms(v) is computed and then v is embedded on ms(v) according to the embedding
rules given in Fig. 38. The embedding rules ensure that v is embedded within Ps, and so the routing
from p to v is within Ps, and does not interfere with the existing routing. Based on the relative
locations of p and v, a splitting line is then defined according to the partitioning rules given in Fig.
38. The splitting line divides Ps, into two convex polygons Ps~ and Ps~ and therefore, partitions S'
into two non-empty subsets S I and S~. Note that the splitting allows the routing from p to v to be
on the boundary between Ps; and Ps: and therefore, all existing routing is outside Ps I and Ps'~. The
algorithm then recursively operates on S I and S;.

Kahng and Tsao [137] later extended the planar-DME algorithm from the path length delay model
in [136] to the Elmore delay model. The Elmore-planar-DME algorithm uses the topology generated
by the planar-DME algorithm under the path length delay model, and then reconstructs the ZST in
a bottom-up fashion: planar embedding is applied to all planar subtrees at the same level in the

7 0 J. Con,q et a l . / I N T E G R A T I O N ; the V L S I Journal 21 (1996) 1-94

IV .2 i IV .3

............ p ~ N N I

. m ! d . : p o i o , of m .)

N ~ 11.1

Ill ~ I ~

11.3 11.2

The Embedding Rules

Location of p Embedding point of v

Region I or Ill c(ms(v))

Region II.I or IV.I intersection of ~'~'~ with horizon-

tal line through I(p)
Region 11.3 or IV.3 intersection of ~5"~- with vertical

line through l(p)
Region 11.2 (IV.2) P2 t, Pt)

The Partitioning Rules

Location of p. v Splitting line

I(p) # I(v) Line through I(p)l(v)
t(n) = t(,.) ¢ O,s(v))
t[n) : qv) = c(,,t.~(v))

• Line through p--]-/~

Vertical line through I(p)

Fig. 38. Rules to choose the embedding point of v on ms(v) = pl p2 and the splitting line to partition a sink set.

topology; given a pair of sibling planar subtrees, their parent node is embedded to ensure planarity
by (i) finding the shortest planar path between its two children and (ii) embedding the parent node
at some point along the planar path. The DME algorithm for Elmore delay model is then applied to
ancestors of the parent nodes. In other words, a tree of merging segments is reconstructed to embed
the ancestors of the parent nodes. Another iteration of planar embedding followed by DME is then
applied at the next higher level. This continues until the entire ZST is planar. For a topology of
height h, the Elmore-Planar-DME algorithm uses h iterations of planar embedding followed by DME.

The Max-Min and Planar-DME algorithms achieve planarity through higher routing costs. It is
interesting to note that the Max-Min algorithm produces X-tree-like solutions, whereas the planar-
DME algorithms produce H-tree-like structures. As mentioned, X-trees tend to be more costly than
H-trees. The planar-DME algorithms incur only an average penalty of 9.9% additional routing cost to
achieve planarity while the planar clock trees generated by the Max-Min algorithm have an average
of 35% higher routing cost when compared to the best (non-planar) zero-skew solutions in [132].

5.4. Buffer and wire sizing for clock nets

In this section, we deal with buffer and wire sizing, which consider sizing of wires, and insertion
and sizing of buffers in clock routing to minimize clock skew, clock delay, and the sensitivity of the
clock tree to process variations, which may cause the width of a wire/transistor on a chip to differ
from the specified width and/or device parameters such as carrier mobilities and threshold voltages
to vary from die to die. Process variations introduce process skew since resistances and capacitances
of wires and active devices are changed.

Consider a RC tree. From Section 2.1, the Elmore delay from the clock driver at the source So

to sink si is ti = RjCap(s0) + ~ e ~ E P a t h (s o , s i) l e ~ l r / w e , (~ + Cap(v)). For simplicity, we ignore the
fringing effect but it can be added easily into our formulation. Taking the partial differential ~ti/Owe,
for any edge e,, along the So-S~ path,

Oti _ Rdc~le~,l le~lrCap(v) + Z]e'lrc~leL'l (32)
(~We, W2 e,, CAns(e,) We,,

J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 71

If e~ is not along Path(s0,s:),

0t/ le, lrcole.L
-- Rjcale.I ÷ ~ (33)

~We~ e. C Ans(e.)N Path(s~)~i) We.

The partial differential captures the delay sensitivity with respect to a wire. A positive value of
sensitivity indicates a case where widening the wire increases the delay while a negative value of
sensitivity indicates that the delay decreases. If we compute the optimal wire width to minimize sink
delay (for example, by setting Oti/(?w,. = 0 for Eq. (32)), we see that wires closer to the root should
have wider wire width, since they drive larger capacitance (Cap(v)). Note that the term R: ,[ev l in
the equation prevents the wire e, from getting too wide. In practice, we can always impose an upper
bound constraint on the maximum wire width.

Also observe that the larger the downstream capacitance (Cap(v)), the larger the delay sensitivity
(Eq. (32)). Buffer insertion can desensitize the clock nets by reducing downstream capacitance of
wires closer to the root. In other words, sink delay can be minimized by appropriate wire sizing and
buffer insertion. Similarly, we can also define the delay sensitivity due to buffer by writing the sink
delay in terms of the buffer sizes and taking the partial differential of the delay with respect to the
buffer sizes. It is obvious that appropriate buffer/driver sizing can also reduce delay sensitivity.

We are also interested in skew sensitivity, which measures how a change in wire/transistor width
can affect the clock skew. In particular, skew sensitivity due to process variations can be used to
measure how reliable a clock tree is. However, due to the definition of clock skew as max:,/It: - tjl ,
it is very difficult and costly to compute skew sensitivity exactly; the exact approach would have to
compute the worst case clock skew due to process variations. The following approach may be used
to estimate skew sensitivity [144]. To compute the estimated worst case clock skew, the algorithm
computes)'or each sink si, the best possible and worst possible delay due to process variations. For
simplicity, the algorithm computes the worst (best) delay for sink s: by decreasing (increasing) the
wire widths for edges on Path(s0,si) by Aw and increasing (decreasing) the wire widths of all
edges off the path by Aw where Awma× is the maximum width variations. The worst-case skew
under process variations is obtained by taking the difference between the worst-case delay of one sink
and the best case delay of another sink. The difference between the skew of the clock tree (without
process variations) and the worst-case skew under process variations gives a reasonable estimate of
the skew sensitivity. Note that we can use a similar approach to estimate the skew sensitivity due
to deviations of transistor widths and device parameters caused by process variations.

In this section, we discuss various wire sizing, buffer insertion and buffer sizing techniques which
make use of delay sensitivity and skew sensitivity to guide the optimization. These methods not
only reduce the delay and skew sensitivities, but also have significant effect on reductions of wire
length, rise/fall times, and power dissipation.

5.4.1. Wire sizin9 in clock routin9
In the following, we discuss three results on wire sizing. The first algorithm achieves minimal

skew by making slower paths faster by wire sizing [167] (instead of making the faster paths slower
by snaking in the DME approach). The second approach considers wiresizing to minimize clock
delay and uses the DME approach to ensure zero skew [139]. The third heuristic considers not only
the nominal skew due to sink delays but also the process skew. At the same time, it tries to meet
a specified target delay [141].

72 J. Cong et al . /INTEGRATION, the VLS1 Journal 21 (1996) 1-94

Both Zhu et al. [167] and Pullela et al. [141] assume discrete wire sizes, whereas Edahiro [139]
assumes continuous wire width although it can also be modified to consider discrete wire widths.
Since it is not possible to achieve arbitrary precision during fabrication, it is better to have a
layout with discrete widths sizes and transistor sizes in order to eliminate skew due to mapping
of continuous widths sizes to discrete widths sizes. [167] can handle constraint on the maximum
wire width, whereas [139, 141] can be extended easily to consider maximum wire width constraint.
Note that the constraint on the maximum wire width, is imposed by the available routing resource.
On the other hand, the constraint on the minimum wire width is due to the fabrication technology.
Moreover, the maximum allowable current density through the wire also provides a lower bound
for the wire width, so that the wire can withstand the wear-out phenomenon called electromigration.
Note that different segments of wires may have different upper and lower bounds.

The optimal sizing method (OSM) proposed by Zhu et al. [167] considers distributed RC and
lossy transmission line models using a generalized delay macromodel which is based on scattering
parameters of interconnect [168]. Also, it can handle general clock network which may includes
loops. The skew minimization problem is formulated as a least-squares estimation problem: the error
of a sink si is defined to be gi = ti - tj where t r is the least delay among all source-to-sink delays.
The least-squares estimation problem aims to assign widths to the m wires in the general network

n such that the sum of squares of error q~(W~,W2,...,Wm) = ~i=l g~ is minimized.
The OSM uses the Gauss-Marquardt's method [196] to solve the optimization problem. The

Gauss-Marquardt's method takes an initial wire width assignment, W~ and computes a new wire
width assignment Wi+~ based on a n × m delay sensitivity matrix for a clock tree/mesh of n sinks
and m edges. The (i , j)th entry of the sensitivity matrix measures the delay sensitivity of sink si with
respect to edge ej, i.e., ?~ti/c?w~. In the next iteration, ~+1 is used to update the error q~ and delay
sensitivity matrix for the computation of W~+2. The procedure continues until the skew is reduced to
a required value. The key to fast convergence is a good starting point W0. The following rules are
applied to guide the initial wire width assignment: (i) the edges in the tree are sized in the breadth
first search order, (ii) at each level, the ancestor edges of the slowest terminal is sized first, and
(iii) each edge is assigned with the feasible width that results in the smallest skew. The three rules
can be generalized to handle buffered clock tree.

A clock mesh and two clock trees were used to evaluate the OSM algorithm under both RC
model and lossy transmission line model. Zhu et al. [167] reported smaller skews for optimized
circuits when compared to the original circuits. The authors noted that the skew reduction should be
more significant for clock trees than for clock meshes since stronger interaction among clock sinks
in clock meshes results in less skew sensitivity with respect to wire widths. The skew reduction is
achieved at the expense of an average of 200% additional wiring area. The clock delay may get
worse in some cases.

Edahiro [139] proposed a wire sizing algorithm which performs wire sizing based on delay sen-
sitivity due to wire to minimize clock delay. The algorithm constructs a clock tree in two phases.
In the first phase, the algorithm applies Greedy-DME [128] to construct a path length balanced
clock topology with edge length information. Using the topology computed in the first phase, the
second phase of the algorithm applies a modified version of DME under Elmore delay to construct
a wire-sized clock routing tree.

The modified DME algorithm works as follows. Consider merging of two zero-skew subtrees T,
and T~,. The optimal width of the two edges e~ and el, merging T, and Tb is first computed using
an approach similar to setting Eq. (32) to zero and then solving it. Note that the optimal width

J. Con,q et al./INTEGRATION, the VLSI Journal 21 (1996) i 94 73

assignment should actually depend on both upstream resistance and downstream capacitance as in
Eq. (32). Since the wire widths at the upstream are unknowns in the bottom process, they are
approximated. For example, nominal wire widths may be used for the upstream edges. Then, with
consideration of we,, and we,,, the minimum merging cost [e,[+ leb[is computed using a similar
approach by Tsay [129] (see Section 5.2.1). At the end of the bottom-up merging, the top-down
embedding of the original DME approach is applied to obtain a wiresized clock tree.

The wire sized clock trees constructed by Edahiro [139] satisfy the zero skew constraint while
achieving 10-50% shorter total delay time than the unsized clock trees in [132]. However, no result
on the increase in wiring area is reported. Although the algorithm does not place a upper-bound
constraint on the wire width, the computed wire widths are not expected to get too large since the
algorithm considers the clock driver strength. Since the computed edge lengths differ from the original
path length balanced tree and the wire widths may be far from optimal due to the approximation,
it is recommended that the second phase (i.e., the modified DME algorithm) be repeated for a few
iterations. However, it is not clear if the process will converge (i.e., edge lengths and wire widths
do not change in two successive applications of the modified DME algorithm). Note that since wire
widths are selected based on delay sensitivity, delay sensitivity of the clock tree due to process
variations is minimized indirectly.

In [141], Pullela et al. optimized the wire widths in three steps to achieve a reliable non-zero
skew clock tree under the Elmore delay model:

(i) The first step selects the suitable wires to widen in order to bring the average delay of the tree
n to a specified target delay, denoted l tgt . Each edge eL is assigned a cost D, = ~=l((~ti/Ow,~) (t i - t t g t) .

Note that if t~ > ltg t and (~tj~We,) < O, D~: decreases. At each iteration, the wire with the least
cost is widened by a constant amount Aw, which is the minimum grid size based on the fabrication
technology. The process continues until the target delay t tg t is achieved.

(ii) The second step tries to minimize the process skew by desensitizing all sink delays. The
algorithm uses a sinyle-defect model where the width of a single wire e,~ changes due to a single
process variation. If Awma× is the maximum change in width due to process variations, the maximum
change in delay is Awmax~ti/~w~,. To ensure the change in skew is within the maximum allowable
change in skew AB, the width We, is widened such that AwmaxOt,/~We, < AB/l where l is the depth
of the tree. Therefore, if all edges along a source-to-sink path change their widths, the total change
in delay is still less than AB.

(iii) The final step aims to reduce the nominal skew, or simply, the skew. get Ati,, denote the
change in the delay of sink si when the width of wire w~, is changed by Aw. At~, is estimated by
Aw((?tjc~w~,). Zero skew is achieved when At~,, = lave - - t, for all sinks s~ in the tree, where lave is the

V'" /it average delay. Each edge we, is assigned a cost D,, = ~ = ~ ~ + Ati,, tav~l). If there is a wire with
zero cost, zero skew is achieved. Otherwise, a wire with the least cost is chosen to be widened by
A w since the goal is to find a wire with zero cost quickly.

However, step i may undo what step i - 1 has accomplished. To prevent step (iii) from undoing the
desensitization process in step (ii), Pullela et al. [141] suggested tracing back from the widened edge
in step (iii) to the root, and widening wires on the way up to ensure that Awmax(~ti/~we,) < AB/l
holds. However, it is not clear how we can prevent steps (ii) and (iii) from messing up the work
done in step (i).

Applying the algorithm to clock trees routed by the MMM method [159], Pullela et al. [141]
reported an average of 7.5X reduction in the skews, reducing the original skews from the order of
l ns to skews in the order of 0.1ns. Simulation results also verify that the optimized clock trees

74 J. Con.q et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

have worst-case skews (under process variations) which are in the range of 37-74% smaller than
the original skews. It would be an interesting study to find out the worst-case skew of zero-skew
routing trees such as those reported in [132] and evaluate how the algorithm proposed by [141] can
impact the skew and reliability (in terms of worst-case skew). While the intention is to improve
skew and reliability of clock tree, [141] also reported improvement in terms of an average of 1.8X
clock delay reduction after applying the algorithm. Again, the paper did not report the amount of
additional wiring area incurred.

A very recent work by Desai et al. [169] considered wire sizing of clock distribution networks
(not necessarily a tree) using a network flow-based approach. The algorithm may even remove
an edge from the networks as long as the performance and connectivity is not adversely affected.
Experimental results on high-performance microprocessors such as Digital's 275 Mz Alpha 21164A
and 300 MHz Alpha 21164 showed up to 16% and 9.6% reductions in interconnect capacitance from
the original distribution networks, respectively [169].

5.4.2. Buffer insertion in clock routin9
It is a common practice to use cascaded-tapered drivers with exponentially increasing sizes at the

root of a clock tree. In some cases, it is possible to satisfy all design constraints by using drivers at
the root only. However, as clock trees get larger, it can become prohibitively expensive to use huge
driver due to chip size and power constraints. Buffer can be inserted to the clock tree to decouple
capacitances of the interconnects and reduce clock delay and total power dissipation of the clock
net. Moreover, since it is desirable to keep the clock waveform clean and sharp, it is easier to satisfy
the rise/fall time constraints using a buffered clock tree than by a clock tree driven at the root only.
In addition, it is possible to reduce total wire length by buffer insertion. For example, instead of
introducing detour wire length to balance delays, buffer can be inserted. As the feature size becomes
smaller, this approach has become more attractive and less expensive in terms of chip area.

The earlier works by Dhar et al. [157] and Wu and Shermani [170] considered insertion of
uniform-size buffers in a H-tree structure. The more recent works by Vittal and Marek-Sadowska
[145] and Chen and Wong [171] perform buffer insertion simultaneously with clock routing. The
work on buffer insertion and sizing will be presented in Section 5.4.3. The work on buffer insertion
and wire sizing will be presented in Section 5.4.4.

The algorithm proposed by Dhar et al. [157] inserts buffers into a full H-tree distributing clock
signal to a symmetric N x N modules in three steps: (i) folding the H-tree into a single line, (ii)
inserting the buffers into the single line, and (iii) unfolding the buffered single line. Due to the
symmetrical structure of a H-tree, a H-tree with a height of m can be folded into a single line with
m sections, where starting from the source, the unit resistance of the next section decreases by a
factor of 2 and the unit capacitance increases by a factor of 2. The process is shown in Fig. 39(a).
The next step is to insert buffers into the non-uniform single line (folded H-tree). To determine the
optimal number of buffers, say b, to be inserted, the algorithm performs a linear search for b. For
each b, a continuous function t is used to approximate the line delay. To determine the optimal
buffer locations, a set of equations is obtained by setting the partial derivative of the delay with
respect to the position of each buffer to zero. The resulting set of equations can be solved to obtain
the optimal locations of the buffers in the single line. The buffered single line is then unfolded to
generate the buffered H-tree (Fig. 39(b)).

J. Con 9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 75

. i .

4 4 4

....... I

4 4 4
o

i

4 4 4

...... 3 3"'"'}"""3

4 4 4

i 4

~ 3 ~ _ . , , . ~

4 ,0
4

3

4

4 4

4 4

1 fold at 1
4 4

4 4

4 4 4

3 3

41 I 1 fol4d ~,0 = 0
at 2 ld at

~,0
3

4

2 13

F

(a) Folding the H-tree into a single line

4

V

unfold

4

3 ~ :

4

1

4

4

4 4 4

3 3 ~ ~ i~ 3
4 4 4

0 ~ 1,~
4 4 4

4 4 4

(b) Placement of buffers in folded and unfolded clock tree

Fig. 39. Insert ion o f buffers to a H-tree by (a) folding the H-tree into a single line, (b) insert ing buffers to the folded
single line and unfolding the clock tree.

Wu and Sherwani [170] used a different scheme to insert buffers to a H-tree. In a bottom-up order,
the number of buffers needed for a wire segment from a branching point to the parent branching
point is computed. Either minimum-size buffers or blocks of cascaded buffers are inserted to spread
out the load. While Dhar et al. [157] do not require buffers to be located at Steiner point, Wu
and Sherwani [170] always insert a buffer at the parent branching point when buffers are inserted.
Moreover, Dhar et al. [157] assumed that the H-tree uses only one metal layer for routing, whereas
Wu and Sherwani [170] assumed a metal routing layer and crossunders, which are short polysilicon
or diffusion segments used to route the H-tree under the power or ground wires. Wu and Sherwani
[170] reported a 60-90% reduction in clock delay and Dhar et al. [157] reported an order of
magnitude reduction in the delay. Since [157] inserts buffers at the same hierarchy of the clock tree,
the skew of the clock tree should remain intact. However, since buffers are inserted at wire segments
independently in [170], clock skew might be adversely affected.

A more recent work by T611ez and Sarrafzadeh [172] also used a bottom-up approach similar to that
of [170], i.e. computation of the number of buffers to be inserted in a wire segment followed by buffer
insertion at appropriate locations. T611ez and Sarrafzadeh [172] consider rise/fall time constraints to

76 a(Con 9 et a l . / INTEGRATION, the VLSI Journal 21 (1996) 1-94

v

a (a)~ b a y b

a O ~ b ~ V ~//ms(v)

(c)
Fig. 40. Insertion of a buffer at different locations along the edge eo to drive T~, alone.

compute the number of buffers required. Again, since buffers are inserted independently as in [170],
clock skew might be affected.

The GReedy INternal buffer insertion (GRIN) algorithm proposed by Vittal and Marek-Sadowska
[145] is an extension of the DME algorithm to consider the possible locations of buffers. In each
merging step, besides computing the merging segment as in the case of the DME algorithm, the
buffer insertion algorithm considers the possibility of inserting a buffer to drive one of the child
subtrees. For example, consider two subtrees Ta and Tb rooted at a and b, respectively. Let v be the
parent of a and b. Then, ms(v) shown in Fig. 40(c) can be computed as in the DME algorithm and
it corresponds to the feasible locations of v when no buffer is inserted.

A buffer to drive Ta alone may be inserted at the start of the edge from v to a as shown in Fig.
40(a). The Manhattan arc Va corresponds to the feasible locations of v for such a configuration. Note
that V, is nearer to ms(a) than ms(v) since the delay to sinks under a is now longer. Alternatively,
the buffer may be inserted at ms(a) as shown in Fig. 40(b) and the Manhattan arc V~ corresponds
to the feasible locations of v for this alternative arrangement. Clearly, V, and V~' captures the two
extreme possible locations of the buffer. The shaded region bounded by V, and V" corresponds to
other possible locations of the buffer (between the start of edge e, and end of edge e~,) with the
minimum merging cost. Note that V, may be farther from ms(a) depending on the total capacitance
rooted at a and the buffer parasitics (resistance and input capacitance). Similarly, a buffer may be
inserted to drive Tb alone. The shaded region between ms(b) and ms(v) shows the feasible locations
of v when a buffer is inserted to drive Tb.

The GRIN algorithm follows the flow of the Greedy-DME algorithm of [132] with the following
modifications. Instead of using just wire length to define merging cost, the cost of the merge is
defined to reflect both total wire length and total buffer size. Also, instead of storing only a merging
segment in the DME approach, a merging segment and two polygons are stored to reflect the
possibilities of buffer insertion. At the next level of merging, the merging segment or polygon that
yields locally minimum zero skew merging cost will be used for merging with that of sibling node.
On top of considering buffer insertion during merging, buffer may be inserted to drive the merged
subtree if the rise/fall time constraint is very stringent.

Compared to clock trees driven by cascaded drivers at the root only, the buffered clock trees
constructed by the GRIN algorithm have significantly better rise/fall times. The buffer/driver area
required by the GRIN algorithm is more than 6X smaller and the algorithm averages 2X reduction in

J. Cony et al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94 77

power dissipation. Compared to the zero-skew solutions reported in [132], the clock delay reduction
is also very significant. The results also showed shorter clock delays when compared to the wire
sized zero-skew solutions in [139].

A shortcoming of inserting buffers to balance clock signal delay is that buffers, being active
devices, potentially heighten the sensitivity of signal delay (and hence skew) to process variations.
In most works on buffered clock tree (for example, those to be discussed below), buffers are inserted
at the same levels of the clock tree. Therefore, all source-to-sink paths have equal number of buffers
inserted along the path. Moreover, buffers at the same level have the same size. These restrictions
may affect the optimality in terms of signal delay and total wire length. However, they help to
reduce skew sensitivity to process variations.

Chen and Wong [171] also considered buffer insertion and topology generation simultaneously.
Instead of considering buffer insertion at each merging step as in the GRIN algorithm, Chen and
Wong [171] consider inserting buffers at the roots of all subtrees. Starting with a set S of subtrees,
the algorithm performs several iterations of DME-based zero-skew mergings [127, 130, 126] until the
size of S is reduced by 2 k for some k (which is dependent on the strength of buffer). Note that this
is akin to clustering of nodes, followed by buffer insertion to drive each cluster. An inserted buffer
may not be connected to the root directly. Instead, a wire may be used to connect from the buffer
output to the root of the subtree such that all subtrees in S have equal sink delay. Note that this
approach is less sensitive to process variations since all source-to-sink paths have the same number
of buffers. Experimental results also showed that both signal delay and total wire length are reduced
when buffer insertion is considered [171].

Related works in the area of buffered clock tree synthesis also include [173,174]. Assuming that
all internal nodes of a clock routing tree will be inserted with buffers, Cho and Sarrafzadeh [173]
considered distributing the buffers over the routing plane at the expense of minimum increase in
routing cost to reduce local buffer congestion. The chip is first decomposed into several square
subregions, say r of them. Subregion Ri is represented by the center of mass Si of the sink set Pi
in Ri. A cluster spanning graph (CSG) is constructed such that the nodes in the CSG are sinks
s~,..,,, and centers S~,..,,.. Unless they are sinks, two nodes u, v are connected if d(u,v) is within a
user-specified vicinity parameter.

The authors want to construct a degree-distributed spanning tree (DDST) such that (i) each sink
is connected to a unique center. Let the degree of a center be the number of sinks connected to it.
Then, (ii) the DDST should have the smallest standard deviation in terms of the degrees of centers.
Moreover, they want a minimum-length DDST, i.e., a DDST whose tree length is the smallest among
all DDST of CSG. An approximation algorithm is used to solve this NP-complete problem. Note
that the minimum-length DDST partitions the sinks into clusters, with each cluster of sinks rooted
by a center. Finally, the KCR algorithms is applied to generate the buffered clock tree, with the
consideration that sinks in the same cluster are matched. Cho and Sarrafzadeh [173] reported that
buffer congestion is reduced by 20% at the cost of 10% increase in wire length. However, with a
buffer inserted at every internal node of the clock tree, this is a very expensive (in terms of power
and delay) buffer distribution scheme.

Ramanathan and Shin [174] considered clock routing in an augmented channel intersection graph
(ACIG). Given an abstract (buffered) topology, the algorithm first finds the best location along
the peripheral of the ACIG for the clock source in order to minimize the clock delay. Next, with
consideration of path length delay balancing, optimal routing at each level of the buffered tree is

78 J. Con# et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

carried out using a branch-and-bound approach. Note that this approach is only applicable to small
problem instances since it is computationally very expensive.

5.4.3. Buffer insertion and sizing in clock routing
While GRIN [145] considers construction of clock topology with buffer insertion, the balanced

buffer insertion and sizing (BIS) algorithm proposed by Xi and Dai [144] assumes a given unbuffered
clock tree and insert buffers of multiple sizes to meet wire skew constraint due to asymmetric loads
and wire width variations. Since the inserted buffers may have delay variations due to variations of
process parameters such as carrier mobilities and threshold voltages which may vary in a wide range
from die to die due to difference in process conditions, the second step of the BIS algorithm is to
size the PMOS and NMOS devices in the buffers separately to minimize power dissipation subject
to tolerable skew constraint due to buffers. Note that the BIS algorithm uses minimum width wire
throughout the entire design in order to minimize wire capacitance and power dissipation.

The BIS algorithm takes as input a path length balanced clock tree (possibly obtained by DME
algorithm under path length formulation) and partitions the clock tree into subtrees such that every
subtree is a path length balanced subtree and all source to sink paths go through equal number
of levels of buffers. If L is the path length of the original clock tree and there are b number of
buffer levels, then the path length between two adjacent levels of buffers is L/(b + 1). To determine
the optimal b*, the BIS algorithm considers minimization of the worst-case skew due to process
variations in wire widths. The algorithm performs a linear search for b* from 1,2,... until the
worst-case skew is less than a user-specified skew bound.

In the buffer sizing step, BIS considers CMOS inverters, each implemented by a PMOS and an
NMOS device with size d p and d~, respectively. A PMOS device may have a nominal rise time tr,
a fast rise time t~ = tr/fp, or a slow rise time t~ = trfp, with jp/> 1. Similarly, we can define the
nominal, fast and slow fall times of a NMOS device. Considering the pull-up devices and pull-down
devices along a path separately, let t p (tl ~) denote the total pull-up (pull-down) path delay due to
PMOS (NMOS) devices of even (odd) inverters along the So-Si path; then the delay to sink si due
to buffers is t / - - t p + t~. Both power dissipation (see [34]) and phase delay (under a model similar
to the simple switch-level RC model) due to buffers are convex functions of d~ ° and dn.

The key to the BIS algorithm is to transform the skew constraint to a convex function as follows:
If the devices are sized such that

Bb (34)
t f - t ~ < e ~ - 2fk

for any two sinks s~ and s j, and k = P, N, then the skew constraint Bb for buffers can always be
satisfied. The skew constraint can be rewritten as a convex function as max(t~)~< ~? + tmink where tmink
is the smallest pull-up path or pull-down path delays for k = P,N among all source-to-sink paths.
Given a device sizing solution, one can identify the fastest pull-up and pull-down path and calculate
tPnin and t~min easily. BIS then uses tPmin and tnmin in Eq. (36) of the following posynomial program and
applies the posynomial programming technique to solve the problem

minimize Total power dissipation,

subject to max(t/) ~ ttgt, (35)

max(t~) ~< ek + t~ni n for k = P, N, (36)

J. Cony et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 79

If the computed device sizing solution satisfies the target delay ttgt constraint Eq. (35) and the
skew constraints Eq. (36), then BIS terminates. Otherwise, tPin and t"mi n of the current device sizing
solution are calculated and another iteration of posynomial programming is invoked. However, note
that sizing of buffer will render the buffer insertion step inaccurate since the buffer insertion step
assumes implicitly buffers of certain sizes to compute the worst case skew.

Experimental results show that BIS can achieve up to 326% reduction in power dissipation when
compared to the wiresized clock trees constructed by [167]. However, there is no improvement in
terms of clock skew and clock delay. Although the clock skews are reasonably small, the clock
delay can be as high as lOns [144], even for a relatively small clock net such as benchmark circuit
Primary2. An explanation for the high clock delay is the use of minimum wire width for the clock
tree. Moreover, the buffer sizing step does not consider delay sensitivity due to buffer size, whereas
minimization of delay sensitivity is an important element of most of other works on wire/buffer
sizing. As we will see in the following discussion, when delay sensitivity is considered, buffer
insertion/sizing with wire sizing can reduce power and clock delay without an adverse impact on
clock skew and reliability.

5.4.4. Buffer insertion and wire sizing in clock routing
The Skew Sensitivity Minimization (SSM) algorithm proposed by Chung and Cheng [142] con-

siders buffer insertion and wire sizing to minimize skew sensitivity due to process variations. Since
SSM considers a library of buffers of different sizes, it is capable of discrete buffer sizing.

Similar to the BIS algorithm, the algorithm assumes a full binary clock tree (all sinks at level
max_level), and that buffers are inserted at the same levels of the clock tree. Buffers at the same
level have the same size, but buffers at different levels may have difference sizes. The SSM algorithm
finds the optimal levels of buffers with proper sizes and wire widths that minimizes skew sensitivity
through a bottom-up dynamic programming approach. Clearly, the maximum number of buffer levels
is max_level as well. Let B[b, l, s] denote the minimum skew sensitivity for b buffer levels, with the
highest level buffers located at level l with size s. Assume that B[b',l',s'] is known for b' < b,
l < l' ~<max_level and all possible buffer sizes s' in the library, then one can compute

B[b, l,s] = min {MSS(/,s, l ' ,s') + B[b - 1, l',s']}
l < / ' ~< max_level

where MSS(l , s , l ' , s ') is the minimum skew sensitivity from level l to level l' with buffer size s
at level l and buffer size s' at level l'. Therefore, assuming that the root node is at level 0, the
algorithm constructs a 3-dimensional table for 1 ~< b ~<max_level, 0 ~< l ~< max_level and all possible
buffer sizes s in a bottom-up fashion.

To compute MSS(l , s , l ' , s ') for l' > l, the algorithm first wire sizes all paths from level l to
level l' to minimize delay sensitivity by setting the partial differential of the l-to-l' path delay with
respect to wire width to zero and solving it. The algorithm then selects two paths from level l to
level l'. Similar to the approach in the BIS algorithm, wire widths and buffer sizes along two paths
are then changed according to the worst case process variations and the skew sensitivity from level
l to level l' is computed using the worst ease skew under wire and device process variations.

As noted in the GRIN algorithm, buffer can be inserted at non-Steiner point to avoid excessive
detour. After the buffer insertion and wire-sizing algorithm, the SSM algorithm repositions the buffers
to possibly reduce total wirelength.

80 J. Cong et al . / INTEGRATION, the VLSI Journal 21 (1996) 1 94

The paper compared the worst case skews under process variations for clock trees before and
after applying SSM. The reduction in the worst case skews is in the range of 87X to 144X [142].
The SSM algorithm also achieves 2X to 11X reduction in clock delay.

Pullela et al. [138] also proposed a buffer insertion/sizing and wire-sizing algorithm for a tree of l
levels. Based on the most critical resources to be optimized, the algorithm first estimate the number
of buffer levels, denoted b. For b stages of buffer, the algorithm try all possible level combinations to
find the optimal levels in which buffers should be inserted. The skew resource B is equally distributed
among the clock tree such that the tolerable skew constraint of buffer, denoted Bb, and tolerable skew
constraint for interconnect, denoted Bw due to process variations are Bb = Bw = B/(l + b) for each
subtree. As in the SSM algorithm, subtrees at the same level are driven by buffers of the same
size. The algorithm aims to achieve the followings: (i) each subtree is nominally zero-skew by wire
sizing and possibly introducing detour wire, (ii) each subtree have equal delay and equal effective
capacitance by assigning appropriate size and length to the stub of interconnect connecting a buffer
to the root of the subtree, and (iii) each subtree is driven by the smallest buffer that achieve the
required skew constraints.

To achieve (i), the algorithm computes in a bottom-up fashion, the wire and length of each edge
in the subtree such that zero skew is achieved. Based on the wire skew constraint Bw and computing
the maximum change in delay Atw induced by a change in the width of an edge due to process
variations, the minimum width of the edge required such that Atw~Bw/2 can be estimated. 13 By
applying an approach similar to [129] with the lengths and widths as variables, the widths and
lengths of the two edges are computed to satisfy the estimated minimum width constraints and some
prespecified maximum width constraint. Detour is avoided when absolutely possible.

In (ii), by introducing a stub of interconnect from the buffer to the root of the subtree, it is always
possible to achieve equal interconnect delay for all subtrees at the same level. To match the effective
capacitance (so that each subtree can be driven by buffers of the same size), the length and width
of the stub is chosen such that the ratio of the first two moments given in the re-model are matched.
To achieve objective (iii), we note that given a buffer size, the worst case skew Askewb induced
by changes in buffer sizes due to process variations can be computed easily (since all buffers at the
same level have equal size and they drive equal load). The smallest buffer size that satisfies the
constraint A skewh ~<Bb is chosen.

Simulation results show that delay reduction is achieved, with up to 25X reduction for large
circuits when compared to wire-sized clock trees constructed in [141]. By buffer insertion, [138]
also reduces the maximum wire width required for reliability (compared to [141]). This translates to
reduction in total wiring area and therefore power dissipation. It was observed that for delay (and
power-delay product) minimization, the optimal number of buffer levels is close to half the number
of levels in the tree [138].

We note that buffer insertion algorithms such as those in [157, 170, 172, 145,171,144] do not
restrict buffers to be located at branching points only, whereas the algorithms by [142, 138] consider
buffer insertion at branching points only.

Chen et al. [110] very recently proposed a simultaneous buffer and wire sizing algorithm based
on Lagrangian relaxation. The algorithm minimizes clock skew by iteratively assigning appropriate

13 The actual value cannot be computed since the upstream resistance is not known a priori and the length of the edge

is only an estimate.

J. Cony et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 81

A

B
I

B
A I

ID • ,ID

il i ii ii~

E E
bra U dr
point I

po. IL
C C

(a) center chunk (b) balanced length binary tree

Fig. 41. (a) A center trunk colmecting 5 sinks. (b) A rooted balanced length binary tree at L driving the center trunk at
4 positions.

weights (or Lagrangian multipliers) to sinks and performing device and wire sizing based on a
weighted-sum formulation similar to those in [7-9]. Please refer to Section 4.2.2 for more details.

5.5. Non-tree clock routing

So far, we have considered only tree topology for the clock net. In the following, we discuss a
heuristic proposed by Lin and Wong [143] to construct a non-tree clock net. In [143], instead of
binary-merging as in the DME approach, multiple-merge is considered to merge multiple pins at one
time to form a rooted zero skew non-tree subrouting. Recursively, at a higher level of hierarchy,
multiple-merge is applied to the roots of subroutings constructed at one level below until the resulting
subrouting covers all the sinks. Let NT~, denote the non-tree subrouting rooted at v and t(v) be the
v-to-sink delay for sinks in N%.

The multiple-merge operation is carried out in two steps. Consider a set of root nodes (typically 15
or 16 nodes) to be merged, In the first step, called the center tree routing, the nodes is connected to a
center trunk via a branching point (Fig. 41(a)). Without loss of generality, assume that the bounding
box of the nodes has a larger dimension in the x direction. The center trunk is routed in the x direc-
tion. Let u and v be the two farthest nodes in the y direction. The location of the trunk is determined
such that the delays t(u) and t(v) are balanced (see zero-skew merging in Section 5.2.1). The remain-
ing nodes are also connected to the center trunk, possibly with snaking of wires such that all sink
delays from the respective branching points are equal. The branching points are placed on the trunks
such that they are maximally spread out. The center trunk is also sized to reduce skew sensitivity.

In the second step, a path length-balanced binary tree is routed to connect to N driving points
along the trunk, with N being a power of two (Fig. 41(b)). N is determined exhaustively (typically,
N = 4, 8, or 16) so as to reduce the RC delay. The N driving points are placed on the trunk such that
the cumulative capacitive load from one end of the trunk to the ith driving point is ((2i - 1)/2N)CL
for i = I , . . . ,N , where CL is the total load of the center tree. A buffer is then inserted at the root of
the balanced length binary tree and is then treated as a root node to be merged in the next iteration
of the algorithm.

Note that the binary tree and the trunk forms a non-tree routing that is constructed to minimize
the sensitivity of the clock skew to process-variation. The idea is that the buffer drives the center
trunk through the balanced length binary tree at N driving points and thus shortening the signal
propagation latency since there are now multiple paths to the center trunk. Compared to the routing

82 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

solution [129] for a industry floating point unit, the non-tree routing algorithm by [143] reported
better worst-case skew under process variations.

5.6. Clock schedule optimization

So far, we have presented research works that addressed the problem of constructing a clock
routing tree T such that skew(T) = maxi,; Iti - tjl ~<B. In most of the studies, B is set to be zero.
Even if we allow non-zero skew bound B, we shall see that this constraint is overly conservative.

Consider a synchronous VLSI circuits using positive edge-triggered D-flip-flop as registers under
a single-phase clocking scheme. A pair of registers are sequentially adjacent if only combinational
logic exists between the two registers. Note that the order of the registers (i.e., whether it is an
initial or final register) depends on the direction of flow of the data. The difference in the arrival
times of clock signal at the clock pins si of initial register Ri and sj of final register R j, where R~
and Rj are sequentially adjacent, is the (local) clock skew skew(/, j) = ti - tj.

Local clock skew places upper bound on the performance of the circuit. The minimum allow-
able clock period Cp between two sequentially adjacent registers R~ and Rj satisfies the following
inequality [34]:

Cp>/t(Lij) + skew(/ , j) + t~u + tds, (37)

where t(L~j) is the delay for the data to travel through combinational logic Lij from R~ to R/, tsu
is the setup time of the registers, and td~ is the propagation delay within the register. Note that
for the data to be latched into the final register correctly, it must be ready t~u units of time before
the triggering clock edge. Also note that the term t(L~j) can be further decomposed into t(Lij) =
tinterconnect(Lij) ÷ tgate(Lij), where tinterconnect(Lij) is the interconnect delay and tg,te(L~j) is the gate delay.
We use tm,x(Lij) to denote the longest path delay through Lij and tmin(L~j) to denote the shortest path
delay through L~j.

If clock signal is not properly scheduled, clock hazards may occur. For example, data may reach
the final register at too late a time, or the data may race through the fast path and destroy the correct
data at the final register before the correct data is latched. To eliminate clock hazards, we impose
the following constraints [154]:

skew(i,j)<~Cp - (tsu + tds + tm,x(L~j)),

- s k e w (/ , j) ~< tmin(Lij) ÷ tds -- tho~d, (38)

where tho~d is the amount of time the input data signal must be stable once the clock signal changes
state. Therefore, if skew(/, j) is positive, it always decreases the maximum attainable clock frequency.
However, if we examine the inequality regarding clock period in Eq. (37), negative clock skew, i.e.,
skew(/, j) < 0, actually increases the effective clock period. In other words, we can actually improve
the performance of the system by introducing negative clock skew as long as Eq. (38) is not violated.

We can conclude that the clock skew is only relevant for sequentially adjacent registers and the
clock skew between registers on different data paths does not affect the performance and reliability of
the synchronous system. Therefore, it is not necessary to construct a zero-skew routing tree. In fact,
it may be desirable to have (negative) clock skew. Moreover, different pairs of sequentially adjacent
registers may have different skew constraints (since the delays due to different combinational logic
blocks are likely to be different).

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 83

There are several works on clock schedule optimization. However, these works did not consider
clock routing. For example, Fishburn [175] used linear programming to compute the optimal clock
arrival times at the sinks such that either the clock period Cp is minimized or the safety margin
for clock error given a prescribed clock period is maximized while constraints similar to those
in Eq. (38) are satisfied. While the gate sizes in the logic block remain unchanged throughout
the optimization process in [175], Refs. [103,106] removed this restriction and considered gate
sizing in the clock schedule optimization process in order to achieve faster clock rate. While Refs.
[175,103,106] assumed a fixed network of registers, in [151-153], the authors considered retiming
using skew information to optimize the circuit. Registers may be removed or inserted as long the
circuit still operates correctly.

A related problem on clock schedule optimization is to construct a clock tree that satisfies the clock
schedule. Given a clock schedule, Neves and Friedman [148-150] construct an (abstract) topology of
the clock distribution network and determine the delay values at each branch of the clock network.
Their works are mainly targeted for hierarchical data path design [148-150]. However, they did not
give a specific routing algorithm to embed the abstract topology. Seki et al. [176] proposed a clock
router that can accomplish specified delay using multiple routing layers. Very similar to the center
tree routing step in the non-tree clock routing algorithm proposed by [143], it uses a center trunk
and routes from branching point on the trunk to sinks with snaking where necessary.

A more recent work by Xi and Dai [166] considers clock schedule optimization with clock tree
construction and gate sizing. The proposed useful skew tree (UST) algorithm first generates an ab-
stract topology using a top-down bipartitioning approach. The bipartitioning process is guided by the
objective of producing useful negative skew. Sinks should be partitioned into groups that have loose
skew constraints. Sequentially adjacent registers across two groups should have the same logic path
direction. A useful skew tree (UST) is then constructed using bottom-up merging and top-down
embedding from the abstract topology. Since it is a non-zero skew merging, bottom-up merging
produces merging regions. Similar to IME, it uses a set of merging segments to sample a merging
region. However, it uses only a merging segment from the set to generate the merging region of the
parent. After the initial UST is constructed, the UST algorithm uses a simulated annealing process
to explore the solution space. A merging segment perturbation operation is used to select a different
merging segment for the merging operation. Note that this changes the clock routing tree configura-
tion, and therefore, the clock schedule and skews. After each merging segment perturbation operation,
the UST algorithm performs gate sizing of combinational logic blocks to reduce power dissipation.

The UST heuristic has been evaluated using three ISCAS89 benchmark circuits [177] and two
industry circuits. In all but one case, the UST algorithm uses less wirelengths when compared to the
Greedy-BST/DME [133,134] and BB+DME algorithms [131]. For each circuit, the skew bound for
BST construction [133,134] is set to be the smallest skew bound of all sink pairs. To compare the
impact of a UST on power dissipation, Xi and Dai [166] also performed gate sizing with bounded
(zero) skew after a BST (ZST) was constructed. The power reductions achieved by the UST approach
vary from 11% to 22% over the BST and ZST approaches.

6. Conclusion and future work

in this paper, we presented an up-to-date survey of the design and optimization techniques for
VLSI interconnect layout. These results show convincingly that interconnect optimization has a

84 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94

significant impact on circuit performance in deep submicron VLSI design. In this section, we would
like to offer a brief summary with our assessment of various interconnect optimization techniques
presented in this paper, and suggest directions for future research.

1. Interconnect topology optimization: We feel that geometric based Steiner tree algorithms such
as the A-tree [41], Alphabetic Tree [73], P-Tree [74] algorithms usually provide a good initial
routing topology. These algorithms use the right level of abstraction and can be incorporated in a
global router efficiently. Further delay reduction can be achieved by refining the initial topology,
for example, using the techniques presented in [55, 9, 73, 76]. Most effective topology optimization
for delay reduction is achieved by considering routing tree construction with buffer insertion as
discussed in [124, 123,125]. However, more studies need to be done on how to extend various
routing tree construction algorithms to take into consideration of multiple-layer routing with different
RC characteristics in each layer, presence of routing obstacles, and routability optimization.

2. Device and interconnect sizing: The optimization problems in this area usually have well
defined mathematical programming formulations. We feel that the sensitivity based heuristics, such
as those used in [81, 11], and the local refinement technique based on the dominance property (and
the bundled refinement property) used in [7,8, 12, 116] are most efficient, produce good quality
solutions, and scale up well with the rapid increasing of design complexity. The initial device and
interconnect sizing solutions can be computed using a simple switch-level driver model and Elmore
delay model as in [81,7, 8] and then more accurate driver and interconnect models, such as those
used in [113, 18] can be applied to further refine the solution for performance and area optimization.

3. Clock routing: Various interconnect optimization techniques presented in this paper have most
significant impact on clock routing due to the extremely large size of clock nets. Extensive studies
of the clock routing problem in the past few years have made much advance on automating high-
performance clock net synthesis. The bottom-up construction methods using the DME technique
(e.g., [127, 130, 126, 16, 145]) are most promising in terms of efficiency, flexibility, and the solution
quality. Most existing approaches first produce a balanced routing topology and then perform buffer
insertion, buffer and wire sizing. More studies need to be done on how to generate a clock tree
topology together with buffer insertion, buffer sizing, and wire sizing to meet the skew, delay, power
dissipation, and other constraints.

In addition to the interconnect optimization techniques in the areas presented in this paper, we think
that the following topics are also very important to the development of next generation interconnect-
driven layout systems, but have not received full attention from the VLSI CAD research community.
We would like to suggest them as future research directions.

1. More accurate and efficient delay models' for interconnect optimization: Most of existing
works on interconnect optimization are based on the Elmore delay model due to its simplicity, explicit
representation of signal delay in terms of interconnect design parameters, and fairly high fidelity under
the current fabrication technology [14-16]. However, limitations of the Elmore delay model are well
recognized as it cannot be used to characterize the signal waveform, handle interconnect inductance,
and model frequency-dependent effects. Although more accurate delay models are available, they
were mainly developed for circuit simulation and do not provide an explicit causal relationship
between signal responses and design parameters for optimization. Therefore, there is a strong need
to bridge the gap between the timing models used for circuit simulation and circuit and interconnect
optimization. The recent work on efficient moment computation [24], low-order moment matching
[26-33], and central moment formulation [25] have made very good progress in this direction. But
much more work need to be done in this area.

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 85

Conventional Approach New Approach

1
Interconnect-Driven Design

Fig. 42. Proposed paradigm shift for Interconnect-driven VLSI design.

2. Perjormance-driven global routing: Most of existing studies on interconnect design and op-
timization deal with only a single net for topology and wire sizing optimization. In reality, many
timing critical nets need to be considered simultaneously and they often compete for various kind of
routing resources such as routing tracks in preferred regions or layers, availability of feedthroughs
over the cells/blocks, etc.. Also, timing requirements are usually given in terms of path delay con-
straints. One needs to either develop efficient algorithms to allocate the timing budget to each net
along a path or be able to optimize multiple nets on a path simultaneously. Most well-known global
routers, such as [178-180], did not consider timing optimization during global routing. Existing
methods on delay budgeting, such as [181-183] were mainly developed for circuit placement and
their applicability to global routing is yet to be demonstrated. Therefore, it is important to develop
an efficient global router which can incorporate the various interconnect optimization techniques dis-
cussed in this paper and be able to produce a high-quality routing solution with careful consideration
of the trade-off between routability, efficiency, and timing optimization.

3. Crosstalk minimization: As the VLSI technology further scales, the coupling capacitance is
becoming a very important component in the total interconnect capacitance and affect the intercon-
nect delay significantly. Again, in order to consider the coupling effect (i.e. crosstalk), one needs
to consider the interaction of multiple nets simultaneously. Existing works on crosstalk reduction,
including those presented in [184-188], focus mainly on proper spacing and wire segment ordering.
It is not yet clear how crosstalk will be affected by buffer insertion, device and wire sizing, etc.
Therefore, it is of both theoretical and practical interest to generalize the optimization techniques
presented in this paper to take crosstalk minimization into account.

4. Multi-layer general-area gridless detailed routing: Wire-sizing optimization may require the
wire width to change from net to net or even from segment to segment within the same net.
Also, crosstalk minimization may result in variable spacing between different nets or different wire
segments. Therefore, the detailed router needs to be able to perform variable-width variable-spacing
gridless routing very efficiently. Moreover, the advance of VLSI technology makes multiple metal
routing layers possible and affordable. The traditional routing technology developed for two routing
layers based on channel routers is becoming obsolete, and multi-layer general area routers are needed
to handle over-the-cell routing efficiently. Most of existing works on general area routing, such as
those in [189-192] were developed for the two-layer routing technology and they cannot handle
gridless routing. Therefore, in order to support the interconnect optimization techniques presented in
this paper, one needs to develop efficient algorithms for multi-layer general-area gridless routing.

86 J. Cong et al . /INTEGRATION, the VLSI Journal 21 (1996) 1 94

Conventional Approach New Approach

Data Base Design
Object-oriented design

Fig. 43. An analogous methodology change in software design.

Finally, given the increasing importance of interconnects, we would like to propose a new design
methodology, named interconnect-driven design. In the conventional VLSI design, much emphasis
has been given on design and optimization of logic and devices. The interconnection was done by
either layout designers or automatic Place-&-Route tools as an after-thought. In the interconnect-
driven design, we suggest that interconnect design and optimization be considered and emphasized
throughout the design process (see Fig. 42). Such a paradigm shift is analogous to the one happened
in the software design domain. In the early days of computer science, much emphasis was placed on
algorithm design and optimization while data organization was considered to be a secondary issue.
It was recognized later on, however, that the data complexity is the dominating factor in many
applications. This fact gradually led to a data-centered software design methodology, including the
development of database systems and the recent object-oriented design methodology (see Fig. 43).
We believe that the development of interconnect-driven design techniques and methodology will
impact the VLSI system design in a similar way as the database design and object-oriented design
methodology has benefited the software development.

Acknowledgement

This work is partially supported by DARPA under Contract J-FBI-93-112, NSF Young Investiga-
tor Award MIP9357582, and grants from Intel Corporation and Silicon Valley Research under the
California MICRO Program.

References

[1] Semiconductor Industry Association, National Technology Roadmap for Semiconductors, 1994.
[2] H.B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI (Addison-Wesley, Reading, MA, 1990).
[3] L. Pileggi, Coping with RC(L) interconnect design headaches, Proc. Int. Conf. on Computer-Aided Design (1995)

pp. 246-253.
[4] J. Rubinstein, P. Penfield Jr. and M.A. Horowitz, Signal delay in RC tree networks, IEEE Trans. Comput.-Aided

Des. CAD-2 (1983)pp. 202-211.
[5] W.C. Elmore, The transient response of damped linear networks with particular regard to wide-band amplifiers, J.

Appl. Phys. 19 (1948) 55-63.

J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 87

[6] R. Gupta, B. Tutuianu, B. Krauter and L. T. Pillage, The Elmore delay as a bound for RC trees with generalized
input signals, Proc. 32nd ACM/IEEE Design Automation Conf. (1995) pp. 364-369.

[7] J. Cong and K.S. Leung, Optimal wiresizing under the distributed Elmore delay model, IEEE Trans. Comput.-Aided
Des. 14 (1995) 321-336.

[8] J. Cong and C.-K. Koh, Simultaneous driver and wire sizing for performance and power optimization, IEEE Trans.
Very Large Scale Integration (VLSI) Systems 2 (1994) 408-423.

[9] K.D. Boese, A.B. Kahng and G. Robins, High-performance routing trees with identified critical sinks, Proc. Design
Automation Conf (1993) pp. 182-187.

[10] K.D. Boese, A.B. Kahng, B.A. McCoy and G. Robins, Rectilinear Steiner trees with minimum Elmore delay, Proc.
Design Automation Conf. (1994)pp. 381-386.

[11] S.S. Sapatnekar, RC interconnect optimization under the Elmore delay model, Proc. ACM/IEEE Design Automation
Conf. (1994) pp. 387-391.

[12] J. Cong and L. He, Optimal wiresizing for interconnects with multiple sources, Proc. IEEE Int. Con['. on Computer
Design (1995) pp. 568-574.

[13] L.W. Nagel, SPICE2: a computer program to simulate semiconductor circuits, Technical Report ERL-M520, UC-
Berkeley, May 1975.

[14] K.D. Boese, A.B. Kahng, B.A. McCoy and G. Robins, Fidelity and near-optimality of Elmore-based routing
constructions, Proc. 1EEE Int. Conf. on Computer Design (1993) pp. 81-84.

[15] J. Cong and L. He, Optimal wire sizing for interconnects with multiple sources, ACM Trans. on Design Automation
of Electronic Systems, October 1996, to appear (also available as UCLA Tech. Report 95-00031, 1995).

[16] J. Cong, A.B. Kahng, C.-K. Koh and C.-W.A. Tsao, Bounded-skew clock and Steiner routing under Elmore delay,
Proc. Int. Conf. on Computer-Aided Design (1995) pp. 66-71.

[17] L.T. Pillage and R.A. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Trans. Comput.-Aided
Des. 9 (1990) 352-366.

[18] N. Menezes, R. Baldick and L.T. Pileggi, A sequential quadratic programming approach to concurrent gate and wire
sizing, Proc. Int. Conf. on Computer-Aided Design (1995) pp. 144-151.

[19] A.B. Kahng and S. Muddu, Two-pole analysis of interconnection trees, Proc. IEEE Multi-Chip Module Conf.
(1995) pp. 105-110.

[20] C.L. Ratzlaff and L.T. Pillage, RICE: rapid interconnect circuit evaluation using AWE, IEEE Trans. Comput.-Aided
Design of Integrated Circuits and Systems 13 (1994) 763-776.

[21] Q. Yu and E.S. Kuh, Exact moment matching model of transmission lines and application to interconnect delay
estimation, IEEE Trans. Very Large Scale Integration (VLSI) Systems 3 (1995) 311-322.

[22] M. Sriram and S.K. Kang, Physical Design for Multichip Modules (Kluwer Academic Publishers, Dordrecht, 1994).
[23] A.B. Kahng and S. Muddu, Optimal equivalent circuits for interconnect delay calculations using moments, Proc.

European Design Automation Conf. (1994) pp. 164-169.
[24] Q. Yu and E.S. Kuh, Moment models of general transmission line with application to MCM interconnect analysis,

Proc. IEEE Multi-Chip Module Conf. (1995) pp. 594-598.
[25] B. Krauter, R. Gupta, J. Willis and L.T. Pileggi, Transmission line synthesis, Proc. 32nd ACMIlEEE Design

Automation Conf. (1995) pp. 358-363.
[26] M.A. Horowitz, Timing models for MOS circuits, Ph.D. Thesis, Stanford University, January 1984.
[27] D. Zhou, F. Tsui and D.S. Gao, High performance multichip interconnection design, Proc. 4th ACM/SIGDA

Physical Design Workshop (1993) pp. 32-43.
[28] D.S. Gao and D. Zhou, Propagation delay in RLC interconnection networks, Proc. IEEE Int. Symp. on Circuits

and Systems (1993) pp. 2125-2128.
[29] D. Zhou, S. Su, F. Tsui, D.S. Gao and J.S. Cong, A two-pole circuit model for VLSI high-speed interconnection,

Proc. IEEE Int. Syrup. on Circuits and Systems (1993) pp. 2129-2132.
[30] D. Zhou, S. Su, F. Tsui, D.S. Gao and J.S. Cong, A simplified synthesis of transmission lines with a tree structure,

Int. J. Analog Integrated Circuits Signal Processing (1994) pp. 19-30.
[31] A.B. Kahng and S. Muddu, Accurate analytical delay models for VLSI interconnects, IEEE Int. Symp. on Circuits

and Systems, May 1996.
[32] A.B. Kahng, K. Masuko and S. Muddu, Analytical delay model for VLSI interconnects under ramp input, UCLA

CS Dept. TR-960015, April 1996; also to appear in: Proc. Int. Con[? on Computer-Aided Design, 1996.

88 J. Cong et al . /INTEGRATION, the VLSI Journal 21 (1996) 1-94

[33] B. Tutuianu, F, Dartu and L. Pileggi, An explicit RC-circuit delay approximation based on the first three moments
of the impulse response, Proc. 33rd Design Automation Con/? (1996) pp. 611-616.

[34] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: a Systems Perspective (Addison-Wesley,
Reading, MA, 2nd ed., 1993).

[35] N. Hedenstierna and K.O. Jeppson, CMOS circuit speed and buffer optimization, IEEE Trans. Comput.-Aided Des.
(1987) 270-281.

[36] D.J. Pilling and J.G. Skalnik, A circuit model for predicting transient delays in LSI logic systems," Proc. 6th
Asilomar Conf on Circuits and Systems (1972) pp. 424-428.

[37] J.K. Oasterhout, Switch-level delay models for digital MOS VLSI, Proc. 21st Design Automation Con/: (1984)
pp. 542-548.

[38] J. Qian, S. Pullela and L.T. Pileggi, Modeling the effective capacitance for the RC interconnect of CMOS gates,
IEEE Trans. Comput.-Aided Des. Integrated Circuits Systems 13 (1994) 1526-1535.

[39] P.R. O'Brien and T.L. Savarino, Modeling the driving-point characteristic of resistive interconnect for accurate delay
estimation, Proc. Int. Con[? on Computer-Aided Design (1989)pp. 512-515.

[40] A.B. Kahng and S. Muddu, Efficient gate delay modeling for large interconnect loads, Proc. IEEE MultiChip
Module Conf. (1996) pp. 202 207.

[41] J. Cong, K.S. Leung and D. Zhou, Performance-driven interconnect design based on distributed RC delay model,
Proc. ACM/1EEE Design Automation Con['. (1993)pp. 606-611.

[42] A.B. Kahng and G. Robins, On Optimal lnterconnections .for VLSI (Kluwer Academic Publishers, Dordrecht,
1994).

[43] J.B. Kruskal, On the shortest spanning subtree of a graph, Proc, Amer. Math Soc. 7 (1956) 48-50.
[44] R.C. Prim, Shortest connecting networks, Bell System Tech. ,L 31 (1957) 1398-1401.
[45] D.T. Lee and C.K. Woug, Voronoi diagrams in l~ (l~.) metrics with 2-dimensional storage applications, S l A M J.

Comput. 9 (1980) 200-211.
[46] F.K. Hwang and D.S. Richards, Steiner tree problems, Networks 22 (1992) 55-89.
[47] M.R. Garey and D.S. Johnson, Computers and Intractability (W.H. Freeman, San Francisco, 1979).
[48] M. Hanan, On Steiner's problem with rectilinear distance, S l A M J. Appl. Math. 14 (1966) 255 265.
[49] F.K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM J. Appl. Math. 30 (1976) 104-114.
[50] J.M. Ho, G. Vijayan and C.K. Wong. New algorithms for the rectilinear Steiner tree problem, IEEE Trans. Comput.-

Aid~d Design 9 (1990) 185-193.
[51] A.B. Kahng and G. Robins, A new class of iterative Steiner tree heuristics with good performance, Trans. Comput.-

Aided Des. 11 (1992) pp. 893 902.
[52] G. Georgakopoulos and C.H. Papadimitriou, The 1-Steiner tree problem, J. Algorithms 8 (1987) pp. 122 130.
[53] M. Minoux, Efficient greedy heuristics for Steiner tree problems using reoptimization and supermodularity, INFOR

28 (1990) pp. 221 233.
[54] M.W. Bern, Two probabilistic results on rectilinear Steiner trees, Algorithmica 3 (1988)191 204.
[55] M. Borah, R.M. Owens and M.J. Irwin, An edge-based heuristic for Steiner routing, IEEE Trans. Comput.-Aided

Des. 13 (1994) 1563-1568.
[56] J.P. Cohoon and L.J. Randall, Critical net routing, Proc. hzt. Conf on Computer Design (1991) pp. 174 177.
[57] J. Cong, A.B. Kahng, G. Robins, M. Sarrafzadeh and C.K. Wong, Performance-driven global routing for cell based

ICs, IEEE Int. Cot?l~ Computer Design (1991) pp. 170-173.
[58] J. Cong, A.B. Kahng, G. Robins, M. Sarrafzadeh and C.K. Wong, Provably good performance-driven global routing,

IEEE Trans. Comput.-Aided Des. 11 (1992) 739-752.
[59] B. Awerbuch, A. Baratz and D. Peleg, Cost-sensitive analysis of communication protocols, Proc. ACM Symp.

Principles of Distributed Computing (1990) pp. 177-187.
[60] S. Khuller, B. Raghavachari and N. Young. Balancing minimum spanning trees and shortest-path trees, Proc. Syrup.

on Discrete Algorithms (1993) pp. 243-250.
[61] C.J. Alpert, T.C. Hu, J.H. Huang and A.B. Kahng, A direct combination of the prim and Dijkstra constructions for

improved performanced-driven global routing, Proc. Int. Symp. on Circuits and Systems (1993) pp. 1869 1872.
[62] A. Lim, S.-W. Cheng and C.-T. Wu, Performance oriented rectilinear Steiner trees, Proc. A CM/IEEE Design

Automation Conf. (1993)pp. 171-175.
[63] E. Dijkstra, A note on two problems in connection with graphs, Numer. Math. I (1959) 269-271.

J. Cong et al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94 89

[64] S.K. Rao, P. Sadayappan, F.K. Hwang and P.W. Shor, The rectilinear Steiner arboresence problem, Algorithmica
(1992) pp. 277~88.

[65] J. Cong and P.H. Madden, Performance driven routing with multiple sources, Proe. Int. Syrup. on Circuits and
Systems (1995) pp. 1157-1169.

[66] J.-M. Ho, D.T. Lee, C.-H. Chang and C.K. Wong. Bounded-diameter minimum spanning trees and related problems,
Proc. Computational Geometry Conf (1989) 276-282.

[67] J. Cong and P.H. Madden, Performance driven routing with multiple sources, Tech. Rep. CSD-950002, UCLA,
January 1995.

[68] S. Prasitjutrakul and W.J. Kubitz, A timing-driven global router for custom chip design, Proc. Int. Con.['. on
Computer-Aided Design (1990) pp. 48 51.

[69] T. Sakurai, Approximation of wiring delay in MOS-FET LSI, IEEE J. Solid-State Circuits 4 (1983) 418-426.
[170] X. Hong, T. Xue, E.S. Kuh, C.K. Cheng and J. Huang, Performance-driven Steiner tree algorithms for global routing,

Proc. ACM/IEEE Design Automation Conf (1993) pp. 177-181.
[71] S.E. Dreyfus and R.A. Wagner, The Steiner problem in graphs, Networks I (1972) 195 207.
[72] K.D. Boese, A.B. Kahng, B.A. McCoy and G. Robins, Near-optimal critical sink routing tree constructions, IEEE

Trans. Comput.-Aided Des. 14 (1995) 1417-1436.
[73] A. Vittal and M. Marek-Sadowska, Minimal delay interconnect design using alphabetic trees, Proe. A CM/IEEE

Design Automation Conj., San Diego (1994) pp. 392-396.
[74] J. Lillis, C.K. Cheng, T.T.Y. Lin and C.Y. Ho, New performance driven routing techniques with explicit area/delay

tradeoff and simultaneous wire sizing, Proc. ACM/IEEE Design Automation Conf. (1996)pp. 395-400.
[75] T. Xue and E.S. Kuh, Post routing performance optimization via tapered link insertion and wiresizing, Proc.

European Design Automation Con[i (1995).
[76] T. Xue and E.S. Kuh, Post routing performance optimization via multi-link insertion and non-uniform wiresizing,

Proe. Int. Conf? on Computer-Aided Design (1995) pp. 575-580.
[77] H.C. Lin and L.W. Linholm, An optimized output stage for MOS integrated circuits, IEEE J. Solid-State Circuits

SC-10 (1975) 106-109.
[78] C. Mead and L. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1993).
[79] D. Zhou and X.Y. Liu, On the optimal drivers for high-speed low power ICs, Int. J. High Speed Electron. System,

1996, to appear.
[80] H.J.M. Veendrick, Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,

IEEE J. Solid-State circuits SC-19 (1984) 468-473.
[81] J.P. Fishbum and A.E. Dunlop, TILOS: a posynomial programming approach to transistor sizing, Proc. Int. Conf

on Computer-Aided Design (1985) pp. 326-328.
[82] S.S. Sapatnekar and V.B. Rao, IDEAS: A delay estimator and transistor sizing tool for CMOS circuits, Proc. IEEE

Custom Integrated Circuits Conf (1990) pp. 9.3.1 9.3.4.
[83] M.A. Cirit, Transistor sizing in CMOS circuits, Proc. 24th ACM/IEEE Design Automation Con[: (1987) pp.

121 124.
[84] K.S. Hedlund, AESOP: A tool for automatic transistor sizing, Proc. 24 A CM IE E E Design Automation Conj.

(1987) 114-120.
[85] DP. Marple, Transistor size optimization of digital VLSI circuits, Tech. Rep. CSL-TR-86-308, Stanford Univ.,

October 1986.
[86] Z. Dai and K. Asada, MOSIZ: A two-step transistor sizing algorithm based on optimal timing assignment method

for multi-stage complex gates, Proc. Custom Integrated Circuits Co~f (1989) pp. 17.3. 1 17. 3.4.
[87] L.S. Heulser and W. Fichtner, Transistor sizing for large combinational digital CMOS circuits, Integration VLSI

J. 10 (1991) 185 212.
[88] H.Y. Chert and S.M. Kang, iCOACH: a circuit optimization aid for CMOS high-performance circuits, Integration

VLSI .L 10 (1991) pp. 155-168.
[89] J.G. Ecker, Geometric programming: methods, computations and applications, SIAM Rev. 22 (1980) 338-362.
[90] J. Shyu, J.P. Fishburn, A.E. Dunlop and A.L. Sangiovanni-Vincentelli, Optimization based transistor sizing, IEEE

J. Solid-State Circuits (1988) 400-409.
[91] S.S. Sapatnekar, V.B. Rao, P.M. Vaidya and S.M. Kang, An exact solution to the transistor sizing problem for

CMOS circuits using convex optimization, IEEE Trans. Comput.-Aided Des. (1993) 1621 1634.

90 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94

[96]

[97]

[98]

[99]

[lOO]
[101]

[102]

[lO31

[104]

[105]

[106]

[107]

[1o8]

[109]

[11o]

[l l l]

[112]

[113]

[114]

[115]

[92] P.M. Vaidya, A new algorithm for minimizing convex functions over convex set, Proe. IEEE Foundations o/"
Computer Science (1989) pp. 338-343.

[93] B. Hoppe, G. Neuendore, D. Schmitt-Landsiedel and W. Specks, Optimization of high-speed CMOS logic circuits
with analytical models for signal delay, chip area and dynamic power dissipation, IEEE Trans. Comput.-AMed
Des. 9 (1990) 237-247.

[94] M. Berkelaar and J. Jess, Gate sizing in MOS digital circuits with linear programming, Proc. European Design
Automation Conf. (1990) pp. 217-221.

[95] M. Berkelaar, P. Buurman and J. Jess, Computing the entire active area/power consumption versus delay trade-off
curve for gate sizing with a piecewise linear simulator, Proc. IEEE Int. Conf. on Computer-Aided Design (1994)
pp. 474-480.
Y. Tamiya, Y. Matsunaga and M. Fujita, LP based cell selection with constraints of timing, area and power
consumption, Proc. Int. Conf. on Cornputer-Aided Design (1994) pp. 378-381.
G. Chen, H. Onodera and K. Tamaru, An iterative gate sizing approach with accurate delay evaluation, Proc. IEEE
Int. Conf. on Computer-Aided Design (1995) pp. 422-427.
P.K. Chan, Algorithms for libaray-specific sizing of combinational logic, Proc. ACM/IEEE Design Automation
C(mf. (1990) 353-356.
U. Hinsberger and R. Kolla, A cell-based approach to performance optimization of fanout-free circuits, IEEE Trans.
Comput.-Aided Des. 11 (1992) 1317-1321.
W. Li, Strongly NP-hard discrete gate-size problems, IEEE Trans. Comput.-Aided Des. 13 (1994) 1045-1051.
W. Li, A. Lim, P. Agrawal, S. Sahni and R. Kolla, On the circuit implementation problem, Proc. A CMIlEEE
Design Automation Conj: (1992) pp. 478-483.
S. Lin, M. Marek-Sadowska and E.S. Kuh, Delay and area optimization in standard-cell design, Proc. ACM/IEEE
Design Automation Conj. (1990) pp. 349-352.
W. Chuang, S.S. Sapatnekar and I.N. Hajj, A unified algorithm for gate sizing and clock skew optimization to
minimize sequential circuit area, Proc. Int. Conf. on Computer-Aided Design (1993) pp. 220-223.
W. Chuang and S.S. Sapatnekar, Power vs. delay in gate sizing: conflicting objectives'? Proc. Int. Conf. on
Computer-Aided Design (1995) pp. 463-466.
W. Chuang, S.S. Sapatnekar and I.N. Hajj, Delay and area optimization for discrete gate sizes under double-sided
timing constraints, Proc. IEEE Custom Integrated Circuits Conf. (1993) pp. 9.4.1-9.4.4.
H. Sathyamurthy, S.S. Sapatnekar and J.P. Fishburn, Speeding up pipelined circuits through a combination of gate
sizing and clock skew optimization, Proc. Int. Conf. on Computer-Aided Design (1995) pp. 467-470.
L.P.P.P. van Ginneken, Buffer placement in distributed RC-tree networks for minimal Elmore delay, Proc. Int.
Symp. on Circuits and Systems (1990) pp. 865-868.
J. Cong and K.S. Leung, Optimal wiresizing under the distributed Elmore delay model, Proc. Int. Conf. on
Computer-Aided Design (1993) pp. 634-639.
C.P. Chen, Y.P. Chen and D.F. Wong, Optimal wire sizing formula under the Elmore delay model, Proc. ACM/IEEE
Design Automation Con/: (1996)pp. 487-490.
C.P. Chen, Y.W. Chang and D.F. Wong, Fast performance-driven optimization for buffered clock trees based on
Lagrangian relaxation, Proc. ACM/IEEE Design Automation Conf (1996) pp. 405408.
N. Menezes, S. Pullela, F. Dartu and L.T. Pillage, RC interconnect synthesis - a moment fitting approach, Proc.
Int. Conf. on Computer-Aided Design (1994) pp. 418-425.
T. Xue, E.S. Kuh and Q. Yu, A sensitivity-based wiresizing approach to interconnect optimization of lossy
transmission line topologies, Proc. IEEE Multi-Chip Module Conf. (1996) pp. 117 121.
N. Menezes, S. Pullela and L.T. Pileggi, Simultaneous gate and interconnect sizing for circuit-level delay
optimization, Proc. 32nd ACMIlEEE Design Automation Conf. (1995)pp. 690-695.
J. Lillis, C.K. Cheng and T.T.Y. Lin, Optimal wire sizing and buffer insertion for low power and a generalized
delay model, Proc. IEEE Int. Conf on Computer-Aided Design (1995) pp. 138-143.
J. Cong and L. He, Simultaneous transistor and interconnect sizing based on the general dominance property, Proc.
ACM/SIGDA Physical Design Workshop, April 1996 (also available as UCLA Computer Science, Tech. Report
95-00046, 1995).

[116] J. Cong and L. He, An efficient approach to simultaneous transistor and interconnect sizing, Proc. Int. Conf. on
Computer-Aided Design, November 1996, to appear.

J. Cong et al . / INTEGRATION, the VLSI Journal 21 (1996) 1 94 91

[117]

[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]

[129]
[13o]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[1431

P.K. Sancheti and S.S. Sapatnekar, Interconnect design using convex optimization, Proc. IEEE Custom Integrated
Circuits Conf. (1994)pp. 549-552.
J. Cong, C.-K. Koh and K.-S. Leung, Simultaneous buffer and wire sizing for performance and power optimization,
Proc. Int. Symp. on Low Power Electronics and Design (1996) pp. 271-276.
F. Dartu, N. Menezes, J. Qian and L.T. Pillage, A gate-delay model for high-speed CMOS circuits, Proc. ACMIlEEE
Design Automation Conf. (1994) pp. 576-580.
M.J.D. Powell, A fast algorithm for nonlinear constrained optimization calculations, in: G.A. Watson (Ed.), Lecture
Notes in Mathematics, No. 630 (Springer, Berlin 1978) pp. 144-157.
T.D. Hodes, B.A. McCoy and G. Robins, Dynamically-wiresized Elmore-based routing constructions, Proc. Int.
Syrup. on Circuits and Systems (1994) 463-466.
J.L. Wyatt, Circuit Analysis, Simulation and Design Part 2, Ch. 11 (North-Holland, Amsterdam, 1987).
T. Okamoto and J. Cong, Buffered Steiner tree construction with wire sizing for interconnect layout optimization,
Proc. bit. Conj. on Computer-Aided Design, 1996, to appear.
T. Okamoto and J. Cong, Interconnect layout optimization by simultaneous Steiner tree construction and buffer
insertion, Proc. ACM/SIGDA Physical Design Workshop (1996)pp. 1-6.
J. Lillis, C.K. Cheng and T.T.Y. Lin, Simultaneous routing and buffer insertion for high performance interconnect,
Proc. 6th Great Lakes Symp. on VLSI (1996).
K.D. Boese and A.B. Kahng, Zero-skew clock routing trees with minimum wirelength, Proc. IEEE 5th Int. ASIC
Conf, Rochester (1992) pp. 1.1.1 - 1.1.5.
M. Edahiro, Minimum skew and minimum path length routing in VLSI layout design, NEC Res. Dev. 32 (1991)
pp. 569-575.
M. Edahiro, Minimum path-length equi-distant routing, Proc. IEEE Asks Pacific Conf. on Circuits and Systems
(1992) pp. 41-46.
R.S. Tsay, Exact zero skew, Proc. Int. Conf. on Computer-Aided Design (1991) pp. 336-339.
T.-H. Chao, Y.-C. Hsu and J.-M. Ho, Zero skew clock net routing, Proc. ACM/IEEE Design Automation Conf
(1992) pp. 518-523.
T.-H. Chao, Y.-C. Hsu, J.M. Ho, K.D. Boese and A.B. Kahng, Zero skew clock routing with minimum wire length,
IEEE Trans. Circuits Systems 39 (1992) 799-814.
M. Edahiro, A clustering-based optimization algorithm in zero-skew routing, Proc. ACM/IEEE Design Automation
Con[. (1993) pp. 612-616.
J. Cong and C.-K. Koh, Minimum-cost bounded-skew clock routing, Proc. IEEE Int. Symp. on Circuits and
Systems, Vol. 1 (1995) pp. 215-218.
J.H. Huang, A.B. Kahng and C.-W.A. Tsao, On the bounded-skew routing tree problem, Proc. ACM/IEEE Design
Automation Conf, San Francisco (1995) pp. 508-513.
Q. Zhu and W.W.-M. Dai, Perfect-balance planar clock routing with minimal path-length, Proc. hit. Conf. on
Computer-Aided Design (1992) pp. 473-476.
A.B. Kahng and C.-W.A. Tsao, Planar-DME: improved planar zero-skew clock routing with minimum path-length
delay, Proc. European Design Automation Conf. (1994) pp. 440-445.
A.B. Kahng and C.-W.A. Tsao, Low-cost single-layer clock trees with exact zero Elmore delay skew, Proc. IEEE
Int. CoJ~F on Computer-Aided Design (1994) pp. 213-218.
S. Pullela, N. Menezes, J. Omar and L. Pillage, Skew and delay optimization for reliable buffered clock trees, Proc.
IEEE Int. Conf. on Computer-Aided Design (1993) pp. 556-562.
M. Edahiro, Delay minimization for zero-skew routing, Proc. IEEE Int. Conf. on Computer-Aided Design (1993)
pp. 563 566.
N. Menezes, A. Balivada, S. Pullela and L.T. Pillage, Skew reduction in clock trees using wire width optimization,
Proc. IEEE Custom Integrated Circuits Conf. (1993) pp. 9.6.1-9.6.4.
S. Pullela, N. Menezes and L.T. Pillage, Reliable non-zero skew clock tree using wire width optimization, Proc.
A CM/IEEE Design Automation Con)(. (1993) pp. 165-170.
J. Chung and C.-K. Cheng, Skew sensitivity minimization of buffered clock tree, Proc. Int. Conf on Computer-
Aided Design (1994) pp. 280-283.
S. Lin and C.K. Wong, Process-variation-tolerant clock skew minimization, Proc. Int. Conf. on Computer-Aided
Design (1994) pp. 284-288.

92 J. Cong et al . / INTEGRATION, the VLSI Journal21 (1996) 1 94

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]
[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

J.G. Xi and W.W.-M. Dai, Buffer insertion and sizing under process variations for low power clock distribution,
Proc. ACMIlEEE Design Automation ConF (1995) pp. 491-496.
A. ViRal and M. Marek-Sadowska, Power optimal buffered clock tree design, Proc. A CM/IEEE Design Automation
Conf, San Francisco (1995) pp. 497-502.
G.E. T611ez, Amir Farrahi and M. Sarrafzadeh, Activity-driven clock design for low power circuits, Proc. IEEE
Int. Conf on Computer-Aided Design (1995) pp. 62-65.
Q. Zhu, J.G. Xi, W.W.-M. Dai and R. Shukla, Low power clock distribution based on area pad interconnect for
multichip modules, Proc. Int. Workshop o f Low Power Design (1994) pp. 87-92.
J.L. Neves and E.G. Friedman, Topological design of clock distribution networks based on non-zero clock skew
specifications, Proc. 36th Midwest Symp. on Circuits and Systems (1993) pp. 468-471.
J.L. Neves and E.G. Friedman, Circuit synthesis of clock distribution networks based on non-zero clock skew, Proc
IEEE Int. Symp. on Circuits and Systems (1994) pp. 4.175-4.178.
J.L. Neves and E.G. Friedman, Minimizing power dissipation in non-zero skew-based clock distribution networks,
Proc IEEE Int. Symp. on Circuits and Systems (1995) pp. 3.1577 3.1579.
E.G. Friedman, The application of localized clock distribution design to improving the performance of retimed
sequential circuits, Proc. IEEE Asia Pacific Conf on Circuits and Systems (1992) pp. 12-17.
T. Soyata and E.G. Friedman, Retiming with non-zero clock skew, variable register and iterconnect delay, Proc.
Int. Conf. on Computer-Aided Design (1994) pp. 234-241.
T. Soyata, E.G. Friedman and J.H. Mulligan Jr., Monotonicity constraints on path delays for efficient retiming with
localized clock skew and variable register delay, Proc. 1EEE Int. Symp. on Circuits and Systems (1995) pp.
3.1748 3.1751.
E.G. Friedman (Ed.), Clock Distribution Networks in VLSI Circuits and Systems: A Selected Reprint Volume
(1995).
A.L. Fisher and H.T. Kung, Synchronizing large systolic arrays, Proc. SPIE 341 (1982) 44-52.
D.F. Wann and M.A. Franklin, Asynchronous and clocked control structures for VLSI based interconnection
networks, IEEE Trans. Comput. C-32 (1983) 284-293.
S. Dhar, M.A. Franklin and D.F. Wann, Reduction of clock delays in VLSI structures, Proc. Int. Conf on Computer
Design (1984) pp. 778 783.
H. Bakoglu, J.T. Walker and J.D. Meindl, A symmetric clock-distribution tree and optimized high-speed
interconnections for reduced clock skew in ULSI and WSI circuits, Proc. IEEE Int. Con.[. on Computer Design,
Port Chester (1986) pp. 118-122.
M.A.B. Jackson, A. Srinivasan and E.S. Kuh, Clock routing for high performance ICs, Proc. ACM/IEEE Design
Automation Conj. (1990)pp. 573-579.
A.B. Kahng, J. Cong and G. Robins, High-performance clock routing based on recursive geometric matching, Proc.
ACMIlEEE Design Automation Conf (1991) pp. 322-327.
J. Cong, A.B. Kahng and G. Robins, Matching-based methods for high-performance clock routing, IEEE Trans.
Comput.-Aided Des. 12 (1993) 1157 1169.
J. Cong, A.B. Kahng and G. Robins, On clock routing for general cell layouts, Proc. IEEE Int. ASIC Conf (1991)
pp. 14:5.1 14:5.4.
J. Oh, I. Pyo and M. Pedram, Constructing lower and upper bounded delay routing trees using linear programming,
Proc. 33rd Design Automation Conj. (1996) pp. 401-404.
N.-C. Chou and C.-K. Cheng, Wire length and delay minimization in general clock net routing, Proc. Int. Conf.
on Computer-Aided Design (1993) pp. 552-555.
M. Edahiro, An efficient zero-skew routing algorithm, Proc. ACM/1EEE Design Automation Conj: (1994) pp.
375-380.
J.G. Xi and W.W.-M. Dai, Useful-skew clock routing with gate sizing for low power design, Proc. 33rd Design
Automation Conj. (1996) pp. 383-388.
Q. Zhu, W.W.-M. Dai and J.G. Xi, Optimal sizing of high-speed clock networks based on distributed RC and lossy
transmission line models, Proc. Int. Conj. on Computer-Aided Design (1993) pp. 628-633.
H. Liao, W. Dai, R. Wang and F.Y. Chang, S-parameter based macro model of distributed-lumped networks using
exponentially decayed polynomial function, Proc. 30th A CM/IEEE Design Automation Conf. (1993) pp. 726-731.

J. Cong et al . / INTEGRATION, the VLSI Journal 21 (1996) 1-94 93

[169]

[170]

[171]

[172]

[173]

[174]

[175]
[176]

[177]

[178]

[179]

[18o]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

M.P. Desai, R. Cvijetic and J. Jensen, Sizing of clock distribution networks for high performance CPU chips, Proc.
33rd Design Automation Conf. (1996)pp. 389-394.
B. Wu and N.A. Sherwani, Effective buffer insertion of clock tree for high-speed VLSI circuits, Microelectro. J.
23 (1992) 291-300.
Y.P. Chen and D.F. Wong, An algorithm for zero-skew clock tree routing with buffer insertion, Proc. European
Design and Test Conf. (1996).
G.E. T611ez and M. Sarrafzadeh, Clock period constrained minimal buffer insertion in clock trees, Proc. Int. Conf.
on Computer-Aided Design (1994) pp. 219-223.
J.D. Cho and M. Sarrafzadeh, A buffer distribution algorithm for high-speed clock routing, Proc. A CM/IEEE Design
Automation Conf. (1993)pp. 537-543.
P. Ramanathan and K.G. Shin, A clock distribution scheme for non-symmetric VLSI circuits, Proc. Int. Conf. on
Computer-Aided Design (1989) pp. 398-401.
J.P. Fishburn, Clock skew optimization, IEEE Trans. Comput. 39 (1990) 945-951.
M. Seki, K. Inoue, K. Kato, K. Tsurusaki, S. Fukasawa, H. Sasaki and M. Aizawa, A specified delay accomplishing
clock router using multiple layers, Proc. 1EEE Int. Conf. on Computer-Aided Design (1994) pp. 289-292.
F. Brglez, D. Bryan and K. Kozminski, Combinational profiles of sequential benchmark circuits, Proc. Int. Symp.
on Circuits and Systems (1989) 1929-1934.
K.-W. Lee and C. Sechen, A new global router for row-based layout, Proc. IEEE Int. Conf. on Computer-Aided
Design (1988) pp. 180-183.
J. Cong and B. Preas, A new algorithm for standard cell global routing, Proc. IEEE Int. Conj: on Comput.-Aided
Des. (1988) 176-179.
R.C. Carden and C.-K. Cheng, A global router using an efficient approximate multicommodity multiterminal flow
algorithm, Proc. 28th ACM/IEEE Design Automation Conf (1991) pp. 316-321.
R. Nair, L. Berman, P.S. Hauge and E.J. Yoffa, Generation of performance constraints for layout, IEEE Trans.
Comput.-Aided Des. 8 (1989) 860-874.
J. Frankle, Iterative and adaptive slack allocation for performance-driven layout and FPGA routing, Proc.
ACM/IEEE Design Automation Conf. (1992) pp. 536-542.
G.E. T611ez, D. Knol and M. Sarrafzadeh, A graph-based delay budgeting algorithm for large scale timing-driven
placement problem, Proc. 5th ACM/SIGDA Physical Design Workshop (1996) pp. 234 240.
K. Chaudhary, A. Onozawa and E.S. Kuh, A spacing algorithm for performance enhancement and cross-talk
reduction, Proc. IEEE Int. Con./. on Computer-Aided Design (1993) pp. 697-702.
T. Gao and C.L. Liu, Minimum crosstalk channel routing, Proc. IEEE Int. Con/: on Computer-Aided Design
(1993) pp. 692-696.
T. Gao and C.L. giu, Minimum crosstalk switchbox routing, Proc. IEEE Int. Conf. on Computer-Aided Design
(1994) pp. 610 615.
D.A. Kirkpatrick and A.L. Sangiovanni-Vincentelli, Techniques for crosstalk avoidance in the physical design of
high-performance digital systems, Proc. IEEE Int. Conf on Computer-Aided Design (1994) pp. 616-619.
T. Xue, E.S. Kuh and D. Wang, Post global routing crosstalk risk estimation and reduction, Proc. IEEE Int. Conf.
on Computer-Aided Design, November 1996, to appear.
Y.-L. Lin, Y.-C. Hsu and F.-S. Tsai, SILK: a simulated evolution router, IEEE Trans. Comput.-Aided Des. 8
(1989) 1108-1114.
K. Kawamura, T. Shindo, T. Shibuya, H. Miwatari and Y. Ohki, Touch and cross router, Proc. IEEE Int. Conf.
on Computer-Aided Design (1990)pp. 56-59.
W.M. Dai, R. Kong, J. Jue and M. Sato, Rubber band routing and dynamic data representation, Proc. Int. Conf.
on Computer-Aided Design (1990) pp. 52-55.
K.Y. Khoo and J. Cong, An efficient multilayer MCM router based on four-via routing, IEEE Trans. Comput.-Aided
Des. (1995) 1277-1290.
M. Borah, R.M. Owens and M.J. Irwin, Transistor sizing for minimizing power consumption of CMOS circuit under
delay constraint, Proc. Int. Symp. on Lower Power Design (1995) pp. 167 172.
W. Chuang, S.S. Sapatnekar and I.N. Hajj, Timing and area optimization for standard-cell VLSI circuit design,
IEEE Trans. Comput.-Aided Design (1995) pp. 308-320.

94 J. Cong et al . / INTEGRATION, the VLSI Journal 21 (1996) 1 94

[195] S. Y. Kung and R. J. Gal-Ezer, Synchronous vs asynchronous computation in VLSI array processor, Proc. SPIE
341 (1982) 53-65.

[196] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, S l A M J. Appl. Math. 11
(1963) 431441.

[197] A. Martinez, Timing model accuracy issues and automated library characterization, IFIP Trans. A (Comput. So.
Technol.) A-22 (1993) 413-426.

[198] J.M. Smith and J.S. Liebman, Steiner trees, Steiner circuits and the interference problem in building design, Eng.
Optirn. 30 (1979) 15-36.

[199] M. Borah, R.M. Owens and M.J. Irwin, Transistor sizing for minimizing power consumption of CMOS circuit under
delay constraints, Proc. Int. Symp. on Lower Power Design (1995) 167-172.

Jason Cong received his B.S. degree in computer science from Peking University in 1985, his
M.S. and Ph.D. degrees in computer science from the University of Illinois at Urbana-Champaign
in 1987 and 1990, respectively. Currently, he is an Associate Professor and co-Director of the VLSI
CAD Laboratory in the Computer Science Department of University of California, Los Angeles. His
research interests include computer-aided design of VLSI circuits and systems, VLSI interconnect
design and optimization, rapid system prototyping and configurable computing.

Dr. Cong received the Ross J. Martin Award for Excellence in Research from the University of
Illinois at Urbana-Champaign in 1989. He received the NSF Research Initiation Award and NSF
Young Investigator Award in 1991 and 1993, respectively. He received the Northrop Outstanding

Junior Faculty Research Award from UCLA in 1993 and IEEE Trans. on CAD Best Paper Award in 1995. He served
as the General Chair of the 4Th ACM/SIGDA Physical Design Workshop, the Program Chair of the 1997 International
Symposium on FPGAs, and on the program committees of many VLSI CAD conferences, including DAC, ICCAD, and
ISCAS. He is an Associate Editor of ACM Trans. on Design Automation of Electronic Systems.

Lei He received the B.S. degree in electronics engineering from Fudan University in 1990.
Currently, he is a research assistant with the University of California at Los Angeles Computer

Science Department, and is pursuing a Ph.D. degree. His research interests in the field of VLSI-CAD
are focused on high-performance low-power layout design, RC extraction, and timing simulation and
verification.

Mr. He received the Excellent Graduate Award and a Motorola Fellowship from Fudan University
in 1990 and 1992, respectively. He is a student member of the IEEE.

Cheng-Kok Koh received the B.S. degree with first class honors and the M.S. degree, both in com-
puter science, from the National University of Singapore in 1992 and 1996, respectively. Currently,
he is a research assistant with the Computer Science Department of University of California at Los
Angeles, where he is pursuing his Ph.D. degree. His research interests include computer-aided design
of VLSI circuits, design and analysis of data structures and algorithms, and hypermedia systems.

Mr. Koh received the Lim Soo Peng Book Prize for Best Computer Science Student from the
National University of Singapore in 1990. He received the National University of Singapore Scholar-
ship from 1989 to 1991. He received the Tan Kah Kee Foundation Postgraduate Scholarship in 1993
and 1994. He received the GTE Fellowship and the Chorafas Foundation Prize from the University
of California at Los Angeles in 1995 and 1996, respectively.

Mr. Koh is a member of the ACM and the IEEE.

Patrick H. Madden received the B.S. degree in computer science and mathematics in 1989 and
the M.S. degree in computer science in 1991, all from the New Mexico Institute of Mining and
Technology.

Currently, he is a research assistant with the University of California at Los Angeles Computer
Science Department, and is pursuing the Ph.D. degree. His research interests include VLSI-CAD,
software engineering, and network based computing.

Mr. Madden is a member of ACM and the IEEE.

