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Abstract 

This paper presents a comprehensive survey of existing techniques for interconnect optimization during the VLSI physical 
design process, with emphasis on recent studies on interconnect design and optimization for high-performance VLSI circuit 
design under the deep submicron fabrication technologies. First, we present a number of interconnect delay models and 
driver/gate delay models of various degrees of accuracy and efficiency which are most useful to guide the circuit design 
and interconnect optimization process. Then, we classify the existing work on optimization of VLSI interconnect into 
the following three categories and discuss the results in each category in detail: (i) topology optimization for high- 
performance interconnects, including the algorithms for total wire length minimization, critical path length minimization, 
and delay minimization; (ii) device and interconnect sizing, including techniques for efficient driver, gate, and transistor 
sizing, optimal wire sizing, and simultaneous topology construction, buffer insertion, buffer and wire sizing; (iii) high- 
performance clock routing, including abstract clock net topology generation and embedding, planar clock routing, buffer 
and wire sizing for clock nets, non-tree clock routing, and clock schedule optimization. For each method, we discuss 
its effectiveness, its advantages and limitations, as well as its computational efficiency. We group the related techniques 
according to either their optimization techniques or optimization objectives so that the reader can easily compare the 
quality and efficiency of different solutions. 
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1. Introduction 

The driving force behind the rapid growth of  the VLSI technology has been the constant reduction 
of the feature size of  VLSI devices (i.e. the minimum transistor size). The feature size decreased 
from about 2 ~tm in 1985, to about 1 ~tm in 1990, and to 0.35-0.5 ~tm today (1996). The prediction 
is that it will be reduced to about 0.18 Bm in year 2001 [1]. Such continual miniaturization of  VLSI 
devices has strong impact on the VLSI technology in several ways. First, the device density on 
integrated circuits grows quadratically with the rate of  decrease in the feature size. As a result, the 
total number of  transistors on a single VLSI chip has increased from less than 500000 in 1985 
to over 10 million today. The prediction is that it will reach 64 million in year 2001 [1]. Second, 
the devices operate at a higher speed, and the interconnect delay becomes much more significant. 
According to the simple scaling rule described in [2], when the devices and interconnects are scaled 
down in all three dimensions by a factor of  S, the intrinsic gate delay is reduced by a factor of  
S, the delay of  local interconnects (such as connections between adjacent gates) remains the same, 
but the delay of  global interconnects increases by a factor of S 2. As a result, the interconnect delay 
has become the dominating factor in determining system performance. In many systems designed 
today, as much as 50-70% of clock cycle are consumed by interconnect delays. This percentage 
will continue to rise as the feature size decreases further. 

Not only do interconnects become more important, they also become much more difficult to 
model and optimize in the deep submicron VLSI technology, as the d i s t r ibu t ed  na ture  of the in- 
terconnects has to be considered. Roughly speaking, the interconnect delay is determined by the 
driver/gate resistance, the interconnect and loading capacitance, and the interconnect resistance. For 
the conventional technology with the feature size of  1 Bm or above, the interconnect resistance in 
most cases is negligible compared to the driver resistance. So, the interconnect and loading gates 
can be modeled as a lumped loading capacitor. In this case, the interconnect delay is determined 
by the driver resistance times the total loading capacitance. Therefore, conventional optimization 
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techniques focus on reducing the driver resistance using driver, gate, and transistor sizing, and 
minimizing the interconnect capacitance by buffer insertion and minimum-length, minimum-width 
routing. For the deep submicron technology which became available recently, the interconnect re- 
sistance is comparable to the driver resistance in many cases. As a result, the interconnect has 
to be modeled as a distributed RC or RLC circuit. Techniques such as optimal wire sizing, opti- 
mal buffer placement, and simultaneous driver, buffer, and wire sizing have become necessary and 
important. 

This paper presents an up-to-date survey of the existing techniques for interconnect optimization 
during the VLSI layout design process. Section 2 discusses interconnect delay models and gate 
delay models and introduces a set of  concepts and notation to be used for the subsequent sections. 
Section 3 presents the techniques for interconnect topology optimization, where the objective is 
to compute the best routing pattern for a net for interconnect delay minimization. It covers the 
algorithms based on total wirelength minimization, pathlength minimization, and delay minimization. 
Section 4 presents the techniques for device and interconnect sizing, which determines the best 
geometric dimensions of devices and interconnects for delay minimization. It includes driver sizing, 
transistor sizing, buffer placement, wire sizing, and combinations of  these techniques. Section 5 
discusses techniques for high-perjbrmance clock routing, including clock tree topology generation 
and embedding, planar clock routing, buffer and wire sizing for clock nets, non-tree clock routing, 
and clock schedule optimization. Section 6 concludes the paper with suggestions of several directions 
for future research. 

2. Preliminaries 

VLSI design involves a number of steps, including high-level design, logic design, and physical 
layout. Designs are generally composed of a number of  functional blocks or cells which must be 
interconnected. This paper addresses the interconnection problems of these blocks or cells. 

A net N is composed of a set of  pins {s0,s~, s2,.. . ,  sn} which must be made electrically connected. 
So denotes the driver of  the net, which supplies a signal to the interconnect. In some cases, a net 
may have multiple drivers, each driving the interconnect at a different time (such as in a signal bus). 
These nets are called multi-source nets. The remaining pins in a net are sinks, which receive the 
signal from the driver. 

The interconnection of  a net consists of  a set of  wire segments (often in multiple routing layers) 
connecting all the pins in the net. It can be represented by a graph, in which each edge denotes 
a wire segment and each vertex denotes a pin or joint of  two wire segments. Interconnections are 
generally rectilinear. 

In this paper, we will primarily be interested in interconnect trees, in which there exists a unique 
simple path between any pair of  nodes. We use Path(u, v) to denote the unique path from u to v in 
the interconnect tree. dT(u, v) denotes the path length of  Path(u, v). The source node So will generally 
be referred to as the root of  an interconnect tree, each node v in a tree is connected to its parent 
by edge el,. We use T~ to denote the subtree of T that is rooted at v. Given an edge e, we use 
Des(e) to denote the set of  edges in the subtree rooted at e (excluding e), Ans(e) to denote the set 
of  edges {e ' [e  E Des(d)}  (again, excluding e), and Te to denote the subtree of T rooted at e, i.e., 
Des(e) tg {e}. The topology of an interconnect tree T refers to an abstraction of T on the Manhattan 
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Fig. 1. The abstract topology of an interconnect tree, and its embedding. 

plane, without considering the wire width, routing layer assignment, and all electrical properties. In 
this paper, we often use an interconnect tree and its topology interchangeably. 

However, we distinguish an interconnect tree T from its abstract topology G, which is a binary 
tree (with the possible exception at the root) such that all sinks are the leaf nodes of  the binary tree. 
The source driver is the root node of  the tree, and may have a singleton internal node as its only 
child. Consider any two nodes, say u and v, with a common parent node w --- p(u) = p(w)  in the 
abstract topology; then the signal from the source has to pass through w before reaching u and v 
(and their descendants). The topology of  an interconnect tree T is an embedding of the abstract 
topology G, i.e. each internal node v E G is mapped to a location l(v) = (x~,y~) in the Manhattan 
plane, where (x~., y~:) are the x- and y-coordinates, and each edge e E G is replaced by a rectilinear 
edge or path. Fig. 1 shows an abstract topology and its embedding (which is not unique). Some 
interconnect optimization algorithms first compute a good abstract topology and then generate an 
optimal or near-optimal embedding. 

The definitions and notation for interconnect tree T also apply to abstract topology G. For example, 
we also use Path(u, v) to denote the unique path from u to v in the abstract topology G. Furthermore, 
we define the level of  a node in an abstract topology. The root node of  the abstract topology is at 
level 0, and the children of  a node at level k are at level k + 1. A node with a smaller level number 
is at a higher level of  the hierarchy. 

In this paper, we are mainly concerned with the Manhattan (rectilinear) distance metrics. We use 
d(u, v) to denote the Manhattan distance between points u and v. If edge e connects u and v, then 
]el >~d(u,v). Note that we differentiate between d(u,v) and dT(u,v); in general, dT(u,v)>~d(u,v). 
The distance between two pointsets P and Q is defined as d(P,Q) = min{d(p ,q)  lp  E P,q E Q}, 
while the diameter of  a point set P is diameter (P)  = max{d(p ,q)  lp, q E P}, and the radius of  a 
point set P with respect to some point c is radius(P) = max{d(p ,c)  l p E P}. 

An interconnect tree T is evaluated on a number of  attributes, including cost and delay. Generally, 
the cost of edge e refers to its wire length, and is denoted by le[. For instances where we consider 
variably sized wires, with the width of  edge e denoted by we, the cost of  edge e may refer to its 
area (i.e., the product of  its length and width, lelwe). ITI denotes the total cost of  all edges in tree T. 

Let t(u,v) denote the signal delay from node u to node v. Then, t(So, S~) denotes the delay from 
source to sink si. For simplicity, we use ti to denote t(So,S~). A brief discussion on the various delay 
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models can be found in Sections 2.1 and 2.2. We are also interested in the skew of the clock signal, 
defined to be the difference in the clock signal delays to the sinks. One common definition of the 
skew of clock tree T is given by skew(T) = maxs,.~cs Iti - tjl. 

Let r, c~ and cr denote the unit square wire resistance, unit area capacitance, and unit length 
fringing capacitance (for 2 sides), respectively. Then, the wire resistance of  edge e, denoted re, and 
the total wire capacitance of e, denoted Ce, are given as follows: 

rlel 
We 

ce =c.lelw + fleJ. 

We use Cap(v) to denote the total capacitance of T,,. We will use Rd as the resistance of the driver, 
and c~, to denote the sink capacitance of si. We will use C a p ( J )  as the capacitance of all the sink 
nodes. We will use sink(T~) to denote the set of sinks in T,. 

2.1. Interconnect delay models 

As VLSI design reaches deep submicron technology, the delay model used to estimate interconnect 
delay in interconnect design has evolved from the simplistic lumped RC model to the sophisticated 
high-order moment matching delay model. In the following, we will briefly describe a few commonly 
used delay models in the literature of  interconnect performance optimization. Although our discussion 
will center around RC interconnect, some of  the models are not restricted to RC interconnect. For a 
more comprehensive list of  references on RLC interconnect, the interested reader may refer to [3]. 

In the lumped R C  model, "R" refers to the resistance of the driver and "C" refers to the total 
capacitance of  the interconnect and the total gate capacitance of  the sinks. The model assumes that 
wire resistance is negligible. This is generally true for circuits with feature sizes of 1.2 I.tm and 
above since the driver resistance is substantially larger than the total wire resistance. In this case, 
the switching time of the gate dominates the time for the signal to travel along the interconnect and 
the sinks are considered to receive the signal at the same time due to the negligible wire resistance. 

However, as the feature size decreases to the submicron dimension, the wire resistance is no 
longer negligible. Sinks that are farther from the source generally have a longer delay. For example, 
under the path  length (or linear) delay model, the delay from u to v in an interconnect tree is 
proportional to the sum of edgelengths in the unique u-v path, i.e., t (u ,v)  oc ~e,,EPath(u,v)]ewl. The 
limitation of the path length delay model is that it ignores the wire resistance but consider only wire 
capacitance along the path. Moreover, it ignores the effect of  edges not along the path. The merit 
of  the path length delay model is that routing problems for path length control or optimization are 
generally much easier than delay optimization under more sophisticated delay models to be presented 
below. 

The delay models presented in the remainder of this section consider both wire resistance and 
capacitance of  the interconnect. Under these models, the interconnect is modeled as an RC tree, 
which is recursively defined as follows [4]: (i) a lumped capacitor between ground and another 
node is an RC tree, (ii) a lumped resistor between two non-ground nodes is an RC tree, (iii) an RC 
line with no dc path to ground is an RC tree, and (iv) any two RC trees (with common ground) 
connected together to a non-ground node is an RC tree. We can extend the above definition for 
RLC tree easily by considering inductors and RLC lines. 



6 J. Con9 et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 

Given an RC tree, Rubinstein et al. [4] compute a uniform upper bound of signal delay at every 
node, denoted te, as follows: 

tp = ~ RkkCk, (1) 
all nodes k 

where C~ is the capacitance of the lumped capacitor at node k and Rki is defined to be the resistance 
of the portion of the (unique) path Path(s0, i) that is common to the (unique) path Path(s0,k). In 
particular, Rkk is the resistance between the source and node k. There are a few advantages of this 
model: (i) it is simple, yet captures the distributed nature of the circuit; (ii) it gives a uniform 
delay upper bound and is easier to use for interconnect design optimization; and (iii) it correlates 
reasonably well with the Elmore delay model, which will be discussed next. 

The Elmore delay model  [5] is the most commonly used delay model in recent works on inter- 
connect design. Under the Elmore delay model, the signal delay from source So to node i in an RC 
tree is given by [4] 

t(so, i) = ~ R e G .  (2) 
all nodes k 

Unlike the upper bound signal delay model in Eq. (1), each sink (and in fact, all nodes in the RC 
tree) has a separate delay measure under the Elmore delay model. It is used to estimate the 50% 
delay of a monotonic step response (to a step input) by the mean of the impulse response, which is 
given by f o  t h ( t )d t  where h(t)  is the impulse response. The impulse response h( t )  can be viewed 
as either (i) the response to the unit impulse (applied at time 0) at time t, or (ii) the derivative 
of  the unit step response at time t. The 50% delay, denoted ts0, is the time for the monotonic step 
response to reach 50% of VBD, and it is the median of  the impulse response. 1 It can be shown that 
the Elmore delay gives the 63% (=  1 - l /e)  delay of  a simple RC circuit (with a single resistor 
and a single capacitor), which is an upper bound of the 50% delay. In general, the Elmore delay of  
a sink in an RC tree is a (loose) absolute upper bound on the actual 50% delay of the sink under 
the step input [6]. 

The main advantage of the Elmore delay is that it provides a simple closed-form expression with 
greatly improved accuracy for delay measure compared to the lumped RC model. In the following, 
we illustrate that the Elmore delay can be expressed as a simple algebraic function of the geometric 
parameters of the interconnect, i.e., the lengths and widths of edges, and parasitic constants such as 
the sheet resistance, unit wire area capacitance and unit fringing capacitance of the interconnect. 

Consider an interconnect T in Fig. 2. To model an interconnect as an RC tree, an edge e in the 
interconnect in (a) can be modeled as a n-type circuit with a lumped resistor of  resistance r~ and 
two capacitors, each of capacitance c~/2, where re and Ce are the wire resistance and capacitance of 
edge e as shown in (b). Other lumped circuit models such as L- and T-type circuits may be used to 
model an edge as well [2]. It is also possible to model an edge as a distributed RC line as shown 
in (c). 

In the case of each wire segment modeled as a n-type circuit as in Fig. 2(b), we can write the 
Elmore delay from the source to sink si in terms of  the geometry of the interconnect, i.e., le[ and 

In general, the x% delay, denoted tx, is the delay time for the signal to reach x% of VDD. 
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e v l ~ - - ~  
es2~ '~  S 2 

(a) re re . . . . . . . . . . .  

~%C e 

(b) (c) 

Fig. 2. Modeling of an interconnect tree as an RC tree: (a) an interconnect tree, (b) each edge is modeled as a ~z-type 
circuit, and (c) each edge is modeled as an RC line. 

w,,, and the parasitics o f  the interconnect as follows [7, 8]: 

t ( So ,  S i )  = ~ F e , ( C e , / 2  "~ C a p ( u ) )  
e, CPath(s0. si ) 

= _ _  rCf  levi 2 
rc~ ~ levi 2 + - -  Z 
2 e, EPath(so,si) 2 e, CPath(so,s,) We, 

le~,l ] e, I we,, 
- -  + r c a  E E 

e~ EPath(s(r.si ) e.CDes(e~ ) We, 

_ _  cslevl +rce ~ ~ le~lle.I + r  ~ Z i ,  (3) 
erEPath(so~i ) e~,CDes(e, ) Wec e, EPath(so. Si ) uEsink(T~ ) We~ 

where c~,S = c s,3, if  sink sj is at node v and c,S: = 0 otherwise. The above algebraic expression allows 
analysis o f  how topology and wire widths affect Elmore delay, which leads to interconnect topology 
optimization algorithms such as [9, 10] and wire sizing algorithms such as [7, 11, 12]. 

The approximation o f  the 50% signal delay by the Elmore delay is exact only for a symmet- 
rical impulse response, where the mean is equal to the median [6]. Although the Elmore delay 
model is not accurate, it has a high degree of  f idel i ty:  an optimal or near-optimal solution ac- 
cording to the estimator is also nearly optimal according to actual (SPICE-computed [13]) delay 
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for routing constructions [14] and wire sizing optimization [15]. Simulations by [16] also showed 
that the clock skew under the Elmore delay model has a high correlation with the actual (SPICE) 
skew. The same study also reported a poor correlation between the path length skew and the actual 
skew. 

In fact, one can show that the Elmore delay is the first moment of  the interconnect under the 
impulse response. More accurate delay estimation of  the interconnect can be obtained using the 
higher orders of  the moments. In the remainder of  this section, we show how to compute the 
higher-order moments efficiently and present several interconnect delay models using the higher-order 
moments. 

We first define m o m e n t s  of the impulse response of  a linear circuit. Let h( t )  be the impulse 
response at a node of  an interconnect (which may be an RC interconnect, an RLC interconnect, 
a distributed-RLC or transmission line interconnect). Let Vin(t) be the input voltage of  the linear 
circuit, v( t )  be the output voltage of  a node of  interest in the circuit, Vin(s) and V(s )  be the Laplace 
transform of vin(t) and v(t) ,  respectively; then, H ( s )  = V(s)/V.,,,(s) is the transfer function. Applying 
Maclaurin expansion to the transfer function H ( s ) ,  which is the Laplace transform of h( t ) ,  we 
obtain 

H ( s )  = h ( t ) e - S t d t  = t ' h ( t )d t .  (4) 
i=0 i. J0 

The ith-moment of the transfer function mi is related to the coefficient of  the ith power of  s in Eq. 
(4) by z 

mi = ~. t ih ( t )d t .  (5) 

For any linear system, the normalized transfer function can also be expressed as 

1 + ats  + a2s 2 + . . .  + a,,s" 

H ( s )  = 1 + bv~ + b2s 2 + ' ' '  + b m  Sin' (6) 

where m > n. Expanding H ( s )  into a power series with respect to s, we have 

H ( s )  = mo - mls  + m2s 2 . . . .  (7) 

The Ehnore delay model is in fact the first moment m~ = f o  t h ( t ) d t  of the impulse response 
h(t) .  Note that ml = bl - al where al and bl are terms in Eq. (6), and it can also be shown that 
the upper bound delay tp (Eq. (1)) is in fact bl [4]. 

Several approaches have been proposed to compute the moments at each node of  a lumped RLC 
tree, where the lumped resistors and lumped inductors are floating from the ground and form a tree, 
and the lumped capacitors are connected between the nodes on the tree and the ground [19-21]. 

In the following, we present a method proposed by Yu and Kuh [21] for moment computation in 
an RLC tree. Consider a lumped RLC tree with n nodes. Let k be the parent node of  node k, and 
Tk be the subtree rooted at node k. Let Ck be the capacitance connected to node k, Rk and Lk be the 

2 From the distribution theory, the ith moment of a function h(t) is in fact defined to be f~'~ t'h(t)dt. In some previous 
works [17, 18, 3], a variant of the moment definition mi = ((1) ' / i!)  f ~  tih(t)dt was used. In this case, H(s) in Eq. (7) 
becomes H(s) =mo + m~s + m2s 2 + . . . .  
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resistance and inductance of  the branch between k and k. Let Hk(s) = Vk(s)/Vin(s) be the transfer 
function at node k, where Vk(s) is the Laplace transform of the output voltage at k, denoted vk(t). 
Let ik(t) be the current flowing from k to k; then its Laplace transform Ik(s) is given by [21] 

5(s)  = E Cjs .(s). (8) 
jcr~ 

Let Rki and L~ be the total resistance and inductance on the portion of the path Path(s0, i) that is 
common to the path Path(s0,k), respectively; then, the total impedance along the common portion 
of paths Path(s0, i) and Path(s0,k) is Zk~ = R~ + s .  Lk~. The voltage drop from root So to node k is 
[21] 

Vin(s)-  V ~ ( s )  = E Z ~ i C i s V i ( s ) .  (9) 
i 

Then the transfer function Hk(s) = Vk(s)/Vin(s) becomes [21] 

Hk(s) = 1 - -  ~ Z k i C i s H i ( s ) .  (10) 
i 

P be the pth-order moment of Hk(s). Expanding Hk(s) and Hi(s) in Eq. (10) by the expression Let m k 
in Eq. (7), and equating the coefficients of powers of s, the pth-order moment at node k under a 
step input can be expressed as [21] 

0 
p 1 

' 

if p = - 1 ,  
if p = 0 ,  

i f p  > 0 .  
( l l )  

P (for p > 0) Let C~'~ = ~jcvmPCj ,  which is the total pth-order weighted capacitance of irk; then m~ 
can be written recursively as [21] 

p ~" 0 if k is the root So, 
mk = "[ mP + RkC~-' - LkC;'~ 2 i f k C s 0 .  (12) 

Therefore, given the ( p -  1)th-order and ( p -  2)th-order moments, the pth-order moments of all 
nodes can be computed by first computing C~ -~ and C~ -2 in O(n) time in a bottom-up fashion. 

p Then, m~ can be computed in a top-down fashion for all nodes in the interconnect tree in O(n) 
time. Therefore, the moments up to the pth-order of  an RLC tree can be computed in O(np) time. 

For moment computation of a tree of transmission lines, several works first model each trans- 
mission line as a large number of uniform lumped RLC segments [17, 22] and then compute the 
moments of  the resulting RLC tree. However, this approach is usually not efficient nor accurate. 
Kahng and Muddu [23] showed that using 10 uniform segments to approximate the behavior of a 
transmission line entails errors in the first and second moments of around 10% and 20%, respec- 
tively. In [23,21], the authors improve both accuracy and efficiency by considering non-uniform 
segmentation of  the transmission line. Yu and Kuh [21] found that for exact moment computation 
of up to the pth-order, each transmission line should be modeled by [3p/2J non-uniform lumped 
RLC segments. Combining the non-uniform lumped RLC segment model by [23, 21] with the mo- 
ment computation algorithm by [21], the moments of  a transmission line tree interconnect up to the 
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order of p can be computed in O(np 2) time, where n is the number of nodes in the tree. Another 
work of Yu and Kuh [24] computes the moments of a transmission line tree interconnect directly, 
without first performing non-uniform segmentation of the transmission lines. This algorithm also has 
a computational complexity of  O(np2). 

Higher-order moments are extremely useful for circuit analysis. In general, higher-order moments 
can be used to improve the accuracy of delay estimation. For example, Krauter et al. [25] proposed 
metrics based on the first three central moments, which are the moments of the distribution of the 
impulse response. From the distribution theory, the second central moment provides a measure of 
the spread of h(t) and the third central moment measures the skewness of h(t). Since the accuracy 
of the Elmore delay is affected by the spread and skewness of the impulse distribution, the three 
central moments may be used to reduce the relative errors of Elmore delay [6]. 3 

Another advantage of using higher-order moments for circuit analysis is that it can handle the 
inductance effect. When the operating frequencies of VLSI circuits are in the giga-hertz range and 
the dimension of interconnect is comparable to the signal wavelength, inductance plays a significant 
role in signal delay and signal integrity. An inherent shortcoming of the Elmore delay model and 
other simpler delay models is that they cannot handle the inductance effect. 

The asymptotic waveform evaluation (AWE) method proposed by Pillage and Rohrer [17] is an 
efficient technique to use higher-order moments in interconnect timing analysis which can handle 
the inductance effect. It constructs a q-pole transfer function/~(s), called the q-pole model, 

q ki 
/ J ( s )  = (13)  

i - IS  -- P i '  

to approximate the actual transfer function H(s), where Pi are poles and ki are residues to be 
determined. The corresponding time domain impulse response is 

q 

t~ t ) = Eki ep't. (14) 
i--I 

The poles and residues in H(s)  can be determined uniquely by matching the initial boundary con- 
ditions, denoted m_l, and the first 2 q -  1 moments mi of H(s) to those of /Q(s)  [17]. The choice 
of order q depends on the accuracy required but is always much less than the order of the circuit. 
In practice, q <~ 5 is commonly used. 

When q is chosen to be two, it is known as the two-pole model [26-30]. In this model, the first 
three moments m0 (which is normalized), ml, and m2 are used. A closed-form expression of m2 is 
given and an analytical formula relating the performance of an RLC interconnect to its topology and 
geometry is derived by Gao and Zhou [28]. This provides a closed-form formula for the topology 
optimization algorithm in [27]. However, the expression of m2 is much more complicated than that 
of m~ (the Elmore delay). Moreover, the method of [26, 28, 30] calculates the second moment by 
replacing the off-path admittance by the sum of  the total subtree capacitance. This is correct only 
to the coefficient of  s in the subtree admittance. Thus, such a method underestimates the subtree 
impedance. As a result, the response obtained is a lower bound of the actual response, and the 
delay estimate is an upper bound on the actual delay. To compute the second moment exactly, the 

3 The three moments were also used to detect underdamping, determine the conditions of  critical damping for series 
terminated transmission line nets, and estimate the delay of the properly terminated line [25]. 



J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 11 

admittance of off-path subtrees must be calculated correctly up to the coefficient of s 2. This was 
done in [19,31,21]. 

Based on the two-pole methodology, Kahng and Muddu [31] derived an analytical delay model 
for RLC interconnects. Consider a source driving a distributed RLC line with total resistance Re, 
total inductance LL, and total capacitance CL. The source is modeled as a resistive and inductive 
impedance (Zd = Rd + SLd). The load CT at the end of the RLC line is modeled as a capacitive 
impedance (ZT = 1/sCT). The transfer function is truncated to be [31] 

1 
H(s) ~ 1 + bls + b2 $2' ( 1 5 )  

where 

bt = RaCk + RLCT + - -  + RLCT, 

RaRL C~ RdRL CL CT (RLCL)2 R2L CL CT L~CL 
b2 + 2 + 2 ~  ÷ ~ + La CL + La CT ÷ - - _ _  + LL CT. 

The first and second moments ml and m2 can be obtained from bl and b2, i.e., ml ---- bl and m2 = 
b~ --  b2. The authors separately derive the sink delay at  the load CT, denoted tT, from the two-pole 
response depending on the sign of b~ - 4b2 [31]: 

{Kr 
mt + v/4m2 - 3m~ if b~ - 4b2 > 0, i.e., real poles, 

2 

2(m~ - m2) if b~ - 4b2 < 0, i.e., complex poles, 
tT = Kc x/3m 2 _ 4m2 

Kd ~ if b~ - 4b2 = 0, i.e., double poles, 

where Kr, Kc, and Kd are functions of bl and b2 as described in [31]. The model is further extended 
to consider RLC interconnection trees [31] and ramp input [32]. 

While the methods in [31,32] used only the first two moments, Tutuianu et al. [33] proposed an 
explicit RC-circuit delay approximation based on the first three moments of the impulse response. 
The model uses the first three moments (m~,m2, and m3) to determine stable approximations of 
the first two dominant poles p~ and p2 of H(s). By matching the first two moments of  the actual 
transfer function, the two residues kl and k2 can be obtained. The explicit approximation of the delay 
point is a single Newton-Raphson iteration step, using the first-order delay estimate (which can be 
expressed in terms of  the poles and residues) as the initial guess. The reader is referred to [33] for 
the exact expressions of p~, p2, kj, k2, and the delay function. 

2.2. Driver delay models 

In interconnect-driven layout designs, gate/buffer design need to be optimized according to the 
interconnect load. Moreover, the design of a gate/buffer also affects interconnect design and opti- 
mization considerably. It is common that each gate or buffer has a set of implementations with 
varying driving capabilities. These implementations are normally characterized by input (gate) ca- 
pacitance, effective output (driver) resistance, denoted Rd, and internal delay, derived from either 
analytical formulas or circuit simulation. 
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(a) 

Rmin = Rp d p ~ . ~  ~ 
= Rndn,  

(b) 

Fig. 3. A switch-level RC model of (a) an n-transistor and (b) an inverter with equal pull-up and pull-down strength by 
adjusting the p- and n-transistor sizes dp and dn, respectively. 

In the following, we collectively refer to gates, buffers and even transistors as drivers. Given an 
input signal, we are interested in modeling the response waveform of a gate, buffer or transistor at 
the output of the driver. We define the Jall time, denoted tr, as the time for the response waveform 
to fall from 90% to 10% of its steady-state value. The delay time for the falling signal, denoted 
tdf, is the time difference between input transition (50%) and the 50% output level. Similarly, we 
can define the rise time, denoted tr, and the delay time for the rising signal, denoted tdr. We use 
td to denote delay time for the signal if we do not distinguish between rising and falling signal. In 
general, the input has an input transition time, denoted tt, which is the input rise or fall time. 

We first use a transistor to illustrate the simple switch-level RC model, where a transistor is 
modeled as an effective resistance discharging or charging a capacitor [34]. Fig. 3(a) shows a simple 
switch-level RC model of an n-transistor. Let the minimum n-transistor resistance be Rn. The gate 
capacitance and output diffusion capacitance of the minimum n-transistor are denoted d' 8 and C~, 
respectively. We normalize the transistor size such that a minimum-size transistor has unit size. 

In the simple switch-level RC model, for an n-transistor of  size d ~> 1, its effective resistance Rd 
is Rn/d. The capacitances are directly proportional to the transistor sizes, i.e., the gate capacitance 
is Cgd and the diffusion capacitance is C~d. Assuming a step input, the fall time of the signal at 
the gate output is given by [34] 

CL 
tf = k (16) 

n 
flmin d VDD 

where k is typically in the range of 3-4 for values of VDD in the range of 3-5, fi~n is the gain 
factor for the minimum n-transistor, and CL is the loading capacitance driven by the transistor. The 
delay time for the falling signal can be approximated to be t~f = tr/2 [34]. Note that since the 
effective resistance Rd is proportional to l/fimind, we can simply approximate tdf by the product 
of  the effective transistor resistance and the loading capacitance CL. The above discussion can be 
applied to a p-transistor by simply replacing the superscript n by p and the fall time by the rise 
time. 

An inverter consists of  an n-transistor and a p-transistor, and can be modeled by the simple 
switch-level RC model as shown in Fig. 3(b). The output capacitance of the inverter is the sum of 
the diffusion capacitances due to the p- and n-transistors. Similarly, the input gate capacitance of the 
inverter is the sum of the gate capacitances due to both transistors. It is a common practice to size 
the p- and n-transistors in the inverter to a fixed ratio, called the p/n ratio. In this case, the size of 
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an inverter is defined to be the scaling factor with respect to the minimum-size inverter (with the 
fixed p/n ratio). Other CMOS gates can be modeled similarly. 

A shortcoming of the simple RC model is that it cannot deal with the shape of the input waveform. 
In practice, the effective resistance of a transistor depends on the waveform on its input. A sharp 
input transition allows the full driving power of the driver to charge or discharge the load and 
therefore results in a smaller effective resistance of the driver. On the other hand, a slow transition 
results in a larger effective resistance of  the driver. Hedenstierna and Jeppson [35] consider input 
waveform slope and provide the following expression for the delay time of a falling signal: 

tf tt ( 2 V t ~ )  (17) 
t d f = ~ + ~  1 +  VDD ' 

where tt is the input transition time (more specifically, the input rise time in this case) and Vt~ is 
the threshold voltage of n-transistor. 

In the slope model (first proposed by Pilling and Skalnik [36]), a one-dimensional table for the 
effective driver resistance based on the concept of rise-time ratio is proposed by Ousterhout [37]. 
The effective resistance of a driver depends on the transition time of  the input signal, the loading 
capacitance, and the size of  the driver. In the slope model, the output load and transistor size are 
first combined into a single value called the intrinsic rise time of the driver, which is the rise time 
at the output if the input is a step function. The input rise time of  the driver is then divided by the 
intrinsic rise time of the driver to produce the rise-time ratio of the driver. The effective resistance 
is represented as a piecewise linear function of the rise-time ratio and stored in a one-dimensional 
table. Given a driver, one first computes its rise-time ratio and then calculates its effective resistance 
Ra by interpolation according to its rise-time ratio from the one-dimensional table. The driver rise- 
time delay is computed by multiplying the effective resistance with the total capacitance. Similarly, 
we can have a look-up table for the fall-time ratio of  the driver. 

Another commonly used driver delay model precharacterizes the driver delay of each type of 
gate/buffer in terms of the input transition time tt, and the total load capacitance CL in the following 
forms of k-factor equations [34, 38]: 

tat-= (k. + k2G~)t~ + k3C~ + k4CL + ks, (18) 

tf -~ (k; + k~CL)tt + k~C~ + k4CE + k;, (19) 

where kl...5 and kl... 5 are determined based on detailed circuit simulation (e.g. using SPICE [13]) 
and linear regression or least-squares fits. Similar k-factor equations can be obtained for the delay 
and rise time of  the rising output transition. 

More generally, a look-up table can be used to characterize the delay of each type of gate. A 
typical entry in the table can be of the following form: {(tdf, tf),tt, CL}. Given an input transition 
time tt and an output loading capacitance, the look-up table for a specific gate provides the delay 
and rise/fall time. The table look-up approach can be very accurate, but it is costly to compute and 
store a multidimensional table. 

All these driver delay models use the loading capacitance for delay computation. In first-order 
approximation, the loading capacitance is simply computed as the total capacitances of the intercon- 
nects and the sinks (Figs. 4(a) and (b)). However, not all the capacitance of  the routing tree and 
the sinks are seen by the driver due to the shielding effect of the interconnect resistance, especially 
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tt 
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Fig. 4. (a) An inverter driving an RC interconnect. (b) The same inverter driving the total capacitance of the net in (a). 
(c) A ~-model of the driving point admittance for the net in (a). (d) The same inverter driving the effective capacitance 
of the net in (a). The input signal has a transition time of 6. 

for fast logic gates with lower driver resistance. Qian et al. [38] propose the effective capacitance 
model which first uses a re-model [39] to be discussed next (Fig. 4(c)) to better approximate the 
driving point admittance at the root of the interconnect (or equivalently, the output of the driver), 
and then compute iteratively the "effective capacitance" seen by the driver, denoted Cen, using the 
k-factor equations. 

In [39], O'Brien and Savarino construct the ~z-model load of an interconnect using the first three 
moments yl, y2 and Y3 of the driving point admittance. The three moments of the driving point 
admittance are computed recursively in a bottom-up fashion, starting from the leaf nodes of the 
interconnect. The ~z-segment is characterized by C~, C2 and R which are computed as follows: 

Ct = Y~/Y3, C2 = YL - -  (Y2/Y3),2 R ~- --(y3/Y2).2/3 (20) 

For an unbranched uniform distributed RC segment, Cl, C2 and R are 5CL/6, Cc/6 and 12RL/25, 
respectively, where Cc is the total capacitance of the line and Rc is the total resistance of the line. 
Simulation results show that the response waveform obtained using the re-model is very close to the 
response waveform of the actual interconnect at the gate output [39]. 

Kahng and Muddu [40] further simplify the modeling of the interconnect tree. They equate it to 
an open-ended RLC line with resistance RL, inductance LL, and capacitance CL which are equal to 
the total interconnect resistance, inductance, and capacitance, respectively, as shown in Fig. 5(b). It 
was in turn simplified to a re-model with C~ = 5CL/6, C2 = Cc/6, R = 12Rc/25, and L = 12Lc/25 
(Fig. 5(c)) by matching the first three moments of the driving point admittance of the RLC line. It 
was shown that this simple open-ended RLC rc model gives gate delay and rise/fall time which are 
within 25% of SPICE delays [40]. 

The ~z-models computed above are usually incompatible with the commonly used k-factor equa- 
tions, the slope model, and the table look-up method since these driver delay models assume a single 
loading capacitance. Qian et al. [38] proposed to compute an "~ffective capacitance" iteratively from 
the parameters R, C1 and C2 in the ~-model (Figs. 4(c) and (d)) using the following expression: 

c2+c [, Rc xj2 + e JRCL , e xJRC ] 
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RL ' LL ' CL R = 12/25R L L = 12/25 L L 

(aJ (b) (c) 

C1=5/6 C L 

Fig. 5. An open-ended RLC line to capture an RLC interconnect tree, and the RLC 7r model. 
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Fig. 6. Compute the effective resistance from the 50% and 90% points. 

where tD : tdf + tt/2 and tx = t D -  tf/2, and tar and tf can both be obtained from the k-factor 
equations in terms of the effective capacitance and the input transition tt. The iteration starts with 
using the total interconnect and sink capacitance as the loading capacitance CL to get an estimate of 
tD and tx through the k-factor equations. A better estimate of  the effective capacitance is computed 
using Eq. (21) and it is used as the loading capacitance for the next iteration of  computation. The 
process stops when the value of Cefr does not change in two successive iterations. 

Qian et al. [38] also observe that the slow decaying tail portion of  the response waveform is not 
accurately captured by the effective capacitance model. This is due to the CMOS gate behaving like 
a resistor to ground beyond some timepoint ts, and its interaction with a re-model load yielding a 
vastly different response than the effective capacitance. Therefore, [38] uses the effective capacitance 
model to capture the initial delay and a resistance model (R-model) to capture the remaining portion 
of the response. They calculate the effective driver resistance by [38] (Fig. 6) 

ts0 - ts 
Rd : Cefr In v(ts)/V(tso)' (22) 

where ts0 is the 80% point delay computed by the k-factor equations and V(ts) can be estimated 
from the Cefr model. The computation of ts is given in [38]. Then, the voltage response at the gate 
output after time ts can be expressed as a double exponential approximation [38]: 

Vz(t) = :~le p'(t-ts) + c~2 ep2(t-t~), (23) 
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where ~j, ~2, Pl, and P2 can be obtained from Rd, the :z-model parameters (R, CI, and C2), and the 
initial conditions on the 7r-model as described in [38]. Note that the driver resistance Ra, together 
with /'dr and tr (or tdf and t f )  computed by the k-factor equations, and the RC interconnect, can be 
used to estimate the input transition time and delay for the sinks using models described in Section 
2.1. 

The models described above are used mostly in the works on wire sizing optimization since an 
accurate estimate of the driver resistance prevents oversizing of the wire widths. They are also crucial 
in the works that consider sizing of drivers, together with the optimization of the inter-connect. 

3 .  T o p o l o g y  o p t i m i z a t i o n  f o r  h i g h - p e r f o r m a n c e  i n t e r c o n n e c t  

In this section we address the problem of topology optimization for high-performance interconnect. 
Two major design goals must be considered for this problem: the minimization of total interconnect 
wire length, and the minimization of path length or signal delay from a driver to one or several 
timing-critical sinks. 

Wire length minimization is of interest for the following reasons: 
- When the wire resistance is negligible compared to the driver resistance, minimization of total 

wire capacitance (and hence, net wire length) provides near optimal performance with respect to 
delay [41 ]. 

- Even when wire resistance is considered, the total wire capacitance still contributes a significant 
factor to interconnect delay [41]. 
Interconnect wiring contributes to circuit area. Reduction of wire length reduces circuit area, 
lowering manufacturing costs and increasing fabrication yield. 

- Wire capacitance contributes significantly to switching power. Reduction of wire length also 
reduces power consumption and the amount of energy to be dissipated. 

From the discussion of delay models in the previous section, one can conclude that for interconnect 
topology optimization, of major concern are the total wire length and the resistance of the paths 
from the driver to the critical sinks. Therefore, high-performance interconnect topologies must strike 
a balance between path length and tree length optimization. 

We will first address the minimization of interconnect tree length, a problem which has been 
widely studied by both the VLSI design community and by researchers in many other areas of 
computer science. While these methods do not explicitly address delay concerns, they form the 
foundations of many algorithms for delay optimization. 

We next consider the optimization of interconnect topologies for critical nets in cases where the 
interconnect resistance is not negligible. In general, we are interested in reducing the path length or 
resistance from the source to the timing critical sinks, while avoiding a large penalty in the total 
tree length. We first survey works which provide "geometrical" approaches to topology construction, 
addressing the problem of path length minimization from a source to critical sinks. We then consider 
methods designed for the "physical" model, in which VLSI fabrication parameters and physical delay 
models influence the net topologies. 

Many of the early problems and algorithms on interconnect topology optimization surveyed in this 
section are discussed in depth in [42], which is highly recommended to the reader who is interested 
to know more details of the results presented here. 
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3.1. Topoloyy optimization for total wirelength minimization 

A problem central to any area of interconnect optimization is the minimization of  the wire length 
of a net. Research on the construction of  minimum spannin9 trees (MST) and Steiner minimal 
trees (SMT) is directly applicable to problems in VLSI interconnect design. Note that we use the 
abbreviation SMT for Steiner minimal trees to avoid ambiguity with the abbreviation MST. 

3.1.1. Minimum spannin9 trees 
The MST problem involves finding a set of  edges E which connect a given set of  points P with 

minimum total cost. Two classic algorithms solve this problem optimally. Kruskal's algorithm [43] 
begins with a forest of  trees (the singleton vertices), and iteratively adds the lowest cost edge which 
connects two trees in the current forest (forming a new tree), until only a single tree which connects 
all points in P remains. Prim's algorithm [44] starts with an arbitrary node as the root of  a partial 
tree, and grows the partial tree by iteratively adding an unconnected vertex to it using the lowest cost 
edge, until no unconnected vertex remains. Both algorithms construct MSTs with the minimum total 
cost. For a problem with n vertices, we can construct a Voronoi diagram [45] to constrain the number 
of  edges to be considered by the two algorithms to be linear with n. With this constraint on the 
number of  edges, both algorithms can be made to run in O(n log n) time. Naive implementations have 
slightly higher complexity. We use MST(P) to denote the minimum spanning tree of  point set P. 

3.1.2. Conventional Steiner tree algorithms 
MST constructions are restricted to direct connections between the pins of  a net, which is not 

necessary in VLSI design. Interconnect topology construction is in fact a rectilinear Steiner tree 
problem, which has been studied extensively outside the VLSI design community, and goes well 
beyond the scope of  this paper. We will discuss several typical and commonly used algorithms here, 
and recommend a more detailed survey by Hwang and Richards [46] to the interested reader. 

The Steiner problem is defined as follows: Given a set P of  n points, find a set S of  Steiner 
points such that MST(P US)  has the minimum cost. For interconnect optimization problems, the set 
P consists of  the pins of  a net. Note that the inclusion of  additional points to the spanning tree can 
reduce the total tree length. 

While the MST problem can be solved optimally in polynomial time, construction of  a SMT is 
NP-hard for graphs, and for both rectilinear and Euclidean distance metrics [47]. We shall present 
several effective SMT heuristics for the rectilinear distance metric, which is most relevant to VLSI 
interconnect design. 

Clearly, the set of  potential Steiner points is infinite. For the rectilinear metric, however, Hanan 
[48] showed that the set of  Steiner points which need to be considered in the construction of  a 
SMT can be limited to the "Hanan grid", formed by the intersections of  vertical and horizontal 
lines through the vertices of  the initial point set. Given this observation, optimal SMT algorithms 
which utilize branch-and-bound techniques can be constructed, but these algorithms have exponential 
complexity and are applicable to only small problems. Given that construction of  an optimal SMT is 
NP-hard, it is natural to look for heuristics. An interesting result, due to Hwang [49], is that the ratio 

3 The bounded of  tree lengths between a rectilinear MST and a rectilinear SMT is no worse than ~. 
performance of  MST constructions has made the Prim and Kruskal algorithms popular as the basis 
of  Steiner tree heuristics. We choose to present three general heuristic approaches which are effective 
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Fig. 7. A conventional spanning tree improvement through the merging of edges. 
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Fig. 8. Non-separable and separable MSTs. In the first example, the bounding boxes of non-adjacent edges el and e2 

intersect. The second example shows a separable MST for the same point set. 

and commonly used for SMT construction. One approach uses "edge merges", a second involves 
iterative Steiner point insertion, and a third involves iterative edge insertion and cycle removal. 

Many Steiner tree heuristics follow the general approach of improving an initial minimum spanning 
tree by a series of edge merges. For a pair of  adjacent edges in a spanning tree, there is the possibility 
that by merging portions of the two edges, tree length can be reduced. An example of this is shown 
in Fig. 7. There may be more than one way in which edges can be merged; the selection of edges 
and the order of their merging is a central concern of many Steiner tree heuristics. 

The best-known example of this approach is that of  Ho et al. [50]. They first compute a separable 
M S T  in which no pair of  non-adjacent edges have overlapping bounding boxes. They showed that 
for any point set P, there exists a separable MST on P. Given a separable MST, their method 
constructs the optimal length SMT that can be achieved by edge merging. Examples of non-separable 
and separable MSTs are shown in Fig. 8. 

A separable MST can be computed through a variant of  Prim's algorithm. The three-tuple (d ( i , j ) ,  
--]Yi- Yj[,--max(xi,xj)) is used to weight each edge for MST construction. Since the edge weights 
are compared under the lexicographic order, the total cost of  a separable MST will be equal to that 
of  an ordinary MST. 

Given a separable MST, the authors then find the optimal orientation of edges to maximize the 
amount of overlap obtained by edge merging (minimizing the total tree cost of  the derived Steiner 
tree). Marking an arbitrary leaf node as the root, a recursive process is used to determine the 
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A difficult problem for merge-based 
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Fig. 9. A pathological case for conventional merge-based Steiner tree heuristics. The minimum spanning tree for the 
vertices is unique, resulting in limited improvement through edge merging. 

orientation of edges in each subtree, from bottom to top. At any level, only a constant number 
of possibilities need be considered, resulting in a linear-time algorithm. The algorithm obtains an 
improvement of  roughly 9% over MST tree cost on average. 

While improvement of an MST through edge merging can be effective at minimizing tree length on 
average, there exist pathological cases in which merge-based Steiner heuristics can exhibit the worst- 
case performance [51]. In Fig. 9, one such case is shown. For this point set, the tree constructed by 
any MST algorithm is unique. Traditional merge-based heuristics have relatively little gain, as only 
the three leftmost edges will be able to merge. The optimal Steiner tree, however, has significantly 
lower wire length. The ratio of tree lengths of a merge-based heuristic and an optimal Steiner tree 
can be arbitrarily close to the 3 bound. 

In [52], Georgakopoulos and Papadimitriou considered the 1-Steiner problem, which is to find a 
point s such that IMST(P)] - IMST(PUs)] is maximized. The point s is known as a "l-Steiner 
point." The authors presented an O(n 2) method to determine this point for the Euclidean plane. 
Kahng and Robins [51] adapted this result for the rectilinear metric, and presented the iterated 1- 
Steiner heuristic. This algorithm represents our second heuristic class, and constructs a Steiner tree 
through iterative point insertion. At each step, a 1-Steiner point is added to the point set, until no 
Steiner point can be found to reduce the MST length. The algorithm is explained in Fig. 10. The 
same method was proposed for general graphs earlier [53]. 

The l-Steiner algorithm has very good performance in terms of wire length minimization; on 
random point sets, the trees generated by this algorithm are 11% shorter than MSTs on average. 
The best possible improvement is conjectured to be roughly 12% on average [54], so the 1-Steiner 
algorithm is considered to be very close to optimal. While this algorithm constructs trees which 
are close to optimal in terms of length, it suffers from relatively high complexity. A sophisticated 
implementation is O(n3), while a naive approach may be O(nS); this may make it impractical for 
problems with large numbers of vertices. 

The third approach we discuss is an MST-based heuristic by Borah et al. [55]. It produces results 
that are comparable to the 1-Steiner algorithm, but with a complexity of only O(n2). Rather than 
optimizing a MST by merging edges, their method improves an initial MST by finding the shortest 
edge between a vertex and any point along an MST edge. If the edge is inserted, a cycle is gen- 
erated; removal of the longest edge on this cycle may result in a net decrease in tree length. The 
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Fig. 10. A 1-Steiner construction. Starting from an initial minimum spanning tree, a single Steiner point is inserted 
iteratively, until no further improvement can be found. 
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Fig. l 1. A Steiner heuristic which inserts a redundant edge between a node and a tree edge. For each node, the nearest 
location on a non-adjacent edge is determined, and the gain obtained by insertion of  a new edge, and removal of  a 

redundant edge, is determined. 

algorithm operates in a series of  passes. For each vertex, the shortest connection to an existing edge 
is determined, and the improvement of  inserting the connection and then breaking the cycle is deter- 
mined. In one pass, candidate modifications for all nodes are determined, and then are implemented 
(if  possible) according to the decreasing order of  their gains. After all modifications have been 
made, the algorithm makes another pass, until no gain can be found. This algorithm is explained in 
Fig. 11. 

As there are O(n) vertices and edges, determination of  the shortest distance from any edge to a 
vertex is no worse than O(n). For each candidate edge, the most costly edge on the generated loop 
can be determined with a linear-time search. Thus, determination of  candidate modifications is no 
worse than O(n2). The number of  passes required is generally very small, with cases where more 
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than four passes are required being rare. The authors noted that the algorithm complexity can be 
improved to O(n log n) through the use of more complex data structures and algorithms. 

3.2. Topolo9), optimization for path lenyth minimization 

If we wish to reduce the delay from a net driver to a critical sink, and the interconnect resistance 
between the two is significant, an obvious approach is to reduce this resistance. Assuming uniform 
wire width, constraining path lengths between source and sink clearly realizes this goal. 

In this subsection, we discuss approaches to delay minimization through the "geometric" objective 
of path length reduction or minimization. 

3.2.1. Tree cost~path lenyth tradeoffs 
Cohoon and Randal [56] presented an early work which addressed the problem of constructing 

interconnect trees for the VLSI domain, considering path length while not requiring shortest paths. 
Their heuristic method attempts to construct a maximum performance tree (MPT), defined as a 
tree which has minimum total length among trees with optimized source-to-sink path lengths. Their 
method consists of  three basic steps: trunk generation, net completion, and tree improvement. 

In their study, the authors observed that trees which had relatively low path lengths usually 
had "trunks", monotonic paths from the source to distant sinks. Other sink vertices generally were 
connected to a trunk at a nearby location. Trunk generation consists of  constructing paths from 
the source to the most distant sinks. Five methods of  trunk generation were studied. Four involve 
the insertion of  an S-shaped three segment monotonic path from the source to a distant sink. The 
middle segment location is determined by finding either the mean or median of the point set. The 
fifth method constructs trunks by building a rectilinear shortest path tree on the graph, and then 
keeping the paths derived for the most distant sinks as the basis of  the MPT. 

Net completion involves the attachment of the remaining sink vertices to the trunks that have 
been formed. The authors use three techniques: a rectilinear MST (RMST) algorithm, a rectilinear 
shortest path tree (RSPT) algorithm, and a hybrid of  the two. The hybrid works as follows: if 
the RMST connection of a sink does not result in a path length greater than the radius of the 
net, the connection is used; otherwise, an RSPT connection is used. For each connection, the edge 
routing which results in the maximum overlap with the existing tree is selected, and the edges are 
merged. 

Tree improvement involves a series of edge merges (similar to the merge-based Steiner tree 
heuristics of [50], described in Section 3.1.2) and edge insertions and deletions. The operations are 
performed such that the path length from the source to the most distant sink is not increased, and 
this phase terminates at the local optimum. In experiments with a variety of point sets, the authors 
observed that their heuristic produced an average of 25% reductions in path length with increases 
of 6% in wire length, when compared to the Steiner tree heuristic of  [50]. 

While the MPT algorithm provides a measure of control over the tradeoff between path length 
and tree length, a number of  authors have attempted to refine this control. Some algorithms are able 
to bound the maximum tree length, the maximum path length, or both, with constant factors. 

In [57], Cong et al. proposed an extension of Prim's MST algorithm known as Bounded Prim 
(BPRIM). This algorithm bounds radius by using a shortest path connection for a sink when the 
MST edge normally selected would result in a radius in excess of a specified performance bound. 
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While BPRIM produces trees with low average wire length and bounded path length, pathological 
cases exist where the tree cost is not bounded. 

In order to compute a spanning tree with bounded radius and bounded cost, Cong et al. [58] 
extended the shallow-light tree construction by Awerbuch el al. [59], which was originally designed 
for communications protocols. The algorithm of [59] constructs spanning trees which have bounded 
performance for both total tree length and also maximum diameter. This class of constructions are 
known as shallow-light trees. Total tree length for their algorithm is at most (2 + 2/e) times that of 
a minimum spanning tree, while the diameter is at most (1 + 2~,) times that of  the diameter of  the 
point set. The e, parameter may be adjusted freely, allowing a preference for either tree length or 
diameter. 

The bounded radius bounded cost (BRBC) spanning tree of [58] uses the shallow-light approach, 
and works as follows. 

(1) Construct an MST TM and an SPT Ts for the graph. 
(2) Perform a depth-first traversal of  TM. This traversat defines a tour of the tree, and each edge is 

traversed exactly twice. 
(3) Construct a "line-version" L of TM, which is a path graph containing the vertices in the order 

that they were visited during depth-first traversal. Note that each vertex appears twice in L, and 
that the cost of  L is at most twice the total cost of  TM. 

(4) Construct a graph Q by traversing L. A running total of  the distance in Q from the source is 
maintained; if the distance exceeds 1 + e times the radius, a shortest path from So to the current 
vertex is inserted. 

(5) Construct a shortest path tree T' in Q. 
The resulting tree has length no greater than 1 + 2/e times that of  a minimum spanning tree, and 

radius no greater than 1 + e times that of  a shortest path tree. An example of tree construction using 
the BRBC method is shown in Fig. 12. Khuller et al. [60] developed a method similar to BRBC 
contemporaneously. 

Alpert et al. [61] proposed AHHK trees as a direct trade-off between Prim's MST algorithm and 
Dijkstra's shortest path tree algorithm. They utilize a parameter 0~<c~ 1 to adjust the preference 
between tree length and path length. Their algorithm iteratively adds an edge epq between vertices 
p E T and q ~ T, where p and q minimize ( c ,  dT(so, p))+d(p,q) .  

The authors showed that their AHHK tree has radius no worse than c times the radius of a shortest 
path tree. For pathological cases in general graphs, their tree may have unbounded cost with respect 
to a minimum spanning tree. They conjectured that the cost ratio may be bounded when the problem 
is embedded in a rectilinear plane. 

Most of  the algorithms presented in this subsection so far are focused on bounded radius span- 
ning tree construction, and do take advantage of Steiner point generation. In [62], Lim et al. pro- 
posed perjbrmance-oriented rectilinear Steiner trees for the interconnect optimization problem. Their 
heuristic method attempts to minimize total tree length while satisfying distance constraints between 
the net driver and various sink nodes. 

Their method utilizes a "performance-oriented spanning tree" algorithm repeatedly during Steiner 
tree construction. Spanning tree construction proceeds in a manner similar to that of  BPRIM, with 
edge selection being based on finding the lowest cost edge which does not violate a distance bound 
by its inclusion. Note that the constructed tree is not necessarily planar, and can have cost higher 
than that of  an MST. The Steiner variant of  their algorithm proceeds as follows. Beginning with 
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Fig. 12. A bounded-radius bounded-cost construction. 

the driver as the root of a partial tree, the Steiner tree grows by a single Hanan grid edge from the 
partial tree towards a sink node. As the tree grows, certain edges may be required for inclusion (to 
meet path length bounds); these edges are inserted automatically. If there are no edges that must 
be included, their heuristic assigns weights to edges of the Hanan grid, and selects the edge with 
highest weight. Edge weighting is done by maintaining a score  for grid edges and grid points, based 
on the number of performance-oriented spanning tree edges which may contain the Hanan grid edge. 
An example of their Steiner tree construction method is shown in Fig. 13. 

3.2.2. A r b o r e s e n c e s  

At the extreme of path length minimization objectives are constructions which provide shortest 
paths from the source to sink nodes. While this clearly minimizes path resistances, we also want to 
minimize the total tree capacitance. Cong et al. [41] showed that a minimum-cost shortest path tree 
is very useful for delay minimization. Given a routing tree T, they decomposed the upper bound 
signal delay tp at any node in T under the Rubinstein et al. [4] model as follows (see Eq. (1)): 

tp = t l ( T )  + t2(T)  + t3(T) + t4(T), (24) 
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Fig. 13. Performance optimized minumum rectilinear Steiner tree construction. At each step, a few of the Hanan grid 
edges are candidates for inclusion. In some instances, the included edge can is determined by path length constraints; in 
other instances, the edge is selected based on a heuristic weighting. 

where 

t, ( T ) = Rdcl T I, (25) 

t 2 ( T ) = r  ~ c~,[dt(so,sk)l, (26) 
all sinks st, 

t3(T) = r c ~  IdT(So, v)l, (27) 
vE T 

t 4 ( T ) = R d  C c,~k. ( 2 8 )  
all sinks s/~ 

Here c denotes the unit length capacitance. The first term q(T)  is minimized when IT I is mini- 
mized, corresponding to a minimum wirelength solution. The second term t2(T) is minimized by a 
shortest path tree. The third t3(T) term is the sum of path lengths from the source to every node in 
the tree (including non-sink nodes), which is affected by both the path length and total tree length. 
The fourth term is a constant. This analysis shows the importance of constructing a minimum-cost 
shortest path tree. 

For a shortest paths spanning tree construction, the classical method by Dijkstra can be used 
to construct a shortest paths tree (SPT) in a graph [63], in which every vertex is connected 
to the root (or source) by a shortest path. While the original algorithm only ensures that all 
paths are shortest paths, it can be easily modified to construct the minimum-cost shortest path 
tree. 
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Fig. 14. The H heuristic, applied to a single quadrant problem. 

For a shortest paths Steiner tree construction, Rao et al. [64] posed the following problem for the 
rectilinear metric: Given a set of vertices V in the first quadrant, find the shortest directed tree rooted 
at the origin, containing all vertices in V, with all edges directed towards the origin. Such a tree is 
known as an arboresence, and clearly results in shortest paths from the root to every vertex. The 
authors of  [64] were concerned with the construction of  rectilinear minimum spanning arboresences 
(RMSA) and rectilinear Steiner minimal arboresences (RSMA), for total wire length minimization 

3 performance bound between an RMST and an RSMT in both cases. First, they showed that a 
does not hold for arboresences. Instead, they have [RMSA[/[RSMA[ = (2(n/ logn)  as a tight bound, 
indicating that as the size of  the problem grows, the length of  a spanning arboresence grows faster 
than the length of  a Steiner arboresence. For large problems, the length of  a spanning tree solution 
may be much larger than that of  the Steiner solution. 

Next, they presented a simple heuristic for the RSMA construction problem. Let min(p, q) denote 
the point at (min(xp,Xq), min(yp, yq)), which is called the merging point of  p and q. Their heuristic 
algorithm constructs an arboresence H iteratively by connecting a pair of  vertices p and q to 
min(p,q).  The pair p and q are chosen to maximize the distance between min(p,q)  and the root, 
i.e., the pair with the merging point furthest from the root are selected first. An example of  tree 
construction using this heuristic is shown in Fig. 14. 

Despite its simplicity, the algorithm provides an interesting bound on total tree length: IT I ~<2 x 
IRSMAI, i.e., the length of  a tree generated by the heuristic is no worse than twice the optimal 
Steiner arboresence length. 

When the problem is not restricted to one quadrant, the heuristic can be applied in the following 
manner. If we assume the root to be located at the origin, we can restrict the tree to contain the 
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x-axis in the range from a to b, a~<0~<b. Similarly, we can restrict the tree to the y-axis for 
values c ~<0 ~<d. By considering the single-quadrant solutions given various values of a, b, c, and 
d, and then finding the best performing combination, their heuristic constructs a tree in O(n31ogn) 
time. 

In [41], Cong et al. also addressed the construction of rectilinear Steiner arboresences, and pre- 
sented the A-tree algorithm. The A-tree algorithm constructs trees by starting with a forest of  points 
(the source and all sinks), and then iteratively merges subtrees until all components are connected. 
In addition to the merging operation used in [64], the authors of [41] identify three types of "safe 
moves" for optimal merging at each step. In other words, the safe merge moves preserve the tree 
length optimality during the construction process; if only safe moves are applied, the resulting tree 
will have optimal length. The A-tree algorithm applies safe moves whenever possible. On average, 
it was shown that 94% of merge moves were optimal, and the trees constructed by the A-tree al- 
gorithm were within 4% of the optimal arboresence length, in experiments on random nets under 
the 0.5 ~t CMOS IC technology, the A-tree constructions produced delay improvements approaching 
20% over l-Steiner [51] constructions. 

3.2.3. Multiple source routing 
The existence of multiple source nets, such as signal buses, complicates interconnect topology 

construction, as a topology which provides good performance for one source may perform poorly 
for another. An example of such an instance is shown in Fig. 15. A method proposed by Cong and 
Madden [65] constructs interconnect topologies which limit the maximum path length between any 
pair of  pins to the diameter of  the net, while using minimal total wire length. Their minimum-cost 
minimum diameter A-tree (MCMD A-Tree) algorithm consists of  three main steps: determination 
of the net diameter, identification of a feasible region for the root of  a minimum diameter tree, and 
construction of a shortest-path tree rooted at the selected root point. 

For the Euclidean metric, Ho et al. [66] presented a method to construct a minimum diameter tree. 
They determine the smallest enclosing circle for the point set, and then construct a shortest path tree 
from the center of  this circle. The method of [65] follows a similar approach. For the rectilinear 
metric, determination of the equivalent of  the smallest enclosing circle is simple. A tilted rectangular 
region (TRR) is defined to be a rectangle with sides having slopes of ±1. The rectilinear equivalent 
of the smallest Euclidean circle, a smallest tilted square (STS) can be constructed from the smallest 
TRR enclosing the points. The STS has diameter equal to that of  the point set, with points si and 
s j on opposing sides having distance d(si, s/) = diameter(P). For a point c at the center of  an STS, 
we have d(c, s~)<~ ½D for any si in the net. By constructing a shortest-path tree rooted at c, any path 
from si to sj will clearly have length no greater than D. 

It was noted in [65] that the feasible position for the root c of  a minimum diameter rectilinear tree 
J is overly restrictive. In fact, the feasible region is not unique, and that the constraint d(c,s~)~-jD 

(FR) of the root position of a minimum diameter rectilinear tree can be characterized by the set 
{c[d(si, c)+d(c,s/)<<.D, Vs~,sj E P}. For each pair of  pins si and s j, the equation d(si, c)+d(c, sj)<~D 
defines an octilinear ellipse (OE). The intersection of the OEs for all pairs defines the FR for the 
point set. Figure 16 shows the octilinear ellipses for a set of points, and their intersection which 
results in the FR. Straightforward computation of the FR takes O(n 2) time by intersecting O(n 2) 
OEs; a linear-time method to construct the FR was presented in [67]. 
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Fig. 15. A multisource routing problem. When each vertex may act as either a driver or as a sink, diameter minimization 
(rather than radius minimization) may be the preferred goal. 

\ /  "/ 
Fig. 16. The .feasible region for the root of a minimum diameter tree. Each pair of points constrains the root to an area 
(an octilinear ellipse) on the plane. The intersection of these octilinear ellipses gives the set of points that can serve as 
the root of the tree. 

The authors use the A-tree algorithm [41] to construct a shortest path tree T f rom a root point 

within the FR to the pins o f  the net. As dT(c, si) = d(c, si) in the A-tree, and c satisfies d(si, c) + 
d(c,s/)<~D, clearly dT(Si, C ) +  dT(C, Sj)<.D for all pairs s~ and sj. While any point within the FR 
provides a feasible root point for a min imum diameter  construction, some root points result in lower 
wire length solutions; an example  is shown in Fig. 17. The root points considered are restricted to 
the comer  points o f  the FR, the intersections o f  Hanan grid lines with the FR, and Hanan grid points 
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Fig. 17. The length of a minimum diameter may be reduced by the selection of an appropriate root location. The center 
of the smallest enclosing rectilinear circle is not necessarily the best root point. 

contained by the FR. In the worst case, there may be O(n 2) candidate root points for a problem 
with n pins. 

The authors used the Elmore delay model to select the tree with best performance among the A- 
trees rooted at candidate different positions in the FR; HSPICE simulation showed that on random 
nets under the 0.5 ~ CMOS IC technology, their MCMD A-tree constructions showed an average 
of 11.4% reductions in the maximum interconnect delay when compared to 1-Steiner [51] tree 
constructions. Industrial examples showed as much as a 16% delay reduction. 

3.3. Topology optimization for delay minimization 

While delay was an implied objective in the two previous subsections, the methods discussed there 
used geometric measures for optimization. Geometric objectives are in general more tractable than 
physical delay models, but can be inaccurate measures for signal delay. In this subsection, we discuss 
a number of methods which employ more accurate physical delay models to guide optimization. 

Prasitjutrakul and Kubitz [68] presented an early method as part of  their timing-driven global 
router. As this method was a part of their global router, they utilized global delay constraints in their 
optimization. Individual sink pins had unique delay requirements, resulting in differing required arrival 
times for signals (and differing slack values). Their approach for interconnect topology construction 
was to iteratively add an unconnected sink to a partial tree, using a path that would maximize the 
slacks of all sinks already connected, and the target sink. The target sink was selected to minimize 
the distance between the sink and the partial tree. The algorithm uses the A* search technique, with 
delay calculated by a method described in [69]. 

In [70], Hong et al. propose two tree construction methods. The first, called the iterative Dreyfus- 
Wagner (IDW) Steiner tree algorithm. This method modifies the optimal Steiner tree construction 
method of Dreyfus and Wagner [71] to utilize a physical delay model from [69]. Through successive 
runs of the Dreyfus-Wagner method, three terms which capture resistance, capacitance, and their 
product, are adjusted iteratively; the convergence of these terms produces the optimum solution. 

A second approach in [70] is based on a constructive force directed method. This method begins 
with an initial forest of  points, computes the "weighted medium point" for each vertex, and then 
grows the smallest weighted subtree, This process is iterated until all vertices are connected. The 
weighted medium point, subtree weights, and direction of growth, are all heuristically determined. 
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In [27], Zhou et al. presented a heuristic method to construct routing trees based on their analysis 
using a 2-pole RLC delay model. Their model has been described in Section 2.1. The authors 
were concerned with minimizing signal delay using an accurate model, and with obtaining signal 
waveforms which did not exceed target voltages by a wide margin. Their tree construction method 
adds sink nodes one by one, in a manner somewhat similar to Prim MST algorithm. Rather than 
constructing a spanning tree, their algorithm connects nodes to vertices or Steiner points that could 
be contained by the partial tree. Their algorithm utilizes a 2-pole simulator to evaluate signal delay 
and waveform integrity at each step. 

In [9], Boese et al. define the Critical-sink routing tree (CSRT) problem as: Given signal net N, 
construct T ( N )  which minimizes ~ ~i * t(si). This formulation allows for the weighting of individual 
sinks to account for the varying importance of specific delay paths. They utilize the Elmore delay 
model for their optimization. 

Two methods for this problem were proposed, one for the construction of spanning trees, and the 
other for the construction of Steiner trees. 

Their Elmore routing tree (ERT) algorithm constructs a spanning tree over the pins by iteratively 
adding edges, in a method similar to Prim's MST algorithm. In each step, vertices p 6 T and q ~ T 
are selected, such that the addition of an edge from p to q minimizes the maximum Elmore delay 
to all sinks in the new tree. The ERT algorithm was generalized to allow Steiner points, resulting 
in the Steiner Elmore routing tree (SERT) algorithm. At each step, the edge selected was allowed 
to connect to any vertex or to any Steiner point that could be contained by the partial tree. The 
complexity of this algorithm is O(n4). If only a single sink is critical, the algorithm is known as 
SERT-C. 

The authors used random point sets and 0.8 ~t CMOS IC design parameters to evaluate the per- 
tbnnance of their SERT algorithm. On average, improvements of 21% in delay over 1-Steiner [51] 
constructions were obtained. When compared to the AHHK [61] algorithm described in Section 
3.2.1, delay improvements of 10% were obtained. 

The basic SERT method was extended to utilize branch-and-bound optimization, resulting in the 
branch-and-bound Steiner optimal routing tree (BB-SORT) algorithm [10]. Tree construction is re- 
stricted to the Hanan grid, making the problem tractable. This approach has exponential time com- 
plexity, but pruning of the search space makes its application feasible for small problem 
sizes. 

For any weighted linear combination of sink delays, BB-SORT-C was shown to construct an 
optimal tree. For minimizing the maximum sink delay, however, it was shown that the optimal tree 
may not fall on the Hanan grid [10], which prevents the BB-SORT-C algorithm from finding the 
optimal solution. 

Experiments showed that the delays of SERT constructions were very close to those of BB-SORT 
constructions. For random problems with 9 points, using 0.5 ~t CMOS IC parameters, the SERT delays 
were only 3.9% above those of BB-SORT [10]. In [72], it was also shown that the trees constructed 
using the Elmore delay model as an objective provided good performance under SPICE simulation. 
The authors enumerated all possible topologies for small nets, and ranked them by delay using the 
Elmore delay model and SPICE; they found that the rankings were nearly identical, indicating that 
Elmore delay is a high fidelity objective for interconnect topology construction. 

In [73], Vittal and Marek-Sadowska presented an algorithm which constructs interconnect topolo- 
gies that are competitive in terms of delay with the SERT and BB-SORT methods described above, 
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Fig. 18. An example of alphabetic tree. The optimum length is 14 + 3 • (4 + 3 + 2 + 4) - 53. 

but with a complexity of only O(n 2). Their approach is through the construction of alphabetic trees 
(which are abstract topologies). 

The alphabetic tree problem is defined as: given an ordered set of weights, find a binary tree such 
that the weighted sum of path lengths from the root to the leaves is minimum among all such trees, 
and the left to right order of the leaves in the tree is maintained. The weights are associated with 
sinks of the net, while edges are of unit length (as the tree is an abstract topology). An example of 
an alphabetic tree is shown in Fig. 18. 

The construction in [73] uses the circular ordering with respect to the driver to order the sinks, 
and uses the sink capacitance as the weight fore each sink. The authors first construct the alphabetic 
tree as an abstract topology. They then merge subtrees of the abstract topology in a similar way to 
the heuristic of  [64], described in Section 3.2.2. Afterwards, a post-processing procedure is applied 
to perform heuristic local optimization to further minimize the delay. 

Recently, Lillis et al. [74] addressed performance driven interconnect topology problem through 
the construction of Permutation-constrained Routing Trees or P-Trees. Their algorithm first constructs 
a MST for the point set, and then derives its abstract topology. Rather than considering the node 
weights and path lengths from the root, as is done in [73], the authors consider the tour length 
of traversing from sink to sink, using an ordering of the sinks that is consistent with the abstract 
topology. Using dynamic programming methods, their P-Tree algorithm finds the optimal permutation 
of sinks to minimize tour length, while maintaining consistency with the abstract topology. Given an 
abstract topology and an ordering of sink nodes, the algorithm can then find the optimal embedding 
of the topology into the Hanan grid (through a dynamic programming approach which considers 
possible locations for the internal nodes of the abstract topology). Solutions are chosen to optimize 
the Elmore delay of the topology. 

In all of  the works mentioned earlier in this section, we have been interested in the construction 
of routing trees, and have not allowed multiple connections between pairs of  nodes. 

Recent work, however, has considered the relative merits of non-tree routings. Xue and Kuh 
[75, 76] have suggested "multi-link insertion" as a method to reduce the resistance between a driver 
and critical sinks in a tree. In some respects, this can be considered as a generalization on the 
variable wire width formulations which are detailed in a subsequent section. At the heart of  this 
approach is the observation that additional paths from a driver to a sink may substantially reduce the 
effective interconnect resistance, with a nominal penalty to total interconnect length. Multiple paths 



J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1-94 31 

between source and sink complicate the delay analysis of an interconnect topology, and have higher 
interconnect length than tree constructions. At present, the use of non-tree interconnect topologies is 
not widespread. 

4. Wire and device sizing 

Both device sizing and interconnect sizing can be used to reduce the delay. A larger driver/gate at 
the source of an interconnect tree has a stronger driving capability (or equivalently, smaller effective 
driver resistance), reducing the delay of this interconnect. But a larger driver/gate also means a 
heavier load (larger sink capacitance) to the previous stage and thus increases its delay. The device 
sizing problem is to determine the optimal size of  each driver/gate to minimize the overall delay; this 
has been extensively studied in the past. Interconnect sizing, often called wire sizing, on the other 
hand, was investigated only recently. If  the width of a wire is increased, the resistance of  the wire 
will go down, which may reduce the interconnect delay, but the capacitance of the wire will go up, 
which may increase the interconnect delay. The wire-sizing problem is to determine the optimal wire 
width for each wire segment to minimize the interconnect delay. When the interconnect resistance 
can be neglected as in the early days, the interconnect can be modeled as a lumped capacitor. 
In this case, the minimum wire width is preferred for delay minimization and only device sizing 
is necessary. But in the current deep submicron technology where the interconnect resistance can 
no longer be neglected, both device and wire sizing are needed to reduce the interconnect delay. 
Techniques for both device and wire sizing for delay minimization will be surveyed in this section. 
Sections 4.1 and 4.2 will present works on device sizing only and wire sizing only, respectively. 
Section 4.3 will focus on simultaneous device and wire sizing works, and Section 4.4 on simultaneous 
topology construction and sizing works. Because this survey deals mainly with interconnect design 
and optimization, more emphasis will be given on wire sizing and simultaneous device and wire 
sizing. 

4.1. Device sizing 

The device sizing problem is equivalent to determining the transistor channel width in CMOS 
logic since the transistor channel length is usually fixed to the minimum feature size. The following 
device sizing techniques are commonly used: 
- Driver sizing: A chain of cascaded drivers is usually used at the source of  an interconnect tree 

for heavy capacitive load. The driver sizing problem is to determine both the number of driver 
stages and the size for each driver. 

- Transistor or gate sizing: The transistor sizing problem is to determine the optimal width, either 
continuous or discrete, for each transistor to optimize the overall circuit performance. Similarly, 
the gate sizing problem includes both the continuous and the discrete gate sizing problems. The 
continuous gate sizing problem assumes that all transistors in a gate can be scaled by a common 
factor, which is called the size of a gate. The discrete gate sizing problem assumes that each gate 
has a discrete set of predesigned implementations (cells) as in a given cell library, and one needs 
to choose an appropriate cell for each gate for performance optimization. 
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Fig. 19. The cascaded drivers for a heavy capacitance loading. 

- Buffer insertion: A buffer can be a pair of  inverters or a single inverter, 4 and they may have 
different sizes. The buffer insertion problem is to determine both the placement and the size of 
each buffer in a routing tree. In a uniform view, the driver sizing problem is a special case of 
buffer insertion with buffers only at the source of the routing tree. 

4.1.1. Driver sizing 
For an interconnect tree with heavy load (due to large interconnect capacitance or/and sink ca- 

pacitance), a chain of cascaded drivers is usually used at the source. The 0th stage is a small, often 
minimum size, driver, and the driver size increases until the last stage is large enough to drive the 
heavy loading capacitance (see Fig. 19). An early result on the optimal driver sizing problem was 
reported in [77]. Let Di be the driver of the ith stage, and Ci and R~ be its input gate capacitance 
and effective driver resistance, respectively. The stage ratio is defined to be f~ = (C~/C(s_ ~))(i > 0), 
it was shown that 

Lin-Linholm Theorem. I f  the loading capacitance is' CL and the stage number is N, the optimal 
stage ratio at each stage is' a constant (CL/Co) 1/m in order to achieve the minimum delay. 

Let 30 = RoC0, where Co and R0 are the input gate capacitance and the effective driver resistance 
for Do, respectively. Under the constant stage ratio f and the switch-level driver model, we have 
Ri = R 0 / f i  and Ci = Coil. Therefore, every stage has the same delay fro,  and the total delay of 
N stages is ta = Nfzo .  When N is not fixed, the optimal stage number is N = ln(CL/Cq)/ln(f) .  
The total delay becomes Nfro  = In(CLICk)fro~In(f). It is minimized when f / l n ( f )  is minimum, 
which leads to f = e, the base of natural logarithms. This is the well-known optimal stage ratio for 
delay minimization presented in most textbooks (such as [78]). 

The output capacitance of a driver is not considered in the above derivation. In [35], a more 
accurate analytical delay formula was developed with consideration of the input waveform slope and 
the output capacitance of the driver. Based on their delay formula, the optimal stage ratio f satisfies 

f =- e(~+/)//, 

where c~ is the ratio between the intrinsic output capacitance and the input gate capacitance of the 
inverter. Since typical c~ is about 1.35 for the technology they used, the optimal stage ratio is in 
the range of 3-5 instead of e. It is easy to find that the optimal stage ratio is still e if ~ -- 0. The 
stage number N can be determined by the optimal stage ratio f as N = ln(Ck/Co)/ln ( f ) .  Then, f 

4 For single-inverter buffers, the signal polarity needs to be considered during buffer insertion. 
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is used for all stages, except that the last stage has a little bit larger ratio for delay minimization 
[35]. 

Most recently, Zhou and Liu [79] discussed the optimal driver sizing for high-speed low-power 
ICs. The increasing stage ratios J~ = f0(1 +7)  i are used, where 7 is a modification factor determined 
by the I V curve of the transistor. The typical value of 7 is around 0.2. The reason for the increasing 
stage ratio is the following: if the step waveform is applied at the input of the very first stage, the 
waveforms become increasingly "softer" at the subsequent stages, i.e., the input waveform to the 
following stage is no longer a step so an increasingly larger delay is expected for each following 
stage. Thus, an increasing stage ratio is applied to maintain equal delay in different stages. The 
authors derived an analytic relationship between signal delay, power dissipation, driver size and 
interconnect loading. They show that 

fo  = e("/2~+V/2'¢CL:C")-I and f i  = f0(1 + 7) i 

are the optimal stage ratios for delay minimization. We would like to point out that all studies 
in [77, 35, 79] also discussed the optimal driver sizing for power minimization. Another study on 
optimal driver sizing for low power can be found in [80]. 

4.1.2. Transistor and gate sizing 
In addition to sizing drivers which usually drive global interconnects, the sizes of all transistors and 

gates in the entire circuit or a subcircuit can also be adjusted properly according to their capacitive 
loads for performance or power optimization. The transistor sizing problem has been approached 
using both sensitivity-based methods and mathematical-optimization-based methods. The gate sizing 
problem has been classified into both continuous and discrete gate sizing problems, and solved by 
different approaches. 

4.1.2.1. Sensitivity-based transistor sizing 
Fishbum and Dunlop [81] studied the transistor sizing problems for synchronous MOS circuits. 

Let x~, . . . ,xi , . . . ,xn be the transistor sizes, A the total active area of transistors and T the clock 
period. If K is a positive constant, there are three forms for the transistor sizing problem as follows: 
1. Minimize A subject to the constraint T < K. 
2. Minimize T subject to the constraint A < K. 
3. Minimize AT x. 

Let a transistor be modeled by the switch-level model, then the gate, source and drain capacitance 
are all proportional to the transistor size, and the effective resistance is inversely proportional to it. 
A CMOS gate will be modeled by a distributed RC network. The Elmore delay (Eq. (3)) is used 
to compute the worst-case delay of the gate, which is the delay through the highest resistive path 
in the RC network. The delay of a PI-PO path is the sum of  delays through all gates in the path. 
It is not difficult to verify that the delay of a PI-PO path can be written into this form 

Z ai/x: b~ + ~ - - ,  (29) 
l<~i,j<~N " X /  l<~i<~NXi 

where the aq and bi are non-negative constants. In fact, aq is non-zero only when transistors i and 
j are dc-connected. 
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Furthermore, the authors of [81] show that Eq. (29) and the area A = ~ x i  are posynomials 
and the transistor sizing problems of  the three forms are all posynomial programs. 5 Even though 
posynomial programming methods can be used to optimally solve the three forms of the transistor 
sizing problem, it is computationally expensive to be used for an entire circuit. Thus, the transistor 
sizing tool TILOS (Timed LOgic Synthesizer) was developed to minimize A subject to T < K based 
on the following scheme: First, the minimal size is assigned to all transistors. Then, timing analysis 
is performed to find the critical delay T. If T is larger than K, the sensitivities of all transistors 
related to the critical path will be computed. The sensitivity is defined as the delay reduction due to 
per transistor size increment. The size of the transistor with the largest sensitivity will be multiplied 
by a user defined factor (BUMPSIZE) and then the algorithm goes to the timing analysis again. This 
procedure will be terminated when the timing specification is satisfied or there is no improvement 
in the current loop, i.e., all sensitivities are zero or negative. The performance of  TILOS is quite 
good. Circuits with up to 40 000 transistors have been tested. Based on the experiments, the results 
are reasonably close to the optimum under their delay model. However, it assumes that the effective 
resistance for a transistor is independent of the waveform slope of the input. But, in fact, the input 
slope has a significant effect on the transistor effective resistance. Another sensitivity-based transistor 
sizing work is [82] which also performs iterative transistor sizing to reduce the critical path delay. 
In contrast to TILOS, it changes the size of more than one transistor in each iteration. In addition, a 
sensitivity-based transistor sizing is presented by Borah et al. [199] to minimize power consumption 
of CMOS circuit under delay constraint. 

4.1.2.2. M a t h e m a t i c a l - p r o g r a m m i n g - b a s e d  trans&tor sizing 

Note that the method in [81] does not guarantee the optimality of the result. Studies have been 
done to formulate the transistor sizing problem as mathematical programming problems to obtain an 
optimal solution. Methods in [83-85] formulate the transistor sizing problem as non-linear programs 
and solve them by the method of Lagrangian multipliers. Methods in [86-88] apply the following 
two-step iterations. First, the delay budget is distributed to each gate; then, the transistors in each 
gate are sized optimally to satisfy the time budget. 

Later, a two-phase algorithm was presented in [90] to minimize the circuit area under timing 
constraints: first, TILOS [81] is used to generate an initial solution; then, a mathematic optimization 
is formulated and solved by using feasible directions to find the optimal solution. The variables in 

5 According to [89], a posynomial is a fi.mction of  positive vector X E R m having the form g(X) = ~ - 1  u,(X) with 

ui( X ) a,, . . . . . . . .  =cixj xe"...x,,, , i =  1,2 . . . . .  N, 

where the exponents ai/ are real numbers and the coefficients ci are positive. A posynomial program is the following 
minimization problem: 

rain g0(X), 
subject to gk(X)<<. 1, 

k -  1,2 . . . . .  p a n d X  > 0, 

where each gk (k = 0, 1,2 . . . . .  p )  is a posynomial. The posynomial program has the important property that the local 
optimum is also the global optimum. In fact, the concepts of  posynomial and posynomial program play an important role 
in many wire and device sizing works to be presented. 
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the optimization problem, however, are not sizes of all transistors in the circuit, but only sizes of 
those transistors that have been tuned by TILOS, thus it is still possible to lose the optimal solution 
with respect to the whole circuit. Experimental results of  circuits with up to 500 transistors have 
been presented. 

More recently, Sapatnekar [91 ] developed a transistor sizing tool iCONTRAST, again, to minimize 
the circuit area under timing constraints. It employs the analytical delay model developed in [35] 
which can consider the waveform slope of input signals to transistors, but assumes that the transition 
time is twice the Elmore delay of the previous stage. Under the delay model, the transistor sizing 
problem is a posynomial program that can be transformed into a convex program and the convex 
programming method [92] was implemented to solve the transformed problem. When using the 
simple delay model of  TILOS [81], and the timing specification is loose, the area of the solution 
obtained by TILOS is close to that of  the solution obtained by the iCONTRAST algorithm. However, 
as the time specification is tightened, the TILOS-solutions have larger area when compared with 
the iCONTRAST-solutions. Experimental results of  circuits with up to 800 transistors have been 
presented. 

4.1.2.3. Continuous gate sizing 
The continuous gate sizing problem assumes that all transistors in a gate can be scaled by a 

common factor, which is called the size of a gate. In essence, it is very similar to the transistor 
sizing problem, but has much lower complexity for a given design, since all transistors in a gate are 
scaled by the same factor. Hoppe et al. [93] developed analytical models for signal delay, chip area 
and dynamic power dissipation and formulated a non-linear problem to minimize the weighted linear 
combination of delay, area and power. The non-linear problem is solved by the Newton-Raphson 
algorithm. A 64K-SRAM was optimized on a mainframe computer in 2 hours. 

In order to speed up the gate sizing problem, the linear programming (LP) formulation has been 
proposed. Berkelaar and Jess [94] used a piecewise-linear (PWL) function to linearize the delay 
function. More precisely, one divides the gate sizes into subranges so that the delay of a gate is a 
linear function of  gate sizes within each subrange. Thus, the gate sizing problem can be formulated 
as a LP problem. Their LP formulation [94] is to minimize the power subject to a delay constraint. 
Experimental results on circuits with up to 500 gates were presented. Later on, their LP-based 
method was expanded [95] to compute the entire area or power-consumption versus delay trade-off 
curve. Results on MCNC'91 two-level benchmarks with up to 4700 gates were reported. Recently, 
Tamiya et al. [96] proposed another LP-based method where the latest and the earliest arrival times 
are introduced so that the setup and hold time constraints can be handled. The objective is to 
minimize the weighted linear combination of clock period, area and power. Result on a chip of 
13000 transistors was reported. Note that gate sizing works in [94-96] assume that the gate delay 
is a convex function of gate sizes, which is needed to make sure that the error introduced by the 
PWL approximation is small. However, the gate delay in fact is not a strict convex function. 

More recently, Chen et al. [97] removed the convex delay model assumption in previous LP-based 
works. They also divided the the gate sizes into subranges, but different from the previous works 
[94-96] where only one LP problem is formulated over the whole gate size range with the delay 
being a PWL function in this LP formulation, a LP problem is formulated for every subrange with 
the delay being a linear function for each LP formulation. When the subrange is small enough, the 
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error introduced by the non-convexity will be small. The linear programming is performed iteratively, 
and subranges of gate sizes are updated according to the result from the previous step. Experimental 
results for ISCAS85 benchmarks with up to 3500 gates were reported. 

4.1.2.4. Discrete gate sizing 
The resulting optimized design by the continuous gate sizing formulation may be impractical or 

expensive to implement since a large number of manually designed cells or a smart cell generator 
are needed. Thus, the discrete gate sizing problem is studied by assuming that each gate has a 
discrete set of predesigned implementations (cells) as in a given cell library and one needs to choose 
an appropriate cell for each gate for performance optimization. In general, the discrete gate sizing 
problem is NP-complete: Chan [98] showed that the double-sized discrete gate sizing problem to find 
discrete gate sizes to satisfy both maximum and minimum delay constraints is NP-complete, even 
without consideration of area minimization. Hinsberger and Kolla [99] proved the single-sided (with 
only maximum delay constraint) discrete gate sizing problem in a DAG (directed acyc[ic graph) is 
NP-comp[ete under three objectives: to minimize the maximum delay, to minimize the maximum 
delay under an area constraint, and to minimize the area under a maximum delay constraint. Li [ 100] 
further showed that the discrete gate sizing problem under both area and maximum delay constraints 
is strongly NP-hard even for a chain of gates. 

The methods which are optimal for logic networks of certain structures have been proposed. For 
the double-sided problem, a branch and bound algorithm [98] was developed to find the optimal 
solution for tree structures. For the single-sided problem, an optimal dynamic programming method 
to minimize the maximum delay was proposed, again for tree structures [99]. It assumes that the 
delay for a gate could be determined locally, i.e., the delay could be determined only by the sizes of 
the gate and its fanout gates, and works in a bottom-up manner. Furthermore, an exact algorithm to 
minimize area subject to a maximum delay constraint (single-sided) was presented for series-parallel 
circuits [101]. A simple series circuit is solved by a dynamic programming method and a simple 
parallel circuit is solved by a number of transformations. All series-parallel circuits can be solved 
recursively. 

Heuristics have been proposed to expand the optimal algorithms for trees or series-parallel circuits 
to the general cases in [98, 101]. Furthermore, the following methods have been developed: L i n e t  
al. [102] use the weighted sum of sensitivity and criticality to choose cell sizes for standard-cell 
designs. The sensitivity of a cell is defined as -Adelay/Aarea, where both delay and area are in 
terms of the cell. The criticality is inversely proportional to the slack of a cell so that a cell in 
a non-critical path will not be over-sized. 6 Chuang et al. [103, 194] presented a three-step method 
to minimize the area subject to the single-sided delay constraint. First, they formulate a linear 
programming (LP) problem to obtain a continuous solution. Then they map the continuous solution 
onto the allowed discrete gate sizes; Finally, they adjust the gate sizes to satisfy the delay constraint. 
Also, the three-step algorithm was modified in [105] to minimize the area under the double-sided 
delay constraint. It is worth mentioning that the work in [103, 194] further formulated gate sizing 
and clock skew optimization as a single LP problem not only to reduce the circuit area but also to 
achieve faster clocks. Another method to combine both gate sizing and clock skew optimization can 

6 Since the method in [81] only sizes those transistors in the critical path based on their sensitivities, criticality has 

been considered implicitly. 
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Fig. 20. (a) Legal position for buffer insertion; (b) an option in a legal position. 

be found in [106]. In addition, Chuang and Sapatnekar proposed another LP formulation to address 
the continuous gate sizing problem for power optimization in [104]. 

4.1.3. Buffer insertion 
Buffer (also called repeater) insertion is a common and effective technique to reduce interconnect 

delay. As the Elmore delay of  a long wire grows quadratically in terms of the length of the wire, 
buffer insertion can reduce interconnect delay significantly. Bakoglu [2] gives a closed-form formula 
to determine the number and sizes of buffers (inverters) that are uniformly placed in a long intercon- 
nect line for delay minimization. Let k be the number of inverters and h the uniform size for every 
inverter; then the optimal values for an interconnect line of uniform wire width are the following: 

/0.4RintCift ~-0 Cint 
k = V h = 

w h e r e  Rint and C~,t are the total resistance and capacitance for the interconnect line, respectively, and 
R0 and Co the driver resistance and the input capacitance of the minimum-size inverter, respectively. 

A polynomial-time dynamic programming algorithm was presented in [107] to find the optimal 
buffer placement and sizing for RC trees under the Elmore delay model. The formulation assumes that 
the possible buffer positions (called legal positions), possible buffer sizes, and the required arrival 
times at sinks are given. The optimal buffer placement and sizing is chosen so that the required 
arrival time at the source is maximized. For simplicity, the buffer of two inverters with the fixed 
size is used and the polarity of the signal can be ignored. Legal positions were assumed to be right 
after the branching points in the tree (see Fig. 20(a)). 

The algorithm includes both bottom-up synthesis and top-down selection procedures. It begins 
with the bottom-up synthesis procedure, where for each legal position i for buffer insertion, a set 
of (qi, ci) pairs, called options, is computed for possible buffer assignments in the entire subtree 
rooted at i. Each qi is a required arrival time at i and c~ is the capacitance of dc-connected subtree 7 
rooted at i corresponding to qi (Fig. 20(b)). Note that c~ is not the total capacitance in T,. 

A wire segment in the routing tree is modeled by a re-type circuit and only the wire area capaci- 
tance is considered. Recall that r and ca are the resistance and the area capacitance for a unit-length 

7 "dc-connected" means "directly connected by wires". 
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wire, respectively. When a wire segment with upstream node k is added at i, an option (qk, ck) will 
be generated at k for every (qi,ci) at i as the following: 

qk = qi - rl( c--l 2 + ci), 

Ck z Ci ~- c l ,  

where l is the length of  the wire segment. 
A buffer is modeled by the input gate capacitance Cbuf, the driver resistance Rbuf and the intrinsic 

delay Dbuf. When a buffer with input node k is inserted at i, an option will be generated at k for 
every (qi, ci) at i as the following: 

qk = qi - Dbuf -- R b u f C i ,  

C k ~ Cbu f. 

When two subtrees T, and Tj are merged at node k, for every pair of (qi, ci) and (qj, cj) (at i and 
j ,  respectively) an option (qk, ck) will be generated at k as the following: 

q~ = min(qi, q j), 

c~ = ci + cj. 

The following pruning rule is used to prune a suboptimal option during the computation of  options. 
For two options (q,c)  and (q' ,c ')  in the same legal position, if c'>~c and q' < q then (qr, c') is 
suboptimal, thus, it can be pruned from the solution space. If  the total number of  legal positions is 
N, it was shown in [107] that the total number of options at the source of the whole routing tree is 
no larger than N + 1 even though the number of possible buffer assignments is 2 N. 

After the bottom-up synthesis procedure, the optimal option is the one which has the maximum 
requirement time at the source pin of the whole interconnect tree. Then, the top-down selection 
procedure is carried out to trace back the buffer placement (in general, also the buffer sizes) which 
led to the optimal option. Several extensions can be made. It is easy to allow buffers of different 
types (sizes) to be placed. With different Rbuf, Cbuf and Dbuf values for each type of  buffer, there may 
be an extra option generated in every legal position for every extra buffer type. Let B be the number 
of buffer types and N, again, be the total number of legal positions, the total number of  options at 
the root of  the whole tree is bounded from above by N + B. In general, the time complexity of  the 
algorithm is O((N + B) 2 + k), where N is the total number of legal positions for buffer insertion, B 
the total number of buffer types and k the total number of  sinks. 

4.2. Wire sizing optimization 

It was first shown by Cong et al. [41] that when wire resistance becomes significant, as in the deep 
submicron CMOS design, proper wire sizing can further reduce the interconnect delay. Their work 
presented an optimal wire-sizing algorithm for a single-source RC interconnect tree to minimize 
the uniform upper bound of the delay (Section 2.1, Eq. (1)). Later on, single-source wire-sizing 
algorithms were presented in [108, 7, 11, 76, 109, 110] using the Elmore delay model, in [111] using 
a higher-order RC delay model and in [112] using a lossy transmission line model. In addition, 
the wire-sizing problem for multiple-source nets was formulated and solved in [12]. Furthermore, 
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wire sizing was carried out simultaneously with device sizing in [8, 113, 18, 114-116]. We classify 
the wire-sizing works according to their objective functions and present them in Sections 4.2.1 and 
4.2.2, and then discuss the simultaneous device and wire sizing in Section 4.3. 

4.2.1. Wire sizin9 to minimize weighted delay 
In order to reduce the delays to multiple critical sinks in an interconnect tree with a single source, 

the wire-sizing algorithms in [7] minimize a weighted combination of Elmore delays from the single 
source to multiple critical sinks. The authors of [12] extended this formulation to the multiple-source 
net case, where the objective is to minimize the weighted combination of Elmore delays between 
multiple source-sink pairs. Wire sizing works in [7, 12] assumed that the wire widths are discrete 
and uniform within a wire segment or subsegment. Most recently, in [109], an optimal wire-sizing 
formula was derived to achieve the continuous and non-uniform wire width for each wire segment, 
again to minimize the weighted combination of Elmore delays from a single source to a set of  
critical sinks. All these works assume that the weights of the delay penalty between the source and 
each sink or each source-sink pair are given a prior. 

4.2.1.1. Discrete wire sizin9 for  single-source RC tree 
In [41], Cong et al. modeled an interconnect tree as a distributed RC tree and applied the upper- 

bound delay model shown in Eq. (1). They showed that when the driver resistance is much larger 
than the wire resistance of the interconnect, the interconnect can be modeled as a lumped capacitor 
without losing much accuracy and that the conventional minimum wire width solution often leads 
to an optimal design. However, when the resistance ratio, i.e. the driver resistance versus unit wire 
resistance, is small, optimal wire sizing can lead to substantial delay reduction. In addition, they 
developed the first polynomial-time optimal wire-sizing algorithm. Since the uniform upper bound 
delay model does not distinguish the delays at different sinks and may lead to oversizing, Cong and 
Leung [108,7] extended the work to the Elmore delay formulation Eq. (3). Their formulation and 
method are summarized as follows. 

Given a routing tree T, let sink(T) denote the set of sinks in T, ~¢/~ be the wire-sizing solution 
(i.e., wire width assignment for each segment of T) and ti(~U) be the Elmore delay from the source 
to sink st under ~/¢/~. The following weighted combination of delays is used as the objective function 
for wire-sizing optimization. 

t (~f3 = ~ ; J t ( ~ ) ,  (30) 
s E sink(T) 

where fit is the weight of  the delay penalty to sink si. The larger )~i, the more critical sink si is. 
The following monotone property and separability were shown in [7]. 

Monotone property. Given a routing tree, there exists an optimal wire-sizing solution ~¢¢/ such that 
we>~We, if segment e E Ans(e') . 

Separability. Given the wire width assignment of a path P originated from the source, the optimal 
wire width assignment for each subtree branching off from P can be carried out independently. 

Based on these two properties, the optimal wire-sizing algorithm (OWSA) was developed. It is 
a dynamic programming method based on the wire-sizing solution for a sinyle-stem tree, which 
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Fig. 21. (a) A single-stem tree consists of a stem and a set of single-stem subtrees. In this example, e is the stem of the 
single-stem tree sst(e), and sst(ecl) and sst(ec2) are the single-stem subtrees of  sst(e) (eol and ec2 are the children of  e). 
(b) Any general tree T can be decomposed into a set of  independent single-stem trees. 

is a tree with only one segment (called the stem segment of  that tree) incident on its root (see 
Fig. 21(a)). We use sst(e) to denote the single-stem tree with stem e. 

According to the separability, once e and every ancestor segment of e are assigned the appropriate 
widths, the optimal wire width assignment for the single-stem subtrees sst(ecl ), sst(ecz) . . . . .  sst(e~h) 
of the tree sst(e) (with respect to the width assignment of e and its ancestors) can be independently 
determined, where the segments ecl,...,e~b are the children of e. Therefore, given a set of  possible 
widths { WI, W2,..., Wr}, OWSA enumerates all the possible width assignments of e. For each possi- 
ble width assignment Wk of e (1 ~<k ~<r), the optimal wire sizing is determined for each single-stem 
subtree sst(eci) (1 ~< i ~ b) of  sst(e) independently by recursively applying the same procedure to each 
sst(e~i) with {W1, W2,..., Wk} as the set of  possible widths (to guarantee the monotone property). 
The optimal assignment for e is the one which gives the smallest total delay. 

If the original routing tree T is not a single-stem tree, we can decompose it into b single- 
stem trees, where b is the degree of the root of  T, and apply the algorithm to each individual 
single-stem tree separately (see Fig. 21(b)). The worst-case time complexity of OWSA is O(nr), 
which is much faster than brute-force enumeration O(r n), where n is the number of wire segments 
and r is the number of  possible wire widths. However, OWSA algorithm can be slow when r is 
large. 

In order to further speed-up the OWSA algorithm, the greedy wire-sizing algorithm (GWSA) was 
developed based on the local refinement and the dominance property to compute the lower and upper 
bounds of  the optimal wire widths. 

Given two wire-sizing solutions ~#/" and ~#/", ~/g is defined to dominate ~#~' if We >~ W' e for every 
segment e. Given a wire-sizing solution ~ for the routing tree, and any particular segment e in the 
tree, a local refinement on e is defined to be the operation to optimize the width of e while keeping 
the wire width assignment of ~ /  on other segments unchanged. The following dominance property 
was shown in [7]. 
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Fig. 22. An MSIT can be decomposed into the source subtree SST, and a set of loading subtrees (three LSTs here) 
branching off from the SST. The dark segments belong to the SST. 

Dominance property. Suppose that ~ *  is an optimal wire-sizing solution. If a wire-sizing solution 
¢~ dominates ~U*, then any local refinement of ~¢/ still dominates 3q#*. Similarly, if ~// is dominated 
by ~/¢/*, then any local refinement of 3¢U is still dominated by u,¢#*. 

The GWSA algorithm works as follows: starting with the minimum-width assignment, GWSA 
traverses the tree and performs a local refinement on each segment whenever possible. This process 
is repeated until no improvement is achieved on any segment in the last round of traversal. According 
to the dominance property, a lower bound of the optimal wire width on every segment is obtained. 
An upper bound of the optimal wire width assignment can be obtained similarly by starting with 
the maximum-width assignment. In most cases, GWSA obtains identical lower and upper bounds 
on all segments, which gives an optimal wire-sizing solution. In cases when the lower and upper 
bounds do not meet on a few edges, the gaps are usually small and the OWSA algorithm can be 
applied very efficiently to obtain the optimal wire-sizing solution. The worst-case time complexity 
of GWSA is O(n3r). Experiments using SPICE simulation have shown that, for the 0.5 ~m CMOS 
technology, the optimal wire sizing solution can reduce the maximum delay by up to 12.01% when 
compared to the minimum wire width solution. 

4.2.1.2. Discrete wire sizing for  multi-source RC tree 
The wire-sizing problem for the multiple-source interconnect tree (MSIT) was studied by Cong 

and He in [12]. They decompose an MSIT into the source subtree (SST) and a set of  loading 
subtrees (LSTs) (see Fig. 22). The SST is the subtree spanned by all sources in the MSIT. After 
the SST is removed from the MSIT, the remaining segments form a set of  subtrees, each of them 
is called an LST. 

Parallel to the ancestor-descendent relation in the single-source interconnect tree, the left-right 
relation is introduced in an MSIT. An arbitrary source is defined as the leftmost node (Lsrc). The 
direction of the signal (current) flowing out from Lsrc is the right direction along each segment. 
Under such definitions, the signal in any LST always flows rightward, but the signal may flow either 
leftward or rightward in the SST. 

The following properties were shown in [12] for the wire-sizing problem for MSITs (the MSWS 
problem): 

LST separability. Given the wire width assignment of the SST, the optimal width assignment for 
each LST branching off from the SST can be carried out independently. Furthermore, given the wire 
width assignment of both the SST and a path P originated from the root of  an LST, the optimal 
wire width assignment for each subtree branching off from P can be carried out independently. 
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LST monotone property. For an MSIT, there exists an optimal wire-sizing solution ~#/* where the 
wire widths decrease monotonically rightward within each LST in the MSIT. 

Because of the two properties, the polynomial-time OWSA algorithm developed for single-source 
wire sizing in [7] can be applied to compute the optimal wire widths independently for each LST 
when given the wire width assignments for the SST. Furthermore, the authors of [12] proved that the 
MSWS problem has the dominance property presented in Section 4.2.1.1. Thus, the GWSA algorithm, 
again developed in [7] for the single-source wire-sizing problem, can be applied to compute the 
lower and upper bounds for the optimal solution of the MSWS problem. When the lower and upper 
bounds do not meet for all segments, the authors propose to enumerate the wire width assignment 
for the SST between the lower and upper bounds. During each enumeration of the SST, OWSA is 
applied independently for each LST to compute an optimal wire-sizing solution between the lower 
and upper bounds. Because the identical lower and upper bounds are often obtained by the GWSA 
algorithm for all segments, the optimal wire-sizing solution can be achieved very efficiently in 
practice. Experiments using SPICE simulations showed that the optimal wire-sizing solution reduces 
the maximum delay by up to 36.9% (for an MSIT from the industry with the total wire length of 
31980 pm) when compared to the minimum wire width solution in the 0.5 pm CMOS technology. 

4.2.1.3. Discrete wire sizing using variable segment-division 
An assumption is made for wire-sizing algorithms presented in Sections 4.2.1.1 and 4.2.1.2 that 

the wire width does not change within a segment. Intuitively, better wire-sizing solutions may be 
achieved when variable wire width is allowed within a segment. An approach based on the bundled 
refinement property was proposed by Cong and He in [12] to decide the appropriate segment-division 
during the wire-sizing procedure. It can be used for both single-source and multi-source wire-sizing 
problems. For the simplicity of presentation, we assume the multi-source wire-sizing problem since 
the single-source wire-sizing problem is a simple case of it. 

First, the concepts of uni-segment and min-segment were introduced. Each segment is divided into 
a sequence of uni-segments and each uni-segment has a uniform wire width within it. The wire- 
sizing problem is formulated to find an optimal wire width for every uni-segment. A min-segment 
is a uni-segment of the minimum length, which is set by the user or determined by the technology. 
The finest segment-division is the one with each uni-segment being a min-segment. 

Then, the following property was revealed in [12], even though the signal direction in the SST 
of an MSIT may be changed with respect to different sources. 

Local monotone property. There exists an optimal wire sizing solution for a routing tree, such that 
the wire widths within any segment e is monotone: (1) if Fl(e) > Fr(e), the wire widths within 
e decrease monotonically rightward; (2) if F / ( e ) :  Fr(e), the wire within e has a same width; and 
(3) if F/(e) < Fr(e), the wire widths within e increase monotonically rightward. Both Ft(e) and 
Fr(e) are functions that can be determined before the wire-sizing procedure. 

Let a bundled-segment be a maximal sequence of successive rain-segments in a wire segment 
such that all these min-segments have the same wire width in the optimal solution under the finest 
segment-division. Based on the local monotone property, if there are r possible wire widths for a wire 
segment, there are at most r bundled-segments, even though the total number of min-segments could 
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Fig. 23. (a) Twelve uni-segments (min-segments) under the finest segment-division; (b) three bundled-segments with the 
same wire sizing accuracy. 

be arbitrarily large (see Fig. 23). It is not difficult to see that the optimal wire-sizing solution under 
the segment-division defined by bundled-segments has the same accuracy as the optimal wire-sizing 
solution under the finest segment-division, but requires much less computation. 

The bundled refinement operation finds optimal wire width assignment for bundled-segments 
instead of min-segments. Let ~ be a wire-sizing solution which dominates the optimal solution ~¢F* 
under the finest segment-division. Without loss of generality, assume F~(e)>~Fr(e) for the segment 
e. Segment e may contain many min-segments. Instead of performing local refinements on all these 
min-segments, the following will be carried out: e is treated as two uni-segments, el and U¢. el is 
the leftmost min-segment in e and ~ is the remaining part of e. Clearly, the local refinement of 
el provides an upper bound for the optimal wire width for el according to the dominance property. 
Furthermore, this local refinement is also an upper bound for the optimal wire width of ~ ,  because 
it is always narrower than the optimal wire width for el according to the local monotone property. 
This operation to treat the local refinement of e~ as local refinements for all min-segments in e is 
called bundled refinement for the upper bound (BRU). The bundled refinement for the lower bound 
(BRL) can be defined similarly. For ~/¢# dominated by ~ * ,  if Fe(e)~>Fr(e), the local refinement of 
the rightmost min-segment er is treated as the local refinement for all min-segments in segment e. 
The following property was proved in [12]. 

Bundled refinement property. Let 3qF* be an optimal wire-sizing solution under the finest segment 
division. If a wire-sizing solution ~ dominates ~¢~*, then the wire-sizing solution obtained by 
any bundled refinement under any segment-division on Y¢/ still dominates Y/#*. Similarly, if ~¢/ 
is dominated by ~¢/*, then the wire-sizing solution obtained by any bundled-refinement under any 
segment-division on ~ is still dominated by ~ * .  

Based on this property, the bundled wire-sizing algorithm BWSA works as the follows: Starting 
by treating each segment as a uni-segment, we assign the minimum width to all uni-segments, 
then traverse the MSIT and perform bundled refinement operations for the lower bound on each 
uni-segment. The bundled refinement operation is repeated until no improvement is achieved on 
any uni-segment in the last round of traversal. We obtain a lower bound of the optimal wire- 
sizing solution under the finest segment-division. Similarly, we assign the maximum width to all 
uni-segments and perform bundled refinement operations for the upper bound, and obtain an upper 
bound of the optimal wire-sizing solution. This is the first pass of the BWSA algorithm. 

After each pass, one checks the lower and upper bounds. If there is a gap between the lower and 
upper bounds for a uni-segment, it is non-convergent. For every non-convergent uni-segment longer 
than a min-segment, it will be divided into two uni-segments of equal length and each inherits the 
lower and upper bounds of their parent. Then, another pass to compute the lower/upper bounds is 
carried out by performing bundled refinement operations under the refined segment-division. 
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The BWSA algorithm iterates through a number of passes until either identical lower and upper 
bounds are achieved for all uni-segments or each non-convergent uni-segment is a min-segment. It 
was shown in [12] that the lower and upper bounds obtained by the BWSA algorithm under the 
iteratively refined segment-division is as tight as those obtained by the GWSA algorithm under the 
finest segment-division where every uni-segment is a min-segment. Both algorithms have the same 
worst-case complexity; however, experiments showed that the BWSA algorithm often runs 100x 
times faster than the GWSA algorithm under the finest segment-division. In addition to replacing 
the GWSA algorithm in both the single-source and multi-source wire-sizing problems, the BWSA 
algorithm can be used in the simultaneous driver and wire-sizing problem [8] to be presented in 
Section 4.3.1. 

4.2.1.4. Continuous and non-uniform wire-sizing for  single-source R C  tree 
Another alternative to achieve non-uniform wire width within a segment is the optimal wire-sizing 

formula proposed in [109] very recently. Let f ( x )  be the wire width at position x of a wire segment. 
When given the driver resistance and the loading capacitance for the wire segment, Chen et al. show 
that the Elmore delay through the wire segment is minimized when f ( x )  = ae -bx where a and b 
are constants. Furthermore, when the lower and upper bounds for the wire width of a wire segment 
are given, the optimal wire width function is one of the six truncated forms of ae -bx. In both cases, 
formulas can be determined in constant time. A drawback of this method is that it did not model 
the fringing capacitance. 

In order to apply the optimal wire-sizing formula to a routing tree, the authors propose to minimize 
the weighted combination of Elmore delays from the source to multiple sinks. A procedure like the 
GWSA algorithm developed in [7] is used. First, the minimum wire width is assigned to every 
segment. Then, the optimal wire sizing formula is iteratively applied to each wire segment until no 
improvement can be achieved. In contrast to the case of a single wire segment, the total upstream 
weighted resistance is used to replace the driver resistance, and the total downstream capacitance 
to replace the loading capacitance. The resulting wire width is continuous and non-uniform within 
a wire segment. Note that when a discrete wire-sizing solution is needed, the mapping from a 
continuous solution to a discrete solution may lose its optimality. 

4.2.2. Wire sizinq to minimize maximum delay or achieve target delay 
In addition to minimizing the weighted combination of delays, wire-sizing methods have been 

developed to minimize the maximum delay or achieve a target delay. We will present first the 
wire-sizing work [11] to minimize the maximum delay in Section 4.2.2.1, where the Elmore delay 
model is used, then the wire-sizing work [111] to achieve the target delay in Section 4.2.2.2, where 
a higher-order RC delay model is used, and finally the wire-sizing work [112] to minimize the 
maximum delay for a tree of transmission lines in Section 4.2.2.3, where a lossy transmission line 
model is used. Note that the Elmore delay model is suitable for formulations that minimize the 
weighted sum of delays for current CMOS designs, since it has high fidelity with respect to the 
SPICE-computed delay for the wire-sizing optimization, which is verified by the experiments in 
[15] based on the 0.5 ~tm MOS designs. On the other hand, in order to achieve the target delay 
or handle MCM designs, more accurate delay models are required as in [111,112]. Furthermore, 
several iterations of the procedures to minimize the weighted delay can be used to minimize the 
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maximum delay or achieve the target delay by adjusting the weight penalty assignment in practice. 
Particularly, the Lagrangian relaxation wire-sizing work [110] proposes an optimal method to assign 
the weight penalty, which will be presented in Section 4.2.2.4. 

4.2.2.1. Single-source R C  tree under Elmore delay model 
Sapatnekar [11 ] studied the wire-sizing problem to minimize the maximum delay under the Elmore 

delay formulation of Eq. (3). First, he showed that the separability no longer holds for minimizing 
the maximum delay. So, the dynamic programming based approach in [41,108] does not apply. 
However, since the Elmore delay in an RC tree is a posynomial function of wire widths as first 
pointed out in [81], it has this property that the local optimum is also the global optimum; thus a 
sensitivity-based method like that used in [81] can be applied. 

The algorithm in [11] goes through a number of iterations. In each iteration, the sink with the 
largest delay is identified and the sensitivity Si given in the following is computed for each wire 
segment i on the path from the source to the identified sink: 

Delay(Fwi ) - Delay(w/) 

(F - 1 )wi 

where Delay(wi) is the delay from the source to the identified sink and F is a constant larger than 
1 (set to 1.2 or 1.5 in [11]). Intuitively, the sensitivity is the delay reduction of unit wire area 
increment. For all wires on the path from the source to the identified sink, the width of the wire 
with the minimum negative sensitivity will be multiplied by F > 1. The iteration is stopped when 
no wire has a negative sensitivity or the delay specification is satisfied. 

Since a posynomial function can be mapped into a convex function, the convex programming 
technique developed in [91,92] was applied in [117] by Sancheti and Sapatnekar to achieve the 
exact solution at higher computation costs. Note that both algorithms in [11,117] produce wire- 
sizing solutions assuming continuous wire width choices, and then map them into the discrete wire 
widths. The optimality of the wire sizing solution may be lost after mapping. 

4.2.2.2. Single-source R C  tree under higher-order R C  delay model 
In [111], a moment-fitting approach is used to wire-size RC interconnect trees to achieve the 

target delays and slopes at critical sinks. Let target moments be moments for the two-pole transfer 
functions that have the target delays and slopes at critical sinks, and real moments those for the 
transfer function under the current wire width assignment for the RC tree. Menezes et al. propose 
to modify the wire width assignment in the RC tree to match the real moments with the target 
moments so that the target delays and slopes will be obtained. 

The sensitivities of  real moments with respect to the wire widths are used to guide the search 
for the proper wire widths. The method works as follows: First, for each sink, a two-pole transfer 
function is generated so that it has the target delay and slope at the sink. For each transfer function, 
the first four target moments are obtained. Then, the first four real moments are computed for each 
sink based on the recursive method developed in [17], which computes the higher moments from 
the lower moments, and a O(MN 2) method is proposed to compute the sensitivities with respect 
to the wire widths for real moments, where M is the number of critical sinks and N the number 
of wire segments. Finally, such sensitivity values guide the search for wire widths to minimize the 
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mean square error between the first four target moments and the first four real moments for every 
critical sink. 

Furthermore, the following is proposed in order to achieve the solution with smaller area: each 
wire is assigned a weight in order to favor those wires which are related to the more critical sinks 
and those wires with respect to which the critical sinks exhibit larger Elmore delay sensitivities. 
Widening those wires has the maximum effect on delay with a minimal area penalty. Moreover, 
the delay sensitivity with respect to the driver area is also computed and compared with the delay 
sensitivity with respect to the interconnect area to determine empirically whether a larger driver 
should be used. The approach is extended in [113] to conduct simultaneous gate and interconnect 
sizing, which will be presented in Section 4.3. Note that the algorithm in [111], similar to [11, 117], 
assumes continuous wire width choices for their wire-sizing solutions. 

4.2.2.3 Sinyle-source tree o f  transmission lines under lossy transmission line model 
The wire-sizing work by Xue and Kuh in [ 112] takes the wire inductance into account by modeling 

each wire segment as a lossy transmission line, and sizes the wire segments in an interconnect tree 
to minimize the maximum delay. The maximum delay and its sensitivities with respect to wire 
widths are computed via high-order moments. Based on the exact moment matching method in [24], 
the higher moments and their sensitivities with respect to the wire widths are computed recursively 
from the lower moments and the sensitivities can be computed analytically. Thus, the maximum 
delay and its sensitivities with respect to the wire widths can be computed efficiently. The following 
procedure is repeated to reduce the maximum delay: First, one computes the high-order moments, 
the maximum delay (td) and its sensitivity with respect to every wire width (OQ/Ow~). Then, if a 
wire segment e, has the maximum I Ot~/Ow~ l, ei will be assigned either the next larger or smaller 
wire width, based on the polarity of Otd/~w~. The procedure iterates until the sensitivities of  the 
maximum delay becomes small. 

Xue and Kuh [112] showed the following experimental results: The two-pole transfer function with 
moments m0, m~ and m2 (m0 = 0) is reasonably accurate when compared to SPICE2. The approach 
can reduce the rising delay in the critical sink by over 60% with a small penalty in routing area. 8 The 
monotone property is still true under this lossy transmission line formulation. The final wire-sizing 
solution reduces the overshoot and is more robust under parameter variation. 

4.2.2.4 Weiyhted delay formulation versus maximum delay formulation 
All the wire-sizing algorithms presented in Section 4.2.1 for minimizing the weighted sum of 

delays can be used to minimize the maximum delay by iteratively adjusting the weights so that the 
sinks with larger delays have higher weights. In particular, Chen et al. [110] showed that for the 
continuous wire-sizing formulation where the wire width can be any value between the lower and 
upper bounds, the weighted delay formulation is able to minimize optimally the maximum delay 

8 Note that the delay in a tree of transmission lines is the sum of flying time and the rising delay of the response 
waveform. Wire sizing only affects the rising delay, and the delay reduction means the reduction of the maximum rising 
delay at threshold voltage of 0.5 V dd. 
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among all sinks. They formulated the following Lagrangian relaxation problem: 

m i n i m i z e  /max + ~ 2i(t~(~#/) - tmax), 
si E sink(T) 

subject to t i (~ ' )  < tmax, 

where t i(~ ~) is the delay from the source to sink si under the current wire-sizing solution ~U and 
tmax is the maximum delay from the source to all sinks. 

The following two-level algorithm was proposed in [ 110]: in the outer loop, the weights associated 
with the delays from the source to sinks are dynamically adjusted, which are basically proportional 
to the delays at the sinks. In the inner loop, the continuous wire-sizing solution is computed for the 
given set of weights, by the wire-sizing algorithm [109] (Section 4.2.1.4) to minimize the weighted 
linear combination of delays. They showed that the Lagrangian relaxation iteration will converge to 
an optimal solution in terms of maximum-delay minimization. Moreover, the authors expanded their 
Lagrangian relaxation based algorithm to simultaneous wire and buffer sizing for buffered clock trees 
to minimize the weighted combination of delay, power and area minimization, and to address the 
problem of skew and sensitivity minimization for clock trees. 

4.3. Simultaneous device and wire sizing 

The device sizing works presented in Section 4.1 model the interconnect as a lumped loading 
capacitor and do not consider the possibility of sizing the interconnect. On the other hand, the wire 
sizing works presented in Section 4.2 model the driver as a fixed effective resistor and do not consider 
the need to size the device again after interconnects have been changed. Both approaches may lead 
to suboptimal designs. As a result, a number of recent studies size both devices and interconnects 
simultaneously. These methods will be discussed in this subsection. 

4.3.1. Simultaneous driver and wire sizing 
The simultaneous driver and wire-sizing problem for delay minimization (SDWS/D problem) was 

studied by Cong and Koh in [8]. The switch-level model is used for a driver and both the gate and the 
drain (output) capacitances of the transistor are taken into account, while the interconnect tree is mod- 
eled by a distributed RC tree as was used in [7]. The objective function is to minimize the summation 
of the delay for cascaded drivers and the weighted delay for the RC tree. The SDWS/D algorithm 
is based on the following important relation between the driver size and the optimal wire sizing. 

Driver and wire sizing relation [8]: Let Rd be the effective resistance for the last stage driver and 
~//* be the optimal wire-sizing solution for driver resistance Ra. If Rd is reduced to R~, the new 
corresponding optimal wire-sizing solution ~¢/~'* dominates ~/U*. 

The core for the SDWS/D algorithm is the procedure to compute the optimal driver and wire sizing 
when given a stage number k, which works as follows. First, the algorithm starts with the minimum 
wire width assignment and computes the capacitive load of the routing tree. Then, it computes the 
optimal sizes of the k cascaded drivers based on Lin-Linholm Theorem in Section 3. Next, the 
optimal wire-sizing algorithms (GWSA followed by OWSA) developed in [7] are performed on the 
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routing tree based on the effective resistance of the last driver. If the wire width assignment changes, 
the new driver sizes are obtained according to Lin-Linholm Theorem. Then, the optimal wire sizing 
solution will be computed again based on the new size of the last driver. The process is repeated 
until the wire width assignments do not change in consecutive iterations. In this case, the lower 
bounds are obtained for the optimal sizes of both the drivers and the wire segments. 

The upper bound for the optimal sizing solution can be obtained similarly by beginning with 
the maximum wire width assignments. If  the lower and upper bounds meet, the optimal solution is 
achieved, which occurs in almost all cases as shown in the paper. Otherwise, the size of the last 
driver is enumerated between the lower and upper bounds. The corresponding optimal wire sizes and 
the first ( k -  1) driver sizes are computed, and the optimal k-driver SDWS/D solution is selected 
for this set. 

The overall SDWS/D algorithm computes the optimal number of stages by a linear search, in- 
creasing k starting with k -- 1. The process terminates when stage k does not perform better than 
stage k -  1 (i.e. when adding an additional driver actually slows down the circuit). Then, the op- 
timal sizing solution for the k - 1 stage drivers and the corresponding optimal wire sizing is the 
optimal SDWS/D solution. In practice, the runtime of SDWS/D is on the same order as k times 
the runtime of the GWSA algorithm followed by the OWSA algorithm to compute the optimal 
wire-sizing algorithm. Note that the BWSA algorithm [12] presented in Section 4.2.1.3 can be used 
to greatly speed-up the computation of the optimal wire-sizing solution. The simultaneous driver 
and wire-sizing problem for power minimization was also studied in [8] and the efficient optimal 
algorithm was developed. Accurate SPICE simulation shows that the method reduces the delay by 
up to 12-49% and power dissipation by 26-63% compared to the existing design methods. Very 
recently, Cong et al. [118] extended the work on SDWS to handle driver/buffer and wire sizing for 
buffered interconnects. However, both Cong and Koh [8], and Cong et al. [118] do not consider the 
waveform slope effect during the computation of the optimal driver/buffer sizes. 

4.3.2. Simultaneous gate and wire sizing 
Recently, Menezes et al. [113, 18] studied the simultaneous gate and wire sizing problem for 

different objectives: to achieve the target delays in [113], and to find the minimal-area solution to 
satisfy the performance requirement in [18]. 

4.3.2.1. Simultaneous gate and wire sizing to achieve target delay 
The algorithm in [113] is the extension of  the moment-fitting method for wire sizing [l 1 l] (Section 

4.2.2.3) to the simultaneous gate and wire sizing problem. Again, let target moments be moments 
for the two-pole transfer functions that has the target delays, and real moments those for the transfer 
function under the current widths of all wires and gates, the sensitivities of  the real moments with 
respect to the wire and gate widths will guide the search for wire and gate widths to match the real 
moments and target moments. 

A higher-order RC delay model is used for the interconnect tree as in [111]. Meanwhile, all 
transistors in a gate are assumed to scale by the same factor, which allows that a gate can be 
described by its "width" Wg. The gate is modeled by the single-resistor voltage-ramp model as 
proposed in [119] (see Fig. 6), which can accurately estimate the driver delay as well as output 
waveform slope. The sensitives with respect to the gate and wire widths for real moments can be 
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computed, which are used to guide the changes of  gate and wire widths to achieve the target delay 
for a stage by the aforementioned moment-fitting method (in this work, a stage is a dc-connected 
path from the voltage source in the gate model to a sink). 

Furthermore, the algorithm in [113] handles a path, which contains cascaded stages. It is also based 
on the sensitivity guided moment-fitting method. The following assumption is made to simplify the 
sensitivity computations: given two successive stages n and n + 1 in a path, first, except the gate of 
stage n + 1, no wire/gate in stages n + l ,n + 2,.. .  affects the delay in stage n; second, sizing the 
gate or a wire in stage n only affects the input transition time to the gate in stage n + 1, not those 
in stages n + l, n + 2 ... . .  In their experiment, the objective for each PI-PO path was a 50% delay 
reduction, through gate sizing only and simultaneous gate and wire sizing, respectively. It was shown 
that for larger delay reductions, simultaneous gate and wire sizing could achieve lower area and that 
gate sizing only could not reach 50% delay reduction because the path delay was dominated by the 
interconnect delay. The trade-off between the area and the delay reduction was shown as well. 

4.3.2.2. Simultaneous gate and wire sizing to satisfy perjormance requirement 
The simultaneous gate and wire sizing approach [18] is aimed at finding the minimal-area solution 

to satisfy the performance requirement. First, the driver is modeled by a fixed resistance driven by 
a step waveform and the delay of the interconnect tree is modeled by the Elmore delay model. The 
path delay in this case is a posynomial function of both gate and wire widths and the simultaneous 
gate and wire sizing problem is a posynomial programming problem which can be transformed into 
a convex programming problem. The sequential quadratic programming (SQP) 9 is used to solve 
this transformed convex programming problem to achieve an optimal solution. 

Then, the delay of the interconnect tree is modeled by the higher-order RC delay while the driver 
is modeled by a fixed resistance. Although the path delay is no longer a posynomial function of gate 
and wire widths, the authors assumed that it was near-posynomial so that the SQP method could be 
applied. A q-pole transfer function is used and the sensitivity computation of the poles and residues 
is conducted during the SQP procedure. 

Finally, the driver is modeled by the more accurate single-resistor voltage-ramp model [119]. 
Again, the near-posynomial is assumed for path delay and the SQP method is applied. The sizing 
results showed that the fixed-resistance driver model could lead to undersized solutions. RC meshes 
(non-tree interconnects) can be handled by the SQP method, again under the assumption that the 
delay formulation is near-posynomial. 

4.3.3. Simultaneous transistor and wire sizing 
Very recently, the simultaneous transistor and interconnect(wire) sizing (STIS) problem is formu- 

lated and solved by Cong and He [115, 116]. In order to minimize the delay along multiple PI-PO 
paths, they propose to minimize the weighted combination of delays for all stages in these PI-PO 
paths by choosing the discrete or continuous transistor sizes and wire widths. 

9According to [120], the SQP method reduces the non-linear optimization to a sequence of quadratic programming 
(QP) subproblems. At each iteration, a QP subproblem is constructed from a quadratic linearization of both the objective 
function and the constraints about the solution from the previous iteration. The solution of the current iteration is then 
used as an initial solution for the next iteration. The iteration converges to a solution for a convex programming problem. 
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Rather than developing ad hoc methods for STIS problems under different delay models, the 
authors study the optimization problems whose objective functions have the following form: 

api(Xi) q 
f ( X )  : ~ ~ ~ ~ ~i p bqj(Xj)Xj, 

p=O q=O i:1 j=l,jTdi 

where 

api(Xi)>/O and bqj(Xj)>>,O, 

L<.X<.U. (31) 

When coefficients are constants, the class of functions, named simple CH-posynomials, is a subset 
of posynomials defined in [89]. Furthermore, they define the following general CH-posynomials, 
which are no longer posynomials. 

General CH-posynomial. Eq. (31) is a general CH-posynomial if coefficients satisfy the following 
conditions: (i) api(Xi) is a function of xi. It monotonically increases with respect to an increase of xi 
but api(Xi)/xi p still monotonically decreases with respect to an increase of xi. (ii) bqj(xj) is a function 
of xj. It monotonically decreases with respect to an increase of XJ but bq~(Xj)X q still monotonically 
increases with respect to an increase of xi. 

Let the optimization problem to minimize a simple/general CH-posynomial be a simple~general 
CH-posynomial program. After generalizing the concepts of local refinement operation and the 
dominance property in [7] (presented in Section 4.2.1.1), the authors of [115,116] showed the 
following important theorem: 

Theorem (Cong-He [117]). The dominance property holds for both the simple and the general 
CH-posynomial programs. 

The theorem provides an easy way to verify the dominance property for both the single-source 
and the multi-source wire sizing problems in [7, 12], respectively, since both objective functions are 
instances of the simple CH-posynomial. Furthermore, the theorem leads to efficient algorithms, for 
example, the generalizations of the GWSA algorithm [7] or the BWSA algorithm [12], to compute 
a set of lower and upper bounds of the optimal solution to a CH-posynomial program by the local 
refinement operation and the bundled refinement operation very efficiently (in polynomial time). 

The authors of [115,116] further show that the STIS problem is a CH-posynomial program under 
the RC tree model for interconnects and a number models for the transistors, including both sim- 
ple analytical transistor models or more accurate table-lookup-based transistor models obtained by 
detailed simulation to consider the effect of the waveform slope. Thus, the BWSA algorithm [12] 
is generalized to compute the lower and upper bounds for the optimal widths for both wires and 
transistors. 

Experiments show that in nearly all cases, the optimal solution to the STIS problem is achieved 
because the recursive application of local refinement operations using the dominance property leads 
to identical lower and upper bounds. In contrast to the transistor sizing algorithm in [81] which is 
not able to consider the waveform-slope effect for transistors, the dominance-property-based STIS 
algorithm can be efficiently applied to either analytical or table-lookup-based transistor models with 
consideration of the waveform-slope effect. The simultaneous driver and wire sizing problem (for 
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multi-source nets) and the simultaneous buffer and wire sizing problem have been solved as special 
cases of the STIS problem, and a smooth area-delay trade-off has been yielded for the transistor 
sizing problem for circuits implemented by complex gates. 

4.3.4. Simultaneous buffer insertion and wire sizing 
The polynomial-time dynamic programming algorithm for the buffer insertion problem [107] was 

generalized by Lilles et al. in [114] to handle the simultaneous wire sizing and buffer insertion for 
both delay and power minimization. The slope effect on the buffer delay was also taken into account. 
Only the delay minimization feature will be discussed in the following. 

Different from [107], when a wire segment of length l (with upstream node k) is added at the 
root i of a dc-connected subtree, a new option (qk,ck) will be generated at k for every wire width 
choice w and every (qi, ci) at i as the following: 

: _ q- C i , qk qi w 

Ck = Ci q- CaWI. 

The non-uniform wire sizing can be easily carried out by just introducing two-degree Steiner points 
within a wire segment, and the other two bottom-up rules to compute new options (with extension to 
multiple inverter sizes and consideration of signal polarity) and the rule to prune suboptimal options 
given in [107] can be applied without any modifications. The number of total options at the source 
of the routing tree is still polynomial bounded. 

According to [35], the delay of an inverter is the delay under the step input plus an increment 
due to the input slope. The increment is proportional to the input waveform transition time. By 
assuming that the delay increment due to the input slope is proportional to the Elmore delay Dprev 
in the previous stage, the authors further formulated the following buffer (inverter) delay for the 
downstream capacitance ck: 

buf_delays(b, c~ ) = buf_delay(b, ck) + 2bDprev, 

where buf_delay(b, ck) equals to Dbuf + RbufCk with Dbuf being the intrinsic delay of an inverter and 
Dprev being the Elmore delay of the previous wire path. 

Because the dynamic programming works from the bottom-up and Dprev is unknown, the option is 
redefined as ( f ,  c) instead of (q,c) when considering the slope effect, where f is a piecewise linear 
function and f ( x )  = q is the optimal required arrival time q for the downstream capacitance c and 
Dprev = x. With this new definition for the option, the number of total options at the source of a 
routing tree is no longer polynomially bounded in the theoretical sense. However, it was observed 
in [114] that the run time of the new version is comparable to that of its simpler version assuming 
step-input to buffers. 

4.4. Simultaneous topology construction and sizing 

All wire and device sizing works presented up to now assume that the topology of interconnects is 
given, which can be called static sizing. Recently, dynamic wire sizing has been studied, where the 
wire sizing is performed during interconnect construction. Furthermore, simultaneous interconnect 
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construction, buffer insertion and sizing, and wire sizing has been studied in order to achieve even 
better designs. 

4. 4.1. Dynamic wire sizing during topology construction 
Hodes et al. [121] propose a method to do wire sizing dynamically during tree construction. They 

combine the Elmore routing tree (ERT) algorithm [9] (Section 3.3) and the GWSA algorithm [7] 
(Section 4.2.1 ) as follows: starting with a degenerate tree initially consisting of only the source pin, 
grow the tree at each step by finding a new pin to connect to the tree in order to minimize the 
Elmore delay in the current wire-sized topology. In other words, in each step they invoke the GWSA 
algorithm for each candidate edge and add the edge that yields the wire-sized tree with the minimal 
maximum delay. After the construction spans the entire net, the GWSA algorithm is invoked once 
more to wire size the entire tree, starting with the minimal width. 

Recently, Xue and Kuh [76, 75] propose insertion of multi-links into an existing routing tree and 
do dynamic wire sizing during the link insertion in order to minimize the maximum delay. The 
Elmore delay formulation for RC meshes in [122] is used. The algorithm works as follows: Given a 
routing tree with a performance requirement, the sink n .... with the maximum delay is identified. A 
wire link e is established between the source and nm~x. While the performance requirement is not met 
and nm~x remains the most critical (i.e., still has the max-delay), e is assigned with non-uniform wire 
width. Suppose n'ma x becomes the most critical sink after wire sizing on e. If there is a direct link e' 

' is no longer the most ' then the algorithm sizes the wire of e' instead until nma x from source to nmax, 
e' will be critical sink or the delay requirement is met. If there is no direct link e' from source to n . . . .  

established only if further wire sizing of e cannot satisfy the performance requirement with less area 
than creating the new link e'. The wire sizing is formulated as a sequential quadratic programming 
(SQP) problem. Moreover, non-uniform wire sizing is achieved by dividing every segment into a 
number of subsegments defined by the user. Because the sink with the maximum delay also has the 
maximum skew, minimization of the maximum delay also minimizes the maximum skew. 

4.4.2. Simultaneous tree construction, buffer insertion and wire sizing 
Most recently, Okamoto and Cong [123] study the simultaneous tree construction, buffer inser- 

tion and wire sizing problem J0 The following techniques are combined to develop a wire-sized 
buffered A-tree (WBA-tree) algorithm: the A-tree algorithm for tree construction [41], the simulta- 
neous buffer insertion and wire sizing algorithm [107, 114], critical path isolation, and a balanced 
load decomposition used in logic synthesis. In logic synthesis, when one or several sinks are timing 
critical, the critical path isolation technique (Fig. 24(a)) generates a fanout tree so that the root gate 
drives only the critical sinks and a smaller additional load due to buffered non-critical paths. On the 
other hand, if required times at sinks are within a small range, balanced load decomposition (Fig. 
24(b)) is applied in order to decrease the load at output of  root gate. These transformations are 
applied recursively in a bottom-up process from the sinks in the same manner as the A-tree and the 
simultaneous buffer insertion and wire sizing algorithms. 

As in the buffer insertion algorithm of [107] (Section 4.1.3), the WBA algorithm includes two 
phases: the bottom-up synthesis procedure and the top-down selection procedure. Similar definitions 
of the option and the pruning rule are used. Recall the heuristic move in the A-tree algorithm 

10 An early version of  this work considers only simultaneous topology construction and buffer insertion [124]. 
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(b) Balanced load decomposition 

Fig. 24. Fanout optimization in logic synthesis. 

[41] merges subtrees recursively in the bottom-up manner, starting from the set of  subtrees, each 
containing a single sink. Let T~ be subtree rooted in node i, the following basic steps are iterated in 
the bottom-up synthesis procedure. 
- Select v and w with considering critical path isolation and balanced load decomposition. 

- Merge T,~ and Tw to Tr, and compute a set of  options at r. 
In order to select the pair of  v and w (equivalent to T~, and Tw) to merge, first, the following 

concepts are defined: The distance between the source and the merging pair of  v and w, denoted 
D,~w, is defined as D,,w = min(vx, wx) ÷ min(vy, Wy). This definition is for the case that v and w are 
in the first quadrant with So at the origin. Other cases can be defined in a similar way. 

The maximum possible required time at the root r of subtree Tr generated by merging of  T,, and 
Tw, denoted R~w, is defined as R,,w = maxzez, qz, where r is the merging point of T,, and Tw, and Z~ 
is a set of  options at r. 

The maximum R~w among all possible merging pairs v and w in the set of roots ROOT of  the 
current subtrees, denoted Rmax(ROOT), is defined as Rmax(ROOT) = max~.weROOT Rr,.. The merging 
cost for v and w is defined as merge_cost (v, w, ROOT) = ~ .  R,,w + (1 - e ) .  D~,w where c~ is a fixed 
constant with 0 ~< c~ ~< 1.0. 

Then, the v and w pair with the maximum merge_cost is the one to be merged. The idea behind it 
is as follows: we want to maximize the required arrival time in the source pin so that we wish that 
the R~,w is as large as possible. Meanwhile, we want to minimize the total wire length, intuitively, 
we wish that D~w is as large as possible. Note that, when e = 0, it is equivalent to the heuristic 
move in [41]. 

The option computation and pruning can be carried out in a manner similar to [107, 114] after 
each merging of T~, and Tw. Overall, after the bottom-up synthesis procedure to construct tree and 
compute options, the top-down selection procedure is invoked. It chooses the option which gives 
the maximum required time and the minimum total capacitance at the source pin, then traces back 
the computations in the first phase that led to this option. During the back-trace, the buffer positions 
and wire width of  each segments are determined. 

Similarly, Lillis et al. studied~the simultaneous tree construction and wire sizing problem [74] 
and the simultaneous tree construction and buffer insertion problem [125], respectively. In fact, their 
method can be generalized to handle the simultaneous tree construction, buffer insertion and wire- 
sizing problem as well. In short, during the dynamic program scheme to construct a P-tree [74] 
(Section 3.3) in a bottom-up manner for a given permutation, a set of  options are computed for 
each subtree as in [107, 114] and the same option pruning rule is applied. 
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5. High-performance clock routing 

In layout synthesis, the distribution of clock signals is critical to both the operation and per- 
formance of  synchronous systems. If not properly controlled, the clock skew, defined to be the 
difference in the clock signal delays to registers, can impact the performance of  the system and even 
cause erratic operations of the system, e.g., latching of  an incorrect data signal within a register. At 
the same time, the routing solutions to distribute the clock signals should have low wiring area to 
reduce the die size and the capacitive effects on both performance and power dissipation. Due to 
technology scaling where long global interconnect becomes highly resistive as the wire dimensions 
decreases, the clock routing problem has become increasingly important since clock nets generally 
have very large fanout and span the entire chip. Thus, clock synthesis has generated tremendous 
interests within both the industrial and academic communities over the past several years. 

In general, the clock routing problem can be formulated as follows: Given a set { l(sl ) , . . . ,  l(sn)} C 
.~2 of  sink (register) locations and skew constraints on various pairs of  registers, construct a 
minimum-cost clock tree that satisfies the skew constraints. Most of  the works deal with zero- 
skew clock tree (ZST) construction where all sinks are required to have identical clock delay. There 
are possibly other constraints and/or objectives to the problem: 

(i) We want to impose a constraint on the rise/fall times of  the clock signal at the sinks since 
it is critical to keep the clock signal waveform clean and sharp. 

(ii) We want to minimize the delay of clock signal, which is closely related to the rise/fall time. 
(iii) We want to minimize the total power dissipation since a clock signal typically operates at a 

very high frequency and dissipates a large amount of the power. 
(iv) We want the clock tree to be tolerant of process variations, which cause the wire widths 

and device sizes on the fabricated chip to differ from the specified wire widths and device sizes, 
respectively, resulting in so-called process skew, i.e. clock skew due to process variations. 

In the rest of the discussion on clock routing, we consider the following clock routing problem: 
Given a set of sink locations and a skew bound B ~> 0, construct a minimum-cost clock tree T that 
satisfies skew(T)~<B where skew(T) = maxi,j ] t i -  tjl. In most works, B = 0, i.e., they attempt 
to achieve zero-skew for the clock net. This formulation requires the clock signal to arrive at all 
sequential elements almost at the same time, which is commonly used in random logic design. For 
data path design, however, it is possible to optimize the circuit performance by planning the clock 
arrival times (clock schedule) at all registers more carefully; "intentional" clock skews are used 
constructively to improve system performance. Clock schedule optimization will be discussed in 
Section 5.6. 

Recent works on clock skew minimization have accomplished exact zero skew under both the path 
length delay model [126-128] and the Elmore delay model [129, 126, 130, 131]. The deferred-merge 
embedding (DME) a lgor i thmby [126, 130, 127] can be either applied to a given clock topology or 
combined with a clock topology generation algorithm to achieve zero skew with a smaller wire length 
[132]. The methods in [133,134, 16] address the bounded-skew tree (BST) construction problem 
under the path length and Elmore delay models by extending the DME algorithm for zero-skew 
tree to BST/DME algorithms by the enabling concept of  a merging region, which generalizes the 
merging segment concept of [126, 130, 127] for zero-skew clock trees. Recent studies on clock routing 
have also led to new methods for single-layer (planar) clock routing [135-137]. Furthermore, a 
number of authors have applied wire-sizing optimizations and/or buffer optimizations to minimize 
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Fig. 25. Plots of (a) path length skew and (b) Elmore delay skew versus actual (SPICE simulation) delay skew for routing 
solutions obtained by Greedy-BST/DME algorithm [16] under path length delay and Elmore delay for benchmark r3. 

phase delay [ 13 8-141 ], skew sensitivity to process variation [ 13 8, 142-144], and/or power dissipation 
[138, 145]. 

Most of these works are based on the path length and Elmore delay models. In practice, bounding 
path length skew does not provide reliable control of actual delay skew [16]. For example, Fig. 
25(a) plots HSPICE delay skew against path length delay skew for routing trees generated by the 
Greedy-BST/DME algorithm under path length delay [133,134] on MCNC benchmark circuit r3 
[129]. Not only is the correlation poor, but the path length-based BST solutions simply cannot meet 
tight skew bounds (of lOOps or less). On the other hand, Fig. 25(b) demonstrates the accuracy and 
fidelity of Elmore delay skew to actual skew for routing trees constructed by the Greedy-BST/DME 
algorithm under Elmore delay [16]. Nevertheless, for completeness, we will discuss studies under 
both path length and Elmore delay models. The clock routing problem under the path length problem 
is more tractable and theoretically interesting. Many important results are obtained under the path 
length delay model. Also note that most of the studies on clock routing are first based on the path 
length delay model and later extended to handle the Elmore delay model. 

We will present various works on clock routing based on the following classification: (i) abstract 
topology generation, (ii) embedding of abstract topology, (iii) planar routing, (iv) buffer and wire 
sizing, (v) non-tree clock routing, and (vi) clock schedule optimization. Many results in (i)-(iii) 
were also surveyed in [42]. While we aim to cover all recent works on interconnect design and 
optimization in high-performance clock routing in this section, this is not a comprehensive survey 
on clock synthesis and we left out some related topics. For example, there is a clock synthesis 
algorithm that specifically targets towards low-power design using gated clock [146]. Two-level 
clock routing with the upper level routing in multichip module substrate has also been studied [147]. 
In addition, there are studies that target hierarchical data path design (instead of fiat logic design) 
[ 148-150] and consider retiming [ 151-153] using skew information. Interested reader may also refer 
to [154] for a survey on different aspects of clock synthesis. 

5.1. Abstract  topology generation 

There are generally two approaches in generating the abstract topology: top-down and bottom- 
up. In the top-down approach, the idea is to perform bipartitioning of sinks. A set S of sinks is 
bipartitioned into two sets $1 and $2 where each set (S, $1 and $2) corresponds to a node in the 
abstract topology and S is the parent of S~ and $2 in the topology. On the other hand, the basic 
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Fig. 26. H-clock tree. Nodes labeled 4 are equi-distant from the origin labeled 0. 

idea in the bottom-up approach is to perform clustering, i.e. merging two sets S~ and $2 into S. The 
recursive clustering also defines an abstract topology. Many methods actually generate the abstract 
topology and embed the topology in one pass. But, we separate abstract topology generation from 
embedding since once the abstract topology is given, embedding can be done optimally (under the 
path length delay model) or near-optimally using the algorithms to be described in Section 5.2. 

5, 1.1. Top-down topology 9eneration 
In an H-tree topology [155, 195,156-158], the basic building block is a regular H-structure. ~1 All 

four comers of  the H-structure are equi-distant from the center of  the structure. The H-tree algorithm 
minimizes clock skew by repeating the H-structure recursively top-down as shown in Fig. 26. In the 
figure, all points labeled 4 are path length equi-distant from the origin labeled 0. 

H-trees, while effective in equalizing path lengths from a driver to a set o f  sinks, have seri- 
ous limitations. These trees are best suited for regular systolic layouts, and are not easily adapted 
to irregular placements with varying sink capacitances, which are common for cell-based designs. 
Moreover, tree lengths can be excessively high for large clock nets, impacting circuit area, power 
consumption, and clock rates for large circuits. 

The method o f  means and medians (MMM) algorithm proposed by Jackson et al. [159] generalizes 
the H-tree algorithm; the idea is to perform partitioning along x and y directions alternatively. Given 
a set of  sinks S = {s~,s2, . . . ,sn} to be partitioned, the MMM method first computes the center of  
mass o f  S, denoted c(S),  by calculating the means of  the x- and y-coordinates of  sinks in S: 

xi ~ y, 
xc.(s) -- , To(s) -- 11 n 

The set of  sinks are then ordered by their x- and y-coordinates. If  S is to be partitioned in the x ( y )  
direction, then sinks in the first half of  the ordered sink set are grouped in the S~et;(Sbottom) partition 
and the rest of  the sinks belong to the Sright(gtop) partition. The algorithm then routes from the center 

t l Another scheme that yields equal-length interconnections is the X-clock tree, where the basic building block is an 
X-structure [2]. It can be verified easily that for the simple case of four sinks at the comers of a unit square, an X-tree 
connection can be embedded on a rectilinear plane using a cost of 4 units, whereas an H-tree connection requires only a 
cost of 3 units. An X-tree is more costly due to overlapping routing when it is realized on a rectilinear plane [136]. 
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of mass c(S) to centers of  mass of  partitions, c(Sleft) and c(Sright) (or, c(Sbottom) and c(Stop) ). Then, it 
routes on the subsets &eft and Sright (or, Sbottom and Stop) recursively until a partition has only one sink. 
Instead of routing alternatively between the horizontal and vertical directions, the MMM method is 
also extended to allow one level of  "look-ahead" to determine the more favorable direction. 

Chao et al. [130] presented another top-down topology generation approach called the balanced 
bipartition (BB) method. The heuristic divides the sink set recursively into two partitions with nearly 
equal total loading capacitance. It is more general than the MMM method which uses only horizontal 
and vertical cuts. Given a set S of sinks, the BB method first computes the smallest octagon that 
bounds S and obtains the octagon set of  S, Oct(S), which is defined to be the set of  sinks in S that 
lie on the boundary of the smallest boundary octagon. The sinks in Oct(S) are sorted in circular 
order based on their locations on the boundary of the smallest boundary octagon. 

The BB method computes a balanced bipartition by considering IOct(S)l/2 reference sets, denoted 
REFi for t<~i<~lOct(S)l/2, where each REFi contains IOct(S)l/2 consecutive sinks in Oct(S). For 
each REFi, the sinks are sorted in ascending order of their weights, where the weight of sink p with 
respect to REF~ is defined to be min,.cRE~, d(p,r)+ maxrcREv, d(p,r). Each sink is then added to a 
partition $1 according to the sorted order until the difference between the sum of  capacitances in $1 
and one-half the total capacitance is minimized. The rest of  the sinks are placed in ~ and REF~ 
has a partition cost of  diameter(S~)+ diameter(S2). The reference set REFi (and its bipartitions) 
with the least partition cost are selected. As in the MMM algorithm, recursion then continues on the 
subsets S~ and 4 .  Note that BB is a purely topology generation algorithm. It relies on the embedding 
algorithm to be presented in Section 5.2 to embed the abstract topology generated. 

5.1.2. Bottom-up topology generation 
In contrast to the top-down approaches of [159, 130], the KCR geometric matching algorithm was 

proposed by Kahng et al. [160, 161] as the first bottom-up approach for clock tree abstract topology 
generation. It constructs a routing tree by iteratively joining pairs of  subtrees which are "close", 
and can handle cell-based design with asymmetric distributions of clock pins and general-cell design 
[162, 161]. The KCR algorithm starts with a sets of trees, each containing a single sink of the clock 
net. At each iteration, a minimum-weight maximum matching is performed on the set of  roots of  
the current subtrees, where the weight of  a matched edge is equal to the distance between the two 
vertices (or tree roots) connected by the edge. The matching operation selects ]SI/2 edges that pair 
up the roots of all trees such that no root appears in two edges in the matching. 

For each edge in the matching, the pair of  subtrees are connected by the edge and a balance 
point on the edge is computed to minimize path length skew to the leaves of  its two subtrees, i.e. 
the maximum difference in the path length delays from the balance point to the sinks in the two 
subtrees is minimized. This balance point also serves as the root of  a tree in the next iteration. An 
example to illustrate the KCR algorithm is shown in Fig. 27. 

Note that it is possible that no balance point along the edge can be found to achieve zero skew. 
A further optimization, called H-flipping is used to minimize clock skew when two trees are merged 
in the matching iteration (see Fig. 28). ~2 

~: An H-structure in the KCR algorithm is not a regular H-structure in H-tree algorithm. 
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Fig. 27. Geometric matching on a set of 16 terminals. 
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Fig. 28. Example of flipping an H to minimize clock skew: the tree on the left has no zero-skew balance point along the 
middle segment of the "H", while the tree on the right does. 

Since the number of trees is reduced by half at each iteration of  the matching, the complete clock 
tree topology can be computed after log n matching iterations. The time complexity of  the KCR algo- 
rithm is O(M log n) where M is the time complexity of  the matching algorithm. To solve problems of  
practical interest, efficient matching algorithms are chosen over optimal matching algorithm. Several 
efficient heuristic matching algorithms were recommended by [161]. However, heuristic matching 
algorithms may produce a matching with crossing edges. In the KCR algorithm, intersecting edges 
in such a matching are uncrossed to reduce routing cost. 

The authors also generalized the idea of  bottom-up iterative matching to route clock nets in 
building block layouts, in which a circuit is partitioned into a set of  arbitrarily sized rectangular 
blocks. After the blocks are placed by a placement algorithm, a floorplan and the corresponding 
channel intersection 9raph is obtained. Routing is carried out in the channels between blocks. In 
a floorplan, a vertical channel and a horizontal channel may intersect. These intersection points are 
vertices in the channel intersection graph. In the channel intersection graph, vertices u and v are 
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connected by an edge if and only if there is a channel from u to v not containing any other vertex. 
An augmented channel intersection graph (ACIG) is used to capture the location of clock pins (or 
clock entry points) of functional elements. Each entry point is also a vertex in the ACIG. The entry 
point also introduces an auxiliary vertex on the channel, and an edge is created between the block 
entry point and the auxiliary vertex in order to complete the routing. 

For the KCR algorithm to work in an ACIG, instead of using the geometric distance as the cost 
of the edge between two subtrees, the shortest distance on the channel graph is used as the cost 
of the edge connecting two points. Therefore, an additional component in the KCR algorithm for 
general cell design is the shortest path algorithm to compute the shortest paths between all pairs 
of vertices in each iteration. For each pair of matched vertices, a balance point along the shortest 
path connecting the two vertices is computed, and the balance point then serves as a vertex to be 
matched in the next iteration. 

In general, the KCR algorithm performs better than the MMM algorithm, in terms of both routing 
cost and clock skew (under the path length delay model). The algorithms were evaluated using ran- 
dom point sets. Moreover, two MCNC benchmark circuits, named Primaryl and Primary2, reported 
in [159] were also used in the experiment. No data for the BB method are available since BB 
produces only an unembedded binary tree topology. Note that both the MMM and KCR algorithms 
cannot guarantee zero-skew routing, although the routing solutions constructed by the KCR algorithm 
have skews very close to zero. 

The two benchmark circuits, Primaryl and Primary 2, together with the other five benchmark 
circuits rl-r5 reported in [129], would later become the most commonly used benchmark circuits to 
evaluate the quality of routing solutions generated by various clock routing algorithms. Otherwise 
specified, the experimental results reported by various papers will be presented with respect to these 
benchmark circuits. 

5.2. Embedding of abstract topology 

Given a prescribed abstract topology, the deferred-merge embedding (DME) algorithm, proposed 
independently by Edahiro [127], Chao et al. [130], and Boese and Kahng [126], achieves exact zero 
skew for both path length and Elmore delay models. The enabling concept is that of a merging seg- 
ment. The problem of bounded-skew embedding was first addressed independently by Cong and Koh 
[133], and Huang et al. [134] under the path length delay model. Cong et al. [16] later extended the 
works to handle bounded-skew embedding under the Elmore delay model. The BST/DME algorithms 
proposed by [133,134, 16] generalize the merging segment concept and introduce merging region 
for bounded-skew embedding. These embedding algorithms (both zero-skew and bounded-skew) can 
also be combined with bottom-up topology generation to produce clock trees with less routing costs 
[128, 133,134, 16]. 

5.2.1. Zero-skew embedding 
The key idea of the DME algorithm is the delayed embedding of internal nodes of the abstract 

topology [127, 130, 126]. In general, given two zero-skew trees, there can be a number of locations 
at which two zero-skew trees can be joined with the minimum wire length such that zero skew is 
achieved at the higher level. For example, in Fig. 29(b), any point l(x) on the line segment ms(x) 
is equi-distant from sinks sl and s2, i.e., we obtain a zero-skew subtree rooted at l(x) with sinks s~ 
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Fig. 29. A walk-through of the DME algorithm: (a) topology of a clock source so and 4 sinks sl..4, (b) merging segments 
of internal nodes x, y and so, and (c) zero-skew clock tree with a total wirelength of 17 units. 

and s2. This contrasts with the KCR algorithm where there is only a single balance point when two 
subtrees are connected by a matching edge. 

Given a set of  sinks S and an abstract topology G, the DME algorithm exploits this flexibility and 
embeds internal nodes of  G via a two-phase approach: (i) a bottom-up phase that constructs a tree 
of  merging segments which represent loci of  possible placements of  internal nodes in a zero-skew 
tree (ZST) T; and (ii) a top-down embedding phase that determines exact locations for the internal 
nodes in T. Note that the embedding can actually be done in a single-phase process. We will present 
the single-phase DME algorithm in Section 5.3.2. 

In the bottom-up phase, each node v E G is associated with a merging segment, denoted ms(v), 
which represents a set of  possible placements of  v in a minimum-cost ZST. The segment ms(v) is 
always a Manhattan arc, i.e., a segment (with possibly zero length) that has slope +1 or -1 .  Let 
a and b be the children of  node v in G. The construction of  ms(v), placements of  v, depends on 
ms(a) and ms(b), hence the bottom-up processing order. We seek placements of  v which allow a 
and b to be merged with minimum added wire le, I + [e0l while preserving zero skew in T~. 

We first illustrate the computation of  [e,] and [eh[ under the path length delay model [126, 127]. 
Given t(a) and t(b), the delays from a and b to their respective sinks in T, and T0, it requires that 
lea] +t(a )  = leo] + t (b )  to ensure that the delays from v to sinks in Ta and T0 are equal. Let l denote 
the distance between ms(a) and ms(b), i.e., d(ms(a) ,ms(b) )  = I. If I t ( a ) -  t(b)l ~ l ,  then there is 
no detour, i.e., lea] + ]eb[ = 1. Let ms(v) be xl  units of  distance from ms(a) where x is between 0 
and 1. Then, 

1 t ( b )  - t ( a )  

x = ~ +  21 

Suppose I t ( a ) -  t(b)[ > l. Without loss of generality, let t(a) > t(b). Then, the merging cost is 
minimized by setting le.] = 0 and  le0l = t(a) - t(b). In this case ,  detour occurs, i.e., lea] + [eb[ > I. 
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Fig. 30. Intersection of trr(a) and trr(b) to obtain ms(v). 

Under the Elmore delay model, we can compute x as follows [129]: 

t(b) - t(a) + rl(Cap(b) + cl /2)  
X =  

rl(cl  + Cap(a) + Cap(b)) ' 

where Cap(a) and Cap(b) are the total capacitances of subtrees Ta and Tb, respectively, and r and 
c are the unit length resistance and capacitance, respectively. If 0~<x ~< 1, we have found lea[ = x l  
and [ e b l = l -  lea]. Otherwise, detour occurs, i.e. lea[ + ]eb] > l. Again, without loss of generality, let 
t(a) > t(b). Then, Je~[ =0 ,  and [eb[ is obtained by solving the following equation [129]: 

t(a) = t(b) + r[ebl(eap(b) + cleb[/2 ). 

Note that the above computation assumes both edges ea and eb have unit wire width. A simple 
extension can be made to achieve zero-skew merging even when ea and eb have different widths 
[139]. 

Given lea[ and ms(a), the DME method computes the largest tilted rectangular region (a rectangle 
rotated by 45 °) such that all points in the tilted rectangular region, referred to as trr(a), is of 
a distance of  at most le~] from ms(a). Similarly, trr(b) is computed. Then, ms(v) is obtained by 
taking the intersection of trr(a) and trr(b) as shown in Fig. 30. At the end of  the bottom-up merging 
process, a tree of  merging segments is computed. We call such a tree a merging tree. Also, the 
edge length le,,I is known for each node v in the merging tree. 

Given the merging tree, the top-down phase embeds each internal node v of  G as follows: (i) if 
v is the root node, then DME selects any point in ms(v) to be /(v); or (ii) if v is an internal node 
other than the root, DME chooses I(v) to be any point on ms(v) that is of distance levi or less from 
the embedding location of v's parent. 

Fig. 29 gives an example of the DME algorithm under the path length delay model for a clock 
source So and sinks sl-s4 with a topology shown in Fig. 29(a). Fig. 29(b) gives the merging segments 
ms(x), ms(y),  and ms(s0) of the internal nodes x, y, and So, respectively. Each internal node is then 
embedded at a point on its merging segment that is closest to its parent as shown in Fig. 29(c). For 
path length delay, DME returns the optimal solution, i.e., a tree with minimum cost and minimum 
source-sink path length for any input sink set S and topology G. DME is not optimal under the 
Elmore delay model [126]. 

Using the topologies generated by the KCR algorithm, the DME algorithm averages more than 9% 
and 15% cost reductions over the clock routing trees constructed by the KCR and MMM algorithms 
only, respectively. The results are marginally better than those produced by combining BB with 
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Fig. 31. Comparison of DME zero-skew routing in (b) and BST/DME bounded-skew routing in (c) for the prescribed 
topology G in (a). BST/DME lowers the routing cost by allowing non-zero skew bound. Note that in (b) the merging 
segments are depicted by dashed lines, and in (c) the merging regions are depicted by shaded polygons. 

DME. As we shall see in Section 5.2.3, further cost reduction can be obtained when we interleave 
topology generation with embedding. 

5.2.2. Bounded-skew embedding 
While the DME algorithm considers only zero-skew, the BST/DME algorithms proposed by 

[133,134, 16] consider bounded-skew clock routing. Similar to the DME algorithm for zero-skew 
tree, the BST/DME algorithms compute a bounded-skew routing tree (BST) for a prescribed topol- 
ogy in two phases: bottom-up and top-down. The enabling concept is that of a merging region, 
which generalizes the concept of merging segment in [126, 130, 127] for zero-skew clock trees. Fig. 
31 highlights the difference between the DME algorithm for zero-skew routing and the BST/DME 
algorithms for bounded-skew routing. In the BST/DME algorithms, the bottom-up process constructs 
a tree of merging regions (in contrast to merging segments for zero-skew tree) which contains pos- 
sible locations of the internal nodes in the BST. The top-down process then determines the exact 
locations of all internal nodes. 

Two approaches were proposed to construct the merging regions: (i) the boundary merging and 
embedding (BME) method [133,134] and (ii) the interior merging and embedding (IME) method 
[16]. We consider only the path length delay formulation as in [133,134]. Extension to the Elmore 
delay model can be found in [16]. 

Boundary merging and embedding (BME). The BME method utilizes only the boundaries of 
merging regions to construct new regions: Given merging regions mr(a) and mr(b) of v's children, 
the merging region mr(v) is constructed by merging the nearest boundary segments of mr(a) and 
mr(b). The nearest boundary segments are called joining segments. A point p in the joining segment 
of mr(a), denoted JS(a), can merge with a point q in the joining segment of mr(b), denoted JS(b) ,  

if d(p, q) = d(mr(a), mr(b)). 
There are several interesting properties of a merging region under bounded-skew routing which 

allow it to be computed in constant time. Note that each point p in the merging region has two 
delay functions: max-delay and min-delay which gives the maximum and minimum delays from p 
to sinks in subtree Tp rooted at p, i.e., the maximum and minimum sink delays in Tp. A merging 
region under path length delay is convex and is bounded by at most 8 well-behaved segments, which 
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Fig. 32. Merging mr(a) with mr(b) using Manhattan arcs La and Lh, respectively. Each pair of coordinates associated 
with a Manhattan arc (or point) represent (max-delay, min-delay) of the line segment (or point). (a) the max-delay and 
rain-delay of any point p along a shortest path connecting two points on La and Lb with length = d(La,L~). (b) Properties 
of path length delays and skew over a line segment l connecting two points a C La and b E Lb. The first and second 
coordinate pairs associated with points a and b represent (max-delay, rain-delay) before and after merging, respectively. 

are Manhattan arcs (-4-45 ° lines) and rectilinear line segments (horizontal or vertical line segments) 
with the following properties: 

(i) All points along a boundary Manhattan arc have constant max-delay and constant min-delay 
and thus, the skew value along a boundary Manhattan arc is constant. 

(ii) The max-delay along a boundary rectilinear line segment is strictly decreasing with a slope of 
- l  and then increasing with a slope of + 1. On the other hand, the min-delay along a boundary rec- 
tilinear line segment is increasing and then decreasing. Therefore, the skew values along a boundary 
rectilinear line segment are linearly decreasing, then constant, then linearly increasing (Fig. 32(b)). 
Locations which define the interval of  constant skew region are called skew turning points. 

Therefore, the joining segments from mr(a) and mr(b) are either parallel Manhattan arcs or 
parallel rectilinear line segments. Let JS(a) and JS(b) be the two joining segments, and Tjs(~) and 
Tjs(b) be subtrees rooted under JS(a) and JS(b), respectively. To merge two parallel Manhattan 
joining segments JS(a )  and JS(b), m r ( v )  is computed as follows (Fig. 33): 

(i) Given the constant max-delay of Tjs~), and the constant max-delay of Tjs(b), use the delay 
balancing method in Section 5.2.1 for zero-skew merging to find a Manhattan arc l such that the 
max-delay from l to sinks in Tjs(~) and Tjs(b) are the same, i.e., 

m a x { t ( p , x ) [  p E l ,x  E sink(Tjs(~))} = m a x { t ( p , x )  l p C 1,x E sink(Tjs(b))}. 

Similarly, find l' such that the min-delay from l' to sinks in Tjs(,) and Tjs(b) are the same. l and l' 
bound a region as shown in Fig. 33(a). 

(ii) Expand the region bounded by l and l' towards JS(a )  and JS(b) by ½{B-  max(skew(Tjs(,)), 
skew(Tjs~b)))}, where B is the skew bound (Fig. 33(b)). The expanded region is ms(v). 

To merge two parallel rectilinear joining segments, for p either a skew tuming point or an end 
point of  the joining segments, merge p with the point directly opposite it on the other joining 
segment by the two step computation given above. A set of merging regions is therefore produced. 
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Fig. 33. Merging of two Manhattan joining segments JS(a) and JS(b): (a) balance the max- and rain-delays (given in the 
pair of coordinates) of Ta and Th, and (b) expand the region bounded by 1 and l' towards JS(a) and JS(b) by 1 unit for a 
skew bound of 6. 
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Fig. 34. Merging of two rectilinear joining segments: (a) for each skew turning point and each segment endpoint, compute 
the merging regions of the point with the point opposite it on the other segment, and (b) perform a walk to join the 
vertices of these merging regions. 

Subsequently, a walk is performed to join the vertices of  these merging regions to produce the new 
merging region as shown in Fig. 34. 

Interior Mergin9 and Ernbeddin9 (IME). IME uses a set of sampling segments (possibly with 
points interior to the merging regions) from each child merging region, instead of  only one joining 
segment from a merging region as in the BME method. Merging interior points has the advantage 
of  better utilizing the skew budget throughout the bottom up merging process, which may result in 
a larger merging region at a parent node and possibly reduce the total merging cost (Fig. 35). 

Only well-behaved line segments are used to sample a merging region. Merging of  two regions 
involves two sets of  sampling segments and generates a set of  merging regions for the parent node 
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Fig. 35. Interior merging for a skew bound of 2 units between mr(x) and sink $3 (a) The merging region mr(x) (due to 
merging of Sl and s2) is sampled by three Manhattan arcs {ss:{,ss~, ss~}. (b) Merging these sampling segments with sink 
s3 produces three merging regions where R, is produced by merging s3 with ss~. R] is also the merging region obtained 
by BME when mr(x) merges with s3. Note that it is smaller than R3. 

(Fig. 35). For efficient and practical implementation, the IME method limits the number of regions 
associated with a node by a constant, say k. Each region is in turn sampled by exactly s sampling 
segments when the region is being merged with other regions of the sibling node. A key step in the 
IME method lies in choosing, via dynamic programming, a set of "best" merging regions (no more 
than k of them) among the set ~ of (at most) k2s 2 regions generated for the parent node. 

A merging region R E ~ is associated with three values: (i) Cap(R), the total capacitance rooted 
at region R which is a constant for all point in R, (ii) rain_skew(R), the minimum possible skew 
among all points in R, and (iii) max_skew(R), the maximum skew possible within the merging 
region. A merging region R of v is said to be "redundant" if there exists another merging region R' 
of  v such that min_skew(R') < min_skew(R) and Cap(R') < Cap(R) (see Fig. 36(a)). Let IMR(v) = 
{R~,R2, . . .R , , }  denote the set of  irredundant merging regions of v with Ri's arranged in descending 
order of Cap(Ri); then min_skew(Ri) < min_skew(R/+l ) for all i with 1 ~ i  < m. 

The set of  irredundant merging regions forms a staircase with m - 1 steps as shown in Fig. 36(b). 
The area of the staircase of a set of merging regions of node v, denoted area(v), is defined to be 
the area under the staircase between the skews rain_skew(R] ) and min_skew(Rk): 

m - I  

area(v) = ~ {min_skew(Ri+l ) - min_skew(Ri)} × Cap(Ri) 
i=l  

In order to retain a good spectrum of no more than k merging regions from IMR, the IME method 
solves the following (m,k)-sampling problem optimally using a dynamic programming approach: 
Given a set of  m irredundant merging regions, IMR, find a subset of  k (2 ~<k ~< m) merging regions 
such that after removing each of  the m - k  intermediate merging regions, the remaining regions 
IMR' has minimal error, i.e., a r e a ( I M R ' ) -  area(IMR) is minimal. 

In summary, to compute the merging regions for a node, IME first computes kes 2 merging regions 
due to merging of its children. Redundant merging regions are then removed and a dynamic pro- 
gramming algorithm is applied to select among the m irredundant merging regions, k "best" merging 
regions to be associated with the node. 
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Fig. 36. (a) Set of  merging regions. (b) Set of  irredundant merging regions form a staircase. (c) Removing an intermediate 
step results in a new staircase with an error depicted by the shaded region. 

The IME method requires a longer run time than the BME method due to the (m,k)-sampling 
algorithm. The run time can be improved if we use other faster selection heuristics such as choosing 
k merging regions with the smallest total capacitances. However, the impact on the quality of the 
routing solutions is not clear. On the other hand, the advantage of the IME method is that it 
considers interior merging points and might generate larger merging regions and therefore reduce 
merging cost at the next level. Although the IME method is expected to produce routing solutions 
with smaller costs when compared to solutions constructed by the BME method, this is not always 
the case as shown in the experimental results of  [16]. However, this could be due to the use of small 
sampling sets (k = 5 and s = 7) with only Manhattan arcs as sampling segments in the experiment. 
IME performs marginally better than BME for fixed topology. However, in the case of combining 
topology generation with embedding (Section 5.2.3), both methods have comparable results, with 
IME producing better results for larger circuits when the skew bound is large. 

A very recent work by Oh et el. [163] can construct an optimal minimum-cost bounded delay 
routing for a given topology using linear programming under the path length delay model. The 
bounded delay routing tree satisfies the upper and lower bound delay constraints imposed by the 
designer. Clearly, the bounded delay routing tree is also a bounded-skew tree. However, for a skew 
bound B, there are many combinations of  the upper and lower bound delays. It is difficult to choose 
a "good" combination of upper and lower bounds for a specific allowed skew bound. The authors 
also noted that the approach cannot be extended to handle Elmore delay easily [163]. 

5.2.3. Topology 9eneration with embedding 
Since DME requires an input topology, several works [126, 128, 130] have thus studied topology 

constructions that lead to low-cost routing solutions when DME is applied. These methods interleave 
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topology construction with merging segment computation using DME. The works by [133,134, 16] 
adopt a similar approach to construct BSTs by interleaving topology construction with merging 
region computation using BME or IME. 

Greedy-DME. The most successful method in this class is the Greedy-DME method of  Edahiro 
[128], which determines the topology of the merging tree in a greedy bottom-up fashion. Let K 
denote a set of merging segments which initially consists of all the sink locations, i.e., K = {ms(s,)}. 
Greedy-DME iteratively finds the pair of nearest neighbors in K, i.e. ms(a) and ms(b) such that 
d(ms(a) ,ms(b) )  is minimum. A new parent merging segment ms(v) is computed for node v from a 
zero-skew merge of ms(a) and ms(b); K is updated by adding ms(v) and deleting both ms(a) and 
ms(b). After n - 1 operations, K consists of the merging segment for the root of the topology. 

In [132], O(nlog n) time complexity was achieved by finding several nearest-neighbor pairs at 
once, i.e., the algorithm first constructs a "nearest-neighbor graph" which maintains the nearest 
neighbor of  each merging segment in K. Via zero-skew merges, IKi/k nearest-neighbor pairs are 
taken from the graph in non-decreasing order of distance, where k is a constant typically between 
2 and 4. In some respects, this approach is similar to the KCR algorithm in which a matching is 
computed in each iteration [161]. The solution is further improved by a post-processing local search 
that adjusts the resulting topology (cf. "CL+I6" in [132]). Greedy-DME achieves 20% reduction in 
wiring cost compared to the results which were obtained by using BB followed by DME [130]. 

Chou and Cheng [164] proposed a simulated annealing approach to construct a zero-skew tree. 
A "tree grafting perturbation" operation is used to swap two subtrees during the annealing process. 
The algorithm has been applied to both Manhattan and Euclidean geometries. For the Manhattan 
distance metric, the heuristic produces tree lengths which are about 2% worse than those generated 
by CL+I6 [132]. 

Greedy-BST/DME. Similar to the Greedy-DME algorithm, Huang et al. [134] proposed a Greedy- 
BST/DME algorithm to construct a bounded-skew tree. A key difference between the Greedy- 
BST/DME algorithm and the Greedy-DME algorithm is that the former algorithm allows merging 
at non-root nodes, whereas Greedy-DME always merges two subtrees at their roots. 

In DME, two merging subtrees are always merged at their roots so as to maintain zero skew. 
However, the shortest connection between two bounded-skew trees may not be between their roots. 
Indeed, subtrees may be merged at non-root nodes as long as the resulting skew is ~<B. This 
flexibility allows reduced merging cost and is the key merit of the Greedy-BST/DME approach. 
Consider the example in Fig. 37(a), where the eight sinks are equally spaced on a horizontal line. 
When B is near zero, the minimum tree cost can be obtained by merging subtrees 7"1 and T2 at their 
roots as shown in the top example. However, this topology is bad when B is large, even if the costs 
of the two subtrees can be minimum. When the skew bound is large, ideally one should adjust the 
subtree topology so that the roots of subtrees become closer while the subtree costs remain the same 
or increase slightly. This is shown in the bottom example in Fig. 37(a). Effectively, Tt and T2 are 
merged at non-root nodes. 

Fig. 37(b) illustrates in more details how the tree topology is adjusted. First, the root is moved 
down to some tree edge, say eu = uv, so that the root becomes the parent of nodes u and v. Then 
the tree topology is adjusted accordingly by adding, deleting, and redirecting some edges. The costs 
of the two subtrees may increase but the overall cost of the tree after merging may be better. 

Merging with non-root nodes is a powerful topology generation method. The work by Cong and 
Koh [133] is a simple extension of Greedy-DME, i.e., it considers merging of root nodes only. The 
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Fig. 37. (a) An example showing that given skew bound B >> 0, changing the subtree topology before merging will 
reduce the merging cost. (b) Repositioning the root in changing the topology. 

wire length reduction averages 19% when the allowed skew increases from 0 to oc. The Greedy- 
BST/DME algorithm by Huang et al. [134] can achieve an average of  42% wire length reduction 
when varying the skew bound from 0 to oo. In fact, it very closely matches the performance of the 
best-known heuristics for both the zero-skew [132, 165] and infinite-skew limiting cases, i.e. Steiner 
routing (Section 3.1.2). 

For realistic skew bounds in the range 0-150ps, the Greedy-BST/DME algorithms in [16] averages 
26.6% wire length reduction when compared to the best reported zero-skew solutions by the CL+I6 
algorithm in [132]. 

5.3. Planar clock routing 

It is preferable to route clock nets on the metal layer with the smallest RC delay since this avoids 
the use of vias in the clock net and makes the layout more tolerant of  process variations. This 
motivates the following papers on planar clock routing. In these papers, they assumes Euclidean 
planarity, i.e. all edges in the tree do not cross when an edge is represented by a straight line 
segment (instead of rectilinear line segments for the Manhattan geometry) on a Euclidean plane. 
Nevertheless, the cost of  an edge is still in the Manhattan distance metric. It is not difficult to see 
that given a routing solution with Euclidean planarity, we can always embed a straight Euclidean 
segment by a rectilinear staircase to get a planar rectilinear routing solution. 

5.3.1. Max-Min planar clock routing 
The planar clock routing problem was first studied by Zhu and Dai [135]. They proposed the 

Max-Min algorithm which assumes a given source location. At the start of  the algorithm, the source 
forms a single-node tree T. At each iteration, the algorithm grows T by selecting a sink si not 
attached to T and connecting si to T. The algorithm stops with a planar clock routing tree after all 
sinks are attached to T, i.e., after n iterations. 

One of the two key components of the Max-Min algorithm is the order in which an unattached 
sink is connected to T, which is akin to topology construction. The other key step of the algorithm 
is to connect the selected sink to the tree such that zero path length skew is maintained. A branching 
point on T such that the selected sink can be connected to while satisfying the zero-skew constraint 
is called a balance point. A balance point is feasible if it does not violate the planarity constraint. 
There are many feasible balance points for an unattached sink. The feasible balance point with the 
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minimum Manhattan distance to the sink is the minimal balance point and the Manhattan distance 
between the sink and the minimal balance point is the minimal balance distance. 

The two key components of the Max-Min algorithm are governed by the Max-rule and the Min- 
rule, respectively. The two rules are given as follows: (i) Max-rule: at each iteration, always choose 
the unattached sink whose minimal balance distance is the maximum among all unattached sinks, and 
(ii) Min-rule: an unattached sink is always connected to the minimal balance point. The Max-rule 
ensures planarity of the routing tree and the Min-rule aims to reduce the routing cost. The two rules 
guarantee that the tree produced by the algorithm is planar and has zero path length skew and the 
path length delay is minimal. 

5.3.2. Planar-DME clock routing 
The key to the Planar-DME algorithm proposed by Kahng and Tsao [136, 137] is that a single 

top-down pass can produce the same output as the two-phase DME algorithm at the expense of 
computation time under the path length delay model. This stems from the following facts [126]: 

(i) Given a set of  sinks S with diameter diameter(S), if one constructs for each sink si in S a 
tilted rectangular region TRR(si) centered at si such that all points in TRR(si) is of  a distance of 
diameter (S)/2 from s~, then the intersection of all TRRs of sinks gives the merging segment of  the 
root node for any topology of S. 

(ii) For any internal node a of a topology, if a 's  parent is v, then the edge eu connecting v to a 
has length = rad ius (S , ) -  radius(S~,) where radius(S) = diameter(S)/2 for set S, and S,(S~.) is the 
set of  sinks under a(v). 

Therefore, given a topology, it is possible to determine the merging segment ms(v) (from (i)) and 
the edge length le~,l (from (ii)) of  an internal node v without going through the bottom-up process. In 
other words, in a single top-down pass, one can compute ms(v) and le~,[ and then perform embedding 
for any node v in the topology. 

The basic idea of planar-DME is that the topology is determined based on the existing routing 
(such that future routing will not interfere with the existing routing) using the concept of (Euclidean) 
convex polygon. At each iteration, Planar-DME is given the location l(p) of a parent node p, S' C S 
and a convex polygon Ps, containing S' and l (p)  such that the existing routing occurs outside or 
on the boundary of Ps,. We want to compute a planar tree of S' rooted at node v, with parent p. 
Note that l (p)  has already been determined earlier in the top-down process. 

Based on fact (i), ms(v) is computed and then v is embedded on ms(v) according to the embedding 
rules given in Fig. 38. The embedding rules ensure that v is embedded within Ps, and so the routing 
from p to v is within Ps, and does not interfere with the existing routing. Based on the relative 
locations of p and v, a splitting line is then defined according to the partitioning rules given in Fig. 
38. The splitting line divides Ps, into two convex polygons Ps~ and Ps~ and therefore, partitions S' 
into two non-empty subsets S I and S~. Note that the splitting allows the routing from p to v to be 
on the boundary between Ps; and Ps: and therefore, all existing routing is outside Ps I and Ps'~. The 
algorithm then recursively operates on S I and S;. 

Kahng and Tsao [ 137] later extended the planar-DME algorithm from the path length delay model 
in [136] to the Elmore delay model. The Elmore-planar-DME algorithm uses the topology generated 
by the planar-DME algorithm under the path length delay model, and then reconstructs the ZST in 
a bottom-up fashion: planar embedding is applied to all planar subtrees at the same level in the 
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Fig. 38. Rules to choose the embedding point of v on ms(v) = pl p2 and the splitting line to partition a sink set. 

topology; given a pair of  sibling planar subtrees, their parent node is embedded to ensure planarity 
by (i) finding the shortest planar path between its two children and (ii) embedding the parent node 
at some point along the planar path. The DME algorithm for Elmore delay model is then applied to 
ancestors of  the parent nodes. In other words, a tree of merging segments is reconstructed to embed 
the ancestors of  the parent nodes. Another iteration of planar embedding followed by DME is then 
applied at the next higher level. This continues until the entire ZST is planar. For a topology of 
height h, the Elmore-Planar-DME algorithm uses h iterations of  planar embedding followed by DME. 

The Max-Min and Planar-DME algorithms achieve planarity through higher routing costs. It is 
interesting to note that the Max-Min algorithm produces X-tree-like solutions, whereas the planar- 
DME algorithms produce H-tree-like structures. As mentioned, X-trees tend to be more costly than 
H-trees. The planar-DME algorithms incur only an average penalty of 9.9% additional routing cost to 
achieve planarity while the planar clock trees generated by the Max-Min algorithm have an average 
of 35% higher routing cost when compared to the best (non-planar) zero-skew solutions in [132]. 

5.4. Buffer and wire sizing for clock nets 

In this section, we deal with buffer and wire sizing, which consider sizing of  wires, and insertion 
and sizing of buffers in clock routing to minimize clock skew, clock delay, and the sensitivity of  the 
clock tree to process variations, which may cause the width of a wire/transistor on a chip to differ 
from the specified width and/or device parameters such as carrier mobilities and threshold voltages 
to vary from die to die. Process variations introduce process skew since resistances and capacitances 
of wires and active devices are changed. 

Consider a RC tree. From Section 2.1, the Elmore delay from the clock driver at the source So 

to sink si is ti = RjCap(s0) + ~ e ~ E P a t h ( s o ,  s i ) l e ~ l r / w e , ( ~  + Cap(v)). For simplicity, we ignore the 
fringing effect but it can be added easily into our formulation. Taking the partial differential ~ti/Owe, 
for any edge e,, along the So-S~ path, 

Oti _ Rdc~le~,l le~lrCap(v) + Z ]e'lrc~leL'l (32) 
(~We, W2 e,, CAns(e, ) We,, 
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If e~ is not along Path(s0,s:), 

0t/ le, lrcole.L 
-- Rjcale.I ÷ ~ (33) 

~We~ e. C Ans(e.)N Path(s~)~i ) We. 

The partial differential captures the delay sensitivity with respect to a wire. A positive value of 
sensitivity indicates a case where widening the wire increases the delay while a negative value of 
sensitivity indicates that the delay decreases. If we compute the optimal wire width to minimize sink 
delay (for example, by setting Oti/(?w,. = 0 for Eq. (32)), we see that wires closer to the root should 
have wider wire width, since they drive larger capacitance (Cap(v)). Note that the term R: ,[ev l  in 
the equation prevents the wire e, from getting too wide. In practice, we can always impose an upper 
bound constraint on the maximum wire width. 

Also observe that the larger the downstream capacitance (Cap(v)), the larger the delay sensitivity 
(Eq. (32)). Buffer insertion can desensitize the clock nets by reducing downstream capacitance of 
wires closer to the root. In other words, sink delay can be minimized by appropriate wire sizing and 
buffer insertion. Similarly, we can also define the delay sensitivity due to buffer by writing the sink 
delay in terms of the buffer sizes and taking the partial differential of  the delay with respect to the 
buffer sizes. It is obvious that appropriate buffer/driver sizing can also reduce delay sensitivity. 

We are also interested in skew sensitivity, which measures how a change in wire/transistor width 
can affect the clock skew. In particular, skew sensitivity due to process variations can be used to 
measure how reliable a clock tree is. However, due to the definition of clock skew as max:,/It: - tjl , 
it is very difficult and costly to compute skew sensitivity exactly; the exact approach would have to 
compute the worst case clock skew due to process variations. The following approach may be used 
to estimate skew sensitivity [144]. To compute the estimated worst case clock skew, the algorithm 
computes )'or each sink si, the best possible and worst possible delay due to process variations. For 
simplicity, the algorithm computes the worst (best) delay for sink s: by decreasing (increasing) the 
wire widths for edges on Path(s0,si) by Aw ..... and increasing (decreasing) the wire widths of all 
edges off the path by Aw . . . .  where Awma× is the maximum width variations. The worst-case skew 
under process variations is obtained by taking the difference between the worst-case delay of one sink 
and the best case delay of another sink. The difference between the skew of the clock tree (without 
process variations) and the worst-case skew under process variations gives a reasonable estimate of 
the skew sensitivity. Note that we can use a similar approach to estimate the skew sensitivity due 
to deviations of transistor widths and device parameters caused by process variations. 

In this section, we discuss various wire sizing, buffer insertion and buffer sizing techniques which 
make use of delay sensitivity and skew sensitivity to guide the optimization. These methods not 
only reduce the delay and skew sensitivities, but also have significant effect on reductions of wire 
length, rise/fall times, and power dissipation. 

5.4.1. Wire sizin9 in clock routin9 
In the following, we discuss three results on wire sizing. The first algorithm achieves minimal 

skew by making slower paths faster by wire sizing [167] (instead of making the faster paths slower 
by snaking in the DME approach). The second approach considers wiresizing to minimize clock 
delay and uses the DME approach to ensure zero skew [139]. The third heuristic considers not only 
the nominal skew due to sink delays but also the process skew. At the same time, it tries to meet 
a specified target delay [141]. 
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Both Zhu et al. [167] and Pullela et al. [141] assume discrete wire sizes, whereas Edahiro [139] 
assumes continuous wire width although it can also be modified to consider discrete wire widths. 
Since it is not possible to achieve arbitrary precision during fabrication, it is better to have a 
layout with discrete widths sizes and transistor sizes in order to eliminate skew due to mapping 
of continuous widths sizes to discrete widths sizes. [167] can handle constraint on the maximum 
wire width, whereas [139, 141] can be extended easily to consider maximum wire width constraint. 
Note that the constraint on the maximum wire width, is imposed by the available routing resource. 
On the other hand, the constraint on the minimum wire width is due to the fabrication technology. 
Moreover, the maximum allowable current density through the wire also provides a lower bound 
for the wire width, so that the wire can withstand the wear-out phenomenon called electromigration. 
Note that different segments of wires may have different upper and lower bounds. 

The optimal sizing method (OSM) proposed by Zhu et al. [167] considers distributed RC and 
lossy transmission line models using a generalized delay macromodel which is based on scattering 
parameters of interconnect [168]. Also, it can handle general clock network which may includes 
loops. The skew minimization problem is formulated as a least-squares estimation problem: the error 
of  a sink si is defined to be gi = ti - tj where t r is the least delay among all source-to-sink delays. 
The least-squares estimation problem aims to assign widths to the m wires in the general network 

n such that the sum of squares of  error q~(W~,W2,...,Wm) = ~i=l g~ is minimized. 
The OSM uses the Gauss-Marquardt's method [196] to solve the optimization problem. The 

Gauss-Marquardt's method takes an initial wire width assignment, W~ and computes a new wire 
width assignment Wi+~ based on a n × m delay sensitivity matrix for a clock tree/mesh of n sinks 
and m edges. The (i , j)th entry of the sensitivity matrix measures the delay sensitivity of sink si with 
respect to edge ej, i.e., ?~ti/c?w~. In the next iteration, ~+1 is used to update the error q~ and delay 
sensitivity matrix for the computation of W~+2. The procedure continues until the skew is reduced to 
a required value. The key to fast convergence is a good starting point W0. The following rules are 
applied to guide the initial wire width assignment: (i) the edges in the tree are sized in the breadth 
first search order, (ii) at each level, the ancestor edges of the slowest terminal is sized first, and 
(iii) each edge is assigned with the feasible width that results in the smallest skew. The three rules 
can be generalized to handle buffered clock tree. 

A clock mesh and two clock trees were used to evaluate the OSM algorithm under both RC 
model and lossy transmission line model. Zhu et al. [167] reported smaller skews for optimized 
circuits when compared to the original circuits. The authors noted that the skew reduction should be 
more significant for clock trees than for clock meshes since stronger interaction among clock sinks 
in clock meshes results in less skew sensitivity with respect to wire widths. The skew reduction is 
achieved at the expense of an average of 200% additional wiring area. The clock delay may get 
worse in some cases. 

Edahiro [139] proposed a wire sizing algorithm which performs wire sizing based on delay sen- 
sitivity due to wire to minimize clock delay. The algorithm constructs a clock tree in two phases. 
In the first phase, the algorithm applies Greedy-DME [128] to construct a path length balanced 
clock topology with edge length information. Using the topology computed in the first phase, the 
second phase of the algorithm applies a modified version of DME under Elmore delay to construct 
a wire-sized clock routing tree. 

The modified DME algorithm works as follows. Consider merging of two zero-skew subtrees T, 
and T~,. The optimal width of the two edges e~ and el, merging T, and Tb is first computed using 
an approach similar to setting Eq. (32) to zero and then solving it. Note that the optimal width 
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assignment should actually depend on both upstream resistance and downstream capacitance as in 
Eq. (32). Since the wire widths at the upstream are unknowns in the bottom process, they are 
approximated. For example, nominal wire widths may be used for the upstream edges. Then, with 
consideration of we,, and we,,, the minimum merging cost [e,[ + leb[ is computed using a similar 
approach by Tsay [129] (see Section 5.2.1). At the end of  the bottom-up merging, the top-down 
embedding of  the original DME approach is applied to obtain a wiresized clock tree. 

The wire sized clock trees constructed by Edahiro [139] satisfy the zero skew constraint while 
achieving 10-50% shorter total delay time than the unsized clock trees in [132]. However, no result 
on the increase in wiring area is reported. Although the algorithm does not place a upper-bound 
constraint on the wire width, the computed wire widths are not expected to get too large since the 
algorithm considers the clock driver strength. Since the computed edge lengths differ from the original 
path length balanced tree and the wire widths may be far from optimal due to the approximation, 
it is recommended that the second phase (i.e., the modified DME algorithm) be repeated for a few 
iterations. However, it is not clear if the process will converge (i.e., edge lengths and wire widths 
do not change in two successive applications of the modified DME algorithm). Note that since wire 
widths are selected based on delay sensitivity, delay sensitivity of the clock tree due to process 
variations is minimized indirectly. 

In [141], Pullela et al. optimized the wire widths in three steps to achieve a reliable non-zero 
skew clock tree under the Elmore delay model: 

(i) The first step selects the suitable wires to widen in order to bring the average delay of the tree 
n to a specified target delay, denoted l tgt .  Each edge eL is assigned a cost D, = ~=l((~ti/Ow,~ ) ( t i -  t t g t ) .  

Note that if t~ > ltg t and (~tj~We,) < O, D~: decreases. At each iteration, the wire with the least 
cost is widened by a constant amount Aw, which is the minimum grid size based on the fabrication 
technology. The process continues until the target delay t tg  t is achieved. 

(ii) The second step tries to minimize the process skew by desensitizing all sink delays. The 
algorithm uses a sinyle-defect model where the width of a single wire e,~ changes due to a single 
process variation. If Awma× is the maximum change in width due to process variations, the maximum 
change in delay is Awmax~ti/~w~,. To ensure the change in skew is within the maximum allowable 
change in skew AB, the width We, is widened such that AwmaxOt,/~We, < AB/l where l is the depth 
of the tree. Therefore, if all edges along a source-to-sink path change their widths, the total change 
in delay is still less than AB. 

(iii) The final step aims to reduce the nominal skew, or simply, the skew. get Ati,, denote the 
change in the delay of sink si when the width of wire w~, is changed by Aw. At~, is estimated by 
Aw((?tjc~w~, ). Zero skew is achieved when At~,, = lave - -  t, for all sinks s~ in the tree, where lave is the 

V'" /it average delay. Each edge we, is assigned a cost D,, = ~ = ~  ~ + Ati,, tav~l). If there is a wire with 
zero cost, zero skew is achieved. Otherwise, a wire with the least cost is chosen to be widened by 
A w since the goal is to find a wire with zero cost quickly. 

However, step i may undo what step i - 1  has accomplished. To prevent step (iii) from undoing the 
desensitization process in step (ii), Pullela et al. [141] suggested tracing back from the widened edge 
in step (iii) to the root, and widening wires on the way up to ensure that Awmax(~ti/~we, ) < AB/l 
holds. However, it is not clear how we can prevent steps (ii) and (iii) from messing up the work 
done in step (i). 

Applying the algorithm to clock trees routed by the MMM method [159], Pullela et al. [141] 
reported an average of 7.5X reduction in the skews, reducing the original skews from the order of 
l ns to skews in the order of 0.1ns. Simulation results also verify that the optimized clock trees 
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have worst-case skews (under process variations) which are in the range of 37-74% smaller than 
the original skews. It would be an interesting study to find out the worst-case skew of zero-skew 
routing trees such as those reported in [132] and evaluate how the algorithm proposed by [141] can 
impact the skew and reliability (in terms of worst-case skew). While the intention is to improve 
skew and reliability of clock tree, [141] also reported improvement in terms of an average of 1.8X 
clock delay reduction after applying the algorithm. Again, the paper did not report the amount of 
additional wiring area incurred. 

A very recent work by Desai et al. [169] considered wire sizing of clock distribution networks 
(not necessarily a tree) using a network flow-based approach. The algorithm may even remove 
an edge from the networks as long as the performance and connectivity is not adversely affected. 
Experimental results on high-performance microprocessors such as Digital's 275 Mz Alpha 21164A 
and 300 MHz Alpha 21164 showed up to 16% and 9.6% reductions in interconnect capacitance from 
the original distribution networks, respectively [169]. 

5.4.2. Buffer insertion in clock routin9 
It is a common practice to use cascaded-tapered drivers with exponentially increasing sizes at the 

root of  a clock tree. In some cases, it is possible to satisfy all design constraints by using drivers at 
the root only. However, as clock trees get larger, it can become prohibitively expensive to use huge 
driver due to chip size and power constraints. Buffer can be inserted to the clock tree to decouple 
capacitances of the interconnects and reduce clock delay and total power dissipation of the clock 
net. Moreover, since it is desirable to keep the clock waveform clean and sharp, it is easier to satisfy 
the rise/fall time constraints using a buffered clock tree than by a clock tree driven at the root only. 
In addition, it is possible to reduce total wire length by buffer insertion. For example, instead of 
introducing detour wire length to balance delays, buffer can be inserted. As the feature size becomes 
smaller, this approach has become more attractive and less expensive in terms of chip area. 

The earlier works by Dhar et al. [157] and Wu and Shermani [170] considered insertion of 
uniform-size buffers in a H-tree structure. The more recent works by Vittal and Marek-Sadowska 
[145] and Chen and Wong [171] perform buffer insertion simultaneously with clock routing. The 
work on buffer insertion and sizing will be presented in Section 5.4.3. The work on buffer insertion 
and wire sizing will be presented in Section 5.4.4. 

The algorithm proposed by Dhar et al. [157] inserts buffers into a full H-tree distributing clock 
signal to a symmetric N x N modules in three steps: (i) folding the H-tree into a single line, (ii) 
inserting the buffers into the single line, and (iii) unfolding the buffered single line. Due to the 
symmetrical structure of a H-tree, a H-tree with a height of  m can be folded into a single line with 
m sections, where starting from the source, the unit resistance of the next section decreases by a 
factor of  2 and the unit capacitance increases by a factor of  2. The process is shown in Fig. 39(a). 
The next step is to insert buffers into the non-uniform single line (folded H-tree). To determine the 
optimal number of buffers, say b, to be inserted, the algorithm performs a linear search for b. For 
each b, a continuous function t is used to approximate the line delay. To determine the optimal 
buffer locations, a set of  equations is obtained by setting the partial derivative of the delay with 
respect to the position of each buffer to zero. The resulting set of  equations can be solved to obtain 
the optimal locations of the buffers in the single line. The buffered single line is then unfolded to 
generate the buffered H-tree (Fig. 39(b)). 
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Fig. 39. Insert ion o f  buffers to a H-tree by (a)  folding the H-tree into a single line, (b)  insert ing buffers to the folded 
single line and unfolding the clock tree. 

Wu and Sherwani [ 170] used a different scheme to insert buffers to a H-tree. In a bottom-up order, 
the number of  buffers needed for a wire segment from a branching point to the parent branching 
point is computed. Either minimum-size buffers or blocks of  cascaded buffers are inserted to spread 
out the load. While Dhar et al. [157] do not require buffers to be located at Steiner point, Wu 
and Sherwani [170] always insert a buffer at the parent branching point when buffers are inserted. 
Moreover, Dhar et al. [157] assumed that the H-tree uses only one metal layer for routing, whereas 
Wu and Sherwani [170] assumed a metal routing layer and crossunders, which are short polysilicon 
or diffusion segments used to route the H-tree under the power or ground wires. Wu and Sherwani 
[170] reported a 60-90% reduction in clock delay and Dhar et al. [157] reported an order of 
magnitude reduction in the delay. Since [157] inserts buffers at the same hierarchy of the clock tree, 
the skew of  the clock tree should remain intact. However, since buffers are inserted at wire segments 
independently in [170], clock skew might be adversely affected. 

A more recent work by T611ez and Sarrafzadeh [ 172] also used a bottom-up approach similar to that 
of  [170], i.e. computation of the number of buffers to be inserted in a wire segment followed by buffer 
insertion at appropriate locations. T611ez and Sarrafzadeh [172] consider rise/fall time constraints to 
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Fig. 40. Insertion of  a buffer at different locations along the edge eo to drive T~, alone. 

compute the number of buffers required. Again, since buffers are inserted independently as in [170], 
clock skew might be affected. 

The GReedy INternal buffer insertion (GRIN) algorithm proposed by Vittal and Marek-Sadowska 
[145] is an extension of the DME algorithm to consider the possible locations of buffers. In each 
merging step, besides computing the merging segment as in the case of the DME algorithm, the 
buffer insertion algorithm considers the possibility of inserting a buffer to drive one of the child 
subtrees. For example, consider two subtrees Ta and Tb rooted at a and b, respectively. Let v be the 
parent of  a and b. Then, ms(v) shown in Fig. 40(c) can be computed as in the DME algorithm and 
it corresponds to the feasible locations of v when no buffer is inserted. 

A buffer to drive Ta alone may be inserted at the start of  the edge from v to a as shown in Fig. 
40(a). The Manhattan arc Va corresponds to the feasible locations of v for such a configuration. Note 
that V, is nearer to ms(a) than ms(v) since the delay to sinks under a is now longer. Alternatively, 
the buffer may be inserted at ms(a) as shown in Fig. 40(b) and the Manhattan arc V~ corresponds 
to the feasible locations of v for this alternative arrangement. Clearly, V, and V~' captures the two 
extreme possible locations of the buffer. The shaded region bounded by V, and V" corresponds to 
other possible locations of the buffer (between the start of  edge e, and end of edge e~,) with the 
minimum merging cost. Note that V, may be farther from ms(a) depending on the total capacitance 
rooted at a and the buffer parasitics (resistance and input capacitance). Similarly, a buffer may be 
inserted to drive Tb alone. The shaded region between ms(b) and ms(v) shows the feasible locations 
of v when a buffer is inserted to drive Tb. 

The GRIN algorithm follows the flow of the Greedy-DME algorithm of [132] with the following 
modifications. Instead of using just wire length to define merging cost, the cost of the merge is 
defined to reflect both total wire length and total buffer size. Also, instead of storing only a merging 
segment in the DME approach, a merging segment and two polygons are stored to reflect the 
possibilities of  buffer insertion. At the next level of  merging, the merging segment or polygon that 
yields locally minimum zero skew merging cost will be used for merging with that of  sibling node. 
On top of considering buffer insertion during merging, buffer may be inserted to drive the merged 
subtree if the rise/fall time constraint is very stringent. 

Compared to clock trees driven by cascaded drivers at the root only, the buffered clock trees 
constructed by the GRIN algorithm have significantly better rise/fall times. The buffer/driver area 
required by the GRIN algorithm is more than 6X smaller and the algorithm averages 2X reduction in 
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power dissipation. Compared to the zero-skew solutions reported in [132], the clock delay reduction 
is also very significant. The results also showed shorter clock delays when compared to the wire 
sized zero-skew solutions in [139]. 

A shortcoming of inserting buffers to balance clock signal delay is that buffers, being active 
devices, potentially heighten the sensitivity of signal delay (and hence skew) to process variations. 
In most works on buffered clock tree (for example, those to be discussed below), buffers are inserted 
at the same levels of  the clock tree. Therefore, all source-to-sink paths have equal number of buffers 
inserted along the path. Moreover, buffers at the same level have the same size. These restrictions 
may affect the optimality in terms of signal delay and total wire length. However, they help to 
reduce skew sensitivity to process variations. 

Chen and Wong [171] also considered buffer insertion and topology generation simultaneously. 
Instead of considering buffer insertion at each merging step as in the GRIN algorithm, Chen and 
Wong [171 ] consider inserting buffers at the roots of all subtrees. Starting with a set S of subtrees, 
the algorithm performs several iterations of DME-based zero-skew mergings [127, 130, 126] until the 
size of S is reduced by 2 k for some k (which is dependent on the strength of buffer). Note that this 
is akin to clustering of nodes, followed by buffer insertion to drive each cluster. An inserted buffer 
may not be connected to the root directly. Instead, a wire may be used to connect from the buffer 
output to the root of  the subtree such that all subtrees in S have equal sink delay. Note that this 
approach is less sensitive to process variations since all source-to-sink paths have the same number 
of buffers. Experimental results also showed that both signal delay and total wire length are reduced 
when buffer insertion is considered [171]. 

Related works in the area of buffered clock tree synthesis also include [173,174]. Assuming that 
all internal nodes of a clock routing tree will be inserted with buffers, Cho and Sarrafzadeh [173] 
considered distributing the buffers over the routing plane at the expense of minimum increase in 
routing cost to reduce local buffer congestion. The chip is first decomposed into several square 
subregions, say r of  them. Subregion Ri is represented by the center of  mass Si of  the sink set Pi 
in Ri. A cluster spanning graph (CSG) is constructed such that the nodes in the CSG are sinks 
s~,..,,, and centers S~,..,,.. Unless they are sinks, two nodes u, v are connected if d(u,v) is within a 
user-specified vicinity parameter. 

The authors want to construct a degree-distributed spanning tree (DDST) such that (i) each sink 
is connected to a unique center. Let the degree of a center be the number of sinks connected to it. 
Then, (ii) the DDST should have the smallest standard deviation in terms of the degrees of centers. 
Moreover, they want a minimum-length DDST, i.e., a DDST whose tree length is the smallest among 
all DDST of CSG. An approximation algorithm is used to solve this NP-complete problem. Note 
that the minimum-length DDST partitions the sinks into clusters, with each cluster of  sinks rooted 
by a center. Finally, the KCR algorithms is applied to generate the buffered clock tree, with the 
consideration that sinks in the same cluster are matched. Cho and Sarrafzadeh [173] reported that 
buffer congestion is reduced by 20% at the cost of  10% increase in wire length. However, with a 
buffer inserted at every internal node of the clock tree, this is a very expensive (in terms of  power 
and delay) buffer distribution scheme. 

Ramanathan and Shin [174] considered clock routing in an augmented channel intersection graph 
(ACIG). Given an abstract (buffered) topology, the algorithm first finds the best location along 
the peripheral of the ACIG for the clock source in order to minimize the clock delay. Next, with 
consideration of path length delay balancing, optimal routing at each level of the buffered tree is 
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carried out using a branch-and-bound approach. Note that this approach is only applicable to small 
problem instances since it is computationally very expensive. 

5.4.3. Buffer insertion and sizing in clock routing 
While GRIN [145] considers construction of clock topology with buffer insertion, the balanced 

buffer insertion and sizing (BIS) algorithm proposed by Xi and Dai [144] assumes a given unbuffered 
clock tree and insert buffers of  multiple sizes to meet wire skew constraint due to asymmetric loads 
and wire width variations. Since the inserted buffers may have delay variations due to variations of 
process parameters such as carrier mobilities and threshold voltages which may vary in a wide range 
from die to die due to difference in process conditions, the second step of the BIS algorithm is to 
size the PMOS and NMOS devices in the buffers separately to minimize power dissipation subject 
to tolerable skew constraint due to buffers. Note that the BIS algorithm uses minimum width wire 
throughout the entire design in order to minimize wire capacitance and power dissipation. 

The BIS algorithm takes as input a path length balanced clock tree (possibly obtained by DME 
algorithm under path length formulation) and partitions the clock tree into subtrees such that every 
subtree is a path length balanced subtree and all source to sink paths go through equal number 
of levels of  buffers. If L is the path length of the original clock tree and there are b number of 
buffer levels, then the path length between two adjacent levels of  buffers is L/(b + 1 ). To determine 
the optimal b*, the BIS algorithm considers minimization of the worst-case skew due to process 
variations in wire widths. The algorithm performs a linear search for b* from 1,2,... until the 
worst-case skew is less than a user-specified skew bound. 

In the buffer sizing step, BIS considers CMOS inverters, each implemented by a PMOS and an 
NMOS device with size d p and d~, respectively. A PMOS device may have a nominal rise time tr, 
a fast rise time t~ = tr/fp, or a slow rise time t~ = trfp, with jp/> 1. Similarly, we can define the 
nominal, fast and slow fall times of a NMOS device. Considering the pull-up devices and pull-down 
devices along a path separately, let t p (tl ~) denote the total pull-up (pull-down) path delay due to 
PMOS (NMOS) devices of  even (odd) inverters along the So-Si path; then the delay to sink si due 
to buffers is t / - -  t p + t~. Both power dissipation (see [34]) and phase delay (under a model similar 
to the simple switch-level RC model) due to buffers are convex functions of d~ ° and dn. 

The key to the BIS algorithm is to transform the skew constraint to a convex function as follows: 
If the devices are sized such that 

Bb (34) 
t f - t ~ < e  ~ -  2fk 

for any two sinks s~ and s j, and k = P, N, then the skew constraint Bb for buffers can always be 
satisfied. The skew constraint can be rewritten as a convex function as max(t~)~< ~? + tmink where tmink 
is the smallest pull-up path or pull-down path delays for k = P,N among all source-to-sink paths. 
Given a device sizing solution, one can identify the fastest pull-up and pull-down path and calculate 
tPnin and t~min easily. BIS then uses tPmin and tnmin in Eq. (36) of the following posynomial program and 
applies the posynomial programming technique to solve the problem 

minimize Total power dissipation, 

subject to max(t/) ~ ttgt, (35) 

max(t~ ) ~< ek + t~ni n for k = P, N, (36) 
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If  the computed device sizing solution satisfies the target delay ttgt constraint Eq. (35) and the 
skew constraints Eq. (36), then BIS terminates. Otherwise, tPin and t"mi n of the current device sizing 
solution are calculated and another iteration of posynomial programming is invoked. However, note 
that sizing of buffer will render the buffer insertion step inaccurate since the buffer insertion step 
assumes implicitly buffers of  certain sizes to compute the worst case skew. 

Experimental results show that BIS can achieve up to 326% reduction in power dissipation when 
compared to the wiresized clock trees constructed by [167]. However, there is no improvement in 
terms of  clock skew and clock delay. Although the clock skews are reasonably small, the clock 
delay can be as high as lOns [144], even for a relatively small clock net such as benchmark circuit 
Primary2. An explanation for the high clock delay is the use of minimum wire width for the clock 
tree. Moreover, the buffer sizing step does not consider delay sensitivity due to buffer size, whereas 
minimization of delay sensitivity is an important element of most of other works on wire/buffer 
sizing. As we will see in the following discussion, when delay sensitivity is considered, buffer 
insertion/sizing with wire sizing can reduce power and clock delay without an adverse impact on 
clock skew and reliability. 

5.4.4. Buffer insertion and wire sizing in clock routing 
The Skew Sensitivity Minimization (SSM) algorithm proposed by Chung and Cheng [142] con- 

siders buffer insertion and wire sizing to minimize skew sensitivity due to process variations. Since 
SSM considers a library of  buffers of different sizes, it is capable of discrete buffer sizing. 

Similar to the BIS algorithm, the algorithm assumes a full binary clock tree (all sinks at level 
max_level), and that buffers are inserted at the same levels of the clock tree. Buffers at the same 
level have the same size, but buffers at different levels may have difference sizes. The SSM algorithm 
finds the optimal levels of buffers with proper sizes and wire widths that minimizes skew sensitivity 
through a bottom-up dynamic programming approach. Clearly, the maximum number of buffer levels 
is max_level as well. Let B[b, l, s] denote the minimum skew sensitivity for b buffer levels, with the 
highest level buffers located at level l with size s. Assume that B[b',l',s'] is known for b' < b, 
l < l' ~<max_level and all possible buffer sizes s' in the library, then one can compute 

B[b, l,s] = min {MSS(/,s, l ' ,s') + B[b - 1, l',s']} 
l < / '  ~< max_level 

where MSS( l , s , l ' , s ' )  is the minimum skew sensitivity from level l to level l' with buffer size s 
at level l and buffer size s' at level l'. Therefore, assuming that the root node is at level 0, the 
algorithm constructs a 3-dimensional table for 1 ~< b ~<max_level, 0 ~< l ~< max_level and all possible 
buffer sizes s in a bottom-up fashion. 

To compute MSS( l , s , l ' , s ' )  for l' > l, the algorithm first wire sizes all paths from level l to 
level l' to minimize delay sensitivity by setting the partial differential of the l-to-l' path delay with 
respect to wire width to zero and solving it. The algorithm then selects two paths from level l to 
level l'. Similar to the approach in the BIS algorithm, wire widths and buffer sizes along two paths 
are then changed according to the worst case process variations and the skew sensitivity from level 
l to level l' is computed using the worst ease skew under wire and device process variations. 

As noted in the GRIN algorithm, buffer can be inserted at non-Steiner point to avoid excessive 
detour. After the buffer insertion and wire-sizing algorithm, the SSM algorithm repositions the buffers 
to possibly reduce total wirelength. 
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The paper compared the worst case skews under process variations for clock trees before and 
after applying SSM. The reduction in the worst case skews is in the range of  87X to 144X [142]. 
The SSM algorithm also achieves 2X to 11X reduction in clock delay. 

Pullela et al. [138] also proposed a buffer insertion/sizing and wire-sizing algorithm for a tree of l 
levels. Based on the most critical resources to be optimized, the algorithm first estimate the number 
of buffer levels, denoted b. For b stages of buffer, the algorithm try all possible level combinations to 
find the optimal levels in which buffers should be inserted. The skew resource B is equally distributed 
among the clock tree such that the tolerable skew constraint of buffer, denoted Bb, and tolerable skew 
constraint for interconnect, denoted Bw due to process variations are Bb = Bw = B/(l + b) for each 
subtree. As in the SSM algorithm, subtrees at the same level are driven by buffers of the same 
size. The algorithm aims to achieve the followings: (i) each subtree is nominally zero-skew by wire 
sizing and possibly introducing detour wire, (ii) each subtree have equal delay and equal effective 
capacitance by assigning appropriate size and length to the stub of interconnect connecting a buffer 
to the root of the subtree, and (iii) each subtree is driven by the smallest buffer that achieve the 
required skew constraints. 

To achieve (i), the algorithm computes in a bottom-up fashion, the wire and length of each edge 
in the subtree such that zero skew is achieved. Based on the wire skew constraint Bw and computing 
the maximum change in delay Atw induced by a change in the width of an edge due to process 
variations, the minimum width of  the edge required such that Atw~Bw/2 can be estimated. 13 By 
applying an approach similar to [129] with the lengths and widths as variables, the widths and 
lengths of  the two edges are computed to satisfy the estimated minimum width constraints and some 
prespecified maximum width constraint. Detour is avoided when absolutely possible. 

In (ii), by introducing a stub of interconnect from the buffer to the root of the subtree, it is always 
possible to achieve equal interconnect delay for all subtrees at the same level. To match the effective 
capacitance (so that each subtree can be driven by buffers of the same size), the length and width 
of the stub is chosen such that the ratio of  the first two moments given in the re-model are matched. 
To achieve objective (iii), we note that given a buffer size, the worst case skew Askewb induced 
by changes in buffer sizes due to process variations can be computed easily (since all buffers at the 
same level have equal size and they drive equal load). The smallest buffer size that satisfies the 
constraint A skewh ~<Bb is chosen. 

Simulation results show that delay reduction is achieved, with up to 25X reduction for large 
circuits when compared to wire-sized clock trees constructed in [141]. By buffer insertion, [138] 
also reduces the maximum wire width required for reliability (compared to [141]). This translates to 
reduction in total wiring area and therefore power dissipation. It was observed that for delay (and 
power-delay product) minimization, the optimal number of buffer levels is close to half the number 
of levels in the tree [138]. 

We note that buffer insertion algorithms such as those in [157, 170, 172, 145,171,144] do not 
restrict buffers to be located at branching points only, whereas the algorithms by [142, 138] consider 
buffer insertion at branching points only. 

Chen et al. [110] very recently proposed a simultaneous buffer and wire sizing algorithm based 
on Lagrangian relaxation. The algorithm minimizes clock skew by iteratively assigning appropriate 

13 The actual value cannot be computed since the upstream resistance is not known a priori and the length of the edge 

is only an estimate. 
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Fig. 41. (a) A center trunk colmecting 5 sinks. (b) A rooted balanced length binary tree at L driving the center trunk at 
4 positions. 

weights (or Lagrangian multipliers) to sinks and performing device and wire sizing based on a 
weighted-sum formulation similar to those in [7-9]. Please refer to Section 4.2.2 for more details. 

5.5. Non-tree clock routing 

So far, we have considered only tree topology for the clock net. In the following, we discuss a 
heuristic proposed by Lin and Wong [143] to construct a non-tree clock net. In [143], instead of 
binary-merging as in the DME approach, multiple-merge is considered to merge multiple pins at one 
time to form a rooted zero skew non-tree subrouting. Recursively, at a higher level of  hierarchy, 
multiple-merge is applied to the roots of  subroutings constructed at one level below until the resulting 
subrouting covers all the sinks. Let NT~, denote the non-tree subrouting rooted at v and t(v) be the 
v-to-sink delay for sinks in N%. 

The multiple-merge operation is carried out in two steps. Consider a set of  root nodes (typically 15 
or 16 nodes) to be merged, In the first step, called the center tree routing, the nodes is connected to a 
center trunk via a branching point (Fig. 41(a)). Without loss of generality, assume that the bounding 
box of the nodes has a larger dimension in the x direction. The center trunk is routed in the x direc- 
tion. Let u and v be the two farthest nodes in the y direction. The location of the trunk is determined 
such that the delays t(u) and t(v) are balanced (see zero-skew merging in Section 5.2.1 ). The remain- 
ing nodes are also connected to the center trunk, possibly with snaking of wires such that all sink 
delays from the respective branching points are equal. The branching points are placed on the trunks 
such that they are maximally spread out. The center trunk is also sized to reduce skew sensitivity. 

In the second step, a path length-balanced binary tree is routed to connect to N driving points 
along the trunk, with N being a power of two (Fig. 41(b)). N is determined exhaustively (typically, 
N = 4, 8, or 16) so as to reduce the RC delay. The N driving points are placed on the trunk such that 
the cumulative capacitive load from one end of the trunk to the ith driving point is ((2i - 1 )/2N)CL 
for i = I , . . . ,N ,  where CL is the total load of the center tree. A buffer is then inserted at the root of  
the balanced length binary tree and is then treated as a root node to be merged in the next iteration 
of the algorithm. 

Note that the binary tree and the trunk forms a non-tree routing that is constructed to minimize 
the sensitivity of the clock skew to process-variation. The idea is that the buffer drives the center 
trunk through the balanced length binary tree at N driving points and thus shortening the signal 
propagation latency since there are now multiple paths to the center trunk. Compared to the routing 



82 J. Cong et al./INTEGRATION, the VLSI Journal 21 (1996) 1 94 

solution [129] for a industry floating point unit, the non-tree routing algorithm by [143] reported 
better worst-case skew under process variations. 

5.6. Clock schedule optimization 

So far, we have presented research works that addressed the problem of constructing a clock 
routing tree T such that skew(T) = maxi,; Iti - tjl ~<B. In most of  the studies, B is set to be zero. 
Even if we allow non-zero skew bound B, we shall see that this constraint is overly conservative. 

Consider a synchronous VLSI circuits using positive edge-triggered D-flip-flop as registers under 
a single-phase clocking scheme. A pair of registers are sequentially adjacent if only combinational 
logic exists between the two registers. Note that the order of  the registers (i.e., whether it is an 
initial or final register) depends on the direction of flow of the data. The difference in the arrival 
times of clock signal at the clock pins si of initial register Ri and sj of final register R j, where R~ 
and Rj are sequentially adjacent, is the (local) clock skew skew(/, j)  = ti - tj. 

Local clock skew places upper bound on the performance of the circuit. The minimum allow- 
able clock period Cp between two sequentially adjacent registers R~ and Rj satisfies the following 
inequality [34]: 

Cp>/t(Lij) + skew(/ , j)  + t~u + tds, (37) 

where t(L~j) is the delay for the data to travel through combinational logic Lij from R~ to R/, tsu 
is the setup time of  the registers, and td~ is the propagation delay within the register. Note that 
for the data to be latched into the final register correctly, it must be ready t~u units of  time before 
the triggering clock edge. Also note that the term t(L~j) can be further decomposed into t(Lij) = 
tinterconnect(Lij) ÷ tgate(Lij), where tinterconnect(Lij) is the interconnect delay and tg,te(L~j) is the gate delay. 
We use tm,x(Lij) to denote the longest path delay through Lij and tmin(L~j) to denote the shortest path 
delay through L~j. 

If  clock signal is not properly scheduled, clock hazards may occur. For example, data may reach 
the final register at too late a time, or the data may race through the fast path and destroy the correct 
data at the final register before the correct data is latched. To eliminate clock hazards, we impose 
the following constraints [154]: 

skew(i,j)<~Cp - (tsu + tds + tm,x(L~j)), 

- s k e w ( / , j )  ~< tmin(Lij) ÷ tds -- tho~d, (38) 

where tho~d is the amount of time the input data signal must be stable once the clock signal changes 
state. Therefore, if skew(/, j)  is positive, it always decreases the maximum attainable clock frequency. 
However, if we examine the inequality regarding clock period in Eq. (37), negative clock skew, i.e., 
skew(/, j)  < 0, actually increases the effective clock period. In other words, we can actually improve 
the performance of the system by introducing negative clock skew as long as Eq. (38) is not violated. 

We can conclude that the clock skew is only relevant for sequentially adjacent registers and the 
clock skew between registers on different data paths does not affect the performance and reliability of 
the synchronous system. Therefore, it is not necessary to construct a zero-skew routing tree. In fact, 
it may be desirable to have (negative) clock skew. Moreover, different pairs of sequentially adjacent 
registers may have different skew constraints (since the delays due to different combinational logic 
blocks are likely to be different). 
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There are several works on clock schedule optimization. However, these works did not consider 
clock routing. For example, Fishburn [175] used linear programming to compute the optimal clock 
arrival times at the sinks such that either the clock period Cp is minimized or the safety margin 
for clock error given a prescribed clock period is maximized while constraints similar to those 
in Eq. (38) are satisfied. While the gate sizes in the logic block remain unchanged throughout 
the optimization process in [175], Refs. [103,106] removed this restriction and considered gate 
sizing in the clock schedule optimization process in order to achieve faster clock rate. While Refs. 
[175,103,106] assumed a fixed network of registers, in [151-153], the authors considered retiming 
using skew information to optimize the circuit. Registers may be removed or inserted as long the 
circuit still operates correctly. 

A related problem on clock schedule optimization is to construct a clock tree that satisfies the clock 
schedule. Given a clock schedule, Neves and Friedman [148-150] construct an (abstract) topology of 
the clock distribution network and determine the delay values at each branch of the clock network. 
Their works are mainly targeted for hierarchical data path design [148-150]. However, they did not 
give a specific routing algorithm to embed the abstract topology. Seki et al. [176] proposed a clock 
router that can accomplish specified delay using multiple routing layers. Very similar to the center 
tree routing step in the non-tree clock routing algorithm proposed by [143], it uses a center trunk 
and routes from branching point on the trunk to sinks with snaking where necessary. 

A more recent work by Xi and Dai [166] considers clock schedule optimization with clock tree 
construction and gate sizing. The proposed useful skew tree (UST) algorithm first generates an ab- 
stract topology using a top-down bipartitioning approach. The bipartitioning process is guided by the 
objective of producing useful negative skew. Sinks should be partitioned into groups that have loose 
skew constraints. Sequentially adjacent registers across two groups should have the same logic path 
direction. A useful skew tree (UST) is then constructed using bottom-up merging and top-down 
embedding from the abstract topology. Since it is a non-zero skew merging, bottom-up merging 
produces merging regions. Similar to IME, it uses a set of merging segments to sample a merging 
region. However, it uses only a merging segment from the set to generate the merging region of the 
parent. After the initial UST is constructed, the UST algorithm uses a simulated annealing process 
to explore the solution space. A merging segment perturbation operation is used to select a different 
merging segment for the merging operation. Note that this changes the clock routing tree configura- 
tion, and therefore, the clock schedule and skews. After each merging segment perturbation operation, 
the UST algorithm performs gate sizing of combinational logic blocks to reduce power dissipation. 

The UST heuristic has been evaluated using three ISCAS89 benchmark circuits [177] and two 
industry circuits. In all but one case, the UST algorithm uses less wirelengths when compared to the 
Greedy-BST/DME [133,134] and BB+DME algorithms [131]. For each circuit, the skew bound for 
BST construction [133,134] is set to be the smallest skew bound of all sink pairs. To compare the 
impact of a UST on power dissipation, Xi and Dai [166] also performed gate sizing with bounded 
(zero) skew after a BST (ZST) was constructed. The power reductions achieved by the UST approach 
vary from 11% to 22% over the BST and ZST approaches. 

6. Conclusion and future work 

in this paper, we presented an up-to-date survey of the design and optimization techniques for 
VLSI interconnect layout. These results show convincingly that interconnect optimization has a 
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significant impact on circuit performance in deep submicron VLSI design. In this section, we would 
like to offer a brief summary with our assessment of various interconnect optimization techniques 
presented in this paper, and suggest directions for future research. 

1. Interconnect topology optimization: We feel that geometric based Steiner tree algorithms such 
as the A-tree [41], Alphabetic Tree [73], P-Tree [74] algorithms usually provide a good initial 
routing topology. These algorithms use the right level of abstraction and can be incorporated in a 
global router efficiently. Further delay reduction can be achieved by refining the initial topology, 
for example, using the techniques presented in [55, 9, 73, 76]. Most effective topology optimization 
for delay reduction is achieved by considering routing tree construction with buffer insertion as 
discussed in [124, 123,125]. However, more studies need to be done on how to extend various 
routing tree construction algorithms to take into consideration of multiple-layer routing with different 
RC characteristics in each layer, presence of routing obstacles, and routability optimization. 

2. Device and interconnect sizing: The optimization problems in this area usually have well 
defined mathematical programming formulations. We feel that the sensitivity based heuristics, such 
as those used in [81, 11], and the local refinement technique based on the dominance property (and 
the bundled refinement property) used in [7,8, 12, 116] are most efficient, produce good quality 
solutions, and scale up well with the rapid increasing of design complexity. The initial device and 
interconnect sizing solutions can be computed using a simple switch-level driver model and Elmore 
delay model as in [81,7, 8] and then more accurate driver and interconnect models, such as those 
used in [ 113, 18] can be applied to further refine the solution for performance and area optimization. 

3. Clock routing: Various interconnect optimization techniques presented in this paper have most 
significant impact on clock routing due to the extremely large size of clock nets. Extensive studies 
of the clock routing problem in the past few years have made much advance on automating high- 
performance clock net synthesis. The bottom-up construction methods using the DME technique 
(e.g., [127, 130, 126, 16, 145]) are most promising in terms of efficiency, flexibility, and the solution 
quality. Most existing approaches first produce a balanced routing topology and then perform buffer 
insertion, buffer and wire sizing. More studies need to be done on how to generate a clock tree 
topology together with buffer insertion, buffer sizing, and wire sizing to meet the skew, delay, power 
dissipation, and other constraints. 

In addition to the interconnect optimization techniques in the areas presented in this paper, we think 
that the following topics are also very important to the development of next generation interconnect- 
driven layout systems, but have not received full attention from the VLSI CAD research community. 
We would like to suggest them as future research directions. 

1. More accurate and efficient delay models' for interconnect optimization: Most of existing 
works on interconnect optimization are based on the Elmore delay model due to its simplicity, explicit 
representation of signal delay in terms of interconnect design parameters, and fairly high fidelity under 
the current fabrication technology [14-16]. However, limitations of the Elmore delay model are well 
recognized as it cannot be used to characterize the signal waveform, handle interconnect inductance, 
and model frequency-dependent effects. Although more accurate delay models are available, they 
were mainly developed for circuit simulation and do not provide an explicit causal relationship 
between signal responses and design parameters for optimization. Therefore, there is a strong need 
to bridge the gap between the timing models used for circuit simulation and circuit and interconnect 
optimization. The recent work on efficient moment computation [24], low-order moment matching 
[26-33], and central moment formulation [25] have made very good progress in this direction. But 
much more work need to be done in this area. 
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Fig. 42. Proposed paradigm shift for Interconnect-driven VLSI design. 

2. Perjormance-driven global routing: Most of existing studies on interconnect design and op- 
timization deal with only a single net for topology and wire sizing optimization. In reality, many 
timing critical nets need to be considered simultaneously and they often compete for various kind of 
routing resources such as routing tracks in preferred regions or layers, availability of feedthroughs 
over the cells/blocks, etc.. Also, timing requirements are usually given in terms of path delay con- 
straints. One needs to either develop efficient algorithms to allocate the timing budget to each net 
along a path or be able to optimize multiple nets on a path simultaneously. Most well-known global 
routers, such as [178-180], did not consider timing optimization during global routing. Existing 
methods on delay budgeting, such as [181-183] were mainly developed for circuit placement and 
their applicability to global routing is yet to be demonstrated. Therefore, it is important to develop 
an efficient global router which can incorporate the various interconnect optimization techniques dis- 
cussed in this paper and be able to produce a high-quality routing solution with careful consideration 
of the trade-off between routability, efficiency, and timing optimization. 

3. Crosstalk minimization: As the VLSI technology further scales, the coupling capacitance is 
becoming a very important component in the total interconnect capacitance and affect the intercon- 
nect delay significantly. Again, in order to consider the coupling effect (i.e. crosstalk), one needs 
to consider the interaction of multiple nets simultaneously. Existing works on crosstalk reduction, 
including those presented in [184-188], focus mainly on proper spacing and wire segment ordering. 
It is not yet clear how crosstalk will be affected by buffer insertion, device and wire sizing, etc. 
Therefore, it is of both theoretical and practical interest to generalize the optimization techniques 
presented in this paper to take crosstalk minimization into account. 

4. Multi-layer general-area gridless detailed routing: Wire-sizing optimization may require the 
wire width to change from net to net or even from segment to segment within the same net. 
Also, crosstalk minimization may result in variable spacing between different nets or different wire 
segments. Therefore, the detailed router needs to be able to perform variable-width variable-spacing 
gridless routing very efficiently. Moreover, the advance of VLSI technology makes multiple metal 
routing layers possible and affordable. The traditional routing technology developed for two routing 
layers based on channel routers is becoming obsolete, and multi-layer general area routers are needed 
to handle over-the-cell routing efficiently. Most of existing works on general area routing, such as 
those in [189-192] were developed for the two-layer routing technology and they cannot handle 
gridless routing. Therefore, in order to support the interconnect optimization techniques presented in 
this paper, one needs to develop efficient algorithms for multi-layer general-area gridless routing. 
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Conventional Approach New Approach 

Data Base Design 
Object-oriented design 

Fig. 43. An analogous methodology change in software design. 

Finally, given the increasing importance of interconnects, we would like to propose a new design 
methodology, named interconnect-driven design. In the conventional VLSI design, much emphasis 
has been given on design and optimization of logic and devices. The interconnection was done by 
either layout designers or automatic Place-&-Route tools as an after-thought. In the interconnect- 
driven design, we suggest that interconnect design and optimization be considered and emphasized 
throughout the design process (see Fig. 42). Such a paradigm shift is analogous to the one happened 
in the software design domain. In the early days of computer science, much emphasis was placed on 
algorithm design and optimization while data organization was considered to be a secondary issue. 
It was recognized later on, however, that the data complexity is the dominating factor in many 
applications. This fact gradually led to a data-centered software design methodology, including the 
development of database systems and the recent object-oriented design methodology (see Fig. 43). 
We believe that the development of interconnect-driven design techniques and methodology will 
impact the VLSI system design in a similar way as the database design and object-oriented design 
methodology has benefited the software development. 
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