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Theory and Algorithm of Local-Refinement-
Based Optimization with Application

to Device and Interconnect Sizing
Jason Cong and Lei He

Abstract—In this paper we formulate three classes of opti-
mization problems: the simple, monotonically constrained, and
bounded Cong–He (CH)-programs. We reveal the dominance
property under the local refinement (LR) operation for the
simple CH-program, as well as the general dominance property
under the pseudo-LR operation for the monotonically constrained
CH-program and the extended-LR operation for the bounded
CH-program. These properties enable a very efficient polynomial-
time algorithm, using different types of LR operations to compute
tight lower and upper bounds of the exact solution to any CH-
program. We show that the algorithm is capable of solving many
layout optimization problems in deep submicron iterative circuit
and/or high-performance multichip module (MCM) and printed
circuit board (PCB) designs. In particular, we apply the algorithm
to the simultaneous transistor and interconnect sizing problem,
and to the global interconnect sizing and spacing problem con-
sidering the coupling capacitance for multiple nets. We use tables
precomputed from SPICE simulations and numerical capacitance
extractions to model device delay and interconnect capacitance, so
that our device and interconnect models are much more accurate
than many used in previous interconnect optimization algorithms.
Experiments show that the bound-computation algorithm can
efficiently handle such complex models, and obtain solutions close
to the global optimum in most cases. We believe that the CH-
program formulations and the bound-computation algorithm can
also be applied to other optimization problems in the computer-
aided design field.

Index Terms—Circuit optimization, design automation, device
modeling, device sizing, integrated circuit layout, interconnect
modeling, local refinement, optimization methods, wire sizing,
wire spacing.

I. INTRODUCTION

T he interconnect delay has become the dominant factor
in determining circuit performance in deep submicron

(DSM) designs [1]. Many optimization techniques have been
proposed to reduce interconnect delay, including intercon-
nect topology optimization, buffer insertion, and device and
interconnect sizing (see [2] for a comprehensive survey).
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We believe that the most effective approach to performance
optimization in DSM designs is to consider both logic and
interconnect designs throughout the entire design process
[from register-transfer level (RTL) level to layout design].
This motivates our study of the simultaneous device and
interconnect sizing problem in DSM designs.

Several recent studies considered the simultaneous device
and interconnect sizing problem. One class of algorithms
minimizes the weighted delay. In [3], the simultaneous driver
and wire sizing problem was formulated to minimize the
weighted delay between the source and a set of sinks for a
single net. Procedures of device sizing and wire sizing are
alternately carried out, with device sizes computed by closed-
form formulas (via Maple) and wire widths computed by
algorithms from [4] and [5]. In [6] and [7], the simultaneous
transistor and interconnect sizing problem was studied to min-
imize the weighted delay for multiple paths (a path contains
multiple nets). The local refinement operation, previously used
only for wire sizing solutions [3]–[5], is applied to optimize
both devices and interconnects. It leads to a unified and very
efficient algorithm. Recently, the simultaneous buffer insertion
and wire sizing problem was also addressed [8]. It is assumed
that the number of buffers to insert is given for each wire
segment, and that the wire widths between any two buffers are
monotonic. Therefore, the problem can be solved as a convex
quadratic program to find the lengths of wire segments for
different wire widths.

The other class of simultaneous device and interconnect
sizing algorithms considers the maximum delay. In [9], the
simultaneous gate and wire sizing problem was formulated to
minimize the area under the maximum-delay constraint for
multiple paths. The problem is shown to be a posynomial
program, and is transformed into a convex program solved
by a sequential quadratic programming technique. In addition,
the simultaneous buffer insertion and wire sizing problem was
studied to minimize the maximum delay from the source to
a set of sinks for a single net [10]. The potential locations
for buffer insertion area priori given. Based on a bottom-up
dynamic programming approach, buffers are then inserted with
optimal sizes, and optimal wire widths determined simultane-
ously. In general, the algorithms for minimizing the weighted
delay are more efficient. By adjusting the weight assignments,
a sequence of such minimizations can be used to minimize
the maximum delay under the area constraint or to minimize
the area under the delay constraint. In particular, a Lagrangian
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TABLE I
UNIT-SIZE EFFECTIVE-RESISTANCE FORn- AND p-TRANSISTOR

relaxation technique was proposed in [11] to optimally assign
the weights for the sequence of weighted-delay minimizations.
The simultaneous buffer and wire sizing problem was also
solved [11].

However, most of these works assumed over-simplified
models for devices and interconnects. For example, a gate
of size and output load is assumed to have a delay

, where and are the intrinsic delay
and effective resistanceof the gate, respectively. In addition,

, where is theunit-size effective-resistancefor the
gate. Both and are assumed to beconstants. Moreover,
the capacitance for a wire of width and length is given by

, where and areunit-area capacitanceand
unit-length fringe capacitancefor the wire. Both are again
assumed to beconstants.

These assumptions are no longer realistic for DSM designs.
For example, we computed for an inverter in Table I. We
apply HSPICE simulations, and use device parameters for the
0.18 m technology in National Technology Roadmap for
Semiconductors (NTRS) [12], Table V. When the inverter is
driven by a rising input, we first measure two delay values

and for a pair of output loads and under the
same size and input switching time. Using the assumption
that and , we can obtain

, and . We then
compute values for different combinations of size, input
switching time ( ), and output load (). Because we assume
that the intrinsic delay is a constant in this paper, we derive
the “best” value by least-square-fitting over values for
different combinations of size, and . Finally, we use the
“best” value to compute , where is
the inverter delay, and the size for the -transistor in the
inverter. We compute for the -transistor under different
combinations of size, and . Similarly, when the inverter
is driven by a falling input, for the -transistor can be
determined in the same way under different combinations of
size, and . As one can see from Table I, is clearlynot
a constant. Its value may vary by a factor of two.

Fig. 1. The basic geometric structure for capacitance extraction.

We also computed the capacitance for thebasic geometric
structure (see Fig. 1), where thevictim wire is centered
between two neighboring wires on the same layer and both
top and down grounds (two layers away from the victim).
We assume that wires in the basic geometric structure have
same widths, then apply a numerical capacitance extraction
tool FastCap [13] to solve the structure, using interconnect
geometric parameters for the 0.18m technology in NTRS,
Table 22.1 Fig. 2(a) depicts the unit-length ground capacitance

between the victim and grounds, with each curve for
under different wire widths but a fixed edge-to-edge spacing
(in short,spacing). If we assume , the
curve slope should be , and the curve intercept should be

. Because none of these curves is linear, and different curves
have different intercepts, neither nor is a constant. The
total capacitance of the victim is

where is theunit-length coupling capacitancebetween the
victim and the neighboring wires. One can define theunit-
length effective-fringe capacitance , and compute

. We also obtained for different
widths for the victim, under the assumption that thecenter-to-
edge spacing(see Fig. 1) from the center of the victim to the
edges of its neighboring wires is fixed. As shown in Fig. 2(b)
for two different center-to-edge spacing, is a not a constant
either.

We say that a device model is asimplemodel if it assumes
that is a constant, and a capacitance model is asimple
model if it assumes that both and are constants. Most
existing device and interconnect sizing works assume simple
device and capacitance models. Little progress has been made
for optimization beyond the simple models. The simultaneous
buffer insertion and wire sizing algorithm [10] was extended
to consider the impact of the input switching time for the
device delay. The unit-size effective-resistance, in essence, is
assumed to be , where is the unit-size
effective-resistance under the step input,the input switching
time, and an empirical constant. The algorithm based on the
bottom-up dynamic-programming, however, no longer has a
polynomial-time complexity under the extended device model.
The posynomial program formulation for the simultaneous
gate and wire sizing problem [9] was also extended to ac-
commodate a voltage-ramp gate model, which considers the
impacts of the input switching time and output loading under

1The NTRS gives capacitance values only for the minimum width and
spacing. Our extracted capacitance values closely match those given in the
NTRS (see [1]).
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(a) (b)

Fig. 2. (a) Ground capacitance and (b) effective-fringe capacitance for the central wire (the victim) in the basic geometric structure shown in Fig. 1.
Each curve in (a) has the same spacing but different wire widths, and each curve in (b) has the same center-to-edge spacing but different wire widths.
The capacitance values are given for the unit-length wire.

the model [14]. The resulting sizing problem, however, is
no longer a posynomial program. It is unknown how far away
the solution obtained by solving a posynomial program is from
the exact solution under the voltage-ramp model. Two very
recent works [15], [16] began to consider coupling capacitance
for multiple nets.2 Both allow variable but still assume that

and are constants. Even though all these algorithms still
use the simple model for either device delay or interconnect
capacitance, their runtime is already high. For example, it took
over 20 min to optimize a 16-bit bus of 320 wire segments
in [16].

We will call the device table, like Table I,STL-bounded
model, where is determined by the size, input switching
time ( ) and output load ( ), and its value isbounded
(i.e., there exist lower and upper bounds for) for any
given ranges of size, and . In addition, aWS-bounded
capacitance model will be presented in Section IV, where
and are determined by the width () and spacing (),
and their values are also bounded for any given ranges of
and . We build tables for the STL-bounded device model
via SPICE simulations, and for the WS-bounded capacitance
model via numerical capacitance extractions. These models are
more accurate than the simple models, and have been widely
used for verification purposes. However, there are virtually no
algorithms that allow us to use these models for the device
and interconnect sizing problems.

In this paper, we apply the STL-bounded device model
and the WS-bounded capacitance model to the simultaneous
transistor and interconnect sizing problem (STIS), and to
the global interconnect sizing and spacing (GISS) problem
considering the coupling capacitance for multiple nets. In order
to efficiently handle the two problems, we formulate three

2The formulation in [15] is based on the dominant time constant, which
is an approximation to the maximum delay among multiple sinks in a net.
Because it is difficult to efficiently minimize the sum of the dominant time
constants [15], the Elmore delay model (used in this paper) is more appropriate
for path delay minimization.

classes of optimization problems: the simple, monotonically
constrained, and bounded CH-programs. We then develop
the theory and algorithm based on different types of local-
refinement (LR) operations to optimize three classes of CH-
programs. We finally solve the STIS and GISS problems by
posing them as CH-programs. Experiments show that we are
able to obtain solutions close to the global optimum in the most
cases. Based on SPICE simulations, our algorithm in this paper
obtained up to 15.1% and 17% addition delay reductions when
compared with STIS results in [7] and GISS results in [16].
Moreover, our algorithm isextremelyefficient. A speedup of
over 100 times is achieved compared with the algorithm in
[16].

The rest of the paper is organized as follows: we first
present the theory and algorithm of LR-based optimization
in Section II, then apply the algorithm to the STIS and
GISS problems in Sections III and IV, and finally conclude
in Section V. Proofs of theorems, together with tables for
the device delay and interconnect capacitance used in our
experiments, are available from a technical report [17]. Part
of preliminary results of this work was presented in two
conference papers [7], [18].

II. THEORY AND ALGORITHM FOR CH-PROGRAMS

A. Formulations of CH-Functions

We first define the CH-function (Cong–Hefunction)3 as a
function of a positive vector
with the following form:

(1)

3CH-function was called CH-posynomial in [7] and [18]. As recommended
by reviewers, we renamed it to show that it is not, in general, a posynomial.
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Fig. 3. The simple CH-function is a subset of the monotonically constrained
CH-function, which is in turn a subset of the bounded CH-function.

where coefficients and , as well as
exponents and , are positive.

Depending on the coefficient and ,
we define the following three types of CH-functions.

Definition 1—Simple CH-function:Equation (1) is a simple
CH-function if coefficients and are constants.

The concept of simple CH-function was first introduced in
[6] and [7]. It was shown that many previous works on device
and interconnect sizing problems, including the single-source
and multisource wire sizing problems [4], [5], continuous wire
sizing problem [19], and simultaneous driver and wire sizing
problem [3], use simple CH-functions as objective functions.

In some applications however, coefficients and
may vary as functions depending on. For two

vectors and , we say that dominates (denoted by
) if for . We then define the

following monotonically constrained CH-function.
Definition 2—Monotonically Constrained CH-Function:

Equation (1) is a monotonically constrained CH-function,
if it satisfies the following monotonic constraints: for any
vector , 1)
and and 2)

and .
The monotonically constrained CH-function was defined

differently (and called bounded-variation CH-posynomial)4 in
[18], where we say 1) is a function depending only on

. With respect to an increase of, monoton-
ically decreases and monotonically increases and
2) is a function depending only on . With respect
to an increase of , monotonically increases
and monotonically decreases. It is easy to see that
Definition 2 subsumes the old definition and covers a wider
class of functions, because now each coefficient may vary as
a function of all variables in , instead of a single variable
in [18].

We finally remove the monotonic constraints for the CH-
function by formulating the followingbounded CH-function.

Definition 3—Bounded CH-Function:Equation (1) is a
bounded CH-function, if its coefficients are bounded: for any

and , there exist positive constant , ,
and , such that
and .

Clearly, the simple CH-function is a subset of the mono-
tonically constrained CH-function, which in turn is a subset of
the bounded CH-function; see Fig. 3. In addition, the simple

4According to reviewers’ recommendations, we saved the name “bounded”
for the type of CH-function defined in Definition 3, which was called the
general CH-posynomial in [18].

CH-function is a subset of the posynomial. A posynomial
[20] is a function of a positive vector having the form

with

(2)

where the exponents are real numbers and the coefficients
are positive. For example,

(3)

is a simple CH-function as well as a posynomial. However,

(4)

is a posynomial butnot a simple CH-function. On the
other hand, the monotonically constrained and bounded
CH-functions may be no longer a posynomial. For example,

(5)

is neither a simple CH-function nor a posynomial. However,
one can easily verify that it is a monotonically constrained
CH-function by treating as the coefficient function
for .

B. Properties for CH-Programs

We define theCH-programas an optimization problem to
minimize a CH-function subject to (i.e.,

for ). It may be a simple, monotonically
constrained, or bounded CH-program depending on whether
its objective function is a simple, monotonically constrained,
or bounded CH-function. We will introduce the dominance
property for the simple CH-program, as well as the general
dominance property for the monotonically constrained and
bounded CH-programs.

1) Dominance Property:We first define the following local
refinement operation.

Definition 4—Local Refinement Operation:Given a func-
tion and a solution vector (or simply, a solution) ,
the local refinement operation for any particular variableis
to minimize by only varying while keeping all values
of other in fixed.

Such an operation is also called anLR operationin short.
The resulting solution vector is called thelocal refinementof

(with respect to ).
Furthermore, we define

(6)

where is a function depending only on , and it
increases with respect to an increase of; is a function
depending only on , and it decreases with respect to an
increase of . When and are positive, we have
proved the following Lemma 1 in the technical report [17].
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Lemma 1: Let be an exact solution to minimize
(6). For any solution of , if dominates , any
local refinement of leads to a solution that still dominates

. Similarly, if is dominated by , any local refinement
of leads to a solution that is still dominated by .

Based on Lemma 1, one is easy to verify the following
dominance property for the simple CH-program.5

Theorem 1—Dominance Property:Let be a simple
CH-function, and an exact solution to minimize .
For any solution of , if dominates , any local
refinement of leads to a solution that still dominates .
Similarly, if is dominated by , any local refinement of

leads to a solution that is still dominated by .
The dominance property under the LR operation was first

introduced for the single-source wire sizing problem [4], and
was extended to the multisource wire sizing problem [5]. In
[7], it was revealed that the dominance property holds for all
simple CH-programs. It was also shown that both wire sizing
problems [4], [5], the simultaneous driver/buffer and wire
sizing problem, and simultaneous transistor and interconnect
sizing problem are all simple CH-programs if simple device
and capacitance models are used. Therefore, the dominance
property holds for these problems and enables an LR-based
algorithm, which uses iterative LR operations to compute
optimal sizes for both devices and wires.6

When coefficients for variable , like the case of simple
CH-program, are all constants, the LR operation ofis a
single-variable posynomial program that can be solved very
efficiently.7 The LR operation for other CH-programs may
be less efficient, however. First, it might be no longer a
posynomial program. An example is the LR operation ofto
minimize (5), where a logarithm function is involved. Second,
when a coefficient varies depending on a table rather than a
closed-form formula, we may have to enumerate all possible
values for in order to find out its local optimal value (an
example is given in the technical report [17]).

The usage of the LR operation is also limited by the fact
that the dominance property under the LR operation generally
does not hold for a monotonically constrained or bounded
CH-program. To overcome these limitations, we introduce the
pseudo-LR (PLR) and extended-LR (ELR) operations, then
show a general dominance property.

2) General Dominance Property:The PLR and ELR oper-
ations are defined as the following.

5Nevertheless, Lemma 1 also reveals that the dominance property holds for
the monotonically constrained CH-program when coefficients are functions of
single variables, like the bounded-variation CH-program defined in [18]. The
dominance property, however, may not hold for the new defined monotonically
constrained CH-program when coefficients are functions of solution vectorX.

6The SDWS algorithm for simultaneous driver and wire sizing problem in
[3] is different from and less efficient than the LR-based algorithm in [7].

7According to [20], a posynomial program is the following minimization
problem:

min g0(X) subject togk(X) � 1

k = 1; 2; � � � ; p andX > 0

where eachgk (k = 0; 1; 2; � � � ; p) is a posynomial function. In the case
of LR operation ofxi for a simple CH-program, the local optimum is also a
global optimum no matter whetherxi has continuous or discrete value. More
detailed discussion of posynomial programs can be found in Section II-D.

Definition 5—PLR Operation:Given a CH-function
and a solution vector , the PLR operation for variable

with respect to is an LR operation usingconstant
coefficients and when solving the
“local-optimal” for any and .

That is, we fix the coefficients under thecurrent solution
when performing an PLR operation. The PLR and LR oper-
ations are same for a simple CH-program, but may produce
different results for a monotonically constrained CH-program.

Definition 6—ELR Operation:Given a CH-function
and a solution , the ELR operation for a particular variable

in is the LR operation using the following coefficients
for any , , and :

a) When , we replace and
by and , and replace

and by and .
b) When , we replace and

by and , and replace
and by and .

We call the solution given by the PLR or ELR operation as the
pseudo-or extended-local refinementof , respectively. Note
that the lower and upper bounds arenot unique for coefficient
functions. The definition of the ERL operation is applicable
to any valid lower and upper bounds. In essence, as to be
shown in Theorem 2, the ELR operation applies lower and
upper bounds of coefficients, so that the refined solution given
by the ELR operationnevercrosses the optimal solution.

According to these definitions, even though coefficients
are functions of the variable vector in the monotonically
constrained or bounded CH-program, coefficients during each
PLR or ELR operation are still treated as constants. Therefore,
the PLR or ELR operation for a monotonically constrained or
bounded CH-program again becomes a single-variable posyn-
omial program that can be solved very efficiently, exactly as
the LR operation for a simple CH-program. We will illustrate
the PLR and ELR operations using the following CH-function:

(7)

The pseudolocal refinement of with respect to
is

(8)

If we assume that ,
, and .

When is dominated by exact solution , the
extended-local refinement of concerning is

(9)

Even though we assume continuous variables in this exam-
ple, our definition for the PLR and ELR operations (as well
as the LR operation) applies to both continuous and discrete
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TABLE II
BOUND-COMPUTATION ALGORITHM USING THE ELR OPERATION

variables. We proved the following theorem concerning the
PLR and ELR operations.

Theorem 2—General Dominance Property:Let be an
exact solution to minimize a CH-function .

a) When is a monotonically constrained CH-function,
for any solution of , if dominates , any
pseudolocal refinement of leads to a solution that
still dominates ; if is dominated by , any
pseudolocal refinement of leads to a solution that
is still dominated by .

b) When is a bounded CH-function, for any solution
of , if dominates , any extended-local

refinement of leads to a solution that still dominates
; if is dominated by , any extended-local

refinement of leads to a solution that is still dominated
by .

The proof can be found in the technical report [17]. Because
the simple CH-program is a subset of the monotonically
constrained CH-program, and the PLR operation is same as the
LR operation in the case of simple CH-program, Theorem 2
also shows that the dominance property holds under the LR
operation for the simple CH-program.

C. LR-Based Algorithm

Again, let be an exact solution to a CH-program. We say
that a solution is the lower bound of if is dominated
by , and is an upper bound of if dominates .
Theorems 1 and 2 enable an algorithm based on different types
of LR operations to compute a set of lower and upper bounds
for .

Because the bounded CH-program is the most general case,
we use the ELR operation to illustrate the bound-computation
algorithm (see Table II). Starting with the initial lower and
upper bounds ( and ), the algorithm carries outinterleaved
passes of lower- and upper-bound computations. Apassof
lower-bound computation will perform an ELR operation on
every of a lower bound in an arbitrary order. Because

is dominated by , its extended-local refinement becomes
closer to but is still a lower bound. Similarly, a pass of
upper-bound computation will perform an ELR operation on
every of an upper bound . The iteration of passes is
stopped when the lower and upper bounds meet for every

, or both bounds are ELR-tight. We say that a lower or
upper bound isELR-tight if it can not be improved by any

ELR operation.8 Although the ELR operation may use any
valid lower and upper bounds for coefficients according to
Definition 6, in general, the closer the lower and upper bounds
for coefficients, the smaller the gap between the resulting ELR-
tight lower and upper bounds. Because reducing the size of the
solution space may narrow the range for coefficients, lower-
and upper-bound computations are carried out alternately. The
algorithm guarantees that within the resulting ELR-tight lower
and upper bounds, there would exist an exact solution to the
bounded CH-program.

For a simple or monotonically constrained CH-program,
we may replace the ELR operation in Table II by the LR
or PLR operation, respectively. Then, the algorithm computes
the LR-tight or PLR-tight lower and upper bounds, where a
lower or upper bound of an exact solution isLR-tight or PLR-
tight if it cannot be improved by any LR or PLR operation.
In essence, the bound-computation algorithm generalizes the
greedy wiresizing algorithm GWSA that has been used for
computing LR-tight lower and upper bounds for the exact
wire sizing solution under fixed and in [4] and [5].
When the exact solution has the monotone property like those
for the single-source and multi-source wire sizing problems
[4], [5], the bundled-LR (BLR) operation [5] can be used to
speed up the LR, PLR, or ELR operation. We also use the LR-
based algorithm to refer to the bound-computation algorithm,
where LR, in general, refers to the LR, PLR, ELR, and BLR
operations.

The LR-based algorithm has the same worst-case com-
plexity when using different types of LR operations. Let
be the average number of the possible values for variables

when all variables have discrete
values. Because each pass of the lower- and upper-bound
computation at least changes the value of one variable to
narrow the solution space by at least one unit, the worst-
case number of passes is . In addition, each pass has
at most LR operations. Therefore, the bound-computation
algorithm needs LR operations. We observed in our
experiments that the total number of LR operations is much

8Even though the lower and upper bounds are ELR-tight, there may still
be a gap between them. We say that the computation for a variablexi is
convergentif its lower and upper bounds are identical. The ELR operation does
not guarantee the convergence for all variables. We define theconvergence
rate as the percent of variables that has identical lower and upper bounds.
Both average gapamong all variables and convergence rate will be presented
for our experiments in Sections III-D and IV-E.
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smaller than and isempirically linear with respect
to the number of variables.

D. Comparison with the Posynomial Program

In order to better appreciate the implications of Theorems 1
and 2, we compare the CH-programs with the posynomial
program (defined in Footnote 7). When every variable is of
continuousvalue, the posynomial program has the important
property that the local optimum is unique, and therefore is
also the global optimum. The posynomial program plays an
important role in the device and wire sizing works. In [21], the
transistor sizing problem was first formulated as a posynomial
program and solved by a sensitivity-based method. Later
on, the posynomial program formulation was used for exact
transistor sizing [22], wire sizing [23] and simultaneous gate
and wire sizing [9], and was solved by being transformed into
the convex program.9 Note that optimality of these solutions
depends on the assumption that the local optimum is unique.
The assumption holds for the continuous sizing formulation
and simple models for the interconnect capacitance and device
delay, but may be not true for the discrete sizing formulation
and more general models for the interconnect capacitance and
device delay.

Our LR-based algorithm is similar to the coordinate descent
approach [24] for the posynomial program. The approach iter-
atively optimizes the value for each variable (i.e., coordinate)
while keeping the values for the rest of the variables fixed.10

Because the local optimum is unique for the posynomial
program regarding continuous variables, one may even start
with an arbitrary solution (see [25]) rather than a lower or
upper bound used in the LR-based algorithm. However, when
the variables are of discrete values for the
simple CH-program, or when the coefficients are not constants
as in the monotonically constrained or bounded CH-program
(for both continuous or discrete variables), there may be more
than one local optimum.11 Then, the global optimum can
not be achieved by the coordinate descent approach starting
from an arbitrary solution. However, the LR-based algorithm,
which, respectively, uses the LR, PLR, or ELR operations for
a simple, monotonically constrained or bounded CH-program,
can still be used to compute lower and upper bounds for the
exact (i.e.,globally optimal) solution. We will apply the ELR
operation to the STIS problem under the STL-bounded device
model, and apply the PLR and ELR operations to the GISS
problem considering the coupling capacitance for multiple

9Same as the method in [9] that we reviewed in Section I, methods in [22]
and [23] minimize the maximum delay.

10An alternative method, called the steepest descent approach or the
gradient method [24], minimizes the objective function along the direction
of the steepest gradient, and may simultaneously change all coordinates. In
general, it isn� 1 times faster than the coordinate descent approach, where
n is again the number of variables. However, because of the special nature
of the sizing problems, the LR-based optimization (the coordinate descent
approach) turns out to be very efficient in experiments. In fact, it was recently
shown that when using the simple device and capacitance models, the LR-
based algorithm can be finished in a linear time for the continuous wire sizing
problem [25].

11The simple CH-program using continuous variables belongs to the
posynomial program and, therefore, has a unique local optimum.

nets. Both problems are no longer the simple CH-program,
and may have multiple local optimal solutions.

III. STIS PROBLEM UNDER STL-BOUNDED DEVICE MODEL

A. Problem Formulation

Our formulation is similar to that in [7]. The delay is
computed based ona stage. It is defined as a DC-connected
path from a power supply (either the or the ground) to the
gate node of a transistor, containing both transistors and wires.
The delay of a stage with being the source and

being the sink can be written as (10) under the Elmore
delay model

(10)

where is the width for a transistor or a wire ,
is its unit-size effective-resistance, and and

are its unit-area capacitance and unit-length effective-fringe
capacitance. Coefficients and are determined
by the transistor netlist and routing topology.

In order to simultaneously minimize delays along multiple
critical paths, we minimize the weighted delay of all
stages in the set of critical paths denoted as

(11)

where the weight indicates the criticality of stage
. After we eliminate those terms independent of

X, (11) can be rewritten as

(12)

where and are weighted functions of
and , respectively.

We formulate the following STIS problem.
Formulation 1: Given the lower and upper bounds (and
) for the width of each transistor and wire, the STIS problem

is to determine a width for each transistor and wire (or
equivalently, a sizing solution , ) such that
the weighted delay through multiple critical paths given by
(12) is minimized.

Note that a sequence of weighted-delay minimization can be
used to minimize the maximum delay by adjusting the weight
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assignment based on the Lagrangian-relaxation method as in
[11]. Therefore, we focus on how to minimize weighted delay
in this paper. In addition, we assume that the possible width is
from a discretewidth set determined by the technology. The
discrete sizing problem is more difficult than the continuous
sizing problem, but is more convenient for placement and
routing tools and fabrication.

B. Bound Computation for the STIS Problem

Under the simple models, , , and are constants
for each wire/transistor, and (12) is a simple CH-function. In
this case, the STIS problem is a simple CH-program solved
in [7]. Because the simple models are no longer valid for
DSM designs, we study the STIS problem under the STL-
bounded device model that is more suitable for DSM designs.
For simplicity of presentation, we assume here thatand

are constants for each wire segment, but will remove the
assumption in Section IV.

In the STL-bounded model, is precomputed and stored in
tables (e.g., see Table I) indexed by the size, input switching
time ( ), and output load (). It could be very accurate
depending on the table size.12 Because the value for is
bounded, it is easy to verify the following Theorem 3.

Theorem 3: The STIS problem under the STL-bounded
device model is a general CH-program.

Note that the STL-bounded model mightnot be monotonic
with respect to the sizing solution . It can be justified by
the following observations: in our model is a monotonic
function of , whereas is not monotonic with respect to

, because the optimal wire sizing solution (see [4], [5],
and [23]) to minimize often has neither minimum nor
maximum wire width. Therefore, the STIS problem is unlikely
a monotonically constrained CH-program, and the LR and PLR
operations are not applicable.

The ELR operation is needed in the LR-based algorithm
(Table II) to compute lower and upper bounds for an ex-
act solution to the STIS problem. We assume that

and . In an ELR opera-
tion on a transistor for the lower-bound computation, we
use instead of , and instead of for ,
where is an upstream transistor in the same net for.
Symmetrically, in an ELR operation on for the upper-
bound computation, we use instead of for , and

instead of for an upstream transistor .
We determine as follows: Let and be lower

and upper bounds of the exact solution . We assume
that transistor has size , input switching
time , and capacitance load

. We often observe in our experiments that
increases with respect to an increase of or , but
decreases with respect to an increase of . Therefore,

12In our experiments,r0 table for a type of gate (e.g., an inverter) considers
the combinations of five different device sizes (from 1 time to 800 times the
minimum size), three different input switching times, and five different load
capacitances. Therefore, the total table size is 5�3�5�m = 75m, where
m is the number of gate types. Satisfactory optimization results are obtained
according to experiments in Section III-D. For simplicity, we assume thatcl

is the lumped capacitance in this paper. Extension to the effective capacitance
model [14] is an ongoing work and will be discussed briefly in Section V.

for can be obtained by table lookup using, , and
. Symmetrically, is determined using , ,

and . In addition, contributions of transistors or wires to
are computed using sizes in , and contributions to
computed using sizes in . After the ELR operation

on , for every stage ( is the source, is
the sink) driven by , we will update the lower and upper
bounds for the switching time at sink , because
is the input switching time for the transistor with gate
connected to node . The lower or upper bound of is
assumed to be the lower or upper bound of the delay through

, respectively. As and move closer during
the ELR-based optimization procedure, the range ofis also
narrowed. In general, the closer the values forand , the
smaller the gap between the lower and upper bounds given by
the ELR operations.

Because the unit-size resistance is a constant for each
wire segment , we can simply use the LR operation for.
Furthermore, in order to achieve better wire sizing solutions,
we can divide a wire segment into a sequence of unisegments,
then find a wire width for each uni-segment [5]. We assume
that each segment always stays in the same layer, has the
fixed , , and , as well as same allowable wire widths.13

With these assumptions, we have proved the followinglocal
monotone property.

Theorem 4—Local Monotone Property:There exists an op-
timal STIS solution where the wire widths for uni-segments
are monotonic within each wire segment.

The proof is available from the technical report [17]. This
theorem enables us to use the BLR operation [5] instead of the
LR operation for each wire segment . The BLR operation
is shown to be 100 times faster than the LR operation for the
wiresizing problem [5].

C. Overall Algorithm for the STIS Problem

Let and be the ELR-tight lower and upper bounds
given by the above bound-computation procedure. Ifand
are identical, we obtain the exact solution to the STIS problem
under the STL-bounded model. Otherwise, we traverse all wire
segments and transistors by iterative PLR operations until there
is no improvement in the last round of traversal. Note that
the PLR operation is bounded by and , and it uses
obtained from the device table. Even though the PLR operation
may lead to further improvement over and , in general it
doesnot lead to a lower or upper bound of the exact solution.14

Our experiments in Section III-D2 show that the ELR-
tight lower and upper bounds ( and ) are often close
to each other in most cases. Therefore, we can simply treat

as the final solution for smaller area and often lower
power-dissipation. Note that the STIS problem to minimize a
weighted-sum of delay and area is shown to be a CH-program
in [7], with a smooth tradeoff obtained between delay and
area. A similar approach can be used to better minimize the

13Different segments may have differentr0, ca, and cef if they are in
different layers, or have different spacings to neighboring wires.

14In our experiments, we tried to use PLR operations starting from either
the minimum or maximum sizing solution. The resulting solutions are often
outside the range defined byL0 andU0.
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TABLE III
COMPARISON BETWEEN MANUAL OPTIMIZATION AND STIS ALGORITHMS

capacitive power by minimizing the weighted-sum of delay
and capacitive power.

D. Experimental Results

For all experiments in this paper, we computed the delays
via HSPICE using the distributed RC model and the level-3
MOSFET model that is also used in HSPICE simulations for
device-table generation. The use of HSPICE simulation results
not only shows the quality of our sizing solutions, but also
verifies the validity of our interconnect and device modeling,
and the correctness of our problem formulations.

1) Comparison Between Manual Optimization and STIS Al-
gorithm: To illustrate the effectiveness of the STIS algorithm,
we first compare the sizing solution obtained by our algorithm
and the manual optimization applied to a spread spectrum IF
transceiver chip in [26]. The design is under the 1.2-m two-
layer metal SCMOS technology. There are two clock nets,
dclk andclk; each uses a chain of four cascade drivers in the
clock signal source and chains of four cascade buffers in order
to drive long interconnects and register files. The maximum
delays of the two nets need to be minimized to reduce the clock
skew. Therefore, source drivers and buffers are tuned manually
via iterative procedures of layout, extraction and HSPICE
simulation. We retain the manual sizing solutions for the first
stage drivers at the source and for the drivers of the register
files, then apply the STIS algorithm to optimize the sizes for
every 10- m-long wire and the rest of the drivers and buffers.
We use two formulations under the simple device model,
one is simultaneous transistor and wire sizing formulation
(stis/simple) where optimal sizes are found for- and -
transistors in each driver/buffer, and the other one is simulta-
neous gate and wire sizing formulation (sgws/simple) where an
optimal size is found for each driver/buffer. We also assume
that the allowable wire widths are with

m being the minimum wire width in the 1.2-m
technology, and the allowable transistor sizes are multiples of
0.6 m between 1.2 m and 500 m. The constant value for

in the simple model is determined under the typical input
switching time, device size and output load. The fixed ratio
between - and -transistors in thesgws/simpleformulation is
tuned to make sure that the inverter will have same pull-up
and pull-down resistance values.

Because the simple device model is applied, we use the LR
operation to compute the LR-tight lower and upper bounds for
devices. Experiments show that the identical LR-tight lower
and upper bounds are achieved for almost all devices and
wire segments, therefore we use the LR-tight lower bounds
as the final sizing solution. We report HSPICE simulation
results in Table III. When compared with the manual opti-

mization,sgws/simpleandstis/simpleformulations reduce the
maximum delay by up to 6.2% and 14.4%, respectively. More
significantly, both reduce the power consumption by up to
42.6% and 42.8%. Because we use the same simple model for
two formulations in this experiment, the extra delay reduction
(8.2%) of thestis/simpleformulation comes from the flexibility
of the transistor sizing formulation.

2) Comparison Between Simple and STL-Bounded Models:
We then apply our STIS algorithm under different device
models. We use the 0.18-m technology given in the NTRS
[12] in order to study the impact of the DSM technologies.
The wire sheet-resistance . We generate device
and capacitance tables via HSPICE simulations and numerical
extractions, respectively, and use and values where
the wire is 1.10-m wide and neighboring wires are 1.65-m
away. We size two global nets, one is a 2 cm line with five
buffers optimally inserted for delay minimization. The other
is the abovedclk net. In addition to different device models
(simple model versus STL-bounded model), we also use
different sizing formulations (sgwsversusstis). There are four
combinations, includingsgws/simpleandstis/simpleusing the
LR operation for devices, andsgws/boundedandstis/bounded
using the ELR operation for devices. For simplicity, we
assume that the fixed ratio between- and n-transistors for
the gate sizing formulation is 1.0. For both nets, we find the
optimal wire width for each 10-m-long wire, and assume that
allowable transistor sizes are multiples of 0.18m between
0.18 and 144 m, and that allowable wire widths are multiples
of 0.56 m between 0.56 and 5.6m.

Table IV summarizes experimental comparisons between
different formulations. We computed convergence rate under
different formulations. For the simple model, the computation
for a transistor or wire isconvergentif its LR-tight lower and
upper bounds are identical. For the STL-bounded model, the
computation for a transistor or wire isconvergentif its ELR-
tight lower and upper bounds are identical. The convergence
is not significantly different. For example, computations for
about 85% transistor are convergent indclk net under all four
formulations. We also computed the average width and the
average gap between lower and upper bounds for all wire
segments and transistors, respectively. The ELR operation
does give larger gap than the LR operation. However, the
difference is small. Overall, the average gap is only 1% of
the average width, except that netdclk has a large gap, nearly
10% of the transistor size.

We simply use the ELR-tight lower bound as the final
solution under the STL-bounded model, and the LR-tight lower
bound as the final solution under the simple model, because
lower and upper bounds given by bound computations are very
close to each other. Table IV also give the maximum delay
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TABLE IV
COMPARISONS BETWEEN DIFFERENT DEVICE AND WIRE SIZING FORMULATIONS

(a) (b)

Fig. 4. (a) Symmetric wire sizing and (b) asymmetric wire sizing. The asymmetric wire sizing has smaller capacitance and less delay.

via HSPICE simulation. The solutions under the STL-bounded
model are consistently better than those under the simple de-
vice model. When compared with thesgws/simpleformulation,
the sgws/boundedformulation further reduce the maximum
delay by up to 6.4%. When compared with thestis/simple
formulation, thestis/boundedformulations further reduce the
maximum delay by up to 15%. Note that bothsgws/simple
and stis/simpleformulations have already given very good
sizing solutions as shown in the experiment of Section III-D1.
Although ELR operations under the STL-bounded model are
more complex, the runtime is still impressively small. It used
just 3.17 s to optimizedclk net of 154 buffers and 41518.2m
wires, when the transistor sizing formulation is used and wire
segments are 10-m-long. Therefore, our STIS algorithm is
extremely efficient.

IV. GISS PROBLEM CONSIDERING COUPLING CAPACITANCE

The unit-area capacitance and unit-length effective-fringe
capacitance are assumed to be constants for each wire
segment in the STIS problem in Section III. We shall pro-
ceed to remove this assumption using the more general WS-
bounded capacitance model in this section. For simplicity of
presentation, we assume that the device sizes are fixed, and
study the GISS problem for multiple nets with consideration
of the coupling capacitance. However, our algorithm and
implementation are able to use the STL-bounded device model
and the WS-bounded capacitance model (with consideration of
the coupling capacitance) at the same time.

A. Problem Formulation

Our GISS formulation was first presented in [16]. We
assume that an initial layout isa priori given and defines the

initial central-line for each wire segment. Theinitial pitch-
spacing, i.e., the distance between the initial central-lines,
remainsunchangedduring the sizing procedure. We consider
two wire sizing formulations. One is thesymmetricwire sizing
formulation, where wires are always symmetric with respect to
initial central-lines as illustrated in Fig. 4(a). In contrast, in the
asymmetricwire sizing formulation shown in Fig. 4(b), wires
of same widths are asymmetric with respect to initial central-
lines, and have smaller capacitance and less delay. Because
neighboring wires are, in general, asymmetrically away from
interested nets, the asymmetric wire sizing formulation is
capable of further reducing the interconnect delay.

In the asymmetric formulation, the wire sizing solution for
wire segment needs to be represented by a pair of widths
( , ), where is the width of the piece of wire above
(or left to) the initial central-line when is a horizontal (or
vertical) segment, and the width of the piece of wire on
the other side of the initial central-line. Similarly, we denote
the spacing above (or left to) as , and spacing on the
other side as . In order to maintain the connectivity, we
say that a wire width is valid if and are at least

, where is the minimum wire width set by the
manufacture technology.

With consideration of both symmetric and asymmetric wire
sizing formulations, we define the following GISS problem.

Formulation 2: Given multiple nets with initial central-line
for each wire segment , the GISS problem is to determine
a valid wire width for each with respect to its
initial central-line, such that the weighted delay given by (12)
is minimized for multiple critical paths over these nets.

Note that, as shown in Fig. 2, both and are functions
of wire widths and spacings. In the following, we shall first
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consider the symmetric wire sizing formulation, then extend
our algorithms to the asymmetric wire sizing formulation.

B. Bound Computation for the Symmetric GISS Problem

Our WS-bounded capacitance model is a table-based model
simplified from the two and one-half dimensional (2-D)
capacitance model in [27]. In this model, we first use the
numerical capacitance extraction to solve thebasic geometric
structure with equal widths and spacings (see Fig. 1). We
consider different width and spacing combinations, and store

and in two-dimensional (2-D) tables in-
dexed by widths () and spacings (). Then, for a wire segment

with width and spacings and to its two nearest
neighboring wires and , we compute as

(13)

and compute as

(14)

where is the unit-length effective-fringe capacitance

between and , and the unit-length effective-fringe
capacitance between and . They are given as

(15)

(16)

where and are widths for and , respectively.
Because our GISS formulation assumes that the initial

central-lines are fixed, can be determined by and ,

and by and . Therefore, and are functions
of , and . Because and are obviously
bounded, we have the following Theorem 5.

Theorem 5: The GISS problem under the WS-bounded
capacitance model is a bounded CH-program.

Note that the GISS problem is easier than the STIS problem
in the sense that coefficient or in GISS is a function
of just four variables, whereas coefficient in STIS may
depend on all variables. Based on this theorem, we may use
the ELR operation to compute the lower and upper bounds for

, the optimal width for a wire segment . If we assume that
and has two neighboring wires and ,

in an ELR operation during the lower-bound computation for
, we use , and instead of ,

and for , and , and use instead of
for that is a downstream segment of , or .

Similarly, during the upper-bound computation for, we use
, and for , and , and for

downstream segment . Furthermore, we rewrite

(17)

(18)

Therefore, the following rules similar to those for are used
for : during the lower-bound computation, the upper bound
of will be used for , and , and lower bound

of for downstream segment ; during the upper-bound
computation, the lower bound of will be used for ,
and , and upper bound of used for .

The bound-computation for the GISS problem can be sim-
plified when the WS-bounded model is monotonically con-
strained. We first define the followingmonotonically con-
strained capacitance table.

Definition 7: A capacitance table is monotonically con-
strained if the following is true with respect to the basic
geometric structure (see Fig. 1) for any given pitch-spacing:
for any two combinations of widths and spacings
and , if (and under the given pitch-
spacing), then and

, at the same time,
and .

We say that the WS-bounded model is monotonically con-
strained if its capacitance table is monotonically constrained,
and proved the following theorem in the technical report [17].

Theorem 6: The GISS problem under the WS-bounded
capacitance model is a monotonically constrained CH-program
if the capacitance model is monotonically constrained. In this
case, the PLR operation can be used instead of the ELR
operation. To tighten a lower- (upper-) boundfor a wire ,
we assume that its neighboring wires and have lower-
(upper-) bound widths at spacings and away from .
We use and obtained directly using table lookup, and
perform an PLR operation on . Compared with the ELR
operation, the PLR operation is more efficient and may lead
to smaller gaps between lower and upper bounds.

In order to exploit the optimality of the ELR operation and
the efficiency of the PLR operation, our implementation of the
ELR operation is a hybrid of both operations. When working
on a wire , we first check capacitance values with respect
to all valid widths and spacings for ,15 then use an PLR
operation if Definition 7 is satisfied. Otherwise, we use an
ELR operation.

By using the ELR or PLR operation, we obtain lower
and upper bounds only for the optimal total-width . If
the resulting bound is , we assign for
the symmetric GISS problem. Therefore, starting with the
minimum and maximum symmetric wire sizing solutions for
all wire segments, and using iterative ELR or PLR operations,
we can compute ELR-tight lower and upper bounds for the
globally optimal solution to the symmetric GISS problem.

C. Bound Computation for the Asymmetric GISS Problem

We first extend the dominance relation to consider the
asymmetric wire sizing formulation. We say that the wire
sizing solution dominates another solution (denote as

), if (i.e., and
) holds for any wire segment . A lower and

upper bound of the exact solution to the asymmetric GISS

15A dynamic-programming scheme is used based on 2-D cache tables,
which, similar to our capacitance tables, are indexed by widths and spacings.
For given width and spacing, the cache tables return the minimum or
maximum values forca and c

0

ef , or imply that the PLR operation can be
used.
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problem will be determined according to the new definition of
dominance relation.

We solve the asymmetric GISS problem by augmenting the
bound-computation algorithm presented in Section IV-B. Each
ELR or PLR operation gives only the total-width, which
is a lower or upper bound of the optimal total-width for

. To obtain an asymmetric wire sizing solution, we need
to separate into and , which are respective widths
for the “two pieces” of wires around the initial central-line of

. This separation is equivalent to embed a wire with total-
width around the initial central-line of . It also affects the
ELR and PLR operations in the subsequent steps. We propose
to perform aconservative embeddingright after any ELR or
PLR operation.

We assume that is the width for
in the exact asymmetric solution. Let and be the
lower and upper bounds for , and and the lower
and upper bounds for . If we obtain a total-width
in the lower-bound computation, the conservative embedding
(CE) operation computes , which is a
conservativelower-bound for . Similarly,
is a conservative lower bound for . Note that the sum
of and may be less than in the CE operation.
Symmetrically, for an upper-bound , we compute

, and . This augmented algorithm
leads to the lower and upper bounds of the exact solution to
the asymmetric GISS problem.

We also define a greedy embedding (GE) operation. Recall
that neighboring wires of have their lower- (upper-) bound
widths during lower- (upper-) bound computation for. If the
lower or upper bound of wire width for is , we find
and such that and the objective function
(12) is minimized with respect to the given neighboring
wires. Different from the CE operation, the GE operation
does not always lead to a lower or upper bound of the exact
solution for the asymmetrical GISS problem. We will show,
however, that the GE operation has a higher convergence
rate than the CE operation in experiments, and achieves
satisfactory experimental results in Section IV-E. Again, we
say the computation on a wire segment isconvergentif lower
and upper bounds are identical.

D. Overall Algorithm for the Asymmetric GISS Problem

Our overall asymmetric GISS algorithm [denoted as
GISS/(E)LR algorithm, see Table V] consists of the following
three steps. First, we compute the ELR-tight lower and upper
bounds using iterative ELR operations and CE operations.
Our ELR implementation invokes PLR operations when PLR
operations assure the optimality. Then, if the resulting lower
and upper bounds do not meet, we will use iterative LR
operations and GE operations to further improve the lower
and upper bounds. We carry out the LR operation and GE
operations simultaneously as the following: for a wire segment,
we enumerate width choices for two wire-pieces between
lower and upper bounds, and the two widths that minimize
our multiple-net objective function (12) are the LR and GE
result. Note that the first step guarantees the optimality in

TABLE V
ASYMMETRIC GISS ALGORITHM BASED ON ELR AND LR OPERATIONS

the sense that there exists a global exact solution within the
resulting ELR-tight lower and upper bounds. However, this
kind of optimality may not hold in the second step. Finally,
for each net that still has nonconvergent wire segments, we
will assume that other nets have lower-bound wire widths,
and invoke the single-net interconnect sizing and spacing
(SISS) algorithm presented in [16] to find the final sizing and
spacing solution within its lower and upper bounds. The SSIS
algorithm combines the asymmetric wire sizing formulation
and the wire sizing algorithm based on the bottom-up dynamic-
programming technique [10].16 We apply the SSIS algorithm
in the greedy order such that the more timing-critical net is
processed earlier.

E. Experimental Results

We have tested our GISS algorithm on a 16-bit parallel bus
structure. In this bus, each bit is a 1-cm line with a 119-
driver resistance and a 12.0-fF sink capacitance. We assume
that initially these lines are equally spaced. We will find an
asymmetric wire sizing for every 500-m-long wire segment.
In addition, the minimum wire width is 0.22 m, and the
minimum spacing 0.33 m. The allowable wire widths are
from 0.22 to 1.1 m, with the incremental step of 0.11m.
The capacitance tables are generated using numerical capac-
itance extraction for the 0.18-m technology in NTRS [12,
Table 22].

We optimized the bus for different initial pitch-spacings,
from two to six times of the minimum pitch-spacing (0.55

m). Our GISS/(E)LR algorithm has two bound-computation
phases, the first one using ELR/CE operations and the second
one using LR/GE operations (see Table V). As shown in
Table VI, computations for from 57%–77% wire segments
are convergent, i.e., identical lower and upper bounds are
achieved for these segments after the ELR/CE phase. The
average gap after the ELR/CE phase is between 0.033–0.090

m. Furthermore, the LR/GE phase obtains identical lower and
upper bounds for all wire segments in our examples. Therefore,

16The SISS problem finds the optimal wire sizing and spacing solution for
a single net, under the assumption that all its neighboring wires are fixed. The
GISS/(E)LR algorithm, i.e., first computing ELR-tight bounds based on the
ELR operation, and then computing the final solution within bounds based on
dynamic programming, can also be used to solve the SISS problem. It will be
much more efficient than the purely dynamic-programming based approach in
[16].
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TABLE VI
CONVERGENCE OFELR/CE AND LR/GE IN GISS/(E)LR ALGORITHM

TABLE VII
COMPARISON OF DIFFERENT SIZING ALGORITHMS

very likely, our bound computation directly leads to the global
and asymmetric wire sizing and spacing solution. In addition,
we report the average numbers of ELR and PLR operations
for a wire segment (our ELR implementation automatically
invokes the PLR operation when the PLR operation does
not lose the optimality). An important observation is that in
most cases the PLR operation is used. It implies that the
GISS problem is mainly a monotonically constrained CH-
program.

We also presented an alternative GISS algorithm in [16].
Based on an effective-fringe property that assumes constant
and , it uses a bottom-up dynamic programming technique
to compute lower and upper bounds for the global solution
to the asymmetric GISS problem. We call it GISS/FAF. The
algorithm may be extended to use variableand under the
WS-bounded capacitance model, and we call it GISS/VAF. In
both cases, the exact solution may beoutsidethe range defined
by the resulting lower and upper bounds. Both GISS/FAF and
GISS/VAF algorithms further use the SISS algorithm to obtain
final solutions within the lower and upper bounds, whereas
the GISS/(E)LR algorithm uses the lower bound as the final
solution due to its high convergence. In addition, we also apply
the SISS algorithm in a greedy order, which is equivalent to
invoking only Step 3 in the GISS/(E)LR algorithm (Table V).
The SISS algorithm obtains a local-optimal solution for the
GISS problem.

We compare the average HSPICE delay for solutions given
by these algorithms in Table VII (average delay is our ob-
jective function). As seen from the table, the GISS/(E)LR
algorithm always achieves results better than the SISS so-
lutions, with up to 39% delay reduction. Therefore, it is
important to find the globally optimal solution to the GISS
problem. The improvement of the GISS/(E)LR algorithm

over the SISS algorithm is reduced when the pitch spacing
increases, due to the fact that the coupling capacitance is less
significant for larger pitch spacings. Nevertheless, compared
with the SISS algorithm, the GISS/(E)LR algorithm still
reduces the average delay by 8.6% in the case of maximum
pitch spacing. Because neither nor is a constant in
DSM designs, both GISS/(E)LR and GISS/VAF algorithms
obtain better results than the GISS/FAF algorithm does. The
GISS/(E)LR algorithm obtains an extra delay reduction of up
to 17% when compared with the GISS/FAF algorithm. Further-
more, compared to the GISS/VAF algorithm, the extra delay
reduction of the GISS/(E)LR algorithm is up to 7.1%. More
significantly, the GISS/(E)LR algorithm runs 100 times faster.
It also uses much less memory. Because the GISS/(E)LR
algorithm is much faster and always achieves the best results in
experiments, we suggest that the GISS/(E)LR algorithm shall
be used instead of other algorithms.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we formulated three classes of optimization
problems: the simple, monotonically constrained, and bounded
CH-programs. We revealed the dominance property (Theorem
1) under the LR operation for the simple CH-program, as well
as the general dominance property (Theorem 2) under the PLR
operation for the monotonically constrained CH-program and
under the ELR operation for the bounded CH-program. These
properties enable a very efficient polynomial-time algorithm,
using the LR, PLR, or ELR operation for computing lower
and upper bounds of the exact solution to any CH-program.
In addition, we introduced the bundled-LR (BLR) operation
[5], which may be used to speed up the LR, PLR, and ELR
operations. We also called the bound-computation algorithm
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as the LR-based algorithm, where LR, in general, refers to the
LR, PLR, ELR, or BLR operation.

We showed that the algorithm is very effective and efficient
for many layout optimization problems in DSM designs. It uni-
fies solutions to several problems, including the single-source
and multisource wire sizing problems [4], [5], continuous wire
sizing problem [19], and simultaneous driver/buffer and wire
sizing problem [3], [11], [28]. Because these problems assume
the simple models for the device delay and interconnect
capacitance, they are all simple CH-program where the LR op-
eration can be used for bound computations. Furthermore, we
applied the bound-computation algorithm to the STIS problem,
and to the GISS problem with consideration of the coupling
capacitance for multiple nets. We used tables precomputed
from SPICE simulations and numerical capacitance extractions
to model device delay and interconnect capacitance, so that our
device and interconnect models are much more accurate than
many used in previous works. We first showed that the STIS
and GISS problems are, in general, bounded CH-programs,
and that the GISS problem is a monotonically constrained
CH-program when the capacitance model is monotonically
constrained. We then developed the STIS algorithm based on
bound-computation using the ELR operation, and the GISS al-
gorithm based on bound-computation using the ELR and PLR
operations. According to Theorem 2, our bound-computation
guarantees that there exist exact solutions to the two problems
between resulting lower and upper bounds. Experiments also
showed that our algorithms obtained solutions close to the
global optimum in the most cases. Moreover, the algorithms
are extremelyefficient. It took less than 10 s to optimize the
largest example in this paper.

Solutions to the STIS and GISS problems, as well as other
device and wire sizing problems [3]–[5], [28], have been
integrated in the TRIO package [29]. Routines using the LR,
PLR, ELR, and BLR operations are shared. Note that our
bound-computation algorithm is applicable to anybounded
model for the device delay and interconnect capacitance. The
bounded model simply requires that values for the device
delay and interconnect capacitance be bounded. Furthermore,
the bounded model can use either table-lookup or high-order
complex characteristic functions. In addition, results presented
in this paper can be used for both prelayout interconnect
planning, and postlayout interconnect optimization.

In this paper, we assumed that the lumped capacitance is the
load capacitance. In the future, we will extend our algorithm to
use the effective capacitance ( ) [14] as the load capacitance
for our device model. Because the ELR operation requires only
the lower and upper bounds for the load capacitance, we plan
to develop methods computing the lower and upper bounds
for , which may be more efficient than computing
directly. The Elmore delay model is used in this paper. Several
recent works [9], [30], [31] have applied the higher-order
delay model. We also plan to extend the LR-based algorithm
to consider the higher-order delay model, or the table-based
delay model as used in [32].

Note that the coupling capacitance affects not only the
interconnect delay, but also the signal integrity. Furthermore,
the inductive effect becomes increasingly significant for global

interconnects in DSM designs. We plan to develop suitable
delay and noise models considering both capacitive and induc-
tive effects, then apply the LR-based algorithm and/or other
techniques. The extended algorithm, with consideration of the
inductive effect and higher-order delay model, will also be
applicable to the device and interconnect sizing problem in
PCB and MCM layout designs. Moreover, we believe that
our CH-program formulations and the LR-based algorithm
can be applied to other optimization problems in the CAD
field.
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