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Theory and Algorithm of Local-Refinement-
Based Optimization with Application
to Device and Interconnect Sizing

Jason Cong

Abstract—In this paper we formulate three classes of opti-
mization problems: the simple, monotonically constrained, and
bounded Cong-He (CH)-programs. We reveal the dominance
property under the local refinement (LR) operation for the
simple CH-program, as well as the general dominance property
under the pseudo-LR operation for the monotonically constrained
CH-program and the extended-LR operation for the bounded
CH-program. These properties enable a very efficient polynomial-
time algorithm, using different types of LR operations to compute
tight lower and upper bounds of the exact solution to any CH-
program. We show that the algorithm is capable of solving many
layout optimization problems in deep submicron iterative circuit
and/or high-performance multichip module (MCM) and printed
circuit board (PCB) designs. In particular, we apply the algorithm
to the simultaneous transistor and interconnect sizing problem,
and to the global interconnect sizing and spacing problem con-
sidering the coupling capacitance for multiple nets. We use tables
precomputed from SPICE simulations and numerical capacitance

and Lei He

We believe that the most effective approach to performance
optimization in DSM designs is to consider both logic and
interconnect designs throughout the entire design process
[from register-transfer level (RTL) level to layout design].
This motivates our study of the simultaneous device and
interconnect sizing problem in DSM designs.

Several recent studies considered the simultaneous device
and interconnect sizing problem. One class of algorithms
minimizes the weighted delay. In [3], the simultaneous driver
and wire sizing problem was formulated to minimize the
weighted delay between the source and a set of sinks for a
single net. Procedures of device sizing and wire sizing are
alternately carried out, with device sizes computed by closed-
form formulas (via Maple) and wire widths computed by
algorithms from [4] and [5]. In [6] and [7], the simultaneous

extractions to model device delay and interconnect capacitance, sotransistor and interconnect sizing problem was studied to min-

that our device and interconnect models are much more accurate
than many used in previous interconnect optimization algorithms.
Experiments show that the bound-computation algorithm can
efficiently handle such complex models, and obtain solutions close
to the global optimum in most cases. We believe that the CH-
program formulations and the bound-computation algorithm can
also be applied to other optimization problems in the computer-
aided design field.

Index Terms—Circuit optimization, design automation, device
modeling, device sizing, integrated circuit layout, interconnect
modeling, local refinement, optimization methods, wire sizing,
wire spacing.

I. INTRODUCTION

T

imize the weighted delay for multiple paths (a path contains
multiple nets). The local refinement operation, previously used
only for wire sizing solutions [3]-[5], is applied to optimize
both devices and interconnects. It leads to a unified and very
efficient algorithm. Recently, the simultaneous buffer insertion
and wire sizing problem was also addressed [8]. It is assumed
that the number of buffers to insert is given for each wire
segment, and that the wire widths between any two buffers are
monotonic. Therefore, the problem can be solved as a convex
guadratic program to find the lengths of wire segments for
different wire widths.

The other class of simultaneous device and interconnect
sizing algorithms considers the maximum delay. In [9], the

he interconnect delay has become the dominant facfifnultaneous gate and wire sizing problem was formulated to
in determining circuit performance in deep submicroftinimize the area under the maximum-delay constraint for

(DSM) designs [1]. Many optimization techniques have bedRultiple paths. The problem is shown to be a posynomial
proposed to reduce interconnect delay, including intercoRfogram, and is transformed into a convex program solved

nect topology optimization, buffer insertion, and device al

ey @ sequential quadratic programming technique. In addition,

interconnect sizing (see [2] for a comprehensive surve)W.e simultaneous buffer insertion and wire sizing problem was
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TABLE | f H
UNIT-SizE EFFECTIVE-RESISTANCE FORN- AND P-TRANSISTOR =
center-to-edge spacing
size = 100x i‘ ...................... »l

n-transistor p-transistor

|jspas’:ing_ spacing
width

cz/ts 0.05ns | 0.1ns 0.2ns 0.05ns | 0.1ns 0.2ns
0.225pF | 12200 13370 | 19180 | 17200 19920 | 24550
0.425pF | 8135 9719 12500 | 17180 17190 | 18820 L |—_L
0.825pkF | 8124 8665 10250 | 17090 17150 | 17290
1.625pF | 8114 8170 8707 16140 17140 | 17150
3.225pF | 7578 8137 8251 14710 16940 | 17100
size = 400x We also computed the capacitance for basic geometric
structure (see Fig. 1), where thevictim wire is centered
between two neighboring wires on the same layer and both
top and down grounds (two layers away from the victim).
We assume that wires in the basic geometric structure have
same widths, then apply a numerical capacitance extraction
tool FastCap [13] to solve the structure, using interconnect
geometric parameters for the 0.18n technology in NTRS,
Table 22 Fig. 2(a) depicts the unit-length ground capacitance
¢y between the victim and grounds, with each curve dpr
relaxation technique was proposed in [11] to optimally assigmder different wire widths but a fixed edge-to-edge spacing
the weights for the sequence of weighted-delay minimizationg short, spacing. If we assumer, = ¢, - w -l + ¢y - [, the
The simultaneous buffer and wire sizing problem was algrve slope should be,, and the curve intercept should be
solved [11]. cs. Because none of these curves is linear, and different curves
However, most of these works assumed over-simplifigthve different intercepts, neitheg nor c; is a constant. The
models for devices and interconnects. For example, a gadeal capacitance of the victim is
of size d and output loade; is assumed to have a delay
tq = tg + ra - ¢, Wheretg and r4 are theintrinsic delay

and effective resistancef the gate, respectively. In addition,yherec, is the unit-length coupling capacitandeetween the
Td = 7’0/d, WhereTO iS theunit'size effective-resistaﬂd’:@‘ the Victim and the neighboring Wires' One can define th‘et_
gate. Bothty andrg are assumed to beonstants Moreover, length effective-fringe capacitaneg; = ¢;+c,, and compute
the capacitance for a wire of widtlh and lengthl is given by Ctotal = Ca - W -1 + o - 1. We also obtained, ; for different
cq-w-l+cy-1, wherec, andcy areunit-area capacitancand  idths for the victim, under the assumption that tester-to-
unit-length fringe capacitancéor the wire. Both are again eqge spacingsee Fig. 1) from the center of the victim to the
assumed to beonstants edges of its neighboring wires is fixed. As shown in Fig. 2(b)
These assumptions are no longer realistic for DSM desigigr two different center-to-edge spacing, is a not a constant
For example, we computed for an inverter in Table |. We gither.
apply HSPICE simulations, and use device parameters for th&ye say that a device model issimplemodel if it assumes
0.18 um technology in National Technology Roadmap fofhat 1, is a constant, and a capacitance model isiraple
Semiconductors (NTRS) [12], Table V. When the inverter igodel if it assumes that both, andc.; are constants. Most
driven by a rising input, we first measure two delay valuesyisting device and interconnect sizing works assume simple
t1 and t; for a pair of output loads:; and c; under the gevice and capacitance models. Little progress has been made
same size and input switching time. Using the assumpti@sy optimization beyond the simple models. The simultaneous
thatt; = 2o + 74 - cy andty = fo + rq - c2, We can obtain pyffer insertion and wire sizing algorithm [10] was extended
ra = (t1 —t2)/(c1 — c2), andio = t1 — rq - c1. We then o consider the impact of the input switching time for the
computeto values for different combinations of size, inpuljevice delay. The unit-size effective-resistance, in essence, is
switching time {;), and output load). Because we assumeassumed to be, = 7l + 6 - t,, wherer) is the unit-size
that the intrinsic delay, is a constant in this paper, we derivesffective-resistance under the step ingythe input switching
the “best”#, value by least-square-fitting ovey values for time, ands an empirical constant. The algorithm based on the
different combinations of siz¢, and ;. Finally, we use the bottom-up dynamic-programming, however, no longer has a
“best” t, value to computeo = (tq — to)/c; - d, wherety is  polynomial-time complexity under the extended device model.
the inverter delay, and the size for then-transistor in the The posynomial program formulation for the simultaneous
inverter. We computer for the n-transistor under different gate and wire sizing problem [9] was also extended to ac-
combinations of sizet, and ¢;. Similarly, when the inverter commodate a voltage-ramp gate model, which considers the

is driven by a falling input;ry for the p-transistor can be jmpacts of the input switching time and output loading under
determined in the same way under different combinations of

. d A f Table is cl | 1The NTRS gives capacitance values only for the minimum width and
size,t; andc;. As one can see from Tableslg Is clearly not spacing. Our extracted capacitance values closely match those given in the

a constant. Its value may vary by a factor of two. NTRS (see [1]).

Fig. 1. The basic geometric structure for capacitance extraction.

n-transistor p-transistor
a [t 0.05ns | 0.1ns | 0.2ns | 0.05ns | 0.1ns | 0.2ns
0.501pF | 12200 15550 | 19150 | 18200 19970 | 27030
0.901pF | 11560 13360 | 17440 | 17340 19590 | 24560
1.701pF | 8463 9688 12470 | 17070 17420 | 18790
3.301pF | 7725 8812 10420 | 17030 16780 | 17440
4.901pF | 7554 8480 10010 | 16090 17020 | 17060

Ctotal = Cg + Cx Il =cq w1+ (cf+cz)- 1
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Fig. 2. (a) Ground capacitance and (b) effective-fringe capacitance for the central wire (the victim) in the basic geometric structure shown in Fig. 1
Each curve in (a) has the same spacing but different wire widths, and each curve in (b) has the same center-to-edge spacing but different wire widths.
The capacitance values are given for the unit-length wire.

the C.¢ model [14]. The resulting sizing problem, however, islasses of optimization problems: the simple, monotonically
no longer a posynomial program. It is unknown how far awagonstrained, and bounded CH-programs. We then develop
the solution obtained by solving a posynomial program is frothe theory and algorithm based on different types of local-
the exact solution under the voltage-ramp model. Two vergfinement (LR) operations to optimize three classes of CH-
recent works [15], [16] began to consider coupling capacitanpeograms. We finally solve the STIS and GISS problems by
for multiple nets? Both allow variable. ; but still assume that posing them as CH-programs. Experiments show that we are
ro ande¢, are constants. Even though all these algorithms stilble to obtain solutions close to the global optimum in the most
use the simple model for either device delay or interconnezdses. Based on SPICE simulations, our algorithm in this paper
capacitance, their runtime is already high. For example, it toobtained up to 15.1% and 17% addition delay reductions when
over 20 min to optimize a 16-bit bus of 320 wire segmentompared with STIS results in [7] and GISS results in [16].
in [16]. Moreover, our algorithm igxtremelyefficient. A speedup of

We will call the device table, like Table ISTL-bounded over 100 times is achieved compared with the algorithm in
model, wherery is determined by the size, input switching16].
time () and output load (), and its value isbounded The rest of the paper is organized as follows: we first
(i.e., there exist lower and upper bounds fgf) for any present the theory and algorithm of LR-based optimization
given ranges of sizet; and ¢;. In addition, aWS-bounded in Section Il, then apply the algorithm to the STIS and
capacitance model will be presented in Section IV, whgre GISS problems in Sections Ill and IV, and finally conclude
and ¢.; are determined by the widthw) and spacing §), in Section V. Proofs of theorems, together with tables for
and their values are also bounded for any given ranges ofthe device delay and interconnect capacitance used in our
and s. We build tables for the STL-bounded device modedxperiments, are available from a technical report [17]. Part
via SPICE simulations, and for the WS-bounded capacitanok preliminary results of this work was presented in two
model via numerical capacitance extractions. These models evaference papers [7], [18].
more accurate than the simple models, and have been widely
used.for verification purposes. However, there are virtually N0 || THEORY AND ALGORITHM FOR CH-PROGRAMS
algorithms that allow us to use these models for the device
and interconnect sizing problems.

In this paper, we apply the STL-bounded device mod
and the WS-bounded capacitance model to the simultaneou¥Ve first define the CH-functionQong—Hefunction)? as a
transistor and interconnect sizing problem (STIS), and fgnction of a positive vectoX = {z;|z; > 0,i=1,---, n}
the global interconnect sizing and spacing (GISS) problewith the following form:
considering the coupling capacitance for multiple nets. In order " " X)

o Uy o i i
to efficiently handle the two problems, we formulate three f(X) = Z Z Z Z <%)
p>0 >0 i=1 j=1,j5#i v
‘ 2The formylatic_)n in [15] is ba_sed on the dominant time constant, which . (b . ( ) xq) (1)
is an approximation to the maximum delay among multiple sinks in a net. P d: %0 J
Because it is difficult to efficiently minimize the sum of the dominant time

constants [15], the Elmore delay model (used in this paper) is more appropriaté CH-function was called CH-posynomial in [7] and [18]. As recommended
for path delay minimization. by reviewers, we renamed it to show that it is not, in general, a posynomial.

é. Formulations of CH-Functions
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CH-function is a subset of the posynomial. A posynomial
[20] is a function of a positive vectoX having the form
9(X) = 2oL wi(X) with

simple
CH-function

CH-function

bounded
CH-function

U/z(X) :Cixlfil xgiz xff"’ 1= 17 27 e, M (2)
where the exponents;; are real numbers and the coefficients

Fig. 3. The simple CH-function is a subset of the monotonically constraingd are positive. For example,
CH-function, which is in turn a subset of the bounded CH-function.

flzy, @2, x3) = 21 + 1 /20 + 203 3)
where coefficientss, , ; ;(X) and b, , ; ;(X), as well as
exponentsp and ¢, are positive. is a simple CH-function as well as a posynomial. However,
Depending on the coefficient, , ; ;(X) andb, 4 ; ;(X),
we de_fir_w_e the follpwing three types of CH-functi_ons. _ flzy, zo, x3) = 2% - 9 - 1 (4)
Definition 1—Simple CH-functionEquation (1) is a simple T3

CH-function if coefficientssy, 4 ;. ; andb, 4 ; ; are constants. is a posynomial butnot a simple CH-function. On the
The concept of simple CH-function was first introduced in . ) '
i . gther hand, the monotonically constrained and bounded
[6] and [7]. It was shown that many previous works on dev'ch-functions may be no longer a posynomial. For example
and interconnect sizing problems, including the single-source ' '
and multisource wire sizing problems [4], [5], continuous wire 1 , T
sizing problem [19], and simultaneous driver and wire sizing f(z1, 22) = e fit.,  @>3 (5)
problem [3], use simple CH-functions as objective functions. ' '

In some applications however, coefficients, ; ;(X) and is neither a simple CH-function nor a posynomial. However,
bp,4,4,5(X) may vary as functions depending 8@ For two one can easily verify that it is a monotonically constrained
vectorsX and X', we say thafX dominatesX’ (denoted by CH-function by treatingl/In z; as the coefficient function
X >XN)if @, > o) fori =1, .-, n. We then define the for z2.
following monotonically constrained CH-function

Defi.nition 2.—Monotonicallly Constraingd CH—Functiqn:B_ Properties for CH-Programs
Equation (1) is a monotonically constrained CH-function, i o
if it satisfies the following monotonic constraints: for any Ve define theCH-programas an optimization problem to
vector X/ > X, 1) ap,q,i,j(X’)/x;p < ap i (X)/2F minimize a CH-function subject td. < _X < U (e, li_ <
and a, o i /(X)) > ap. g (X) and 2)b, o ;(X7) - x;q > T < uy _for i=1,---,n). It may be a simple, m_onotomcally
by q. i 1(X) x; andb,, o i ;(X') < by .5 5(X). _constramgd, or bgunded QH-program dep_endmg on whether

The monotonically constrained CH-function was definelf objective function is a simple, monotonically constrained,
differently (and called bounded-variation CH-posynonfiad) ©F bounded CH—fgnctlon. We will introduce the dominance
[18], where we say 1}, , ; ; is a function depending only on prop_erty for the simple CH-program, as well as th(_a general
z;. With respect to an increase of, a,, ;. ; (z;)/=” monoton- dominance property for the monotonically constrained and
ically decreases and, , ; ;(x;) monotonically increases andPounded CH-programs. . _ .

2) b,.4.:.; is a function depending only om;. With respect 1) Dominance Property:We first define the following local

to an increase of;, by, 4,s, ;(z;) - =7 monotonically increases refinement operation. o
andb,_, ; ;(x;) monotonically decreases. It is easy to see that Definition 4—Local Refmement Ope_ratloﬁ%lven a _func—
Definition 2 subsumes the old definition and covers a widdPn /(X) and a solution vector (or simply, a solutioXy’,
class of functions, because now each coefficient may vary 8§ local refinement operation for any particular variablés
a function of all variables irX, instead of a single variable {0 minimize f(X) by only varyingz; while keeping all values
in [18]. of otherz;(j # z‘).m )_(’ fixed. o
We finally remove the monotonic constraints for the CH- Such an operation is also called BR operationin short.
function by formulating the followingpounded CH-function The re_sultmg solution vector is called thmcal refinemenof
Definition 3—Bounded CH-FunctiorEquation (1) is a X _(With respect toz;).
bounded CH-function, if its coefficients are bounded: for any Furthermore, we define

p, q, ¢ and j, there exist positive constamﬁ aii pqi g

b%m?j and b;7q7i7j, such thataquy% < ap g0 (X)) < g(X) :Z Z Ai(zi) - Bj(x;) (6)
A, g iy ANAY 5 < by g0 (X) S g i=1j ‘

Clearly, the simple CH-function is a subset of the mono-
tonically constrained CH-function, which in turn is a subset ofthere A;(z;) is a function depending only om;, and it
the bounded CH-function; see Fig. 3. In addition, the simplacreases with respect to an increase ofB;(«;) is a function

depending only onz;, and it decreases with respect to an
4 According to reviewers’ recommendations, we saved the name “bounded” P 9 y J P

for the type of CH-function defined in Definition 3, which was called thdCrease oft;. Wh.enAi(xi) andBj (z;) are pqsmve, we have
general CH-posynomial in [18]. proved the following Lemma 1 in the technical report [17].
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Lemma 1: Let X* be an exact solution to minimizeX) Definition 5—PLR Operation:Given a CH-functionf(X)
(6). For any solutionX’ of f(X), if X’ dominatesX*, any and a solution vectoX’, the PLR operation for variable
local refinement ofX’ leads to a solution that still dominatesr; with respect toX’ is an LR operation usingonstant
X*. Similarly, if X’ is dominated byX*, any local refinement coefficientsa,, , ; ;(X’) and b, , ; ;(X’) when solving the

of X’ leads to a solution that is still dominated B§/. “local-optimal” x; for any p, ¢, ¢ and j.
Based on Lemma 1, one is easy to verify the following That is, we fix the coefficients under tloeirrent solution
dominance property for the simple CH-program. when performing an PLR operation. The PLR and LR oper-

Theorem 1—Dominance Propertyet f(X) be a simple ations are same for a simple CH-program, but may produce
CH-function, andX* an exact solution to minimize¢/(X). different results for a monotonically constrained CH-program.
For any solutionX’ of f(X), if X’ dominatesX*, any local Definition 6—ELR Operation:Given a CH-functionf(X)
refinement ofX’ leads to a solution that still dominatés*. and a solutioriX’, the ELR operation for a particular variable
Similarly, if X’ is dominated byX*, any local refinement of z; in X’ is the LR operation using the following coefficients
X'’ leads to a solution that is still dominated B§*. for anyp, ¢, 7 # i, andk # i

The dominance property under the LR operation was firsta) When X’ > X* we replace ap q.i. (X)) and
introduced for the single-source wire sizing problem [4], and ap gk, ;(X') by agq ;. and af ;» and replace
was extended to the multisource wire sizing problem [5]. In -, " "Xty andb, , 4 ,(X’) by bE |, andb? .

. . XOVE AL Q55,1 P. 4,7
[?], it was revealed that the dominance property hoIQS fqr_allb) When X’ < X*, we replace a, . ;(X') and
simple CH-programs. It was also shown_that both wire sizing g, ;(X') by ab,,; and a¥ . ;, and replace
problems [4], [5], the simultaneous driver/buffer and wire bp. 0. 5.i(X") andby, o . (X') by bY, . andbl

i : ; ; g, 0,0 g, 0,k
s1zing problem, and S|m_ultaneous transistor _an(_j mtercon_n%é call the solution given by the PLR or ELR operation as the
sizing problem are all simple CH-programs if simple device

A , p )
and capacitance models are used. Therefore, the dommaﬁseudoorextended local refinemeat X', respectively. Note

roperty holds for these problems and enables an LR-ba g%% the lower and upper bounds arat unique for coefficient
property . > brot . 3iActions. The definition of the ERL operation is applicable
algorithm, which uses iterative LR operations to computt% any valid lower and upper bounds. In essence, as to be
optimal sizes for both devices and wires. ' ’

When coefficients for variable;, like the case of simple shown in Theorem 2, the ELR operation applies lower and

CH-program, are all constants, the LR operationzefis a upper bounds of coefficients, so that the refined solution given

. : . by the ELR operatiomevercrosses the optimal solution.
single-variable posynomial program that can be solved ver . -~ .
e 7 . According to these definitions, even though coefficients
efficiently.” The LR operation for other CH-programs may . . . i
- . L are functions of the variable vect& in the monotonically
be less efficient, however. First, it might be no longer a . . )
) . . constrained or bounded CH-program, coefficients during each
posynomial program. An example is the LR operation:pto

minimize (5), where a logarithm function is involved. Secon LR or ELR operation are still treated as constants. Therefore,

- : . he PLR or ELR operation for a monotonically constrained or
when a coefficient varies depending on a table rather than_ a . . .
. bounded CH-program again becomes a single-variable posyn-
closed-form formula, we may have to enumerate all possible . 2
. . . ; omial program that can be solved very efficiently, exactly as

values forz; in order to find out its local optimal value (an

example is given in the technical report [17]). the LR operation for a simple CH-program. We will illustrate

The usage of the LR operation is also limited by the fa(t:?e PLR and ELR operations using the following CH-function:

that the dominance property under the LR operation generally _ar(z1, 2)

_— . . 2
doesnot hold for a monotonically constrained or bounded o, w2) = 1 (bQ(xl’ z2) $2)
CH-program. To overcome these limitations, we introduce the as(xy, T2)
pseudo-LR (PLR) and extended-LR (ELR) operations, then + o S (ba(zy, w2) - 2). (7)

show a general dominance property. ) _ ,
2) General Dominance PropertyThe PLR and ELR oper- 1n€ pseudolocal refinement of, with respect toX’ =

. . . / / H
ations are defined as the following. {a1, a5} is
i ay(zl, x5) - (ba(zl, 2h) - a:,?’)
SNevertheless, Lemma 1 also reveals that the dominance property holds for ~PLR __ 14t 4o 201, 42 2 (8)
the monotonically constrained CH-program when coefficients are functions of 1 - as (wi’ a:’Q) -y (xll’ a:’Q)

single variables, like the bounded-variation CH-program defined in [18]. The

dominance property, however, may not hold for the new defined monotonic L U

constrained CH-program when coefficients are functions of solution v&:tora“:yrWe Uassume thata, ($1r, xQD), € [or, ar], az(wy, fQ) UE
6The SDWS algorithm for simultaneous driver and wire sizing problem itz » @z | b1 (3717.372) = (b1, b7 ] and ba(1, 37.2) € [by, b3 ].

[3] is different from and less efficient than the LR-based algorithm in [7]. When {z{, %} is dominated by exact solutiofic}, =5}, the

" According to [20], a posynomial program is the following minimizationextended-local refinement of; concerning{x’l, 37/2} is
problem:

min go(X) subject tog (X) <1 FPLR _ a% ) (b% ’ 37/23) (9)
k=1.2, -, pandX >0 ! ay -y
where eacly, (k =0, 1,2, ---, p) is @ posynomial function. In the case  Eyen though we assume continuous variables in this exam-

of LR operation ofz; for a simple CH-program, the local optimum is also a e .
global optimum no matter whether, has continuous or discrete value. Moreple' our definition for the PLR and ELR operations (as well

detailed discussion of posynomial programs can be found in Section 1I-D.as the LR operation) applies to both continuous and discrete
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TABLE I
BouND-CoMPUTATION ALGORITHM USING THE ELR OPERATION

Bound-Computation Algorithm

1. Initialize lower and upper bounds;

2. If lower and upper bounds do not meet

3. Perform ELR operation on every z; of the lower bound iteratively;
4. Perform ELR operation on every z; of the upper bound iteratively;
5. Goto 2 if there is any improvement in 3 and 4;
6

. Return ELR-tight lower and upper bounds.

variables. We proved the following theorem concerning tHeLR operatior? Although the ELR operation may use any

PLR and ELR operations. valid lower and upper bounds for coefficients according to
Theorem 2—General Dominance Propertyet X* be an Definition 6, in general, the closer the lower and upper bounds
exact solution to minimize a CH-functiofi(X). for coefficients, the smaller the gap between the resulting ELR-

a) Whenf(X) is a monotonically constrained CH-function light lower and upper bounds. Because reducing the size of the
for any solutionX’ of f(X), if X’ dominatesX*, any solution space may narrow the range for coefficients, lower-
pseudolocal refinement &X’ leads to a solution that and upper-bound computations are carried out alternately. The
still dominatesX*; if X’ is dominated byX*, any algorithm guarantees that within the resulting ELR-tight lower
pseudolocal refinement dX’ leads to a solution that @nd upper bounds, there would exist an exact solution to the
is still dominated byX*. bounded CH-program.

b) When f(X) is a bounded CH-function, for any solution For a simple or monotonically constrained CH-program,
X’ of f(X), if X’ dominatesX*, any extended-local we may replace the ELR operation in Table Il by the LR
refinement ofX’ leads to a solution that still dominatesor PLR operation, respectively. Then, the algorithm computes
X*; if X’ is dominated byX*, any extended-local the LR-tight or PLR-tight lower and upper bounds, where a

refinement ofX’ leads to a solution that is still dominatedower or upper bound of an exact solutionLig-tightor PLR-
by X*. tight if it cannot be improved by any LR or PLR operation.

The proof can be found in the technical report [17]. Becaudd €sseénce, the bound-computation algorithm generalizes the
the simple CH-program is a subset of the monotonicalgfeedy \wiresizing algorithm GWSA that has been used for
constrained CH-program, and the PLR operation is same as $98Puting LR-tight lower and upper bounds for the exact
LR operation in the case of simple CH-program, Theorem"8re sizing solution under fixed, and c.; in [4] and [5].

also shows that the dominance property holds under the When the exact solution has the monotone property like those
operation for the simple CH-program. for the single-source and multi-source wire sizing problems

[4], [5], the bundled-LR BLR) operation [5] can be used to
speed up the LR, PLR, or ELR operation. We also use the LR-
C. LR-Based Algorithm based algorithm to refer to the bound-computation algorithm,

Again, letX* be an exact solution to a CH-program. We sajf"ere LR, in general, refers to the LR, PLR, ELR, and BLR
that a solutioriX is the lower bound oK* if X is dominated °OPerations. _
by X*, andX is an upper bound oK* if X dominatesX". The LR-based algorithm has the same worst-case com-
Theorems 1 and 2 enable an algorithm based on different typi&Xity when using different types of LR operations. Let
of LR operations to compute a set of lower and upper bounB§ the average number of the possible values for variables
for X*. z;(i = {1, ---, n}) € X when all variables:; have discrete
Because the bounded CH-program is the most general ca@les. Because each pass of the lower- and upper-bound
we use the ELR operation to illustrate the bound-computatiGRMPutation at least changes the value of one variable to
algorithm (see Table II). Starting with the initial lower and1arrow the solution space by at Ieast- one unit, the worst-
upper boundsk andU), the algorithm carries outerleaved C2S€ number of passes@gr - ). In addition, each pass has
passes of lower- and upper-bound computationpass of at most2n LR operations. Therefore, the bound-computation

X T . :
lower-bound computation will perform an ELR operation oft90rithm need®(» - n) LR operations. We observed in our
every z; of a lower boundX in an arbitrary order. Because experiments that the total number of LR operations is much

X is dominated byX*, its extended-local refinement becomes

closer toX* but is still a lower bound. Similarly, a pass of _ _
b d tation will perform an ELR operation o Even though the lower and upper bounds are EL_R-tlght, there_ may still

upper-bound compu p ! ) p ) B a gap between them. We say that the computation for a varigbie
every z; of an upper boundX. The iteration of passes isconvergenifits lower and upper bounds are identical. The ELR operation does
stopped when the lower and upper bounds meet for ev guarantee the convergence for all var_iable_s. We definedheergence

‘ both b ds are ELR-tight. We sav that a lower rate as the percent of variables that has identical lower and upper bounds.
Z;, Or PO Qun ‘ o Ight. A y Wer Hoth average gammong all variables and convergence rate will be presented
upper bound isELR-tightif it can not be improved by any for our experiments in Sections 11I-D and IV-E.
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smaller than®(r - n?) and isempirically linear with respect nets. Both problems are no longer the simple CH-program,
to the number of variables. and may have multiple local optimal solutions.

D. Comparison with the Posynomial Program lll. STIS PROBLEM UNDER STL-BOUNDED DEVICE MODEL

In order to better appreciate the implications of Theorems 1 .
. A; Problem Formulation

and 2, we compare the CH-programs with the posynomial
program (defined in Footnote 7). When every variable is of Our formulation is similar to that in [7]. The delay is
continuousvalue, the posynomial program has the importagomputed based oa stage It is defined as a DC-connected
property that the local optimum is unique, and therefore Rath from a power supply (either thg, or the ground) to the
also the global optimum. The posynomial program plays &®@te node of a transistor, containing both transistors and wires.
important role in the device and wire sizing works. In [21], thdhe delay of a stag&(XV,, N;) with N, being the source and
transistor sizing problem was first formulated as a posynomidk being the sink can be written as (10) under the Elmore
program and solved by a sensitivity-based method. Laté¢lay model
on, the posynomial program formulation was used for exact o rold) .
transistor sizing [22], wire sizing [23] and simultaneous gaté(P(Nsv Ni), X) :Zf('% J) - P ca(f) -
and wire sizing [9], and was solved by being transformed into b J ‘
the convex prograrf.Note that optimality of these solutions +Zf(i 5) - ro()
depends on the assumption that the local optimum is unique. ’ T;
The assumption holds for the continuous sizing formulation v .
and simple models for the interconnect capacitance and device + Zg(i) . Told)
delay, but may be not true for the discrete sizing formulation i Li
and more general models for the interconnect capacitance and ro(t
cevice dolay ° I BORIORS SO e)

Our LR-based algorithm is similar to the coordinate descent ! !
approach [24] for the posynomial program. The approach ita¥here x; is the width for a transistotM; or a wire E;,
atively optimizes the value for each variable (i.e., coordinate)(é) is its unit-size effective-resistance, and:) andc. s (1)
while keeping the values for the rest of the variables fiXed.are its unit-area capacitance and unit-length effective-fringe
Because the local optimum is unique for the posynomi&fpacitance. Coefficienii, j), g(i) andh(i) are determined
program regarding continuous variables, one may even stytthe transistor netlist and routing topology.
with an arbitrary solution (see [25]) rather than a lower or In order to simultaneously minimize delays along multiple
upper bound used in the LR-based algorithm. However, whefitical paths, we minimize the weighted delagX) of all
the variablesz1, z2, -- -, z,, are of discrete values for thestages in the set of critical paths denotedras
simple CH-program, or when the coefficients are not constants .
as in the monotonically constrained or bounded CH-program (X) = Z Ast - H(P(Ns; M), X) (11)
(for both continuous or discrete variables), there may be more PN, NoeP
than one local optimurt Then, the global optimum canwhere the weight),, indicates the criticality of stage
not be achieved by the coordinate descent approach startifgV,, N:). After we eliminate those terms independent of
from an arbitrary solution. However, the LR-based algorithnX, (11) can be rewritten as
which, respectively, uses the LR, PLR, or ELR operations for

. Cef(j)

o Tolt )
a simple, monotonically constrained or bounded CH-program, ~ #(X) = >_ F(i, j) - (;(‘) - cald) -z
can still be used to compute lower and upper bounds for the iJ !
exact (i.e.,globally optimal) solution. We will apply the ELR Loy Tolt .
operation to the STIS problem under the STL-bounded device + Z £ ) - T ces(d)
model, and apply the PLR and ELR operations to the GISS ! L L
problem considering the coupling capacitance for multiple +Z G(i) - ”;ﬂ +Z H(i) - ”;@ (12)

9Same as the method in [9] that we reviewed in Section |, methods in [z\ﬂhere F(L j) G(L) and H(L) are Weighted functions of
I I

and [23] minimize the maximum delay. . ) () and h() respectivel
1, ] 1 1), .
10An alternative method, called the steepest descent approach or {;%/7\/1 ' g p. y
gradient method [24], minimizes the objective function along the direction e formulate the following STIS problem.

of the steepest gradient, and may simultaneously change all coordinates. IFFormulation 1: Given the lower and upper boundk and

general, it isn — 1 times faster than the coordinate descent approach, Whe@g for the width of each transistor and wire. the STIS problem
n is again the number of variables. However, because of the special natur ’

of the sizing problems, the LR-based optimization (the coordinate descédt {0 determine a width for each transistor and wire (or
approach) turns out to be very efficient in experiments. In fact, it was recengguivalently, a sizing solutioX, L < X < U) such that
shown that when using the simple device and capacitance models, the kRa weighted delay through multiple critical paths given by
based algorithm can be finished in a linear time for the continuous wire sizi?g2 . L
problem [25]. ) is minimized.

11The simple CH-program using continuous variables belongs to the Note that a sequence of weighted-delay minimization can be
posynomial program and, therefore, has a unique local optimum. used to minimize the maximum delay by adjusting the weight
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assignment based on the Lagrangian-relaxation method agoin/; can be obtained by table lookup using, t£(¢), and
[11]. Therefore, we focus on how to minimize weighted delay” (). Symmetrically,r§ (¢) is determined using:¥, tY(3),

in this paper. In addition, we assume that the possible widthdad cf(¢). In addition, contributions of transistors or wires to
from a discretewidth set determined by the technology. The! (i) are computed using sizes X", and contributions to
discrete sizing problem is more difficult than the continuous® (i) computed using sizes iX%. After the ELR operation
sizing problem, but is more convenient for placement arah A;, for every stageP(V;, IV;) (IV; is the sourcel; is

routing tools and fabrication. the sink) driven byM;, we will update the lower and upper
bounds for the switching time&, () at sinkV;, becausé, ()
B. Bound Computation for the STIS Problem is the input switching time for the transistdd; with gate

connected to nodé/;. The lower or upper bound df(j) is
ssumed to be the lower or upper bound of the delay through
o(Ni’ N;), respectively. ASXL and XY move closer during
e ELR-based optimization procedure, the rangeyab also

parrowed. In general, the closer the valuesrforand+{, the

aller the gap between the lower and upper bounds given by

Under the simple models;, ¢,, and c.; are constants
for each wire/transistor, and (12) is a simple CH-function. |
this case, the STIS problem is a simple CH-program solv
in [7]. Because the simple models are no longer valid f
DSM designs, we study the STIS problem under the ST
bounded device model that is more suitable for DSM desig ég

For simplicity of presentation, we assume here thatand B(Ec;RsZptirea“%n:.s' e resistancéi) is a constant for each
c.y are constants for each wire segment, but will remove the u tEu I-SIz€ res | @@)tr'] LR tion fBE
assumption in Section IV. wire segmentE;, we can simply use the operation fAy.

In the STL-bounded modet, is precomputed and stored inFurthermore, in order to achieve better wire sizing solutions,

tables (e.g., see Table I) indexed by the size, input switchi can divide_a Wire segment into asequence of unisegments,
time ¢.), and output load ). It could be very accurate ten find a wire width for each uni-segment [5]. We assume

depending on the table siz&Because the value fory is ]Ehaet d?aCh S:g?entaaslwaefazt:;fnénahze ;‘S‘lrge 'lrzyeréjt?izs the
bounded, it is easy to verify the following Theorem 3. IX€dTo, Ca, ANACes, AS W wable wire WIaths.

Theorem 3: The STIS problem under the STL—boundety\mh these assumptions, we have proved the followiogal

. . monotone property
device model is a general CH-program. ) .
Note that the STL-bounded model migttt be monotonic t.mT;;eg_ﬁrSn i;&_z%al “ggpeoi%r;e P_:gpe_rctjil'hhserf'ireXIr?_t_Ss:nn(])g;]ts
with respect to the sizing solutioX. It can be justified by ! ution w wire wi uni-seg

the following observationszo in our model is a monotonic ar(_a”:nonoto:!c W'th_'lnb?aih W'rt?] s?grr;er.]t. |  [L71. Thi
function of ¢;, whereast; is not monotonic with respect to e proof is available from the technical report [17]. This

X, because the optimal wire sizing solution (see [4], [5 'hReorem e:[_nablfes us t(r)] use the BLREclJipeTrﬁtlogL[g] msteatt_d of the
and [23]) to minimizet, often has neither minimum nor. operation for each wire segment. The operation

maximum wire width. Therefore, the STIS problem is unlikeI%;.Shown to be 100 times faster than the LR operation for the

a monotonically constrained CH-program, and the LR and PL resizing problem [5]
operations are not applicable. .

The ELR operation is needed in the LR-based algorithfn ©Overall Algorithm for the STIS Problem
(Table 1l) to compute lower and upper bounds for an ex- Let L’ and U’ be the ELR-tight lower and upper bounds
act solution to the STIS problem. We assume thgt) € given by the above bound-computation procedur®! indU’
[r& (@), 7§ (1)) andro(4) € [r&(4), 7§ (4)]- In an ELR opera- are identical, we obtain the exact solution to the STIS problem
tion on a transistof\/; for the lower-bound computation, weunder the STL-bounded model. Otherwise, we traverse all wire
userd(¢) instead ofry(i), andr§ (5) instead ofro(j) for M;, segments and transistors by iterative PLR operations until there
where M; is an upstream transistor in the same netfdy. is no improvement in the last round of traversal. Note that
Symmetrically, in an ELR operation of/; for the upper- the PLR operation is bounded @y and U’, and it uses
bound computation, we usg (¢) instead ofro(4) for M;, and obtained from the device table. Even though the PLR operation
r&(j) instead ofry(j) for an upstream transistdv/;. may lead to further improvement ovkf andU’, in general it

We determine-{ (i) as follows: LetX% and XY be lower doesnotlead to a lower or upper bound of the exact solufitn.
and upper bounds of the exact solutidf*. We assume  Our experiments in Section IlI-D2 show that the ELR-
that transistorM; has sizexr; € [z}, z¥], input switching tight lower and upper boundd.{ and U’) are often close
time t,(i) € [tE(i), tY ()], and capacitance load;(i) € to each other in most cases. Therefore, we can simply treat
[cE(4), ¢ (1)]. We often observe in our experiments thgti) L’ as the final solution for smaller area and often lower
increases with respect to an increase a9f or ¢,(¢), but power-dissipation. Note that the STIS problem to minimize a
decreases with respect to an increase, @f. Thereforey& (i) weighted-sum of delay and area is shown to be a CH-program

12 . . _in [7], with a smooth tradeoff obtained between delay and
In our experiments; table for a type of gate (e.g., an inverter) considers

the combinations of five different device sizes (from 1 time to 800 times tf&€a. A similar approach can be used to better minimize the
minimum size), three different input switching times, and five different load 13 ) ) )
capacitances. Therefore, the total table size is¥x 5xm = 75m, where ~Different segments may have differens, c,, andc.; if they are in

m is the number of gate types. Satisfactory optimization results are obtairféifferent layers, or have different spacings to neighboring wires.

according to experiments in Section llI-D. For simplicity, we assumedhat  1In our experiments, we tried to use PLR operations starting from either
is the lumped capacitance in this paper. Extension to the effective capacitatiee minimum or maximum sizing solution. The resulting solutions are often
model [14] is an ongoing work and will be discussed briefly in Section V. outside the range defined By andU’.
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TABLE 11l
CoMPARISON BETWEEN MANUAL OPTIMIZATION AND STIS ALGORITHMS
# of wire length max delay {(ns) average power (mW)
net | drivers/buffers (um) manual I sgws/simple I stis/simple manual I sgws/simple stis/simple
dclk 154 41518.2 | 4.6324 | 4.3447(-6.2%) | 3.9635(-14.4%) | 60.85 | 46.09(-24.3%) | 46.29(-24.2%)
clk 367 59304.0 6.2016 | 6.1578(-0.7%) 5.9035(-4.8%) 499.7 286.8(-42.6%) | 285.6(-42.8%)

capacitive power by minimizing the weighted-sum of delagnization,sgws/simpleand stis/simpleformulations reduce the

and capacitive power. maximum delay by up to 6.2% and 14.4%, respectively. More
significantly, both reduce the power consumption by up to
42.6% and 42.8%. Because we use the same simple model for

D. Experimental Results two formulations in this experiment, the extra delay reduction

For all experiments in this paper, we computed the dela{®2%) of thgstis/simple‘ormulatiqn comes from the flexibility
via HSPICE using the distributed RC model and the leveld the transistor sizing formulation.
MOSFET model that is also used in HSPICE simulations for 2) Comparison Between Simple and STL-Bounded Models:
device-table generation. The use of HSPICE simulation resuff¢ then apply our STIS algorithm under different device
not only shows the quality of our sizing solutions, but alsglodels. We use the 0.1@n technology given in the NTRS
verifies the validity of our interconnect and device modelingl2] in order to study the impact of the DSM technologies.
and the correctness of our problem formulations. The wire sheet-resistandg; = 0.0638 2. We generate device

1) Comparison Between Manual Optimization and STIS pand capacitance tables via HSPICE simulations and numerical
gorithm: To illustrate the effectiveness of the STIS algorithXtractions, respectively, and usg and c.; values where
we first compare the sizing solution obtained by our algorithfR€ wire is 1.10sm wide and neighboring wires are 1.65n
and the manual optimization applied to a spread spectrumaway. We size two global nets, one is a 2 cm line with five
transceiver chip in [26]. The design is under the Ara-two- buffers optimally inserted for delay minimization. The other
layer metal SCMOS technology. There are two clock net$, the abovedclk net. In addition to different device models
dclk andclk; each uses a chain of four cascade drivers in tf@imple model versus STL-bounded model), we also use
clock signal source and chains of four cascade buffers in ordbiferent sizing formulationssgwsversusstis). There are four
to drive long interconnects and register files. The maximuf®mbinations, includinggws/simpleandstis/simpleusing the
delays of the two nets need to be minimized to reduce the cldeR operation for devices, arsws/boundedndstis/bounded
skew. Therefore, source drivers and buffers are tuned manua!fing the ELR operation for devices. For simplicity, we
via iterative procedures of layout, extraction and HSPIC&sume that the fixed ratio betwegnand n-transistors for
simulation. We retain the manual sizing solutions for the fir§f€ gate sizing formulation is 1.0. For both nets, we find the
stage drivers at the source and for the drivers of the regis@@timal wire width for each 1@sm-long wire, and assume that
files, then apply the STIS algorithm to optimize the sizes f@llowable transistor sizes are multiples of 0.A8 between
every 10um-long wire and the rest of the drivers and bufferd).18 and 144.m, and that allowable wire widths are multiples
We use two formulations under the simple device modelf 0.56 um between 0.56 and 5.6m.
one is simultaneous transistor and wire sizing formulation Table IV summarizes experimental comparisons between
(stis/simplg where optimal sizes are found fgr- and n- different formulations. We computed convergence rate under
transistors in each driver/buffer, and the other one is simultdifferent formulations. For the simple model, the computation
neous gate and wire sizing formulatisg(vs/simplewhere an for a transistor or wire igonvergentf its LR-tight lower and
optimal size is found for each driver/buffer. We also assunpper bounds are identical. For the STL-bounded model, the
that the allowable wire widths argw, 2w, 3w, 4w, 5w} with computation for a transistor or wire @nvergentf its ELR-
w = 1.2 ym being the minimum wire width in the 1,2m tight lower and upper bounds are identical. The convergence
technology, and the allowable transistor sizes are multiplesigfnot significantly different. For example, computations for
0.6 um between 1.2um and 500:m. The constant value for about 85% transistor are convergentitik net under all four
o in the simple model is determined under the typical inpdermulations. We also computed the average width and the
switching time, device size and output load. The fixed ratiaverage gap between lower and upper bounds for all wire
betweenp- andn-transistors in thesgws/simpldormulation is segments and transistors, respectively. The ELR operation
tuned to make sure that the inverter will have same pull-@wes give larger gap than the LR operation. However, the
and pull-down resistance values. difference is small. Overall, the average gap is only 1% of

Because the simple device model is applied, we use the Ll average width, except that retlk has a large gap, nearly
operation to compute the LR-tight lower and upper bounds f@0% of the transistor size.
devices. Experiments show that the identical LR-tight lower We simply use the ELR-tight lower bound as the final
and upper bounds are achieved for almost all devices asmlution under the STL-bounded model, and the LR-tight lower
wire segments, therefore we use the LR-tight lower bountisund as the final solution under the simple model, because
as the final sizing solution. We report HSPICE simulatiolower and upper bounds given by bound computations are very
results in Table lll. When compared with the manual optelose to each other. Table IV also give the maximum delay



CONG AND HE: THEORY AND ALGORITHM OF LOCAL-REFINEMENT-BASED OPTIMIZATION 415

TABLE IV
CompARISONS BETWEEN DIFFERENT DEVICE AND WIRE SIZING FORMULATIONS
net sgws/ sgws/ stis/ stis/ sgws/ sgws/ stis/ stis/
simple bounded simple bounded simple bounded simple bounded
convergence rate for transistors convergence rate for wire
dclk 85.8% 83.2% 87.7% 86.7% 99.4% 95.9% 97.1% 95.2%
line 60.0% 100% 70.0% 60.0%) 98.4% 70.9% 88.4% 72.9%
average width / average gap (for transistors, um) average width / average gap (for wires, um)
dclk || 5.39/0.07 13.0/1.91 17.2/1.53 21.6/2.36 2.50/0.003 | 2.78/0.025 || 2.69/0.017 | 2.82/0.030
line {| 108/0.108 112/0.0 126/0.97 125/1.98 4.98/0.004 | 4.99/0.106 || 5.05/0.032 | 5.11/0.091
maximum delay (ns) runtime (s)
dclk (| 1.159(0%) | 1.007(-6.4%) || 1.132(0%) | 0.961(-15%) 1.18 2.32 0.88 3.17
line || 0.821(0%) | 0.818(-0.4%) | 0.751(0%) | 0.694(-7.6%) 0.72 0.58 0.55 1.22
I neighboring wire | I neighboring wire I
Eq B E B
[ neighboring wire I I neighboring wire l

(@) (b)

Fig. 4. (a) Symmetric wire sizing and (b) asymmetric wire sizing. The asymmetric wire sizing has smaller capacitance and less delay.

via HSPICE simulation. The solutions under the STL-boundeitial central-line for each wire segment. Thimitial pitch-
model are consistently better than those under the simple dpacing i.e., the distance between the initial central-lines,
vice model. When compared with tegws/simpléormulation, remainsunchangediuring the sizing procedure. We consider
the sgws/boundedormulation further reduce the maximumtwo wire sizing formulations. One is tteymmetriovire sizing
delay by up to 6.4%. When compared with tees/simple formulation, where wires are always symmetric with respect to
formulation, thestis/boundedormulations further reduce theinitial central-lines as illustrated in Fig. 4(a). In contrast, in the
maximum delay by up to 15%. Note that bosigws/simple asymmetriawire sizing formulation shown in Fig. 4(b), wires
and stis/simpleformulations have already given very goodf same widths are asymmetric with respect to initial central-
sizing solutions as shown in the experiment of Section Ill-Dlines, and have smaller capacitance and less delay. Because
Although ELR operations under the STL-bounded model aneighboring wires are, in general, asymmetrically away from
more complex, the runtime is still impressively small. It usethterested nets, the asymmetric wire sizing formulation is
just 3.17 s to optimizelclk net of 154 buffers and 41518;2n capable of further reducing the interconnect delay.
wires, when the transistor sizing formulation is used and wire In the asymmetric formulation, the wire sizing solution for
segments are 1m-long. Therefore, our STIS algorithm iswire segmentE; needs to be represented by a pair of widths
extremely efficient. (x], x}), wherez] is the width of the piece of wire above
(or left to) the initial central-line wherk; is a horizontal (or
IV. GISS PROBLEM CONSIDERING COUPLING CAPACITANCE  vertical) segment, ana}il the width of the piece of wire on

The unit-area capacitaneg and unit-length effective-fringe the other_ side of the initial central—li?e. Similarly, we denote
capacitancer, ; are assumed to be constants for each wifB€ SPacing a?ove (or left ta; ass;, and spacing on the
segment in the STIS problem in Section Ill. We shall prs@ther side ass;. In order to maintain the connectivity, we
ceed to remove this assumption using the more general Wiy that a wire widthw; is valid if =/ and z; are at least
bounded capacitance model in this section. For simplicity &Fmin/2, where W, is the minimum wire width set by the
presentation, we assume that the device sizes are fixed, Anufacture technology.
study the GISS problem for multiple nets with consideration With consideration of both symmetric and asymmetric wire
of the coupling capacitance. However, our algorithm arfizing formulations, we define the following GISS problem.
implementation are able to use the STL-bounded device modefFormulation 2: Given multiple nets with initial central-line
and the WS-bounded capacitance model (with consideration®f €ach wire segment;, the GISS problem is to determine

the Coup”ng Capacitance) at the same time. a valid wire width (.TI, .T}) for each E; with respect to its
] initial central-line, such that the weighted delay given by (12)
A. Problem Formulation is minimized for multiple critical paths over these nets.

Our GISS formulation was first presented in [16]. We Note that, as shown in Fig. 2, both andc. ; are functions
assume that an initial layout & priori given and defines the of wire widths and spacings. In the following, we shall first
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consider the symmetric wire sizing formulation, then extenaf ch for downstream segmert,,; during the upper-bound
our algorithms to the asymmetric wire sizing formulation. computation, the lower bound off will be used forE;, E;,

and E, and upper bound ofgf used forE,,.
B. Bound Computation for the Symmetric GISS Problem The bound-computation for the GISS problem can be sim-

Our WS-bounded capacitance model is a table-based modiéffed when the WS-bounded model is monotonically con-
simplified from the two and one-half dimensionall(®) stra!ned. We f_|rst define the followinghonotonically con-
capacitance model in [27]. In this model, we first use theirained capacitance table _ _
numerical capacitance extraction to solve basic geometric ~ Definition 7: A capacitance table is monotonically con-
structure with equal widths and spacings (see Fig. 1). W@tralned.lf the following is true with respect to the ba_S|c
consider different width and spacing combinations, and stdJ§0metric structure (see Fig. 1) for any given pitch-spacing:
ca(w, 5) and c.s(x, s) in two-dimensional (2-D) tables in- for any two _combmatlons of widths and spam_ngzsl, {;1)
dexed by widths) and spacingss). Then, for a wire segment @nd (z2, s2), if z1 < z» (ands; > s, under the given pitch-
E; with width z; and spacings;] and s’ to its two nearest SPacing), ther(zy, s1) 2 co(x2, s2) andeey(z1, s1)/21 2

neighboring wirest;; and Ey,, we computer, (i) as Cef(g, 82)/x2, at the same time,cq(ry, s1) - 71 <
: . co(z2, 52) - x2 @Ndce (21, 51) < Cef(.’EQ,.SQ). _
cali) = calZi,s;) + calzi, s7) (13) We say that the WS-bounded model is monotonically con-
2 strained if its capacitance table is monotonically constrained,
and computer, (i) as and proved the following theorem in the technical report [17].
Theorem 6: The GISS problem under the WS-bounded
Ces(d) = cl 5 (6) + ¢t ;(4) (14) capacitance model is a monotonically constrained CH-program

fo ) . . . if the capacitance model is monotonically constrained. In this
where cef(l) is the unit-length effective-fringe capacnancecasel the PLR operation can be used instead of the ELR
betweenE; andE;, andcif(i) the unit-length effective-fringe operation. To tighten a lower- (upper-) boungfor a wire E;,
capacitance betweeh; and Ey. They are given as we assume that its neighboring wirés and E;, have lower-

o ceplwi D) 4 eep(, 8D (upper-) bound a/vidths at spa_cing% and s; away fromE;.

Cep(t) = 5 (15) We usec, andc?, obtained directly using table lookup, and
(i, 55 + eo g 5 perform an PLR operation om;. Compared with the ELR

ek, (i) = Cef\ iy 5 5 Cof\Thy 5 (16) operation, the PLR operation is more efficient and may lead

to smaller gaps between lower and upper bounds.

wherez; and ;. are widths forZ; and £y, respectively. In order to exploit the optimality of the ELR operation and
Because our GISS formulation assumes that the initigdle efficiency of the PLR operation, our implementation of the

central-lines are fixeds/ can be determined by] andz!, ELR operation is a hybrid of both operations. When working

andsil by a:zl anda:,t. Thereforec,(¢) andc. ;(¢) are functions on a wire E;, we first check capacitance values with respect

of x;, z;, and z;. Becausec,(¢) and c.;(¢) are obviously to all valid widths and spacings faF;,1° then use an PLR

bounded, we have the following Theorem 5. operation if Definition 7 is satisfied. Otherwise, we use an
Theorem 5: The GISS problem under the WS-bounde&LR operation.
capacitance model is a bounded CH-program. By using the ELR or PLR operation, we obtain lower

Note that the GISS problem is easier than the STIS probleand upper bounds only for the optimal total-widifj. If
in the sense that coefficiert, or c.; in GISS is a function the resulting bound is:;, we assignz] = z} = /2 for
of just four variables, whereas coefficiery in STIS may the symmetric GISS problem. Therefore, starting with the
depend on all variables. Based on this theorem, we may uamimum and maximum symmetric wire sizing solutions for
the ELR operation to compute the lower and upper bounds falt wire segments, and using iterative ELR or PLR operations,
z7, the optimal width for a wire segme#;. If we assume that we can compute ELR-tight lower and upper bounds for the
cq € [k, ] and E; has two neighboring wire&; and £, globally optimal solution to the symmetric GISS problem.
in an ELR operation during the lower-bound computation for
E;, we usecl (1), ¥ (), and ¥ (k) instead ofc, (i), cq(j),
and c,(k) for E;, E;, and Ey, and usecl(n) instead of . ) ) )
ca(n) for E, that is a downstream segmentbf, E;, or Ey. We first extend the dominance relation to consider the

Similarly, during the upper-bound computation iy, we use asymmetric wire sizing formulation. We say that the wire
cL(i), cL(j), and ck(k) for E;, E;, and Ey, and c¥ (n) for sizing solutionX dominates another solutioX’ (denote as

C. Bound Computation for the Asymmetric GISS Problem

a\t): Cal. : P 1N e ol i

downstream segmet,,. Furthermore, we rewrite X > X)), if (z;,2;) > (¢}, 2;) (e, »; > 2/; and
. ot . a:zl > a:’f) holds for any wire segmenk;. A lower and
Cep() =cp(@) - (wi + ) (17)  upper bound of the exact solution to the asymmetric GISS
cr (i) =j(i) - (i + an). (18)

. L. 15A dynamic-programming scheme is used based on 2-D cache tables,
Therefore, the following rules similar to those fey are used which, similar to our capacitance tables, are indexed by widths and spacings.

for Cgfi during the lower-bound computation, the upper bourfcbr given width and spacing, the cache tables return the minimum or

. maximum values for, and <, or imply that the PLR operation can be
of cgf will be used for E;, E;, and Ey, and lower bound o Ca Cer ply P



CONG AND HE: THEORY AND ALGORITHM OF LOCAL-REFINEMENT-BASED OPTIMIZATION 417

problem will be determined according to the new definition of TABLE V
dominance relation. AsYMMETRIC GISS ALGORITHM BASED ON ELR AND LR OPERATIONS
We solve the gsymmet_ric GISS proble_m by a_ugmenting g J(E)LR Algorithm
bound-computation algorithm presented in Section 1V-B. Eaeh
ELR or PLR operation gives only the total-width, which 1. Compute ELR-tight lower and upper bounds
is a lower or upper bound of the optimal total-widt for using iterative ELR operations and CE operations;
E;. To obtain an asymmetric wire sizing solution, we nee
to separater; into «] and z}, which are respective widths
for the “two pieces” of wires around the initial central-line of
E;. This separation is equivalent to embed a wire with tota- For all non-convergent nets in the greedy order,
width z; around the initial central-line oF;. It also affects the invoke single-net dynamic-programming based algorithm
ELR and PLR operations in the subsequent steps. We propose
to perform aconservative embeddingght after any ELR or
PLR operation.
We assume that? = (z!*, z'*) is the width for E;

T

g. Compute LR-tight “lower” and “upper” bounds

using iterative LR operations and GE operations;

within resulting lower and upper bounds.

. i . L U the sense that there exists a global exact solution within the
in the exact asymmetric solution. LeLti and i be the requiting ELR-tight lower and upper bounds. However, this
lower and upper bounds far,*, andz;” andz;" the lower ying of optimality may not hold in the second step. Finally,
and upper bounds for;". If we obtain a total-widthz? for each net that still has nonconvergent wire segments, we
in the lower-bound computation, the conse(vative embeddigg@ll assume that other nets have lower-bound wire widths,
(CE) operation computess;” = zF — z]”, which is a and invoke the single-net interconnect sizing and spacing
conservativdower-bound forz;*. Similarly, =" = =/ — 2" (SIS$ algorithm presented in [16] to find the final sizing and
is a conservative lower bound farg*. Note that the sum spacing solution within its lower and upper bounds. The SSIS
of a:;" and a:j" may belessthan z% in the CE operation. algorithm combines the asymmetric wire sizing formulation
Symmetrically, for an upper-boungd!, we computez:ZTU = and the wire sizing algorithm based on the bottom-up dynamic-
2V — zf andz!Y = 2V — 2%, This augmented algorithm programming technique [10f. We apply the SSIS algorithm
leads to the lower and upper bounds of the exact solutionifothe greedy order such that the more timing-critical net is
the asymmetric GISS problem. processed earlier.

We also define a greedy embeddirgH) operation. Recall

that neighboring wires oF; have their lower- (upper-) boundE. Experimental Results

widths during lower- (upper_—) bOL_md comp_utation E’{'_ If th? We have tested our GISS algorithm on a 16-bit parallel bus
lower or upper bound of wire width foE; is x;, we findz; g \cryre. In this bus, each bit is a 1-cm line with a 119-

1 7 L _ iacti i ) . : .
and z; such thatz; + z; = x; and the objective function yyiver resistance and a 12.0-fF sink capacitance. We assume
(12) is minimized with respect to the given neighboring,; initially these lines are equally spaced. We will find an
wires. Different from the CE operation, the GE operatiogsymmetric wire sizing for every 500m-long wire segment.
does not always lead to a lower or upper bound of the exggt addition, the minimum wire width is 0.2zm, and the
solution for the asymmetrical GISS problem. We will showyinimum spacing 0.33:m. The allowable wire widths are
however, that the GE operation has a higher convergengsy, o0.22 to 1.1m, with the incremental step of 0.3im.
rate than the CE operation in experiments, and achieVpse capacitance tables are generated using numerical capac-
satisfactory experimental results in Section IV-E. Again, Wance extraction for the 0.18m technology in NTRS [12
say the computation on a wire segmentavergenif lower 15 22]. '
and upper bounds are identical. We optimized the bus for different initial pitch-spacings,
from two to six times of the minimum pitch-spacing (0.55

D. Overall Algorithm for the Asymmetric GISS Problem  ;m). Our GISS/(E)LR algorithm has two bound-computation

Our overall asymmetric GISS algorithm [denoted aBhases, the first one using ELR/CE operations and the second

GISS/(E)LR algorithm, see Table V] consists of the followin@n€ using LR/GE operations (see Table V). As shown in
three steps. First, we compute the ELR-tight lower and uppEgble VI, computations for from 57%-77% wire segments
bounds using iterative ELR operations and CE operatiorf§€ convergent, i.e., identical lower and upper bounds are
Our ELR implementation invokes PLR operations when PLRchieved for these segments after the ELR/CE phase. The
operations assure the optimality. Then, if the resulting low8verage gap after the ELR/CE phase is between 0.033-0.090
and upper bounds do not meet, we will use iterative LRM- Furthermore, the LR/GE phase obtains identical lower and

operations and GE operations to further improve the lowdPPer bounds for all wire segments in our examples. Therefore,

and upper bounds. We carry out the LR operation and GE _ _ N . .

fi imultaneously as the followina: for a wire seament... The SISS problem finds the optimal wire sizing and spacing solution for
Operations simu " y_ g'_ > 9MeRlgingle net, under the assumption that all its neighboring wires are fixed. The
we enumerate width choices for two wire-pieces betwe@nss/(E)LR algorithm, i.e., first computing ELR-tight bounds based on the

lower and upper bounds, and the two widths that minimiZa-R operation, and then computing the final solution within bounds based on
' ynamic programming, can also be used to solve the SISS problem. It will be

our muItipIe-net objecti_ve function (12) are the LR .and. G much more efficient than the purely dynamic-programming based approach in
result. Note that the first step guarantees the optimality [its].
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TABLE VI
CoNVERGENCE OFELR/CE AND LR/GE IN GISS/(E)LR AGORITHM

pitch- Convergence Average gap (pm) Average # of operations
spacing | ELR/CE | LR/GE | ELR/CE | LR/GE | PLR | ELR
2x 1% 100% 0.033 0.0 17.0 2.58
3x 1% 100% 0.040 | 0.0 29.1 2.34
4x 65% 100% 0.069 | 0.0 34.4 1.47
5x 57% 100% 0.090 | 0.0 36.6 4.43
6x 69% 100% 0.066 | 0.0 37.4 4.35
TABLE VII
COMPARISON OF DIFFERENT SIZING ALGORITHMS
pitch- Average Delay (ns) Run Time (s)
spacing | SISS | GISS/FAF | GISS/VAF | GISS/(E)LR | GISS/VAF | GISS/(E)LR
2x 1.31 | 0.82(-37%) | 0.82(-37%) | 0.79(-39%) 183 3.68
3x 0.72 | 0.63(-13%) | 0.56(-22%) | 0.52(-27%) 189 4.69
4x 0.46 | 0.46(+0.0%) | 0.45(-2.2%) | 0.42(-8.7%) 511 4.62
5% 0.38 | 0.39(+2.6%) | 0.37(-2.6%) | 0.36(-5.3%) 1083 6.82
6x 0.35 | 0.36(+2.9%) | 0.34(-2.9%) | 0.32(-8.6%) 1379 9.26

very likely, our bound computation directly leads to the globalver the SISS algorithm is reduced when the pitch spacing
and asymmetric wire sizing and spacing solution. In additiomcreases, due to the fact that the coupling capacitance is less
we report the average numbers of ELR and PLR operatiogignificant for larger pitch spacings. Nevertheless, compared
for a wire segment (our ELR implementation automaticallyith the SISS algorithm, the GISS/(E)LR algorithm still
invokes the PLR operation when the PLR operation doé&gduces the average delay by 8.6% in the case of maximum
not lose the optimality). An important observation is that ipitch spacing. Because neitheg nor ¢y is a constant in
most cases the PLR operation is used. It implies that tRSM designs, both GISS/(E)LR and GISS/VAF algorithms
GISS problem is mainly a monotonically constrained CHebtain better results than the GISS/FAF algorithm does. The
program. GISS/(E)LR algorithm obtains an extra delay reduction of up
We also presented an alternative GISS a|g0rithm in [16}.') 17% when Compared with the GISS/FAF algorithm. Further-
Based on an effective-fringe property that assumes conStantmore, compared to the GISS/VAF algorithm, the extra delay
andC.,, it uses a bottom-up dynamic programming techniqugduction of the GISS/(E)LR algorithm is up to 7.1%. More
to compute lower and upper bounds for the global solutigignificantly, the GISS/(E)LR algorithm runs 100 times faster.
to the asymmetric GISS problem. We call it GISS/FAF. ThE @lso uses much less memory. Because the GISS/(E)LR
algorithm may be extended to use variahjeandc,; under the algont_hm is much faster and always achieves the bes_t results in
WS-bounded capacitance model, and we call it GISS/VAF. fixPeriments, we suggest that the GISS/(E)LR algorithm shall
both cases, the exact solution maychesidethe range defined P€ Used instead of other algorithms.
by the resulting lower and upper bounds. Both GISS/FAF and
GISS/VAF algorithms further use the SISS algorithm to obtain
final solutions within the lower and upper bounds, whereas V. CONCLUSIONS AND DISCUSSIONS

the GISS/(E)LR algorithm uses the lower bound as the final|, this paper we formulated three classes of optimization
solution due to its high convergence. In addition, we also applyoblems: the simple, monotonically constrained, and bounded
the SISS algorithm in a greedy order, which is equivalent {8H4-programs. We revealed the dominance property (Theorem
invoking only Step 3 in the GISS/(E)LR algorithm (Table V).1) under the LR operation for the simple CH-program, as well
The SISS algorithm obtains a Iocal-optimal solution for thas the genera| dominance property (Theorem 2) under the PLR
GISS problem. operation for the monotonically constrained CH-program and
We compare the average HSPICE delay for solutions give@Rder the ELR operation for the bounded CH-program. These
by these algorithms in Table VIl (average delay is our olproperties enable a very efficient polynomial-time algorithm,
jective function). As seen from the table, the GISS/(E)LRsing the LR, PLR, or ELR operation for computing lower
algorithm always achieves results better than the SISS smd upper bounds of the exact solution to any CH-program.
lutions, with up to 39% delay reduction. Therefore, it i$n addition, we introduced the bundled-LR (BLR) operation
important to find the globally optimal solution to the GIS$5], which may be used to speed up the LR, PLR, and ELR
problem. The improvement of the GISS/(E)LR algorithnoperations. We also called the bound-computation algorithm
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as the LR-based algorithm, where LR, in general, refers to timerconnects in DSM designs. We plan to develop suitable
LR, PLR, ELR, or BLR operation. delay and noise models considering both capacitive and induc-
We showed that the algorithm is very effective and efficienive effects, then apply the LR-based algorithm and/or other
for many layout optimization problems in DSM designs. It unitechniques. The extended algorithm, with consideration of the
fies solutions to several problems, including the single-souriteluctive effect and higher-order delay model, will also be
and multisource wire sizing problems [4], [5], continuous wirapplicable to the device and interconnect sizing problem in
sizing problem [19], and simultaneous driver/buffer and wirBCB and MCM layout designs. Moreover, we believe that
sizing problem [3], [11], [28]. Because these problems assurmer CH-program formulations and the LR-based algorithm
the simple models for the device delay and interconnecan be applied to other optimization problems in the CAD
capacitance, they are all simple CH-program where the LR djeld.
eration can be used for bound computations. Furthermore, we
applied the bound-computation algorithm to the STIS problem,
and to the GISS problem with consideration of the coupling
capacitance for multiple nets. We used tables precomputedrhe authors would like to thank Dr. J. P. Fishburn at
from SPICE simulations and numerical capacitance extractioBell Laboratories, Murray Hill, NJ; Prof. S. S. Sapatnekar
to model device delay and interconnect capacitance, so that autJniversity of Minnesota, Minneapolis; and the anonymous
device and interconnect models are much more accurate theviewers for their helpful comments. They would also like to
many used in previous works. We first showed that the STtBank Avant! Corporation, Fremont, CA, for their donation of
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and GISS problems are, in general, bounded CH-prograrmesftware used for this research.

and that the GISS problem is a monotonically constrained
CH-program when the capacitance model is monotonically
constrained. We then developed the STIS algorithm based on
bound-computation using the ELR operation, and the GISS alt]
gorithm based on bound-computation using the ELR and PLR
operations. According to Theorem 2, our bound-computatiogp)
guarantees that there exist exact solutions to the two problems
between resulting lower and upper bounds. Experiments al
showed that our algorithms obtained solutions close to the
global optimum in the most cases. Moreover, the algorithma]
are extremelyefficient. It took less than 10 s to optimize the
largest example in this paper.

Solutions to the STIS and GISS problems, as well as othd?!
device and wire sizing problems [3]-[5], [28], have been
integrated in the TRIO package [29]. Routines using the LRIS]
PLR, ELR, and BLR operations are shared. Note that our
bound-computation algorithm is applicable to abgunded [7]
model for the device delay and interconnect capacitance. The
bounded model simply requires that values for the devic
delay and interconnect capacitance be bounded. Furthermore,
the bounded model can use either table-lookup or high-ord é
complex characteristic functions. In addition, results presente
in this paper can be used for both prelayout interconnect
planning, and postlayout interconnect optimization.

In this paper, we assumed that the lumped capacitance is the
load capacitance. In the future, we will extend our algorithm @1l
use the effective capacitanag.(;) [14] as the load capacitance
for our device model. Because the ELR operation requires oniy]
the lower and upper bounds for the load capacitance, we pﬁxgﬁ
to develop methods computing the lower and upper bounds
for Ceg, which may be more efficient than computirig.s
directly. The Elmore delay model is used in this paper. Sevefaf]
recent works [9], [30], [31] have applied the higher-order
delay model. We also plan to extend the LR-based algorithi®l]
to consider the higher-order delay model, or the table-based
delay model as used in [32]. [16]

Note that the coupling capacitance affects not only the
interconnect delay, but also the signal integrity. Furthermorgy
the inductive effect becomes increasingly significant for global
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