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Abstract. Because the inductive noise Ldi/dt is induced by the power
change and can have disastrous impact on the timing and reliability of
the system, high-performance CPU designs are more concerned with the
step power reduction instead of the average power reduction. The step
power is defined as the power difference between the previous and present
clock cycles, and represents the Ldi/dt noise at the microarchitecture
level. Two mechanisms at the microarchitecture level are proposed in
this paper to reduce the step power of the floating point unit (FPU), as
FPU is the potential “hot” spot of Ldi/dt noise. The two mechanisms,
ramping up and ramping down FPU based on instruction fetch queue
(IFQ) scanning and PC+N instruction prediction, can meet any specific
step power constraint. We implement and evaluate the two mechanisms
using a performance and power simulator based on the SimpleScalar
toolset. Experiments using SPEC95 benchmarks show that our method
reduces the performance loss by a factor of four when compared to a
recent work.

1 Introduction

Because of the growing transistor budget, increasing clock frequency and wider
datapath width in the modern processor design, there is an ever-growing current
to charge/discharge the power/ground buses in a short time [1,2]. When the
current passes through the wire inductance (L) associated with power or ground
rails, the voltage glitch is induced and is proportional to Ldi/dt, where di/dt is
the current changing rate. Therefore, the power surge is also known as Ldi/dt
noise. Further, many power-efficient microarchitecture techniques involve selec-
tively throttling, or clock gating certain functional units or parts of functional
units [3,4,5,6,7,8]. Dynamic throttling techniques may lead to an even larger
surge current.

A large surge current may reduce the chip reliability, and cause timing and
logic errors, i.e., a circuit may switch at the wrong time and latch the wrong
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value. Dealing with a large surge current needs an elaborate power distribution
and contributes to higher design and manufacturing costs. In this paper, we
define the step power as the power difference between the previous and present
clock cycles. We use the step power as a figure of merit for power surges at the
microarchitecture level, and study how to reduce the step power by ramping up
and ramping down functional units for high-performance processors.

We use the floating point unit (FPU) to illustrate our ideas. The FPU con-
sumes 10-20% power of the whole system. Its step power has a significant impact
on power delivery and signal integrity in processor design. The FPU is turned
on or off immediately in most previous research on the dynamic throttling, and
results in a large step power. Recently, Tiwari et al [9,2] proposed to prolong the
switch on/off time by inserting “waking up” and “going to sleep” time between
the on and off state. However, every time the pipeline is forced to stall several
clock cycles before an inactive resource becomes available. This may lead to a
large performance penalty.

In this paper, we proposed two new mechanisms to ramp up/down (turn
on/off gradually) the FPU based on either the instruction fetch queue (IFQ)
scanning or the PC+N instruction prediction to meet the step power constraint
specified by the designer. The main difference between our work and Tiwari’s is
that we predict the instruction in advance whether the resource is required. This
will enable a request signal to be placed early enough to ramp up the inactive
FPU gradually and make it ready for use in time. We implement and evaluate
our two mechanisms using a performance and power simulator based on the
SimpleScalar toolset. Compared to [9,2], we can reduce the performance loss by
a factor of 4 on average over SPEC95 benchmarks.

The paper is organized as follows. Section 2 describes our two step power
reduction mechanisms in detail. Section 3 presents the quantitative study of
the step power and performance impact of the two mechanisms. Section 4 dis-
cusses the possible implementation method of the two mechanisms, and section
5 concludes this paper.

2 The Step Power Reduction Mechanisms

2.1 Overview

As the first step towards the power reduction techniques, we have implemented
an accurate microarchitecture level power estimation tool based on the extended
SimpleScalar toolset, where the SimpleScalar architecture [10] is divided into
thirty-two functional blocks, and activity monitors are inserted for these func-
tional blocks [11,12]. We have developed a power hook as an interface between the
extended SimpleScalar toolset and the RTL power models of functional blocks.
After reading the system configuration and user specified RTL power informa-
tion coming from the real design data or RTL power estimation tool [13,14,15,16,
17], the activities and the corresponding power information of these functional
blocks are collected in every clock cycle. Our resulting SimpleScalar toolset is



Ramp Up/Down Functional Unit to Reduce Step Power 15

able to simulate the performance, average power and step power for every func-
tional block and the whole system for given benchmark programs. All our power
reduction techniques are implemented and tested on this toolset.

The conventional floating point unit (FPU) design only has two states: in-
active state and active state (see Figure 1(a)). When there are floating point
instructions executed, the FPU is in the active state and consumes the active
power (Pa). On the other hand, FPU has no activity in the inactive state and
dissipates the leakage power (Pi), about 10% of the active power (Pa) in the
present process technology. When any floating point instruction gets into the
FPU, the FPU will jump up from the inactive state to the active state in one
clock cycle and has a step power of (Pa −Pi) (see Figure 1(a)). If we assume that
the inactive power (leakage power) is 10% of the active power, the step power
of FPU will reach 0.9Pa and may translate into a large Ldi/dt noise.

Essentially, Figure 1 (b) illustrates the technique used in Tiwari’s work [9,
2]. Stall cycles will be inserted to power up the functional units gradually every
time when the inactive resources are needed and may lead to a big loss of the
performance. However, our work predicts the occurrence of the floating point in-
structions and prepares the FPU in advance to reduce this performance penalty.
In both Tiwari’s and our approaches, the FPU will be powered down gradually
to save power consumption, when it is not used for certain clock cycles.

We introduce several artificial workload states in our approach. The relation-
ship of the inactive state, artificial workload states, and active state of FPU
is illustrated in Figure 1 (c). The FPU consumes power P i

w, i=1,2,...,n, and
Pn

w > Pn−1
w > ... > p1

w if there are n artificial workload states. We assume that
the power difference between adjacent power states is uniform for the simplicity
of presentation. A special power state, which is only one step below the active
state, is called subactive state and dissipates Ps power. After a floating point
instruction is predicted, the FPU will ramp up and stay in the subactive state.
The FPU enters the active state when the instruction gets executed. In summary,
P 0

w = Pi, Pn
w = Ps and Pn+1

w = Pa.

2.2 Ramp Up/Down FPU Based on the IFQ Scanning

The SimpleScalar is a five-stage superscalar architecture. There are two inter-
mediate stages between the instruction fetch (IF) and execution (EXE) stages.
We can scan the fetched instructions in the instruction fetch queue (IFQ) of the
IF stage every clock cycle. We call this mechanism IFQ scanning. If there exist
floating point instructions, a request signal will be sent to the EXE stage directly
to ramp up the FPU from the inactive state to the subactive state within pre-
diction time by adding artificial workload gradually. Here, the prediction time
is two cycles between IF and EXE stage. If the floating point instruction really
gets into the FPU in EXE stage, the FPU will switch from the subactive state to
the active state. Otherwise, FPU will be ramped down to the inactive state after
the busy time, which is a user defined time to keep FPU in the subactive state. If
one floating point instruction appears during the busy time or ramp down time,
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to reduce the performance penalty, the FPU will ramp up immediately without
reaching the inactive state as shown in Figure 1(c).

A prolonged busy time helps to exploit the spatial and temporal locality of
operations. If it is set to zero, the FPU will be ramped down immediately after
it reaches the subactive state. This will introduce larger performance penalty
also due to the following observation: the floating point instruction may be ex-
ecuted out-of-order and cannot get into the FPU within the prediction time.
On the other hand, the infinite busy time keeps the FPU in the subactive state
and never powers it down. It may increase the performance, but the average
power dissipation of FPU will increase a lot since the FPU always consumes the
subactive power even in the idle state.

2.3 Ramp Up/Down FPU Based on Instruction Prediction

Ramp up/down FPU based on instruction prediction is a more general mechanism
to reduce the step power. The main idea is to prefetch one more instruction
per cycle from the I-cache and predict whether the FPU is required by this
instruction (IFQ scanning is clearly a simple case of this mechanism.) This will
help FPU to ramp up gradually in advance and make it available for use in time.
Our current implementation is to scan the instruction with address PC + N ,
where PC is the current program counter and N is a user decided parameter. We
will ramp up/down the FPU based on the prediction of this instruction as we
do in the first method. In this way, we can have N + 2 cycles (still including the
two cycles between IF and EXE stages) to ramp up/down FPU with a further
reduced step power. We define this N + 2 as prediction time, which can also be
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viewed as the ramping time for the FPU to power on/off gradually between the
inactive and the subactive states shown in Figure 1 (c).

Further, there is one power step between the subactive state and active state.
Therefore, there are prediction time+1 = N +3 power steps between the inactive
and active states. We define the step power in this paper as follows:

step power = (Pa − Pi)/(prediction time + 1) (1)
= (Pa − Pi)/(N + 3)

For example, if Pi is 0.1Pa and N = 6, we can achieve a step power of 0.1Pa,
with an 88.9% reduction compared to the conventional step power of 0.9Pa. As
the IFQ scanning is a simple case of the PC + N instruction prediction with
N = 0, the FPU in this case has a step power of 0.3Pa.

Because the SimpleScalar is an out-of-order execution superscalar processor,
the predicted instructions may stall in the dispatch stage due to data or resource
hazard. This will cause the predicted instructions to be executed at a different
time. Extra stall cycles have to be inserted until the FPU reaches the subactive
state and becomes available again, which will introduce performance penalty. On
the other hand, when PC+N instruction prediction is used, there may be branch
instructions among these N instructions and branch misprediction may happen.
We currently assume that all the branch instructions are not taken, therefore we
do not need any extra circuit and keep the cost minimum. Nevertheless, we can
utilize other existing branch prediction techniques [18,19] to reduce misprediction
and achieve better results, but with a higher hardware overhead.

We proceed to present the quantitative results on performance and step
power, using the SPEC95 FP benchmark programs in the next section.

3 The Implementation Method

We summarize the ramping up/down algorithm based on the NP +N prediction
in Figure 2. To ramp up/down the FPU based on instruction prediction, one
more instruction will be fetched and predecoded in the IF stage for every clock
cycle. In this case, a small predecode and control logic is needed. Two counters
count fpu busytime and count fpu ramptime are used to count up/down the busy
time and prediction time respectively. A logic signal signal fpu ramp will be used
to indicate the state of ramping up or ramping down.

As shown in Figure 2, when the floating point instruction is detected in the
instruction fetch stage, signal fpu ramp will be set to ramp up and sent to the
scheduler stage. The counter count fpu busytime will be reset to 0. If there is
no floating point instruction executed by the FPU, count fpu busytime will start
counting. When it reaches busy time, signal fpu ramp is changed to ramp down
and count fpu busytime will be reset again.

The scheduler stage will keep checking the status of signal fpu ramp. If it is
set to ramp up, count fpu ramptime will be used to ramp up FPU from the inac-
tive state to the subactive state within prediction time by increasing the workload
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The Microarchitectural Level Instruction Prediction Algorithm :
/* In the INSTRUCTION FETCH stage */

Prefetch instruction pwr instr that is N cycles later;
Predecode this instruction pwr instr;
if (pwr instr is FP instruction) {

signal fpu ramp = ramp up; //start to ramp up FPU
reset count fpu busytime;

} else if (FPU is in the subactive state){
if (count fpu busytime == busytime) {

signal fpu ramp = ramp down; //start to ramp down FPU
reset count fpu busytime;

} else
count fpu busytime + +;

}
/* In the SCHEDULER stage */

if (signal fpu ramp == ramp up) {
if (FPU reaches the subactive state)

FPU is available = 1;
else {

FPU is available = 0;
count fpu ramptime + +;

}
} else if (signal fpu ramp == ramp down) {

if (count fpu ramptime > 0) {
FPU is available = 0;
count fpu ramptime − −;

}
}

/* In the EXECUTION stage */
if (the instruction is floating point instruction)

if (FPU is available)
issue FP instruction to FPU;

else {
stall FP instruction;
start to ramp up FPU immediately;

}
}

Fig. 2. Microarchitecture Level Instruction Prediction Algorithm

of FPU gradually. The FPU is ready for execution in the subactive state. On
the other hand, if signal fpu ramp is set to ramp down, count fpu ramptime will
be decremented to ramp down FPU gradually and FPU is not available then.

In the execution stage of simplescalar, floating point instruction is issued to
FPU only when the FPU is available, which is decided in the scheduler stage.
Otherwise, floating point instruction has to stall and waits for the FPU ramp-
ing up. If FPU is in the inactive or ramping down state and a new floating
point instruction appears, the FPU starts to ramp up immediately to reduce
performance penalty.

In terms of circuit implementation, both the clock network and FPU can be
partitioned into subcircuits. One subcircuit will be enabled or disabled per cycle
during ramping up or ramping down via clock gating as discussed in [20,21].

4 The Experiment Results

In this section, SPEC95 FP benchmark programs are used to study the per-
formance impacts of the two FPU step power reduction techniques. The per-
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formance is presented by instructions per cycle (IPC). We use the performance
without any ramping up and down as the base to measure the performance loss,
and summarize the system configuration used in our experiment in Table 1.

4.1 Impact of Busy Time

Figure 3 shows the performance loss in the IFQ scanning mechanism. In this
figure, the constant prediction time is two, the constant step power is 0.3Pa, but
the busy time varies from five to fifteen. As expected, the IPC loss is reduced
when the busy time is increased, because the FPU has more time to stay in the
subactive state and better prepares for the execution of floating point instruc-
tions. The IPC loss is less than 2.0% for the FP programs, when busy time is
ten clock cycles.

By using the PC + N instruction prediction mechanism with a prediction
time of eight, we can achieve the step power of 0.1Pa (88.9% reduction compared
to the conventional design with only active and inactive power states). The busy
time varies from five to fifteen clock cycles in Figure 4. Again, the performance
penalty is smaller when the busy time increases. The performance loss is less
than 3.0% when the busy time is larger than ten clock cycles. However, the
longer FPU stays in the subactive state, the more power it consumes, as the
subactive power is much larger than the inactive power. Therefore, there exists
a tradeoff between performance penalty and average power reduction. It can be
controlled by the user defined busy time. Because the performance loss becomes
smooth and less than 3.0% when the busy time is larger than ten cycles, we
choose ten clock cycles as the busy time in the remaining of this section.

Table 1. System configuration for experiments.

Functional Unit number Latency
Integer-ALU 4 1
Integer-MULT/DIV 1 3/20
Floating Point Adder 4 2
Floating Point MULT/DIV 1 4/12
Fetch/decode/issue width 4
Memory bus width 8
Cache nsets bsize assoc Repl
I-L1 512 32 1 LRU
D-L1 128 32 4 LRU
I-TLB 16 4096 4 LRU
D-TLB 32 4096 4 LRU
U-L2 1024 64 4 LRU
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Fig. 3. Performance penalty versus busy time in IFQ scanning with a prediction time
of two.

Fig. 4. Performance penalty versus busy time for PC + N instruction prediction. The
prediction time is eight.

4.2 Impact of Prediction Time

Figure 5 reflects the relationship between performance loss and prediction time.
The step power is 0.225Pa by setting N = 1 and prediction time = 3. This
prediction leads to less than 1.2% performance penalty for all benchmarks. Gen-
erally, when the required step power becomes smaller, a bigger N is needed as
the FPU needs more time to ramp up/down. The potential chance of mispre-
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Fig. 5. Performance penalty versus prediction time for PC +N instruction prediction.
The busy time is ten cycles. Prediction time = 2 stands for IFQ scanning.

diction will increase, and more performance loss may be induced. For example,
if the required step power is 0.1Pa as often required in the real design, we can
set N = 6 and predicton cycle = 8. The performance penalty is increased but is
still relatively small. The performance loss is less than 3.0% for all benchmarks.
Clearly, there exists a tradeoff between the performance penalty and step power
reduction. The tradeoff can be adjusted by the prediction time. As shown in Fig-
ure 5, benchmarks turb3d and swim are sensitive to the prediction time. It may
be due to our branch prediction scheme, and is worthwhile further investigation.

An alternative to achieve 0.1Pa without using ramping up (and therefore
without performance loss) is to set the inactive power Pi = 0.9Pa. Dummy
operations are used to keep this level of inactive power when no instruction really
needs the FPU. This leads to a huge amount of non-necessary power dissipation.
With our prediction technique, the FPU can only consume the leakage power in
the inactive state. As the leakage power is about 0.1Pa for the current process,
we can achieve a factor of nine in terms of power saving in the inactive state.
Note that even the leakage power can be saved if the power gating is used to cut
off the power supply.

4.3 Comparison with Previous Work

In the following, we compared our performance loss with that in Tiwari’s work
[9,2], where the pipeline is forced to install in order to ramp up the inactive
FPU. In Figures 6 and 7, light-colored bars are performance losses without using
prediction based on our own implementation of the approach in [9,2], and dark-
colored bars are performance losses using our IFQ scanning prediction technique
in figure 6 and N-cycle instruction prediction technique in figure 7. The busy
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Fig. 6. Performance Loss Comparison between IFQ Scanning prediction and non-
prediction for SPEC95 FP programs (ramping time is two cycles).

Fig. 7. Performance Loss Comparison between N-cycle instruction prediction and non-
prediction for SPEC95 FP programs (ramping time is eight cycles).

time is ten for both figures, and the prediction time (same as ramping time) is
two and eight in Figures 6 and 7, respectively. One can see that our prediction
techniques achieve much better performance. When the prediction time is two,
the average performance loss is 1.96% without prediction, but is only 0.90%
with prediction. When the prediction time is eight, the average performance loss
is 4.65% without prediction, but is only 1.08% with prediction. The prediction
reduced the performance loss by a factor of more than 4 in both cases.
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5 Conclusions and Discussions

Based on an extended SimpleScalar toolset and the SPEC95 benchmark set, a
preliminary study has been presented at the microarchitecture level to reduce the
inductive noise by ramping up/down the floating point unit. Instruction fetch
queue (IFQ) scanning and PC + N instruction prediction have been proposed
to reduce the performance loss due to ramping up and ramping down. Our
techniques are able to satisfy any given constraint on the step power, and reduce
the performance loss by a factor of more than 4 when compared with a recent
work without prediction.

We assume that the ramping time is same as the prediction time in this paper.
In general, the two times may be different to further reduce the performance loss.
It is part of our ongoing work to find the optimal prediction time for the ramping
time determined by a given step power constraint. Further, we are investigating
the power impact of ramping up individual adders and multipliers. We also plan
to apply the prediction mechanism to other functional units such as the integer
ALU and Level-2 cache. Recent progress can be found at our group webpage
http://eda.ece.wisc.edu.
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