
Linear Complexity Pruning Rule Enables Efficient Buffer
Insertion Considering Process Variations ∗

Jinjun Xiong Lei He
EE Department, University of California at Los Angeles

Los Angeles, CA, 90095

ABSTRACT
Advanced process technologies call for a proactive consid-
eration of process variation to ensure effective timing yield
and keep the manufacturing cost down. Buffer insertion
critical for almost any high performance IC designs nowa-
days, however, has not gained enough attention in attack-
ing the correlated process variations because of the lack of
an efficient pruning rule that defines the dominance rela-
tionship between two randomly but interdependent solu-
tions. The major contribution of this work is an efficient
two-parameter (2P) based pruning rule for buffer insertion
considering both inter-die and intra-die spatially correlated
process variations. Under the normality assumptions on dis-
tribution, we theoretically prove that the 2P-based pruning
rule has linear complexity (both time and space). Experi-
ment results confirm the linear scalability of such an algo-
rithm, and the capacity of the algorithm is also increased
by more than thousands of times compared to the state-of-
the-art technique. We further apply the algorithm for tim-
ing optimization considering correlated process variation.
We show that buffer insertion without considering spatial
correlated variation reduces the timing yield by more than
50%, thus alarm the importance of developing efficient algo-
rithms for IC designs to attack the process variation effects
actively.

1. INTRODUCTION
Advanced process technologies impose significant challenges

for modern IC designers as we move into the ultra-deep sub-
micron era where manufactured circuits exhibit substantial
performance variations. The proactive consideration of pro-
cess variation during the design stage is critical to ensure
effective timing yield and keep the manufacturing cost down.

Current studies on process variations have been mainly fo-
cused on the variability modeling and statistical timing anal-
ysis (STA) [1, 2, 3]. There are very few papers that actively
consider the process variation effects for design optimization.
Critical for almost any high performance IC designs nowa-
days, the buffer insertion problem has been studied exten-
sively with different objectives in literature [4, 5]. However,
none of them has considered the effect of process variations
yet. Moreover, almost all of these algorithms to some degree
follow the same dynamic programming paradigm in solving
the buffer insertion problem. This is mainly due to an im-
portant result owning to [4] that the dynamic programming
based buffer insertion problem can be solved optimally in

∗Submission under review, please do not distribute.

polynomial complexity by properly defining the dominance

relationship (or pruning rule) between solutions.
However, when process variation is considered, solving the

same buffer insertion problem “optimally” becomes tricky.
One of the difficulties lies in the fact that solutions are no
longer constant values, but random variables. Moreover,
these solutions are not independent but interdependent with
correlations. Different from the correlation discussed in the
STA community, such correlation is not due to path re-
convergence, but mainly due to the way we compute the
solutions. In dynamic programming based buffer insertion,
solutions are computed recursively from downstream nodes,
rendering solutions from the same subtrees are correlated in
nature. When intra-die spatial variation is considered, so-
lutions from different subtrees will also exhibit certain cor-
relations, which further complicates the problem. Another
difficulty is how to define the pruning rule between differ-
ent solutions in the presence of process variations. Because
without a properly defined pruning rule, a straight-forward
implementation of dynamic programming would make the
algorithm complexity to increase exponentially.

To the best of our knowledge, there are three pieces of re-
cent work in literature [6, 7, 8] that have attempted to solve
the buffer insertion problem with consideration of different
process variations. However, none of them has addressed
the above two difficulties with definite answers. [6] studied
the buffer insertion problem considering only the effect of
wire length variation, albeit the fact that wire length varia-
tion is not a typical process variation. It was assumed that
there was no correlation between different solutions. More-
over, three heuristic pruning rules were proposed with none
of them can bound the complexity of the algorithm. The
largest benchmark has 1260 sinks and no runtime was re-
ported. [7] proposed to capture the correlation between solu-
tions by using the joint probability density function (JPDF),
and compute the JPDF recursively. A four-parameter based
pruning rule was proposed to reduce the runtime complex-
ity. However, the complexity and the effectiveness of the
four-parameter based pruning rule is not clear, as only small
benchmarks with no more than 9 sinks were reported. [8]
studied a similar buffer insertion problem with a one-parameter
based pruning rule, which is a simplified version of the four-
parameter based pruning rule. Moreover, both [7] and [8]
only considered the random device variations, but not the
spatial correlated variation.

The contribution of this work is as follows. We propose an
efficient two-parameter (2P) based pruning rule in the con-
text of buffer insertion. Under the normality assumptions,



we theoretically prove that the 2P-based pruning rule has
linear complexity (both time and space), which enables effi-
cient implementation of buffer insertion algorithm with con-
sideration of both inter-die and intra-die spatial correlated
variations. When solutions are not normally distributed,
we give a theoretical necessary condition and experimen-
tally verify that the two-parameter based pruning rule still
has linear complexity in practice. Equipped with the effi-
cient pruning rules, we employ a first-order process varia-
tion model to solve the buffer insertion problem considering
both random device variation, inter-die variation and intra-
die spatial correlated variations. Experiment results show
that the algorithm based upon the 2P pruning rule can in-
crease the buffer insertion capacity to more than sixty thou-
sands of sinks, which is more than 60× improvement over [6]
and 1000× improvement over [7]. Moreover, our experiment
results also show that buffer insertion without considering
spatial correlated variation reduces the timing yield by more
than 50%, thus alarm the importance of developing efficient
algorithms for IC designs to attack the process variation ef-
fects.

The rest of this paper is organized as follows. In Section
2, we propose a two-parameter based pruning rule with con-
sideration of process variation. In Section 3, we present a
first-order process variation model to consider different types
of correlated variations. In Section 4, we discuss the buffer
insertion algorithm with correlated process variations. We
report experiment results in Section 5, and conclude in Sec-
tion 6. Proofs of Theorems will be included in a technical
report.

2. VARIATION AWARE PRUNING

2.1 Review of Deterministic Pruning
For a given buffered routing tree, two figure-of-merits are

associated with every legal buffer position t in the tree: i.e.,
the input loading capacitance (or downstream loading ca-

pacitance) Lt and the required arrival time Tt. The basic
buffer insertion problem formulation is to find the locations
of buffers in the given routing tree such that the required ar-
rival time (RAT) at the root is maximized. In the context of
dynamic programming, we first traverse the routing tree in
the reverse topological order and propagate solutions bot-
tom up while book-keeping all intermediate solutions. At
the end (root), we pick the optimal solution with the largest
RAT. By backtracking the chosen optimal solution, we can
determine the optimal solutions for each sub-tree recursively.

The complexity of dynamic programming based buffer in-
sertion is mainly resulted from the merging of two sets of
solutions obtained from two different sub-trees. In general,
the total number of possible combinations for merging is
n × m, where n and m are the number of solutions from
two sub-trees, respectively. If all combinations are kept
at each merging node, the complexity will increase expo-
nentially. However, by properly defining the dominance

relationship (or pruning rule) between two solutions, i.e.,
solution (L1, T1) dominates solution (L2, T2) if condition
L1 < L2 and T1 > T2 are satisfied, [4] proved that only
n+m number of solutions need to be kept instead of n×m.

This is made possible by recognizing that there exists a
strict ordering between solutions. That is, if T1 > T2 and
T2 > T3, then T1 > T3. Similarly, if L1 < L2 and L2 < L3,
then L1 < L3. Given there is N solutions, by pre-sorting

1 3 5

1 3 6 2 4 6 9 11

1

5

7

2
3

8

1

2

3

5

7

LoadLoad

Load

RAT

RAT

RAT

Figure 1: Linear merging O(n + m).

the N solutions according to either L or T , we can prune
out all dominated solutions in linear time O(N), instead of
quadratic time O(N 2).

Even though pruning based upon the dominance relation
can help reduce the total number of solution, in general we
still have to pay the price of O(n × m) locally in order to
obtain all possible combinations for merging. In determin-
istic buffer insertion, such a procedure can be reduced to
O(n + m) by using a merging sort like operation on the two
sets of already sorted solutions. To see this, we give an ex-
ample in Figure 1, where there are three solutions from each
sub-tree, i.e., n = 3 and m = 3, and they are strictly sorted
in terms of both L and T . By using a merging sort like op-
eration on both solution sets while following the dominance
rule, we can obtained all non-dominated solutions O(m+n)
after merging in linear time. Moreover, the solutions after
merging is also strictly sorted as shown in Figure 1.

Based upon the above two linear operations on pruning
and merging, [4] proved that by keeping only dominating
solutions at every node, the dynamic programming based
algorithm can solve the buffer insertion problem in polyno-
mial time without loosing optimality1.

2.2 Review of Four-parameter Based Pruning
Even though the conventional deterministic buffer inser-

tion problem can be solved optimally via dynamic program-
ming [4], solving its variation-aware counterpart “optimally”
is not that easy. The difficulty lies in the fact that Lt and
Tt are no longer constant values, but two interdependent
random variables, as both are recursive functions of their
downstream random variations. Moreover, different solu-
tions, (L1,T1) and (L2,T2), no matter whether or not they
come from the same subtree, can be also interdependent in
the presence of spatial correlated variations.

By relating the dominance relation with designers’ will-
ingness of accepting uncertainty for a given design, [7] pro-
posed the following four-parameter based (4P) dominance
rule. Each parameter πα gives a measure of designers pref-
erence for certainty in choosing the design parameter x in
the presence of variations, such that the final design would
have x less than πα with (100α)% certainty. Mathemati-
cally, this is given by

α =

Z πα

−∞

f(x)dx, (1)

where f (x) is the probability density function (PDF) of x.

1Note that the recently proposed predicative pruning [9] also
exploits the same strictly ordering property of deterministic
solutions.



Given four parameters, παl
and παu

for Lt, and πβl
and πβu

for Tt, such that 0 ≤ αl < αu ≤ 1 and 0 ≤ βl < βu ≤ 1,
solution (L1, T1) is said to dominate solution (L2, T2) if the
following conditions are satisfied:

π
(1)
αu

< π
(2)
αl

(2)

π
(1)
βl

> π
(2)
βu

. (3)

Despite of its intuitive definition, such a dominance re-
lation is hard to use in practice for large designs, because
under such a dominance relation, it is very difficult to keep
the strict ordering of solutions as the deterministic case does,
thus loosing both the linear complexity of merging and prun-
ing operations. In other words, we still have to pay the price
of O(n×m) in computing all possible combinations for merg-
ing solutions, and O(N2) for pruning, which makes it less
efficient for large designs as we will show in the experiment
parts.

2.3 Two-parameter Based Pruning
In the following, we propose a new variation aware prun-

ing rule that would enable us to keep both merging and
pruning operations in linear complexity even in the pres-
ence of process variations.

The new pruning rule is based upon the following obser-
vation. To eliminate uncertainty when comparing two solu-
tions, we can extend the deterministic dominance relation
between (L1, T1) and (L2, T2) by enforcing P (L1 ≤ L2) = 1
and P (T1 ≥ T2) = 1. The physical interpretation of this ex-
tension is that solution (L1, T1) has 100% chances (almost
always) to result in a larger required arrival time but with
a less loading capacitance when compared to solution (L2,
T2). However, in practice, such a 100% chance requirement
is too conservative. Therefore, we relax such a requirement
by adding two parameters such that Solution (L1, T1) is said
to dominate solution (L2, T2) if the following two conditions
hold:

P (L1 < L2) > pL, (4)

P (T1 > T2) > pT , (5)

where pL and pT are two parameters between 0.5 and 1.
In other words, the probability of L1 being less than L2 is
greater than pL, while the probability of T1 being greater
than T2 is less than pT . We call the pruning rule as defined
by (4) and (5) as two-parameter (2P) based pruning rule in
the following.

By utilizing the new dominance rule as defined in (4) and
(5), we can order the solutions much the same way as in
the deterministic cases, thus achieving similar complexity
as the deterministic counterpart. To see this argument, we
have the following Theorems2.

Theorem 1. Given T1, T2 and T3 as three independent

random variables with arbitrary distributions, if P (T1 >

T2) > p, P (T2 > T3) > p, then P (T1 > T3) > p.

Theorem 2. Given T1, T2 and T3 as three interdepen-

dent random variables with arbitrary distributions, if P (T1 >

T2) > p, P (T2 > T3) > p, then p > 0.5 is the necessary con-

dition for P (T1 > T3) > p to hold.

2For simplicity, we only use T to illustrate the idea. It is
understood that same results can be applied to L as well.

Theorem 3. Given T1, T2 and T3 as three interdepen-

dent random variables with normal distributions, if P (T1 >

T2) > 0.5, P (T2 > T3) > 0.5, then P (T1 > T3) > 0.5

Theorem 4. Given T1 and T2 as two interdependent

random variables with normal distributions, for P (T1 > T2) >

0.5 to hold, it is necessary and sufficient to have µT1
> µT2

with µT1
and µT2

being the mean for T1 and T2, respectively.

Theorem 1 says that if the inter-dependency between so-
lutions are ignored, we can have a strict ordering between
solutions in terms of (4) and (5), If the inter-dependency
between solutions cannot be ignored, setting pL = 0.5 is
the necessary condition to keep the strict ordering accord-
ing to Theorem 2. If normal distribution is observed for
each solution, setting pL = 0.5 is also the sufficient con-
dition to keep the strict ordering according to Theorem 3.
Moreover, according to Theorem 4, the ordering of solutions
can be purely determined by mean values. By keeping the
strict ordering between random solutions, we can simplify
the O(n × m) merging operations into O(n + m) while do-
ing pruning in O(n) based upon the similar arguments as in
Section 2.1. Such a statement is also experimentally veri-
fied in our experiments, and we can achieve more than 20×
runtime speedup compared to the 4P-based pruning.

When pL and pT are greater than 0.5, we cannot prove
theoretically that the above strict ordering still holds. How-
ever, under the normal distribution assumption, we will
show that the above dominance rule still gives a reasonable
good ordering of solutions. To see this, we assume both T1

and T2 (similarly L1 and L2) are normal, and we have the
following closed forms to evaluate the dominance relation
between them according to [10]:

P (T1 > T2) = Φ(
µT1

− µT2

σT1,T2

) > pT , (6)

where Φ is the cumulative density function (CDF) of stan-
dard normal distribution, µT1

, and µT2
are the mean values

of T1 and T2, respectively. σT1,T2
can be computed by

σT1,T2
= (σ2

T1
− 2 · ρT1,T2

σT1
σT2

+ σ
2
T2

)1/2
, (7)

where σ2
T1

and σ2
T2

are variance of T1 and T2, respectively;
and ρT1,T2

is the correlation coefficient of T1 and T2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

µ
T1

 − µ
T2

P
(T

1 
>

 T
2)

ρ=0,σ
T1

=σ
T2

ρ=0.5,σ
T1

=σ
T2

ρ=0.9,σ
T1

=σ
T2

ρ=0,σ
T1

=3σ
T2

ρ=0.5,σ
T1

=3σ
T2

ρ=0.9,σ
T1

=3σ
T2

Figure 2: Probability of T1 is greater than T2.

We plot the probability of T1 greater than T2 in Figure 2,
where the x-axis is the mean difference of T1 and T2 (µT1

-
µT2

), and the y-axis is P (T1 > T2). Three correlation co-
efficients, ρ = 0, ρ = 0.5 and ρ = 0.9, between T1 and T2



are plotted. The first three plots have σT1
=σT2

, and the
rest three plots have σT1

=3σT2
. According to Figure 2, we

can see that when the difference between µT1
and µT2

be-
comes larger, the probability of T1 being greater than T2

is also increasingly larger. For a given required probability,
say pL=0.85, it only requires µT1

being greater than µT2
by

less than 4ps. In practice, for a general routing tree, such a
small delay difference will likely exist among different solu-
tions, either due to the difference in routing or due to the
difference in buffering. Therefore, we conclude that order-
ing by Ti’s mean value will not loose much accuracy even
when different pL values are taken. Moreover, such an ap-
proximation becomes even better when two solutions have
similar variance and have higher correlations, which are the
cases for our buffer insertion problem because solutions from
the same sub-tree or nearby sub-trees are highly correlated
in nature. Such a statement has also been verified experi-
mentally in our experiment parts (Section 5).

3. PROCESS VARIATIONS MODELING
As has been shown in the STA community that block-

based STA analysis is suitable for increment computation of
statistical timing. In the course of buffer insertion, such an
increment computation feature is a must. Therefore, in the
following, we discuss a first-order process variation model
that incorporates both random device variation, inter-die
variation and intra-die spatial correlated variations. Such a
first-order modeling has been used for STA [3, 1], but none
of them has explicitly considered all the above three type of
variations. Moreover, their focus is mainly for timing anal-
ysis, while our focus in this paper is on design optimization.

3.1 Random Variation
We characterize a device (or buffer) in terms of its gate

capacitance (Cb), intrinsic delay (Tb) and output resistance
(Rb). Due to process variations, these values will no longer
be fixed values. To simplify the model, we lump all varia-
tion effects into Cb and Tb while keeping Rb as a constant
for a given device size. In general, devices characteristics are
complicated (nonlinear) functions of the underlying physical
parameters and sometimes are even hard to described in a
closed form. Therefore, we resort to first-order approxima-
tion. The rational is that if the underlying parametric vari-
ations is small, any nonlinear relationship can be reasonably
captured by a first-order approximation. Mathematically it
can be described as:

Cb = Cb0 +
X

αi · Xi, (8)

Tb = Tb0 +
X

βi · Xi, (9)

where Cb0 and Tb0 are nominal values of Cb and Tb, respec-
tively; and Xi are the underlying parametric variations such
as channel length, doping density, and gate oxide thickness.
The coefficients αi and βi are sensitivity of Cb and Tb to the
variation of Xi, respectively.

We run SPICE simulations to verify the accuracy of the
above first-order modeling. For illustration purpose and also
because of the lack of access to the real sources of foundry
process variations, we only model the random Leff varia-
tion using 65nm BSIM model in this section. We assume
the variation of Leff to be a symmetric normal distribution
with the standard deviation as 10% of its mean value in our
experiments. After extracting devices characteristics from

SPICE simulation, we then use a least square curve-fitting
technique to obtain (8) and (9).

Because of the nonlinear relationship between parametric
variations (like channel length, doping density, gate oxide
thickness, etc.) and the device characteristics, the latter’s
distributions are unlikely to be normal even if the underlying
parametric variations are assumed to be normal. However,
just as we have discussed above, if the underlying parametric
variations is assumed to be small, the nonlinear relationship
can be approximated by a first-order linear equation. There-
fore, the device characteristics can also be approximated by
a normal distribution. We validate this argument via Monte
Carlo simulation. Figure 3 shows both the SPICE extracted
PDFs of Tb and the normal distribution approximation from
(9). It clearly shows that normal distribution is a reasonably
good approximation of the real distribution because the two
PDFs are very close to each other.

35 40 45 50 55 60 65
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

SPICE Simulated Distribution

Normal Distribution Approximation

Figure 3: Normal distribution approximation of Tb.

3.2 Intra-die Variation
Current wafer manufacturing methods employ multiple

identically oriented chips (usually four) within multi chip
reticles during the stepping imaging process. Because of the
optical lens distortion and wafer manufacturing processes,
characteristics of devices on the same die are generally dif-
ferent and may take on the form of radial distortion [11],
i.e., differences depending on distance from the center of
the lens. Moreover, devices that are physically close to each
other have higher correlation than devices that are far apart.

Therefore, to properly predict device characteristics, the
following first-order model is proposed to capture the intra-
die spatial variations on device characteristics. We partition
the die area into different regions, and associate each region
with one independent random variables Yi. When the vari-
ance of Yi, σYi

, are the same for all regions, we call such a
model as homogeneous spatial variation model. When the
variance of Yi are different for different regions (and may
even exhibit certain patterns), we call such a model as het-

erogeneous spatial variation model. Note that the spatial
model proposed here is different from that of [12] in the
sense that we use less number of independent variables but
with more flexibility in capturing different spatial variations.
We further note that associating each region with an inde-
pendent random variable is also different from the principle
component analysis (PCA) technique as employed in [1].



For a device located at a particular region Rt, we have

Cb,t = Cb0 +
X

αi · Xi +
X

i∈It

γi · Yi, (10)

Tb,t = Tb0 +
X

βi · Xi +
X

i∈It

θi · Yi. (11)

The index set It defines the set of regions that spatial corre-
lations matter for devices located at Rt, and the coefficient
γi and θi further determine how strong the correlations are.
In general, the larger the coefficients, the larger the correla-
tion. Because the index set It, and the coefficients γi and θi

are region-dependent and different regions will have different
It, γi, and θi, by properly setting up these values, we can
capture the spatial correlations between devices at different
regions. For example, for two devices located at two nearby
regions, they will share more number of common regions as
decided by their common indexes in It1 and It2, and thus
would have larger corresponding correlations.

For example, Figure 4 shows a layout with regular de-
fined regions. If we assume that each region is correlated
with its closest neighboring regions (3×3 grids) with each
region having an independent random variables Yi, then the
device’s characteristics will be affected by Y1 to Y9 as given
by (10) and (11). For two buffers that are physically closer
to each other (e.g., buffer B1 and buffer B2), they share
two number of correlated regions as defined by their respec-
tive correlation regions. On the other hand, for two buffers
that are physically apart from each other (e.g., buffer B1
and buffer B5), they do not share any number of correlated
regions, hence their spatial correlation is negligible.

Figure 4: Modeling of the spatial correlations.

3.3 Inter-die Variation
As the inter-die variation affects all devices within the

same die uniformly, we can model this variation by intro-
ducing another independent random variable, G and modify
(10) and (11) as follows:

Cb,t = Cb0 +
X

αi · Xi +
X

i∈It

γi · Yi + ξ · G, (12)

Tb,t = Tb0 +
X

βi · Xi +
X

i∈It

θi · Yi + η · G. (13)

4. BUFFER INSERTION CONSIDERING PRO-
CESS VARIATIONS

4.1 Key Operations for Buffer Insertion
In addition to the dominance rule between solutions, three

other key operations are needed in order to solve the dy-
namic programming based buffer insertion problem. We re-

view them briefly as follows. Denote c and r as intercon-
nect’s unit length capacitance and sheet resistance, respec-
tively, we model each interconnect segment in the routing
tree with length l as a π model. Under the Elmore delay
model, the Lt and Tt can be computed recursively if we
know the downstream node solutions.

If the solution at node t is obtained by adding a wire of
length l at its direct downstream node n, then

Lt = Ln + c · l (14)

Tt = Tn − r · l · Ln −
1

2
· r · c · l

2
. (15)

If the solution at node t is obtained by adding a buffer at
its direct downstream node n, then

Lt = Cb (16)

Tt = Tn − Tb − Rb · Ln. (17)

If the solution at node t is obtained by merging two solutions
from its two sub-trees rooted at nodes m and n, respectively,
then

Lt = Ln + Lm (18)

Tt = min(Tn, Tm). (19)

4.2 Variation Aware Key Operations
In contrast to [7] where the process variation is modeled

by the numerical JPDF, we employ the first order process
variation model as discussed in Section 3 in this paper. We
will report our comparison with [7] in Section 5. Below,
we describe the changes that we need to make to the three
key operations in solving the dynamic programming based
buffer insertion problem.

When solutions at downstream nodes are modeled as ran-
dom variables, the newly computed solutions (Lt, Tt) are
also random variables. To make the recursive computation
efficient, we keep the same first order form for Lt and Tt

as their downstream nodes. In the following, we assume
all downstream node solutions are known and can be repre-
sented by the following first order forms:

Ln = Ln0 +
X

αn,i · Xi (20)

Tn = Tn0 +
X

βn,i · Xi, (21)

where Xi can be any kind of defined variations. We then
compute the solution at the current node t as follows. If the
solution at node t is obtained by adding a wire of length l

at its direct downstream node n, then

Lt = (Ln0 + c · l) +
X

αn,i · Xi, (22)

Tt = (Tn0 − r · l · Ln0 −
1

2
· r · c · l

2)

+
X

(βn,i − r · l · αn,i) · Xi. (23)

If the solution at node t is obtained by adding a buffer at
its direct downstream node n, then

Lt = Cb0 +
X

αb,i · Xi, (24)

Tt = (Tn0 − Tb0 − Rb · Ln,0)

+
X

(βn,i − βb,i − Rb · αn,i) · Xi. (25)

If the solution at node t is obtained by merging two solutions
from its two sub-trees rooted at nodes m and n, respectively,



then

Lt = (Ln0 + Lm0) +
X

(αn,i + αm,i) · Xi. (26)

To express Tt after the min operation still to be a linear com-
bination of underlying variations, we resort to the tightness
probability idea from [3], and we have

Tt = tn,m · Tn0 + (1 − tn,m)Tm0 − σn,m · φ(
µTm

− µTn

σn,m
)

+
X

(tn,m · βn,i + (1 − tn,m) · βm,i) · Xi, (27)

where tn,m is the probability of Tn less than Tm, and can be
computed by

tn,m = Φ(
µTm

− µTn

σn,m
). (28)

φ and Φ are the PDF and CDF of the standard normal
distribution, respectively; and σn,m can be computed by

σn,m = (σ2
n − 2 · ρn,m · σn · σm + σ

2
m)1/2

, (29)

where σ2
n and σ2

m are variance of Tn and Tm, respectively;
and ρn,m is the correlation coefficient of Tn and Tm. Know-
ing the first-order representation of Tn and Tm, we can com-
pute σ2

n, σ2
m, and ρn,m as follows.

σ
2
n =

X

β
2
n,iσ

2
Xi

, (30)

σ
2
m =

X

β
2
m,iσ

2
Xi

, (31)

ρn,m =

P

βn,iβm,iσ
2
Xi

σnσm
, (32)

where σ2
Xi

is the variance of Xi.

5. EXPERIMENT RESULTS

5.1 Experiment Setting
Two sets of benchmarks are obtained from the public do-

main for our experiments [9]. The characteristics of the
benchmarks are shown in Table 1.

Bench Sinks Buffer Positions
p1 269 537
p2 603 1205
r1 267 533
r2 598 1195
r3 862 1723
r4 1903 3805
r5 3101 6201

Table 1: Characteristics of benchmarks.

Because of the lack of access to the real wafer data, we de-
rive the process variation data based upon the literature that
addresses similar process variation issues but in the context
of statistical timing analysis [12]. In our experiment, the
65nm BSIM technology is assumed. We budget the random
device variation, inter-die variation, and intra-die variation
all to be 5% of its nominal value, respectively. For the homo-
geneous spatial variation model, we uniformly distribute the
budgeted 5% variation into different regions. For the hetero-
geneous spatial variation model, we distribute the budgeted
5% variation on the die from the South-West corner to the
North-East corner in a linearly increasing fashion, i.e., de-
vices located at the South-West corner has smaller spatial
variation while devices located at the North-East corner has

larger spatial variations. We divide the chip layout into dif-
ferent grids with the length of each grid as 500µm. For
devices located at a particular grid, their characteristics are
affected by a set of nearby grids whose contribution weights
form an isotropic stationary Gaussian process with the value
tapers off at a distance about 2mm.

5.2 Runtime Comparison
We compare the runtime between our algorithm and [7]

based upon RAT optimization (Section 5.3) as follows. Be-
cause there is no detailed runtime data from [7], we first
compare the two algorithms runtime complexity in terms of
the largest benchmark that each algorithm can handle. As
reported in [7], the largest routing tree has only nine (9)
sinks. In contrast, our algorithm can easily handle routing
trees with more than three thousand sinks (> 3000), and
it seems that nothing prevents our algorithm from handling
even larger benchmarks3.

Bench 4P 2P Speedup
p1 25.4 1.5 17.3×
p2 - 6.9 -
r1 - 25.0 -
r2 - 63.8 -
r3 - 131.5 -
r4 - 396.9 -
r5 - 922.8 -

Table 2: Runtime comparison in second.

Furthermore, we speculate that one of the main reasons
in preventing [7] from trying larger benchmarks is that their
4P-based pruning rule is not very effective in both pruning
and merging solutions. Another reason is due to the numeri-
cal complexity in computing JPDF, which requires the com-
putation of high dimensional integral numerically. To verify
this speculation, we have also reimplemented the algorithm
of [7] based upon the same process variation models as used
in this paper. In other words, we avoid [7]’s high complex-
ity in computing the JPDF numerically, but rather to use
the same first order process variation model to represent the
JODI implicitly. Therefore, the only difference between our
algorithm and that of [7] is the dominance rule. For the
algorithm in [7], the 4P-based pruning rule as discussed in
Section 2 is used, while our algorithm employs the newly
proposed 2P-based pruning rule.

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

800

900

1000

Sink Number

R
un

tim
e 

in
 S

ec
on

d

Figure 5: Runtime versus total number of sinks.

3In fact, the largest benchmark we have tested in house is
an eight-level H-tree clock network with more than 64,000
sinks.



In Table 2, we report the runtime for both algorithms
based upon the benchmarks we have tested. According to
Table 2, we can see that the newly implemented algorithm of
[7] now can handle much larger benchmarks than what was
originally reported in [7], and the largest tested benchmark
is p1 with 269 sinks. This improvement is mainly due to the
avoidance of computing JPDF explicitly. However, we still
fail to use the improved algorithm of [7] to run larger bench-
marks. In fact, for the rest of tested benchmarks, it fails due
to exceeding either memory capacity (2G) or tolerable time
limit (4 hours in our setting). This observation is expected,
because as we have explained in Section 2, the 4P-based
pruning rule only imposes partially ordering between solu-
tions, rendering the complexity of merging as O(n×m) and
pruning as O(N 2) for both memory and runtime. In con-
trast, by using the newly proposed 2P-based pruning rules,
our algorithm can easily run through all benchmarks and
for the largest benchmark r5, the runtime is less than 16
minutes. This significant runtime speedup is achieved be-
cause the 2P based pruning rule as discussed in Section 2
enforces a strict ordering between solutions, thus enables a
linear complexity for both merging and pruning. This is fur-
ther confirmed by Figure 5 which shows roughly the linear
runtime scalability of our algorithms in terms of the number
of sinks.

5.3 RAT Optimization
Enabled with the efficient implementation of buffer inser-

tion considering both inter-die and intra-die variations, we
can run our buffer insertion algorithm on the benchmarks for
RAT optimization and study the effect of process variation
on buffered interconnect design.

Before we report the experiment results, we first verify the
accuracy of our model in predicting the RAT under process
variations via the Monte Carlo simulation. Given a buffered
routing tree with process variations, we run the algorithm
to compute the PDF of RAT at the root. Such a procedure
only requires the three key operations according to Section
4.2. After we obtain the RAT at the root represented in
the form of (21), its PDF can be obtained by computing
its mean and variance and it is approximated to be nor-
mally distributed. Figure 6 shows both the model predicted
PDF and the Monte Carlo simulated PDF for the RAT at
the root for one of the largest benchmarks (r5) in our ex-
periments. We can clearly see that the first order process
variation model is very accurate in predicating the PDF of
RAT, and therefore it can indeed be employed for RAT op-
timization.

−2760 −2740 −2720 −2700 −2680 −2660 −2640 −2620 −2600 −2580
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Monte Carlo Simulation
Model Approximation

Figure 6: RAT at the root predicted by our model

versus Monte Carlo simulation.

We compare three buffer insertion algorithms for RAT
optimization in the following. The first one is the determin-
istic buffer insertion algorithm where all design variables
are assumed to be nominal without variation, and we de-
note it as NOM . The second one is the variation-aware
buffer insertion considering only random device variation
and inter-die variation, but without considering the spatial
variations. We denote such algorithm as D2D. The last one
is the variation-aware buffer insertion algorithm considering
all above variations, and it is denoted as WID. We run each
algorithm on the given benchmarks and obtain the buffered
routing tree. Two figure-of-merits are used to compare dif-
ferent algorithms. The first one is the 95% timing yield for
RAT, which is defined as the 5%-tile RAT on the PDF such
that the final RAT has the 95% chances of being larger than
the 5%-tile RAT. The second one is the timing yield for a
given required RAT at the root.

Table 3 compares the three algorithms using the hetero-
geneous spatial variation model as defined in Section 5.1.
Column 2, 4 and 6 are the RAT at the 95% timing yield
rate. The value in parenthesis are relative RAT degradation
for NOM and D2D when compared to WID, respectively.
According to Table 3, we can see that deterministic buffer
insertion (NOM) without considering process variations al-
ways results in designs that require much higher RAT than
WID and the increase can be as high as 23.1%. On average,
NOM increases RAT by 9.7% compared to WID. From
Table 3 we can also see that variation-aware design with-
out considering spatial variation (D2D) also increases the
RAT compared to WID, and the average increase is about
8.4%. It is interesting to note that compared to NOM , D2D

achieves only about 2% improvement on average for RAT op-
timization. This confirms the common wisdom that global
inter-die variation shifts the design space in the same direc-
tion while random device variation effect tends to diminish
for a large design due to the variation canceling effects.

We also compare the timing yield for the three algorithms
in Table 3. As we already observe that RAT from WID is
about 10% better on average than both NOM and D2D, we
set the mean RAT of WID with 10% reduction as the tar-
geted RAT for all designs. We then compute the timing yield
for all algorithms and report the results under Column 3, 5
and 7 in Table 3. According to Table 3, we see that NOM

and D2D on average only achieve 42.2% and 46.7% timing
yield and the yield loss is more than 50% when compared
to WID.

Bench NOM D2D W ID

p1 60 (1.09×) 60 (1.09×) 55
p2 156 (1.08×) 155 (1.08×) 144
r1 65 (1.44×) 61 (1.36×) 45
r2 135 (1.44×) 131 (1.39×) 94
r3 187 (1.42×) 187 (1.42×) 132
r4 375 (1.38×) 374 (1.38×) 272
r5 608 (1.32×) 598 (1.30×) 459

Avg 1.15× 1.13× 1×

Table 5: Number of buffers under different variation

models.

We also run the same set of experiments but under the
homogeneous spatial variation model as defined in Section
5.1 and report the experiment results in Table 4. Similar
trends as in Table 3 can be observed. Moreover, by com-
paring Table 4 and Table 3, we observe that homogeneous



Bench NOM D2D WID

RAT (%) Yiled RAT (%) Yiled RAT Yiled
p1 -2673.5 (-2.4%) 99.6% -2673.5 (-2.4%) 99.6% -2611.7 100%
p2 -3791.3 (-7.7%) 99.9% -3713.4 (-5.5%) 99.8% -3519.3 100%
r1 -1240.7 (-15.9%) 0.5% -1193.7 (-11.5%) 14.8% -1070.3 100%
r2 -1808.1 (-23.1%) 0.1% -1751.8 (-19.2%) 2.3% -1469.2 100%
r3 -1658.8 (-9.3%) 48.5% -1658.8 (-9.3%) 48.5% -1518.0 100%
r4 -2475.7 (-10.7%) 27.6% -2475.7 (-10.7%) 27.6% -2236.0 100%
r5 -2934.9 (-8.6%) 83.5% -2934.9 (-8.6%) 83.5% -2703.3 100%

Avg -9.7% 45.0% -8.4% 47.0% 100% 100%

Table 3: RAT optimization under the heterogeneous spatial variation model.

Bench NOM D2D W ID

RAT (%) Yiled RAT (%) Yiled RAT Yiled
p1 -2620.2 (-1.8%) 99.6% -2620.2 (-1.8%) 99.6% -2574.1 100%
p2 -3684.9 (-0.9%) 99.9% -3685.9 (-0.9%) 99.8% -3652.4 100%
r1 -1181.0 (-11.0%) 0.5% -1141.0 (-7.3%) 14.8% -1063.5 100%
r2 -1612.3 (-11.7%) 0.1% -1575.9 (-9.2%) 2.3% -1443.6 100%
r3 -1602.0 (-4.8%) 48.5% -1602.0 (-4.8%) 48.5% -1529.2 100%
r4 -2280.7 (-5.0%) 27.6% -2280.7 (-5.0%) 27.6% -2172.6 100%
r5 -2653.1 (-3.1%) 83.5% -2653.1 (-3.1%) 83.5% -2572.6 100%

Avg -4.8% 45.0% -4.0% 47.0% 100% 100%

Table 4: RAT optimization under the homogeneous spatial variation model.

spatial variation leads to in general a larger RAT for ev-
ery design. We further report the total number of buffers
inserted for each design in Table 5. We find that for all de-
signs, WID uses the least number of buffers compared to
NOM and D2D. This results show that our WID algo-
rithm can wisely insert buffers in the routing tree such that
the final buffered solution achieves real RAT optimization
in the presence of process variations.

Finally, we experimentally verify that different choices of
pL and pT in (4) and (5) indeed have little impact on RAT
optimization in practice. We have tried different combina-
tions of pL and pT (from 0.5 to 0.95) for the same set of
experiments as reported in Table 3 and 4. However, among
all tested experiments, we see less than 0.1% difference in the
final optimal RAT at the root. This observation is expected
as we have discussed in Section 2.3.

6. CONCLUSION AND DISCUSSION
An efficient two-parameter (2P) based pruning rule has

been proposed for dynamic programming based buffer in-
sertion. Under the normality assumptions on distribution,
we have theoretically proved that the 2P-based pruning rule
has linear complexity (both time and space), which enables
efficient implementation of the buffer insertion algorithm
considering both inter-die and intra-die spatially correlated
process variations. Experiment results have confirmed the
linear scalability of our algorithm, whose capacity has been
increased by more than thousands of times compared to [7].
We have applied the algorithm for timing optimization con-
sidering correlated process variations and concluded that
process variation must be considered for real optimal de-
signs, and buffer insertion without considering spatial cor-
related variation would reduce the timing yield by more than
50%, this calls for developing efficient algorithms for IC de-
signs to attack the process variation effects actively.

In this work, we only considered timing optimization for
signal nets. In the future, we intend to apply the same 2P-
based pruning rule and develop efficient algorithms for clock
skew minimization.

7. REFERENCES
[1] H. Chang and S. Sapatnekar, “Statistical timing analysis

considering spatial correlations using a single PERT-like
traversal,” in Proc. Int. Conf. on Computer Aided Design,
pp. 621 – 625, Nov. 2003.

[2] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula,
“Computation and refinement of statistical bounds on circuit
delay,” in DAC 03, Jun 2003.

[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and
S. Narayan, “First-order incremental block-based statistical
timing analysis,” in Proc. Design Automation Conf, Jun 2004.

[4] L. P. P. P. van Ginneken, “Buffer placement in distributed
RC-tree networks for minimal Elmore delay,” in Proc. IEEE
Int. Symp. on Circuits and Systems, pp. 865–868, 1990.

[5] J. Lillis, C. K. Cheng, and T. T. Y. Lin, “Simultaneous routing
and buffer insertion for high performance interconnect,” in
Proc. the Sixth Great Lakes Symp. on VLSI, 1996.

[6] V. Khandelwal, A. Davoodi, A. Nanavati, and A. Srivastava,
“A probabilistic approach to buffer insertion,” in Proc. Int.
Conf. on Computer Aided Design, 2003.

[7] J. Xiong, K. Tam, and L. He, “Buffer insertion considering
process variation,” in Proc. Design Automation and Test in
Europe, 2005.

[8] L. He, A. B. Kahng, K. Tam, and J. Xiong, “Simultaneous
buffer insertion and wire sizing considering systematic cmp
variation and random leff variation,” in Proc. Int. Symp. on
Physical Design, April 2005.

[9] W. Shi and Z. Li, “An o(nlogn) time algorithm for optimal
buffer insertion,” in DAC, Jun 2003.

[10] M. Cain, “The moment-generating function of the minimum of
bivariate normal random variables,” in The American
Statistician, vol. 48, May 1994.

[11] T. Wilder, “Multi chip mask die rotation and mirror to
minimize lens exposure aberrations on chip performance,” in
The IBM Technical Disclosure Bulletin, on-line
http://www.priorartdatabase.com/, Dec. 2004.

[12] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing
analysis for intra-die process variations with spatial
correlations,” in Proc. Int. Conf. on Computer Aided Design,
pp. 900 – 907, Nov. 2003.


