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ABSTRACT
In this paper, a Triangularization Based Structure-preserving
(TBS) model order reduction is proposed to verify power in-
tegrity of on-chip structured power grid. Power grid is rep-
resented by interconnected basic blocks according to current
density, and basic blocks are further clustered into compact
blocks, each with a unique pole distribution. Then, the sys-
tem is transformed into a triangular system, where compact
blocks are in its diagonal and the system poles are deter-
mined only by the diagonal blocks. Finally, a block-diagonal
structured projection matrix is constructed by stacking pro-
jection matrices for individual diagonal blocks in the trian-
gular system. The resulting macro-model has more matched
poles and is more accurate than the one using the flat pro-
jection. It is also passive and sparse and enables a two-level
analysis for simulation time reduction. Compared to exist-
ing approaches, TBS in experiments achieves up to 133X
and 109X speedup in macro-model building and simulation
respectively, and reduces waveform error by 33X.

1. INTRODUCTION
The power integrity verification is an essential part to de-

sign nowadays on-chip Power/Ground (P/G) grids. Typical
P/G grid circuits usually have millions of nodes and large
numbers of ports. Moreover, due to heterogeneous integra-
tion of various modules, the current density becomes highly
non-uniform across the chip. It is beneficial to design a
structured P/G grid [1] that is globally irregular and locally
regular [2] according to the current density. This results in a
P/G circuit model as a heterogeneously structured network.
To ensure power integrity, specialized simulators for P/G
grid are required to efficiently and accurately analyze the
voltage bounce/drop using macro-models. In [3], internal
sources are eliminated to obtain a macro-model with only
external ports. The entire gird is partitioned at and con-
nected by those external ports. Because elimination results
in a dense macro-model, [3] applies an additional sparsifica-
tion procedure that is error-prone and inefficient. Alterna-
tive approach to obtain a macro-model is to use projection
based model order reduction (MOR) such as PRIMA [4].
The reduced model by PRIMA by a projection matrix with
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order q can match n = bq/npc block moments (np is the
port number). PRIMA can be implemented in a fashion of
iterative path-tracing to efficiently solve tree structured P/G
grids [5]. However, it is inefficient to be directly applied to
mesh structured P/G grids.

The difficulty to apply MOR in P/G grid analysis stems
mainly from following reasons. The cost of Arnoldi or-
thonormalization is high for large sized circuits, and the mo-
ment matching using block Krylov subspace is less accurate
with an increased number of ports. In addition, the reduced
macro-model is dense, which slows down simulation when
the port number is large. To reduce orthonormalization cost
for large sized circuits, HiPRIME [6] applies a partitioned
PRIMA to reduce the entire circuit in a divide-and-conquer
fashion. After gluing the reduced state matrices, HiPRIME
performs an additional projection to further reduced the en-
tire system. However, all these approaches [4, 6] use a flat
projection that leads to the loss of the structure information
of the state matrices. For example, the original state matri-
ces may be sparse, but they become dense after flat projec-
tion. The resulting macro-model, therefore is too dense to
be efficiently factorized in the time/frequency-domain sim-
ulation.

A recent method BSMOR [7] leverages the sub-block struc-
ture in G and C matrices. After obtaining a flat projec-
tion matrix by PRIMA, BSMOR constructs a new block-
diagonal structured projection matrix accordingly. Its pro-
jection results in a macro-model with more matched poles
than PRIMA, and hence an improved accuracy. Moreover,
as the projection preserves structure, the reduced macro-
model is sparse and can be solved by a two-level analysis.
However, [7] uses a genetic block-based structure, the system
poles are not only determined by those blocks in the diag-
onal part of G and C. As a result, the additional matched
poles are not accurate. Moreover, it assumes that all blocks
have same size, which is not compact and optimum as dis-
cussed in Section 3 and 4 later on. In addition, same as
[4], it orthnormalizes the entire state matrices to obtain the
projection matrix. As a result, it is inefficient for large sized
circuits.

In this paper, we propose a triangularization based structure-
preserving model order reduction, in short, TBS method. As
discussed in Section 2, instead of matching block moments
of the transfer function, we directly match moments of out-
put with an excitation current vector. As a result, the first q
moments or q dormant poles of output can be matched using
a projection matrix with order q, which is independent on
port number. In contrast, the number of matched block mo-



ments by PRIMA decreases as the port number increases.
Hence our approach has improved accuracy for circuits with
large number of ports.

In Section 3, we represent the original system by intercon-
nected basic blocks. The basic blocks are obtained from the
current density of locally regular structures in P/G grids.
We reduce each basic block independently with order q, de-
termine its first q dominant poles, and obtain its correspond-
ing projection matrix. We then carry out a dominant-pole
based clustering to obtain m clusters of basic blocks, where
m is decided by the nature of structured network. Each
cluster is called a compact block with a unique pole distribu-
tion and a projection matrix accordingly. Because clustering
reduces the redundant block information, the block-based
form in our method is more compact than that in BSMOR.

In Section 4, we further triangulate the system into a tri-
angular system with m compact blocks in the diagonal. The
poles of the resulting triangular system are determined only
by m diagonal blocks. A block-diagonal structured projec-
tion matrix is constructed by stacking projection matrices
for individual diagonal blocks in the triangular system. The
reduced triangular system is provable to match mq poles of
the original one. This is the primary contribution of this pa-
per. Because PRIMA or HiPRIME can only match q poles
using the same number of moments, the reduced system by
TBS is more accurate, or TBS has a higher reduction effi-
ciency under the same error bound. Moreover, the mq poles
are exactly matched in TBS but not in BSMOR.

In addition, as discussed in Section 5, because the pro-
jection preserves the structure, the obtained macro-model
by TBS is intrinsically sparse, and does not need the LP-
sparsification used in [3]. The obtained macro-model by
TBS also enables a two-level analysis similar to [8] to re-
duce simulation time in both frequency and time domains.
In contrast, the reduced model by PRIMA and HiPRIME is
dense and can not be analyzed in a fashion of two-level anal-
ysis. We present the experiments in Section 6, and conclude
the paper in Section 7.

2. BACKGROUND

2.1 Grimme’s Moment Matching Theorem
Using the modified nodal analysis (MNA), the system

equation of a P/G grid in the frequency domain is

(G + sC)x(s) = Bu(s), y(s) = BT x(s) (1)

where x(s) is the state variable vector, G and C (∈ RN×N )
are state matrices for conductance and capacitance with size
N , and B and L (∈ RN×np ) are input/output port incident
matrices with np ports.

Eliminating x(s) in (1) gives

H(s) = LT (G + sC)−1B. (2)

H(s) is a multiple-input multiple-output (MIMO) trans-
fer function. PRIMA [4] finds a projection matrix V (∈
RN×n). It has dimension q and its columns span n-block
(n = dq/npe) Krylov subspace K(A,R, n), i.e,

K(A,R, n) = span(V ) = {R, AR, ..., An−1R}, (3)

where two moment generating matrices are A = (G+s0C)−1C
and R = (G+ s0C)−1B, and s0 is the expansion point that

ensures G + s0C is nonsingular. The reduced transfer func-
tion is

Ĥ(s) = L̂T (Ĝ + sĈ)−1B̂, (4)

where

Ĝ = V T GV, Ĉ = V T CV, B̂ = V T B, L̂ = V T L.

Note that Ĝ and Ĉ ∈ Rq×q, and B̂ and L̂ ∈ Rq×np . As
proved in [9], Ĥ(s) preserves the block moments of H(s).
I.e.,

Theorem 1. If K(A,R, n) ⊆ span(V ), then the first n

expanded block moments at s0 are identical for Ĥ(s) and
H(s).

2.2 Moment Matching of Output Response
According to Theorem 1, if there is only one port, i.e., a

(single-input single-output) SISO system, the reduced model
can match q moments. When the port number np is large,
which is typical for P/G grids, the number of matched block

moment n reduces and the reduced transfer function Ĥ(s) is
less accurate. In this case, it is better to define an excitation
current vector J = Bu(s) and to directly match the moment
of output x(s) = (G + sC)−1J with the input vector J. As
a result, the matched moments of the output with input
J is q that is independent on the port number np. This
is because an MIMO system with right-hand-side Bu can
be transformed into the superposed SISO systems with the
input J. The following Theorem has been proved.

Theorem 2. Assume an MIMO system with unit-impulse
current source u, and define the excitation current vector
J = Bu, where u ∈ Rp and J ∈ RN . When the q columns
of projection matrix V are obtained, the reduced response at
the output x̂(s) = (Ĝ+sĈ)−1Ĵ (Ĵ = V T J) matches the first
q moments of the original x(s) = (G + sC)−1J.

Note that the following two systems have the same output
x(s)

(G + sC)x(s) = Bu(s), (G + sC)x(s) = J(s). (5)

In addition, J can be decomposed into several excitation
components

J =

pX

i=1

Ji = [J1 0 ... 0]T + ... + [0 ... Jp 0]T ,

Clearly for each Ji, it is equivalent to excite an SISO sys-
tem with input Ji. Therefore, x̂i(s) matches the first q mo-
ments of xi(s). With superposition, it is easy to verify thatPp

i=1 x̂i(s) matches the first q moments of
Pp

i=1 xi(s). In
contrast, PRIMA [4] matches the block moment of transfer
function with input matrix B.

Moreover, we have

Corollary 1. With the input J, the first q dominant
poles of x(s) are matched by x̂(s).

Using excitation current vector J as input, the first q mo-
ments are identical for x(s) and x̂(s). So does the first q
dominant poles.

Because the typical P/G girds contains large number of
ports, in this paper the MOR is performed to match the
moment of output x(s) with the input J = Bu, similar to
[10, 6].



3. COMPACT BLOCK FORMULATION
To handle large sized P/G grids and generate an accu-

rate and sparse macro-model, we represent the original grid
in compact blocks, where the overlap of pole distribution
between blocks is minimized.

3.1 Two-level Organization of Basic Block
The original P/G grids can be partitioned into m0 basic

blocks, where dense grid with small pitch is used for a region
with high current density, and sparse grid with large pitch
is used for a region with low current density [2, 7]. The
ith basic block has state matrices Gii and Cii with size
ni. Due to the heterogeneous structure of grids, each block
can have different RC values. Moreover, Gii and Cii are
interconnected by the coupling block Gij and Cij (i 6= j),
respectively. The resulting block-based state matrices are

G =

2
64

G11 . . . G1m0

...
. . .

...
Gm01 . . . Gm0m0

3
75 C =

2
64

C11 . . . C1m0

...
. . .

...
Cm01 . . . Cm0m0

3
75

and

J =
ˆ
J1 . . .Jm0

˜T
, x =

ˆ
x1 . . .xm0

˜T
. (6)

In addition, G and C can be decomposed into two levels by

G + sC = Y0(s) + Y1(s). (7)

The diagonal part Y0(s) is: G0 + sC0, where

G0 = diag[G11, ..., Gm0m0
], C0 = diag[C11, ..., Cm0m0

].

Note that each block matrix Gii or Cii is symmetric pos-
itive definite (s.p.d), i.e., each basic block is passive. The
off-diagonal part (Y1)ij is composed by the coupling block:
Gij +sCij (i 6= j). Its entries are usually smaller than those
in basic blocks in the diagonal. Accordingly, the moment
generation matrices for each basic block are

(A0)i = (Gii + s0Cii)
−1Cii, (R0)i = (Gii + s0Cii)

−1Ji.

To be discussed in Section 4 and 5, the two level decom-
position enables structure-preserving model order reduction
and two-level analysis.

3.2 Clustering
To obtain a more compact block representation we pro-

pose a bottom-up clustering algorithm based on the domi-
nant poles. The system timing response for each basic block
can be approximately determined by its q dominant poles,
i.e., the first q most dominant eigen-values or poles (λ1 ≤
... ≤ λq). Poles are calculated from the eigen-decomposition

of the order reduced moment matrix eA = eG−1 eC (∈ Rq×q).
Note that when the excitation current vector is used for the
moment matching of the output, the size q of the reduced
model with the desired accuracy can be much smaller than
the size of the original model. As a result, the cost of eigen-
decomposition of reduced model is not high.

Precisely, for m0 basic blocks, we calculate the first q dom-
inant poles for each basic block by reducing it independently
and finding its projection matrix Vi accordingly

span(Vi) = K((A0)i, (R0)i, q) i = 1, ..., m0. (8)

According to Theorem 2, using Vi, the reduced x̂i matches
the first q moments of xi with input Ji. x̂i hence also

matches the first q dominant poles of xi according to Corol-
lary 1.

Assume block i has (Gii,Cii,Ji). Its q-dominant-pole set
is

Λi = eigen[( eA0)i] = {λ1 ≤ ... ≤ λq}

After merging block i with another block j and their inter-
connection (Gij ,Cij), its q-dominant-pole set becomes

Λ′

i = eigen[( eA0)
′

i] = {λ′

1 ≤ ... ≤ λ′

q}

where (A0)
′

i is the new moment generation matrix for merged
block.

Moreover, we define the pole distance. If Λi and Λj are
two dominant-pole sets, λm ∈ Λi and λn ∈ Λj , then the
pole distance d(Λi, Λj) is

d(λm, Λj) = min{|λm − λn| : λn ∈ Λj}

d(Λi, Λj) = max{d(λm, Λj) : λm ∈ Λi}

The two basic blocks have a similar pole distribution and
are clustered if

d(Λ′

i, Λi) < ε

where ε is a small value specified by the user. More basic
blocks can be merged into this cluster if they have a sim-
ilar pole distribution as the cluster. On the other hand, a
basic block itself is a cluster if it does not share a similar
pole distribution with other blocks. The clustering obtains
m clusters of basic blocks, where m is decided by the struc-
ture of P/G grids and ε. We call cluster as a compact block
in this paper. Accordingly, we can obtain a set of projec-
tion matrices: V = [V1(n1×q), . . . , Vm(nm×q)], one for each
compact block.

This interconnected compact block representation reduces
the complexity of the original basic block representation as
fewer number of blocks are need to represent the original
system. Moreover, because the set of the first q dominant
poles of each clustered block has minimum overlap. Note
that because the original structured power grid shows het-
erogeneous structure that each region can have various RC
values, the clustering algorithm will not converge to one en-
tire circuit. This has been verified by experiments.

4. TBS MODEL ORDER REDUCTION
Although clustering results in m blocks each has the unique

pole distribution, the poles of the entire grids are not only
determined by those diagonal blocks. In this section, we
discuss how to form the upper triangular system (G, C) that
are equivalent to the original system (G,C), and the system
poles of (G, C) are determined only by its diagonal blocks
[11]. With an additional block structured projection, the
reduced blocks can match more poles than the flat projec-
tion.

4.1 Triangularization
The triangularization is based on introducing a replica

block of (G,C), and moving those lower triangular blocks of
(Gij ,Cij) (i < j) to the upper triangular parts at (Gi,m+j , Ci,m+j).
The resulting triangular system has a upper triangular state



matrix G

G =

2
666664

G11 G12 . . . G1m 0 0 . . . 0
0 G22 . . . G2m G21 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . Gmm Gm1 Gm2 . . . 0

0 G

3
777775

(9)
C has the similar structure as G. The port matrix B and
state variable x are

J =
ˆ
J1 J2 . . . Jm J

˜T
, x =

ˆ
x1 x2 . . . xm x

˜T
.

where J and x are defined in (6).
The resulting triangular system equation is

(G + sC)x(s) = J (10)

It is easy to verify that the solution x(s) from (10) is the
same as x(s) from (1).

Below, we prove that the new triangular system is passive.

Theorem 3. The upper block triangular system (G, C) is
passive.

Proof: The eigen-values of the triangular system is given by
the product of determinants of diagonal blocks

|G| =

m+1Y

i=1

|(G0)i| = |(G0)1|...|(G0)m||G|

Because each block (G0)i (1 ≤ i ≤ m) and G are positive
definite, G is positive definite as well. The same procedure
can be used to prove that C is positive definite. Therefore,
G + GT and C + CT are both s.p.d, and hence the triangular
system is passive.

Note that directly solving (10) involves a similar cost to
solve (1) as the replica block at the lower-right corner needs
to be factorized first. As shown below, its benefits can be
appreciated after a structure-preserving model order reduc-
tion, where the state variable of each reduced block can be
solved independently with q matched poles.

4.2 mq-pole Matching
After clustering in Section 3.2, we can also obtain a set of

projection matrices: {V1, ..., Vm, Vm+1}, where Vi (1 ≤ i ≤
m) is constructed for each block. Without using orthonor-
malization for replica block, Vm+1 is obtained by

Vm+1 = [V1, ..., Vm] (∈ RN×q) (11)

Furthermore, instead of constructing a flat projection ma-
trix

V = [V1, ..., Vm, Vm+1], (∈ R2N×q) (12)

we reconstruct a block-diagonal structured projection ma-
trix V:

V = diag[V1(n1×q), ..., Vm(nm×q), Vm+1(N×q)] (13)

with V ∈ R2N×(m+1)q ,
Pm

i=1 ni = N. Note that VTV = I,

i.e., each column of eV is still linearly independent and hence
the total column-rank is increased by a factor of the block
number m. With the use of V to project G, C and B matrices
respectively, we can obtain the order reduced state matrices

eG = VTGV, eC = VT CV, eJ = VTJ ,

Especially, the diagonal blocks in reduced eG and eC are called
reduced blocks.

The reduced eG matrix preserves the upper block triangu-
lar structure

eG =

» eGA
eGB

0 eGD

–
, (14)

where

eGA =

2
6664

VT
11G11V VT G12V11 . . . VT

11G1mVmm

0 VT
22G22V

T
22 . . . VT

22G2mVmm

...
...

. . .
...

0 0 . . . VT
mmGmmVT

mm

3
7775

eGB =

2
6664

0 0 . . . 0
VT

11G12V22 0 . . . 0
...

...
. . .

...
VT

mmGm1V11 VT
mmGm2V

T
22 . . . 0

3
7775

eGD = VT
m+1,m+1GVm+1,m+1. (15)

Since BSMOR does not use triangularization, its system
poles are not determined by those diagonal blocks. There-
fore, its reduced macro-model does not exactly have mq
poles matching (See Fig. 1 in Section 6). In contrast, TBS
can exactly match mq poles as discussed below.

Theorem 4. For the state matrices G and C in the upper
triangular block form, if there is no overlap between eigen-

values of the reduced blocks ( eGii, eCii) (∈ Rq×q), i.e.,

|( eG00)1 + s( eC00)1| ∪ ...∪ |( eG00 )m + s( eC00)m| = Null, (16)

the reduced system ( eG + s eC) exactly matches mq poles of the
original system (G + sC).

Proof: Because the original G and C are in the upper trian-
gular form, and the projection by V preserves the structure,

the reduced eG and eC are in the upper triangular block form

as well. For a upper triangular block system eG+s eC, its poles

(eigen-values) are the roots of its determinant | eG+s eC|, which
are determined only by the diagonal blocks

|eG + s eC| =

mY

i=1

| eGii + s eCii|

Note that eigenvalues of |eG + s eC| represent the reciprocal

poles of the reduced model [4]. For the reduced block eGii +

s eCii with input Ji, its output exi matches q moments and the
first q domain poles of the output xi for block Gii + sCii

in the triangular system. Since the entire system consists
of m compact blocks, each with unique pole distribution,
the reduced model by TBS can match mq poles. Note that
the redundant poles obtained from the replica block are not
counted here. With more matched poles, TBS is more ac-
curate than HiPRIME and BSMOR. This will be shown in
Section 6.

5. TWO LEVEL ANALYSIS
Because the projection in TBS preserves the structure,

the reduced state matrices are sparse if the original ones are
sparse. In contrast, when projected by flat projection V in



Figure 1: Pole matching comparison: mq poles
matched by TBS and BSMOR, and q poles matched
by HiPRIME.

PRIMA and HiPRIME, the resulted Ĝ is

Ĝ =
m+1X

i=1

m+1X

j=1

Vi
T GijVj , (17)

which loses the structure in general, and the reduced state
matrices are dense. This slows down simulation when Ĝ and
Ĉ are stamped back to MNA.

Due to the structure-preserving, the reduced triangular
system by TBS can be further analyzed efficiently either by
a direct backward substitution or a two-level analysis similar
to [8]. As the two-level analysis enables the parallelized
solution and can be extended to the hierarchical analysis, it
is used in this paper to obtain the solution in both frequency
and time domains. As a result, the state variable of each
reduced block can be solved independently with matched q
poles.

Consider the system equation for the reduced model

eYx = eb. (18)

In frequency domain at a frequency point s, (18) becomes

eY = eG + s eC = eY0(s) + eY1(s), eb = eJ (s),

and in time domain at a time instant t with time step h,
(18) becomes

eY = eG +
1

h
eC = eY0(h) + eY1(h), eb =

1

h
eCx(t − h) + eJ (t).

Note that the time step h can be different for each reduced
block according to its dominant-pole (λ1).

The state vector x can be solved for each block in a fashion
of two level analysis similar to [8].

x = P (0) − PQ (19)

where

P (0) = ( eY0)
−1eb, P = ( eY0)

−1 eY1, Q = (I + P )−1P (0).
(20)

To avoid explicit inversion, LU or Cholesky factorization

needs to be applied to eY0 and I + ( eY0)
−1 eY1. As eY0 shows

the block diagonal form, each reduced block matrix is first
solved independently with LU/Cholesky factorization and
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Figure 3: Comparison of time-domain responses be-
tween HiPRIME, BSMOR, [3], TBS and the origi-
nal. TBS is identical to the original.

substitution at the bottom level. The results from each re-
duced block are then used further to solve the coupling block
at the top level, and the final xk of each reduced block is
updated.

6. EXPERIMENTS
We implemented the TBS on a Linux workstation (P4

2.66GHz, 1Gb RAM). The RC mesh structures of the P/G
grid are generated from realistic applications. In this sec-
tion, we first verify that TBS preserves triangular structure
(sparsity) and matches mq poles, and then compare its ac-
curacy and runtime with HiPRIME [6], BSMOR [7] and
[3]. The excitation current sources (unit-impulse) are ex-
plicitly considered in all MOR based methods to avoid block
moment matching. The clustered block structure obtained
from TBS is used as the partition for HiPRIME and [3],
and the same block number is used for BSMOR but each
block has the same size. Back-Euler method is used for
time-domain simulation, and two-level analysis is applied
for TBS, BSMOR and [3]. In the comparison of the macro-
model building and simulation time, all reduced models have
similar accuracy. In the comparison of the waveform error,
all MOR methods use the same number of matched mo-
ments, and macro-models for TBS and [3] have the similar
size and sparsification ratio.

6.1 A Non-uniform Structured RC Mesh
We use a non-uniform RC mesh (size 1M) with 32 same

sized basic blocks and 32 unit-impulse current sources lo-
cated at centers of basic blocks. Each basic block has a
different magnitude of RC values. The number of connec-
tions between any pair of basic blocks are also different.
HiPRIME, BSMOR and TBS all use q = 8 moments to gen-
erate the reduced model. The clustering algorithm found
4 clusters with 4, 4, 8, 16 basic blocks, respectively. As a
result, TBS constructs a block structured projection using 4
blocks with the aforementioned sizes. In contrast, BSMOR
constructs a block structured projection using 4 blocks with
same size.

Fig. 2 shows the non-zero pattern of the conductance
matrix before triangularization in Fig. 2 (a), after trian-



Figure 2: Nonzero (nz) pattern of conductance matrices: (a) original system (b) triangular system (c) reduced
system by TBS. (a)-(c) have different dimensions, but (b)-(c) have the same triangular structure and same
diagonal block structure.

node port order TBS HiPRIME BSMOR [3]
(N) (np) (q) (m=4) (m=4)

768 12 8 5.03e-7 9.09e-6 4.87e-6 5.54e-6
7.68K 80 40 1.84e-6 2.31e-5 7.93e-6 1.21e-5
76.8K 120 60 3.02e-5 6.82e-4 1.91e-4 1.31e-2
768K 200 100 1.27e-4 9.67e-3 4.23e-3 6.01e-2
7.68M 1200 200 3.01e-3 9.97e-2 5.10e-2 0.11

Table 1: Time-domain waveform error of reduced
models by HiPRIME, BSMOR, TBS under the same
order (number of matched moments).

gularization in Fig. 2 (b), and after the TBS reduction
(m = 4, q = 8) in Fig. 2 (c). Fig. 2 (b) and (c) have
the similar non-zero pattern, which verifies that TBS pre-
serves the triangular structure. Due to the intrinsic sparsity
by TBS, the reduced model has a 40.1% sparsification ratio.
In contrast, HiPRIME generates a fully dense state matrices
after the reduction and the sparsity in the reduced model by
[3] is obtained by an additional LP-based sparsification.

To compare pole-matching, we choose one observation
port that is not at the source node. The relative errors are
calculated as the magnitude difference of poles between the
reduced and original models. As shown by Fig. 1, HiPRIME
can only approximate 8 poles of the original model, but TBS
and BSMOR can approximate 32 poles due to increased col-
umn rank in the projection matrix. Moreover, for poles
matched by both TBS and BSMOR, TBS is about 6X more
accurate in average. This is because the system poles of
triangular are determined by its diagonal blocks. With a
structure-preserving model order reduction, the reduced tri-
angular system by TBS can exactly match mq poles of the
original system. In contrast, the reduction in BSMOR does
not have the triangular structure, and hence its approxi-
mated mq poles are less accurate than those obtained by
TBS.

Fig. 3 compares the time-domain response at one port
for HiPRIME, BSMOR, [3], TBS and the original under
a unit-impulse input. The time-domain waveform error is
counted as the relative deviation at peak voltage. The re-
duced model by TBS is visually identical to the original
model, but HiPRIME shows up to 36% error due to much
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Figure 4: Comparison of frequency-domain re-
sponses between HiPRIME, BSMOR, TBS and the
original. TBS is identical to the original.

fewer matched poles, and [3] shows up to 64% error due to
the sparsfication. As mentioned before, the projection ma-
trix constructed by BSMOR uses 4 uniform block each with
the same size. As a result, it is not optimum to match poles
and results in up to 23% error. Fig. 4 further shows the
frequency-domain response under an impulse input. Using
the same number of moments, we observe that the reduced
model by TBS is identical to the original up to 50GHz, but
the one by BSMOR or HiPRIME shows non-negligible de-
viation beyond 10GHz.

6.2 Scalability Study
We first study the runtime time scalability of reduced

macro-model by HiPRIME, BSMOR, the method from [3]
and TBS. The runtime time here includes both the macro-
model building time and macro-model simulation time (time-
domain). All reduced state matrices are constructed the
similar accuracy.

Fig. 5 (a) compares the macro-model building time. As [3]
needs the additional LP-based sparsification, it is inefficient
for large sized P/G grids. For example, for a RC-mesh with
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Figure 5: Comparison of runtime under the similar
accuracy. (a) macro-model building time (log-scale)
comparison; (b) macro-model time-domain simula-
tion time (log-scale) comparison.

size of 7.68M , the method in [3] needs 4hrs : 42mins : 38s to
build a reduced macro-model with size 1K and sparsity 30%,
but TBS only spends 2mins : 8s (133X speedup) to build
the similar sized macro-model. Moreover, TBS also has 54X
speedup than BSMOR (1hr : 45mins : 30s) because or-
thonormalization is applied to each block independently in
TBS. HiPRIME orthnormalizes each block independently,
but its building time is still larger than TBS. This is due to
that a higher order (4X) is required to generate a reduced
model with similar accuracy as TBS. Fig. 5 (b) further com-
pares the simulation time, where we also increase the port
number when increasing the circuit size. Because HiPRIME
still uses flat projection, it results in a dense macro-model
that loses the structure information and can not be analyzed
hierarchically. Therefore, it becomes inefficient to be used
for time-domain simulation. As a result, its simulation time
is much larger than the other macro-models. On the other
hand, BSMOR, [3] and TBS enable the two-level analysis
to handle larger circuits with sizes up to 7.68M and 1200
ports in similar runtimes. For a circuit with size (76.8K)2

and 120 ports, TBS achieves 109X runtime speedup com-
pared to HiPRIME.

In Table 1, we further study the accuracy scalability of re-
duced macro-model by HiPRIME, BSMOR, [3] and TBS. All
reduced models by MOR use the same number of moments.
The standard deviation of waveform differences between the
reduced and the original model is used as the measure of
error. We use higher order reduced model (by 4X) as the
base if the waveform of the original model is unavailable.
We find that the accuracy of [3] degrades when a large spar-
sity ratio is needed, where LP optimization can not preserve
accuracy. On the other hand, using moment matching based
projection with preserved sparsity, TBS generates a macro-
model with higher accuracy. For example, it has a 38X
higher accuracy than [3] when reducing a 7.68M circuit to
a (1K) macro-model with 32% sparsity. For the same cir-
cuit, TBS is 17X more accurate than BSMOR due to the
exactly mq-pole matching, and is also 33X more accurate
than HiPRIME due to more matches poles.

7. CONCLUSIONS
In this paper, we have proposed an accurate and efficient

TBS model order reduction method to verify the power in-
tegrity for large sized P/G grids in the time-domain. Us-
ing triangularization, we show that the original system is
passively transformed into a form with upper triangular
block structure, where system poles are determined only
by m diagonal blocks, where m is decided by the nature
of the structured network. With an efficient dominant-pole
based clustering and a block structured projection, the re-
duced triangular system can match mq poles of original sys-
tem. Experiments show that the waveform error is reduced
33X compared to the flat projection method like PRIMA
and HiPRIME, and 17X compared to BSMOR using user
specified partition. Moreover, with a two-level organization
the reduction and analysis in TBS can be performed for
each block independently. Therefore, it reduces both macro-
model building and simulation time. TBS is up to 54X faster
to build macro-models than BSMOR, and up to 109X to
simulate macro-models in time-domain than HiPRIME. In
addition, as TBS preserves sparsity, it is up to 133X faster
to build macro-models than [3].
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